A Project in Algorithms based on a Primary Historical
Source about Catalan Numbers

David Pengelley
Dept. Math. Sci.
New Mexico State University
Las Cruces, NM 88003

davidp@nmsu.edu

Desh Ranjan
Dept. Comp. Sci.
New Mexico State University
Las Cruces, NM 88003

dranjan@cs.nmsu.edu

ABSTRACT

We discuss a project based on an original source from 1838
by Gabriel Lamé, which was used to teach dynamic pro-
gramming in an Algorithms and Data Structures course for
junior level computer science students. The project was de-
veloped as part of a group effort at New Mexico State Uni-
versity on using original historical sources in teaching. The
project is based on an excerpt from a letter of Monsieur
Lamé to Monsieur Liouville on the question: Given a con-
vex polygon, in how many ways can one partition it into
triangles by means of diagonals? A variety of tasks in the
project, which includes reading, writing, proving statements
by mathematical induction, deriving formulas, writing com-
puter programs and analyzing and comparing them for effi-
ciency, help students to develop verbal, analytical and dis-
crete mathematics skills necessary for computer science. We
also discuss student reactions to the project and to learning
from historical sources.

Categories and Subject Descriptors

G.2.0 [Discrete Mathematics]: General; F.2.0 [Analysis
of Algorithms and Problem Complexity]: General;
[Pedagogy]

General Terms
Algorithms

Keywords

Pedagogy, algorