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1 Introduction

This project is dedicated to the study of the basics of propositional and pred-
icate logic. We will study it based on Russell and Whitehead’s epoch making
treatise Principia Mathematica [9]. Published in three volumes between 1910
and 1913, Principia was a culmination of work that had been done in the
preceding century on the foundations of mathematics. Since the middle of
the nineteenth century, such thinkers as George Boole (1815–1864), Augustus
De Morgan (1806–1871), Charles Sanders Peirce (1839–1914), Ernst Schröder
(1841-1902), Gottlob Frege (1848–1925), and Giuseppe Peano (1858–1932)
had been developing axiomatic bases for logic and the foundations of math-
ematics. This research program found its culmination in Principia, which
had a tremendous influence on the development of logic and the foundations
of mathematics in the twentieth century.

Logic is a branch of science that studies correct forms of reasoning. It
plays a fundamental role in such disciplines as philosophy, mathematics, and
computer science. Like philosophy and mathematics, logic has ancient roots.
The earliest treatises on the nature of correct reasoning were written over
2000 years ago. Some of the most prominent philosophers of ancient Greece
wrote of the nature of deduction more than 2300 years ago, and thinkers in
ancient China wrote of logical paradoxes around the same time. However,
though its roots may be in the distant past, logic continues to be a vibrant
field of study to this day.

Modern logic originated in the work of the great Greek philosopher Aris-
totle (384–322 bce), the most famous student of Plato (c.427–c.347 bce) and
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one of the most influential thinkers of all time. Further advances were made
by the Greek Stoic philosopher Chrysippus of Soli (c.278–c.206 bce), who
developed the basics of what we now call propositional logic.1

For many centuries the study of logic was mostly concentrated on different
interpretations of the works of Aristotle, and to a much lesser degree of those
of Chrysippus, whose work was largely forgotten. However, the existing logic
had no formal basis. All the argument forms were written in words, and
lacked formal machinery that would create a logical calculus of deduction
that is easy to work with.

The great German philosopher and mathematician Gottfried Willhelm
Leibniz (1646–1716) was among the first to realize the need of formalizing
logical argument forms. It was Leibniz’s dream to create a universal formal
language of science that would reduce all philosophical disputes to a matter of
mere calculation by recasting the reasoning in such disputes in the universal
symbolic language of science.

The first real steps in this direction were taken in the middle of the
nineteenth century by the English mathematician George Boole. In 1854
Boole published An Investigation of the Laws of Thought [3], in which he
developed an algebraic system for discussing logic. Boole’s work ushered in
a revolution in logic, which was advanced further by Augustus De Morgan,
Charles Sanders Peirce, Ernst Schröder, and Giuseppe Peano.2

The next key step in this revolution in logic was made by the great Ger-
man mathematician and philosopher Gottlob Frege. Frege created a powerful
and profoundly original symbolic system of logic, as well as suggested that
the whole of mathematics can be developed on the basis of formal logic,
which resulted in the well-known school of logicism.3

By the early twentieth century, the stage was set for Russell and White-
head to give a modern account of logic and the foundations of mathematics
in their influential treatise Principia Mathematica.

Alfred North Whitehead (1861-1947), the son of a vicar in the Church
of England [6, p. 23], was born in Ramsgate, Kent, England, and studied
mathematics at Trinity College, Cambridge. In 1884, Whitehead was elected

1Our webpage http://www.cs.nmsu.edu/historical-projects/ offers more details
on the work of Chrysippus; see the historical project [5].

2Our webpage http://www.cs.nmsu.edu/historical-projects/ offers historical
projects on Boole, De Morgan, Peirce, and Peano; see the projects [1, 2].

3Frege’s formal treatment of propositional logic is discussed on our webpage
http://www.cs.nmsu.edu/historical-projects/; see the historical project [5].
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a fellow at Trinity College, and would teach mathematics there until 1910.
After his tenure at Trinity College, Whitehead spent time at University Col-
lege London and Imperial College London, engaging in scholarly work in
philosophy. He later emigrated to the United States, and taught philosophy
at Harvard University until his retirement in 1937 [4].

While a fellow at Trinity College, Whitehead met Bertrand Russell (1872-
1970), who was then a student there [6, p. 223]. Russell was born into an
aristocratic family. His grandfather, John Russell, was twice Prime Minis-
ter to Queen Victoria [7, p. 5]. Russell graduated from Trinity College in
1893. He went on to become one of the most influential intellectuals of the
twentieth century, playing a decisive role in the development of analytic phi-
losophy. Russell was also active in a number of political causes; notably,
he was an anti-war activist and advocated nuclear disarmament. He was
a prolific writer, and in 1950 was awarded the Nobel Prize in Literature
“in recognition of his varied and significant writings in which he champions
humanitarian ideals and freedom of thought.” [8].

Around 1901, Russell and Whitehead began collaborating on a book on
logic and the foundations of mathematics [6, p. 254–258]. This resulted in
an epochal work, Principia Mathematica, which would later be recognized as
a significant contribution to logic and the foundations of mathematics. In-
fluenced by the work of Frege, Peano, and Schröder, Russell and Whitehead
developed an axiomatic basis for logic and the foundations of mathematics,
and tried to free the foundations of mathematics of the existing contradic-
tions.

In what follows, we will introduce the basic principles of contemporary
logic through the development of Russell and Whitehead’s Principia Mathe-
matica.

2 Propositional Logic

In this section we begin our study of propositional logic from Principia Math-
ematica. The chief object of our investigation will be propositions—sentences
which are either true or false but not both. Thus, we are concerned with
sentences such as “Benjamin Franklin was the first president of the United
States” and “Two plus two is equal to four.” Clearly the first of the two sen-
tences is false and the second one is true. Therefore, both of the sentences are
propositions. On the other hand, a sentence such as “Who was the author
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of Hamlet?” is not a proposition because it is neither true nor false. Hence,
we will not be concerned with this type of sentence.

To carry out our study of propositions, we introduce the concept of a
propositional variable. Unlike the variables used in algebra and calculus,
propositional variables do not merely stand for some undetermined quantity.
Instead, propositional variables stand for propositions. The letters p, q, r
and so forth will be used to denote propositional variables.

Logical connectives

We now turn to the first major topic in propositional logic, the question
of how to form complicated propositions out of simpler ones. Russell and
Whitehead address this question in the opening pages of Principia Mathe-
matica:

An aggregation of propositions (...) into a single proposition more
complex than its constituents, is a function with propositions as ar-
guments. [9, Vol. 1, p. 6]

Thus, more complex propositions are formed from simpler propositions by
means of propositional functions. What are the propositional functions that
yield more complex propositions? Russell and Whitehead employ four fun-
damental propositional functions.

...They are (1) the Contradictory Function, (2) the Logical Sum,
or Disjunctive Function, (3) the Logical Product, or Conjunctive
Function, (4) the Implicative Function. These functions in the sense
in which they are required in this work are not all independent; and
if two of them are taken as primitive undefined ideas, the other two
can be defined in terms of them. It is to some extent—though
not entirely—arbitrary as to which functions are taken as primitive.
Simplicity of primitive ideas and symmetry of treatment seem to be
gained by taking the first two functions as primitive ideas. [9, Vol.
1, p. 6]

In modern terminology the Contradictory Function of Russell and Whitehead
is known as negation (“not”), the Logical Sum or Disjunctive Function is
known as disjunction (“or”), the Logical Product or Conjunctive Function
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as conjunction (“and”), and the Implicative Function as implication (“if,
then”).

Russell and Whitehead mention that the four functions are not indepen-
dent of each other. Later on we will see why this is so. For now, let us read
how Russell and Whitehead define these four functions.

The Contradictory Function with argument p, where p is any propo-
sition, is the proposition which is the contradictory of p, that is, the
proposition asserting that p is not true. This is denoted by∼ p. Thus
∼ p is the contradictory function with p as argument and means the
negation of the proposition p. It will also be referred to as the propo-
sition not-p. Thus ∼ p means not-p, which also means the negation
of p.

The Logical Sum is a propositional function with two arguments p
and q, and is the proposition asserting p or q disjunctively, that is,
asserting that at least one of the two p and q is true. This is denoted
by p ∨ q. Thus p ∨ q is the logical sum with p and q as arguments.
It is also called the logical sum of p and q. Accordingly p∨ q means
that at least p or q is true, not excluding the case in which both are
true.

The Logical Product is a propositional function with two arguments
p and q, and is the proposition asserting p and q conjunctively, that
is, asserting that both p and q are true. This is denoted by p.q (...).
Thus p.q is the logical product with p and q as arguments. It is also
called the logical product of p and q. Accordingly p.q means that
both p and q are true. It is easily seen that this function can be
defined in terms of the two preceding functions. For when p and q
are both true it must be false that either ∼ p or ∼ q is true. Hence
in this book p.q is merely a shortened form of symbolism for

∼ (∼ p ∨ ∼ q)

The Implicative Function is a propositional function with two argu-
ments p and q, and is the proposition that either not-p or q is true,
that is, it is the proposition ∼ p ∨ q. Thus if p is true, ∼ p is false,
and accordingly the only alternative left by the proposition ∼ p ∨ q
is q is true. In other words if p and ∼ p ∨ q are both true, then q is
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true. In this sense the proposition ∼ p ∨ q will be quoted as stating
that p implies q. The idea contained in this propositional function
is so important that it requires a symbolism which with direct sim-
plicity represents the propositions as connecting p and q without the
intervention of ∼ p. But “implies” as used here expresses nothing
else than the connection between p and q also expressed by the dis-
junction “not-p or q.” The symbol employed for “p implies q,” i.e.
for “∼ p∨ q,” is “p ⊃ q.” This symbol may also be read “if p, then
q.” [9, Vol. 1, p. 6–7]

Note that there is an apparent ambiguity in reading propositions like ∼ p∨q.
The proposition can be read as either (∼ p) ∨ q (i.e., as the logical sum of
∼ p and q) or as ∼ (p ∨ q) (i.e., as the result of applying the contradictory
function to p ∨ q). This ambiguity is easily resolved by the agreement that
∼ binds stronger than either of ∨, . ,⊃. Thus, ∼ p ∨ q is read as (∼ p) ∨ q
rather than ∼ (p ∨ q). Similarly, we agree that ∨ and . bind stronger than
⊃. For example, the proposition p∨ q ⊃ r should be read as (p∨ q) ⊃ r, and
the proposition ∼ p.q ⊃ r ∨ p should be read as ((∼ p).q) ⊃ (r ∨ p).

Today we refer to the four fundamental functions of propositions of Prin-
cipia Mathematica simply as logical connectives. We also call propositions
p, q, r, . . . elementary propositions, and propositions built from elementary
propositions by means of logical connectives compound propositions. State-
ments of the form p ⊃ q are referred to as conditional statements or condi-
tionals.

Our first goal is to obtain a good understanding of propositions and of
how the four logical connectives that Russell and Whitehead introduced yield
more complex propositions out of simpler ones.

Exercise 1. Which of the following sentences are propositions?

(a) The New York Yankees have never won a World Series.

(b) 2 is even.

(c) Please close the door.

(d) The square root of 109.

(e) The sum of two even integers is even.

(f) What is the capital of France?
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For the sentences that are propositions, determine whether they are true or
false.

Exercise 2. Let p denote the proposition “All mammals have four legs,” q
denote the proposition “All dogs have four legs,” and r denote the proposition
“All dogs are mammals.” Represent each of the following propositions using
the four fundamental functions of propositions of Principia Mathematica.

(a) Not all dogs have four legs.

(b) All mammals have four legs and all dogs have four legs.

(c) Not all mammals have four legs or not all dogs have four legs.

(d) If all mammals have four legs and all dogs are mammals, then all dogs
have four legs.

(e) If not all dogs have four legs, then not all mammals have four legs or
not all dogs have four legs.

Which of the above are true and which are false?

Exercise 3. Let p denote the proposition “9 is odd,” q denote the proposition
“81 is the square of 9,” and r denote the proposition “81 is odd.” Write each
of the following propositions verbally in words.

(a) p.q ⊃ r

(b) q.r ⊃ p

(c) ∼ r ⊃ (∼ p ∨ ∼ q)

(d) p ∨ ∼ (q.r)

Determine which of the above are true and which are false.

Logical equivalence and biconditionals

In some cases, different propositions are, in some sense, logically the same.
For example, the propositions “9 is odd and 81 is the square of 9” and “81
is the square of 9 and 9 is odd” are somehow alike despite having different
symbolic representations. More generally, if p and q are propositions, the
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propositions p.q and q.p apparently have the same meaning. This property
of being logically alike, called logical equivalence, is one of the most impor-
tant concepts in propositional logic. Principia Mathematica describes logical
equivalence as follows:

The simplest example of the formation of a more complex function of
propositions by the use of these four fundamental forms is furnished
by “equivalence.” Two propositions p and q are said to be “equiva-
lent” when p implies q and q implies p. This relation between p and q
is denoted by “p ≡ q.” Thus “p ≡ q” stands for “(p ⊃ q).(q ⊃ p).”
It is easily seen that two propositions are equivalent when, and only
when, they are both true or are both false. [9, Vol. 1, p. 7]

Here Russell and Whitehead have introduced a special symbol, ≡, for de-
noting that p and q are logically equivalent. Since p ≡ q stands for (p ⊃
q).(q ⊃ p), ≡ is also a logical connective, which can be expressed by means
of . and ⊃. Today this logical connective is known as the biconditional, and
statements of the form p ≡ q are referred to as biconditional statements. We
will see later that two propositions p and q are logically equivalent if and
only if the biconditional p ≡ q is always true, i.e. if the biconditional is true
irrespective of the truth of p or q.

Truth-values

At first glance, it seems as if it may be difficult to determine whether two
propositions are logically equivalent. For example, if p, q, and r are proposi-
tions, it is not readily apparent whether the compound propositions (p∨ q).r
and (p.r) ∨ (q.r) are logically equivalent. To develop a method for easily
settling questions such as this, we first need to be able to determine whether
a compound proposition is true or false. Principia Mathematica addresses
this question:

Truth-values. The “truth-value” of a proposition is truth if it is true,
and falsehood if it is false. It will be observed that the truth-values
of p ∨ q, p.q, p ⊃ q, ∼ p, p ≡ q depend only on those of p and q,
namely the truth-value of “p∨ q” is truth if the truth-value of either
p or q is truth, and is falsehood otherwise; that of “p.q” is truth if
that of both p and q is truth, and is falsehood otherwise; that of
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“p ⊃ q” is truth if either that of p is falsehood or that of q is truth;
that of ∼ p is the opposite of that of p; and that of “p ≡ q” is truth
if p and q have the same truth value, and is falsehood otherwise. [9,
Vol. 1, p. 8]

In everyday English, propositions of the form “p or q” are usually intended
to mean that either p is true or q is true, but not both. For example, in
ordinary English the “or”-statement “the car was red or blue” means that
the car was either red or blue, but not both red and blue. The logical
connective “or” in such statements is called an exclusive “or”. However,
according to Principia Mathematica the connective “∨” expresses a different
sort of “or”—for “p ∨ q” is true if at least one of p and q is true. The
connective ∨ is called an inclusive “or” because the truth of “p ∨ q” allows
for the possibility that both p and q are true. In mathematics and logic,
“or”-statements always employ the inclusive “or” rather than the exclusive
“or”.

Note also that the truth-values of the implication “p ⊃ q” given in Prin-
cipia Mathematica are somewhat different than one might expect. Russell
and Whitehead indicate that “p ⊃ q” is true if either p is false or q is true;
so, in particular, they regard statements of the form “if p, then q” as true
if p is false. This way of thinking about “if, then” statements may at first
seem unusual, but one may understand the motivation for doing so if one
thinks of “p ⊃ q” as being analogous to a promise that if p holds true, then
q will also hold true. If it so happens that p is not true, then the promise
is unbroken regardless of the truth-value of q, and so “p ⊃ q” is true. The
promise is broken only if p holds true, but q happens to be false. This is
the only situation in which we regard “p ⊃ q” as being false. Note that an
implication “if p, then q” which is true because p is false is referred to as
vacuously true.

Exercise 4. If the truth-value of p is truth and the truth-values of q and r are
falsehood, compute the truth-values of the following compound propositions.

(a) (p ∨ q) ∨ r

(b) p ⊃ (p.q)

(c) (∼ (p.r)) ⊃ ∼ q

(d) (p ≡ r) ⊃ q
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Truth tables

We now understand how to determine the truth-value of a compound propo-
sition from the truth-values of the propositional variables of which it is com-
posed. However, to determine whether two compound propositions are log-
ically equivalent we must be able to guarantee that they have the same
truth-values under any circumstances. In other words, we must be able to
guarantee that the compound propositions have the same truth-value for any
possible assignment of truth-values to the propositional variables of which
they are composed.

The great German philosopher Ludwig Wittgenstein (1889–1951) and the
American logician Emil Post (1897–1954) independently devised a convenient
method of listing the possible truth values of a compound proposition. This
method employs truth tables, tables which list all the possible truth-values
of the propositional variables contained in a compound proposition along
with the corresponding truth-values of the compound proposition itself. For
example, if p is a propositional variable, then the truth table of the compound
proposition ∼ p is as follows:

p ∼ p
T F
F T

Here the possible truth-values for the propositional variable p are listed in the
column on the left, and the corresponding truth-values of the proposition ∼ p
are listed in the column on the right. Truth is denoted by T and falsehood
is denoted by F.

Compound propositions which contain more propositional variables have
more complicated truth tables. For example, if p and q are propositional
variables, then the truth table for the proposition p ∨ q is:

p q p ∨ q
T T T
T F T
F T T
F F F

It is now a simple matter to determine whether two compound propostions
are logically equivalent: two propositions are logically equivalent if and only
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if they have the same truth tables. We can now answer the question of
whether (p∨ q).r and (p.r)∨ (q.r) are logically equivalent by forming a truth
table for these propositions:

p q r (p ∨ q).r (p.r) ∨ (q.r)
T T T T T
T T F F F
T F T T T
T F F F F
F T T T T
F T F F F
F F T F F
F F F F F

As the two propositions have identical truth tables, they are logically equiv-
alent.

Exercise 5. Construct truth tables for each of the following propositions.

(a) p.q

(b) p ⊃ q

(c) p ≡ q

(d) (p ∨ q) ⊃ r

(e) p ⊃ (q.r)

Exercise 6. Use truth tables to show that:

(a) ∼ (p.q) is logically equivalent to ∼ p ∨ ∼ q.

(b) ∼ (p ∨ q) is logically equivalent to ∼ p.∼ q

These equivalences are called De Morgan’s Laws in honor of the British lo-
gician Augustus De Morgan.

Exercise 7.

(a) Are p ⊃ q and ∼ q ⊃ ∼ p logically equivalent? Justify your answer.
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(b) Are p ⊃ q and q ⊃ p logically equivalent? Justify your answer.

(c) The proposition ∼ q ⊃ ∼ p is often called the contrapositive of the
conditional p ⊃ q, and the proposition q ⊃ p is often called the converse
of the conditional p ⊃ q. Are there any logical equivalences between
a conditional statement, its contrapositive, and its converse? Justify
your answer.

Now that we can easily construct truth tables of compound propositions,
we will discuss Russell and Whiteheads claim (see page 4) that the four
logical connectives are inter-definable. For example, Russell and Whitehead
state that both ⊃ and . can be expressed by means of ∼ and ∨; namely,
p ⊃ q is a shorthand for ∼ p ∨ q and p.q is a shorthand for ∼ (∼ p ∨ ∼ q).

Exercise 8.

(a) Show that p.q and ∼ p are logically equivalent to propositions only
involving ∨ and ⊃.

(b) Show that p ∨ q and p.q are logically equivalent to propositions only
involving ⊃ and ∼.

(c) What do these results indicate about the logical connectives introduced
in Principia? Are some connectives redundant? If so, which ones?

Tautologies

We have seen that truth tables are a useful tool for determining if two proposi-
tions are logically equivalent, but it turns out that truth tables have a variety
of other uses. In what follows we will explore two other applications of truth
tables. The first of these applications is the identification of certain special
propositions. To illustrate what these propositions are and how truth tables
can be used to identify them, we consider the truth table of the proposition
p ∨ ∼ p:

p p ∨ ∼ p
T T
F T
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Notice that the truth-values displayed in the righthand column are always
truth; falsehood does not appear. Thus, p∨∼ p is true under any assignment
of truth or falsehood to the proposition p. Propositions with this property—
that is, propositions which are true for any assignment of truth-values to
the propositional variables of which they are formed—are called tautologies.
From the truth table above, we can easily see that p ∨ ∼ p is a tautology.
p ∨ ∼ p is referred to as the law of the excluded middle since it asserts that
either p is true or the negation of p is true (so there is no “middle ground”).
In general, one may test to see if a proposition is a tautology by constructing
a truth table: if the only possible truth-value of the proposition is truth,
then that proposition is a tautology.

Exercise 9. Use truth tables to verify that each of the following propositions
is a tautology.

(a) ∼ (p.∼ p)

(b) p ≡ ∼ (∼ p)

(c) (p ∨ q) ⊃ (q ∨ p)

(d) (p ⊃ q) ≡ (∼ q ⊃ ∼ p)

The logical laws expressed in (a) and (b) are called the law of non-
contradiction and the law of double negation, respectively. For any proposi-
tion p, the law of non-contradiction asserts that p and ∼ p are not both true,
while the law of the excluded middle asserts that at least one of p and ∼ p
is true. Hence, when taken together, the law of non-contradiction and the
law of the excluded middle guarantee that exactly one of p or ∼ p is true for
each proposition p.

Now, as promised on page 8, we are ready to see that two propositions
p and q are logically equivalent if and only if the biconditional p ≡ q is a
tautology.

Exercise 10. Show that p and q are logically equivalent if and only if p ≡ q
is a tautology.
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Inference rules

Up until now we have been concerned exclusively with propositions and their
properties. However, the central concern of logic is not just the study of
propositions. Rather the object of study in logic is inference—the process
of drawing correct conclusions from premises. Our study of inference begins
with a simple rule which allows us to deduce the proposition q from the
propositions p and p ⊃ q. This rule is referred to as Modus Ponens. Principia
Mathematica describes the rule as follows:

Inference. The process of inference is as follows: a proposition “p”
is asserted, and a proposition “p implies q” is asserted, and then as
a sequel the proposition “q” is asserted. The trust in inference is
the belief that if the two former assertions are not in error, the final
assertion is not in error. [9, Vol. 1, p. 9]

Russell and Whitehead assert that Modus Ponens is a valid logical rule;
that is, if the premises p and p ⊃ q are both true, then the conclusion q
is guaranteed to be true. While this fact is intuitively obvious, a skeptical
reader may wonder how we really know this is the case. Fortunately, the
skeptic’s concerns may easily be allayed: we can verify that Modus Ponens
preserves truth. For this we need to be able to guarantee the truth of q based
on the truth of the propositions p and p ⊃ q. We thus need only to verify
that q is true in every circumstance in which both p and p ⊃ q are true.
To do so, we construct a truth table listing the possible truth values of the
propositions p, q, and p ⊃ q:

p q p ⊃ q
T T T
T F F
F T T
F F T

The only row of the truth table in which both p and p ⊃ q are true is the
first. Since in this case q is also true, we know that if p and p ⊃ q are both
true, then q must be true as well. Thus, Modus Ponens is a valid logical rule.

So far we have focused exclusively on Modus Ponens, but it is worth
noting that we might just as well have discussed any one of several valid
logical rules. There are many valid logical rules (called rules of inference),
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and Modus Ponens is distinguished only by being the simplest of these. In
the exercises, we will encounter several other historically important rules of
inference and establish their validity.

Exercise 11. Use truth tables to verify the validity of the following rule of
inference: if ∼ q and p ⊃ q hold, then infer that ∼ p holds. (This rule of
inference is referred to as Modus Tollens.)

Exercise 12. Use truth tables to verify the validity of the following rule
of inference: if ∼ p and p ∨ q hold, then infer that q holds. (This rule of
inference is referred to as the disjunctive syllogism.)

Exercise 13. Use truth tables to verify the validity of the following rule of
inference: if p ⊃ q and q ⊃ r hold, then infer that p ⊃ r holds. (This rule of
inference is referred to as the hypothetical syllogism.)

Exercise 14. Consider the following rule of inference: if p ⊃ q and q hold,
then infer that p holds. An application of this rule of inference is referred
to as affirming the consequent. Is affirming the consequent a valid rule of
inference? If so, use truth tables to establish its validity. If not, give examples
of propositions p and q for which p ⊃ q and q are true and p is not.

3 Predicate Logic

While the propositional logic developed in the previous section allows us
to address a number of significant issues in logic, it turns out that it is
not capable of answering all of the logical questions which are important
to mathematicians. For example, recall that a positive integer a is a prime
numer if a 6= 1 and the only divisors of a are 1 and a. A mathematician may
be interested in identifying the conditions under which the proposition “every
prime number greater than 2 is odd” is true. Propositional logic is not very
helpful in this regard because it is not possible to view this proposition as
being composed from several elementary propositions by logical connectives.
So from the perspective of propositional logic it must itself be an elementary
proposition. However, if “every prime number greater than 2 is odd” is an
elementary proposition, then propositional logic does not provide us with
any information about when this proposition is true—the propositional logic
developed in the previous section says only that elementary propositions are
either true or false.
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Individual variables

In order to provide a more informative analysis of the proposition “every
prime number greater than 2 is odd,” we must introduce ideas which allow us
to discuss the internal structure of propositions that we previously regarded
as elementary. In particular, in order to proceed we must introduce a new
kind of variable. These variables, called individual variables to distinguish
them from the propositional variables of the previous section, range over
objects in some domain we are presently concerned with rather than over
propositions. For example, the domain for the proposition “every prime
number greater than 2 is odd” should range over all positive integers. We
will use the letters x, y, z and so forth to denote individual variables.

Predicates

With the notion of an individual variable at hand, we can now give an account
of how “every prime number greater than 2 is odd” may be analyzed in terms
of simpler propositions. Suppose that x is an individual variable, and that
we take the expression P (x) to mean that “x is a prime number greater
than 2” and the expression O(x) to mean that “x is odd.” Then it is clear
that the proposition “for every x, P (x) ⊃ O(x)” has the same meaning as
“every prime number greater than 2 is odd.” Here the domain of range of
the individual variable x is all positive integers. Thus, if we can formalize the
meanings of P (x), O(x), and “for every x,” then we can give an informative
analysis of the proposition “every prime number greater than 2 is odd.”

We will first formalize the meanings of the expressions P (x) and O(x).
These expressions are examples of what Russell and Whitehead referred to as
“propositional functions,” which Principia Mathematica describes as follows:

Propositional Functions. Let φx be a statement containing a variable
x and such that it becomes a proposition when x is given any fixed
determined meaning. Then φx is called a “propositional function”; it
is not a proposition, since owing to the ambiguity of x it really makes
no assertion at all. Thus “x is hurt” really makes no assertion at all,
till we have settled who x is. Yet owing to the individuality retained
by the ambiguous variable x, it is an ambiguous example from the
collection of propositions arrived at by giving all possible determina-
tions to x in “x is hurt” which yield a proposition, true or false. Also
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if “x is hurt” and “y is hurt” occur in the same context, where y
is another variable, then according to the determinations given to x
and y, they can be settled to be (possibly) the same propositions or
(possibly) different propositions. But apart from some determination
given to x and y, they retain in that context their ambiguous differen-
tiation. Thus “x is hurt” is an ambiguous “value” of a propositional
function. When we wish to speak of the propositional function corre-
sponding to “x is hurt,” we shall write “x̂ is hurt.” Thus “x̂ is hurt”
is the propositional function and “x is hurt” is an ambiguous value
of that function. Accordingly though “x is hurt” and “y is hurt”
occurring in the same context can be distinguished, “x̂ is hurt” and
“ŷ is hurt” convey no distinction of meaning at all. More generally,
φx is an ambiguous value of the propositional function φx̂, and when
a definite signification a is substituted for x, φa is an unambiguous
value of φx̂. [9, Vol. 1, p. 15]

Today it is more common to denote the expression φx by φ(x). As the
statements “x is a prime number greater than 2” and “x is odd” become
propositions when x is assigned a particular integer value, P (x) and O(x) as
described above are propositional functions. Today the propositional func-
tions of Russell and Whitehead are referred to as predicates.

If φ is a predicate, then the expression φ(x) may be thought of as asserting
that x belongs to a particular collection of objects (namely, the collection of
objects having whatever property the predicate attributes to x). If S is a
collection, then x ∈ S means that x is a member of the collection S.

It is common practice to denote the collection of nonnegative integers

0, 1, 2, . . .

by N. As usual, we will refer to them as natural numbers. It is also common
practice to denote the collection of integers

...,−2,−1, 0, 1, 2, ...

by Z, the collection of rational numbers (ratios of two integers) by Q, and the
collection of real numbers by R. Accordingly the predicates “x is a natural
number,” “x is an integer,” “x is a rational number,” and “x is a real number”
will be expressed as “x ∈ N,” “x ∈ Z,” “x ∈ Q,” and “x ∈ R,” respectively.
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Exercise 15. Recall that P (x) is the predicate “x is a prime number greater
than 2” and O(x) is the predicate “x is odd.” State each of the following
propositions verbally in words. Also determine whether each proposition is
true or false.

(a) P (4) ∨O(7)

(b) (P (3).P (13)).O(12)

(c) P (2) ⊃ P (23)

Universal and existential quantifiers

Now that we have introduced predicates, we are almost able to analyze the
logic of the proposition “every prime number greater than 2 is odd.” Recall
that if we let P (x) be the predicate “x is a prime number greater than 2” and
O(x) be the predicate “x is odd,” then the proposition “every prime number
greater than 2 is odd” can be expressed as “for every x, P (x) ⊃ O(x).”
In order to fully understand the latter proposition, we only need to clarify
what it means for P (x) ⊃ Q(x) to hold “for every x.” To do so, we will
introduce the notion of a quantifier, a logical operator that specifies whether
a predicate φ(x) holds for all values of x or some value of x. In Principia
Mathematica, a predicate quantified in the former way is written as (x).φ(x)
and a predicate quantified in the latter way is written as (∃x).φ(x):

Thus corresponding to any propositional function φx̂, there is a
range, or collection, of values, consisting of all the propositions (true
or false) which can be obtained by giving every possible determina-
tion to x in φx. A value of x for which φx is true will be said to
“satisfy” φx̂. Now in respect to the truth or falsehood of propositions
of this range three important cases must be noted and symbolised.
These cases are given by three propositions of which one at least
must be true. Either (1) all propositions of the range are true, or
(2) some propositions of the range are true, or (3) no proposition of
the range is true. The statement (1) is symbolised by “(x).φx,” and
(2) is symbolised by “(∃x).φx.” No definition is given of these two
symbols, which accordingly embody two new primitive ideas in our
system. The symbol “(x).φx” may be read “φx always,” or “φx is
always true,” or “φx is true for all possible values of x.” The symbol
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“(∃x).φx” may be read “there exists an x for which φx is true,” or
“there exists an x satisfying φx̂,” and thus conforms to the natural
form of the expression of thought. [9, Vol. 1, p. 15–16]

Warning: The dot sign in (x).φ(x) and (∃x).φ(x) should not be confused
with the logical product introduced in the propositional logic section!

With quantifiers, we may now see that “every prime number greater than
2 is odd” may be represented symbolically as “(x).(P (x) ⊃ O(x)),” where
P (x) is the predicate “x is a prime number greater than 2” and O(x) is the
predicate “x is odd.”

When we refer to propositions of the form (x).φx and (∃x).φx, we will
always have in mind some fixed range of values over which x may vary. This
range of values over which the relevant individual variables may range is
called a domain of discourse, or simply a domain. Therefore, (x).φ(x) means
that φ(x) holds for each value of the individual x in our domain of discourse.
In other words, (x).φ(x) asserts that, for each value a in our domain of
discourse, the proposition φ(a) holds. Thus, the proposition (x).φ(x) is true
if, for each value a in our domain of discourse, the proposition φ(a) is true.
On the other hand, (x).φ(x) is false if this condition fails to hold; that is, if
for some value a in our domain of discourse, the proposition φ(a) is false.

Similarly, (∃x).φ(x) means that there exists a value of x in our domain
of discourse for which φ(x) holds. Thus, (∃x).φ(x) asserts that there is some
value a in our domain of discourse such that φ(a) holds. From this it is clear
that (∃x).φ(x) is true if there is some value a in our domain of discourse such
that φ(a) holds, and that (∃x).φ(x) is false if φ(a) happens to be false for
every value a in our domain of discourse.

This indicates that there is a close connection between (x) and (∃x). We
will discuss this in greater detail on page 23.

The symbol (x) is referred to as a universal quantifier since (x).φx asserts
that φx holds universally, i.e., for all values of x, and the symbol (∃x) is
referred to as an existential quantifier since (∃x).φx asserts that there exists
a value of x for which φx holds.

Exercise 16. Let E(x) be the predicate “x is an even natural number” and
O(x) be the predicate “x is an odd natural number.” Express each of the
following statements symbolically using quantifiers and the predicates E(x)
and O(x).
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(a) There is at least one even natural number.

(b) Every natural number is either even or odd.

(c) Some natural number is both even and odd.

(d) No natural number is both even and odd.

(e) Every natural number that is not even is odd.

(f) The square of every even natural number is even.

Which of the above statements are true and which are false? Explain why.

Exercise 17. Let P denote the collection of prime numbers. Then x ∈ P
denotes the predicate “x is a prime number.” Translate each of the following
statements into English.

(a) (x).(x ∈ N ⊃ x ∈ Q)

(b) (∃x).(x ∈ P . x ∈ R)

(c) (x).(x ∈ Z ∨ ∼ (x ∈ Z))

Which of the above statements are true and which are false? Explain why.

Exercise 18. For each of the following statements, define appropriate pred-
icates and write the statement using predicates and quantifiers.

(a) Every square is a rectangle.

(b) Every real number is either positive, negative, or equal to zero.

(c) Every animal that has a heart has kidneys, and every animal that has
kidneys has a heart.

(d) Some natural number is not a prime number.
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Unary and binary predicates

Our logical analysis of the proposition “every prime number greater than 2 is
odd” relied on our ability to attribute certain properties to an individual vari-
able x, and the introduction of predicates was what allowed us to accomplish
this. Predicates are very versatile: they can provide symbolic representa-
tions for a multitude of interesting properties. For example, such properties
as “being a rectangle,” “being a prime number,” “being greater than 2” are
represented by the predicates “x is a rectangle,” “x is a prime number,” and
“x is greater than 2,” respectively. However, not every property that is of
mathematical interest can be readily expressed using such predicates. For
example, one may wish to express the fact that there exists a natural number
n such that n ≤ m holds for all natural numbers m (i.e., the fact that the
natural numbers have a least member).

The most obvious way to formalize this statement is to introduce a symbol
P (x, y) that expresses “x and y are natural numbers such that x ≤ y.” We
may then express the existence of a least natural number by the proposition
“(∃x).(y).P (x, y).” In this expression, the role of the symbol P (x, y) is similar
to the role that predicates played in our previous discussion. Indeed, P (x, y)
is a sort of predicate, but, unlike the predicates previously discussed, P (x, y)
accepts two variables as arguments rather than one. Such a predicate is
referred to as a binary predicate. Those predicates that attribute a property
to only a single variable (such as those discussed previously) are referred to
as unary predicates.

Exercise 19. Let x ∈ N denote the unary predicate “x is a natural number,”
x ∈ Z denote the unary predicate “x is an integer,” and P (x, y) denote
the binary predicate “x ≤ y.” Represent each of the following propositions
symbolically.

(a) There is a least natural number.

(b) There is a greatest natural number.

(c) There is a least integer.

(d) There is no greatest integer.

Which of the above propositions are true? Explain why.
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Exercise 20. Let I(x, y) denote the binary predicate “the point x lies on
the line y” (if a point x lies on a line y then x is said to be incident to y).
Write each of the following propositions verbally in words.

(a) (x).(y).(∃z).(I(x, z).I(y, z))

(b) (x).(∃y).(I(y, x))

What is the mathematical meaning of these two statements? Are they true
or false? Explain why.

Exercise 21. Allowing the variables x and y to range over the domain of
all lines in the Cartesian plane, let P (x, y) denote the binary predicate “x is
parallel to y.” Write each of the following propositions verbally in words.

(a) (x).(P (x, x))

(b) (x).(y).(P (x, y) ⊃ P (y, x))

(c) (x).(y).(z).((P (x, y).P (y, z)) ⊃ P (x, z))

When the three propositions above hold for a binary predicate P (x, y), then
the relationship defined between x and y by the predicate P (x, y) is said to
be an equivalence relation. Is “x is parallel to y” an equivalence relation?

Exercise 22. Recall that a natural number x is a multiple of a natural
number y if there exists a natural number n such that x = ny. Allowing the
variables x and y to range over the domain of all natural numbers, let P (x, y)
denote the binary predicate “y is a multiple of x.” Is P (x, y) an equivalence
relation? Justify your answer.

Exercise 23. For natural numbers x and y, define x mod y to be the re-
mainder obtained upon dividing x by y. Allowing the variables x and y to
range over the domain of natural numbers, let P (x, y) denote the binary
predicate “x mod 2 = y mod 2” and let Q(x, y) denote the binary predicate
“x mod 3 = y mod 3.”

(a) Is P (x, y) an equivalence relation? Justify your answer.

(b) Fix a natural number n. If P (n, 2) holds, what must be true of n?
What about if P (n, 1) holds? For a fixed natural number n, must at
least one of P (n, 2) or P (n, 1) hold? Can both P (n, 2) and P (n, 1) hold
for a single natural number n?
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(c) List the natural numbers n for which Q(n, 1) holds, list the natural
numbers n for which Q(n, 2) holds, and list the natural numbers n for
which Q(n, 3) holds. Do the three lists have any natural numbers in
common? Does every natural number appear in at least one of the
three lists? For each of the lists, the collection of numbers appearing
in that list is said to be an equivalence class of the equivalence relation
Q(x, y). What are the equivalence classes of the equivalence relation
P (x, y)?

Logical equivalence of quantified statements

Precisely characterizing when two quantified statements are logically equiv-
alent turns out to be rather technical, and a thorough treatment of that
topic is beyond the scope of this project. Nevertheless, from the comments
above one can see that the proposition (x).φ(x) is true exactly when there
is no value of x in our domain of discourse for which φ(x) is false. That is,
(x).φ(x) is true exactly when ∼ (∃x).∼ φ(x) is true. One may likewise note
that (∃x).φ(x) is true exactly when φ(x) fails to be false for all x. In other
words, (∃x).φ(x) is true exactly when ∼ (x).∼ φ(x) is true. As one may ex-
pect from this discussion, it so happens that (x).φ(x) is logically equivalent
to ∼ (∃x).∼ φ(x) and that (∃x).φ(x) is logically equivalent to ∼ (x).∼ φ(x).

Exercise 24. Explain in your own words that

(x).φ(x) ≡ ∼ (∃x).∼ φ(x)

and
(∃x).φ(x) ≡ ∼ (x).∼ φ(x).

One may derive many useful facts about the logical equivalence of quan-
tified statements from these two laws.

Exercise 25. Use the laws

(x).φ(x) ≡ ∼ (∃x).∼ φ(x)

and
(∃x).φ(x) ≡ ∼ (x).∼ φ(x)

to rewrite each of the following statements. Make sure that in your solution
all quantifiers precede any instances of negation.
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(a) ∼ (∃x).(y).(x < y)

(b) ∼ (x).(∃y).(x < y)

Exercise 26. Allowing the variables x and y to range over the domain of all
people, let L(x, y) denote the binary predicate “x likes y.” Write each of the
following propositions symbolically.

(a) Everybody likes somebody.

(b) Somebody likes everybody.

Do the above propositions have the same meaning? What can you con-
clude about the relationship between universal quantifiers and existential
quantifiers from the above example? In particular, are the two statements
(x).(∃y).L(x, y) and (∃y).(x).L(x, y) logically equivalent? Justify your an-
swer.

Inference rules in predicate logic

Our development of individual variables, predicates, and quantifiers has pro-
vided us with a language for discussing propositions that is much more ex-
pressive than the propositional language discussed in the previous section.
In particular, the predicate logic is capable of addressing questions about
complex propositions such as “every prime number greater than 2 is odd”
that the propositional logic of the previous section cannot. However, we have
not yet discussed the issue of logical inference in the predicate logic. This is
the topic to which we now turn.

Recall that if p and q are propositional variables, then one can deduce
the proposition q from the propositions p and p ⊃ q. We called this rule of
inference Modus Ponens, and in the previous section we proved that Modus
Ponens is a valid rule of inference (i.e., if p and p ⊃ q are true, then the de-
duced proposition q must also be true). As it turns out, there is an analogous
rule of inference for our predicate logic.

Suppose that we fix some domain over which our individual variables may
range, that a is some element of that domain, and that P (x) and Q(x) are
predicates. Then if both (x).(P (x) ⊃ Q(x)) and P (a) hold, we may deduce
that Q(a) holds as well. This gives a valid rule of inference, which we call
Universal Modus Ponens.
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A mathematically rigorous verification of the validity of Universal Modus
Ponens requires an analogue of truth tables for predicate logic, and is beyond
the scope of this project. However, we can give an informal argument for the
validity of Universal Modus Ponens as follows.

Suppose that both (x).(P (x) ⊃ Q(x)) and P (a) hold; we must show
that Q(a) holds as well. Since (x).(P (x) ⊃ Q(x)) holds, we have from the
definition of the universal quantifier that the proposition P (b) ⊃ Q(b) holds
for each member b of our specified domain. In particular, as a is an element
of the domain, we have that P (a) ⊃ Q(a) holds. Now notice that both
P (a) ⊃ Q(a) and P (a) are propositions. Since Modus Ponens is a valid rule
of inference of propositional logic, we have that as P (a) ⊃ Q(a) and P (a)
hold, it follows that Q(a) holds as well, completing our argument.

Exercise 27. Fix some domain over which we allow individual variables to
range, suppose a is an element of this domain, and further suppose that P (x)
and Q(x) are predicates. Provide an informal verification that the following
rule of inference is valid: If both (x).(P (x) ⊃ Q(x)) and ∼ Q(a) hold, infer
that ∼ P (a) holds as well. (This rule is referred to as Universal Modus
Tollens.)

Exercise 28. Fix some domain over which we allow individual variables to
range, suppose a is an element of this domain, and further suppose that
P (x) and Q(x) are predicates. Consider the following rule of inference: if
both (x)(P (x) ⊃ Q(x)) and Q(a) hold, then infer that P (a) holds. Provide
an informal argument of whether this is a valid rule of inference.

4 Looking Forward

The logical system we have studied in this project is today known as classical
logic. The publication of Principia Mathematica led to a considerable amount
of research in classical logic in the first half of the 20th century, and the
work of such logicians as David Hilbert (1862-1943), Alfred Tarski (1901-
1983), and Kurt Gödel (1906-1978) during this period has led to a thorough
understanding of classical logic. However, original research in logic continues
today. Contemporary research in logic focuses on a variety of so-called non-
classical logics, each of which is in some way a modification or expansion
of classical logic. The classical logic developed in this project hence forms
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the core of contemporary research, and thus remains of relevance almost a
century after the publication of Principia Mathematica.

5 Notes to the Instructor

This project has its roots in the authors’ experience teaching discrete math-
ematics from primary historical sources. It was designed to serve the needs
of college freshmen and sophomores who are meeting mathematical proofs
for the first time. However, no specific prerequisites are assumed.

The authors have attempted to include only those exercises which directly
expand on the development of the material. As such, almost all exercises
should be assigned to students.

Instructors should note that the notation introduced in Principia Math-
ematica is in some instances antiquated. In contemporary literature, the
quantifier (x) is more commonly written as ∀x, and the symbols ∼,⊃,≡
have been largely supplanted by ¬,→, and ↔, respectively. Moreover, in
Principia Mathematica propositional functions are denoted by juxtaposing
the function name and its argument (e.g., φx). Instead of following this
convention throughout the project, the authors have opted to enclose the
argument of a propositional function in parentheses (e.g., φ(x)), a notation
that is more familiar to students. For pedagogical reasons, we have also
chosen to drop Russell and Whitehead’s distinction between a propositional
function φx̂ and its ambiguous value φx.
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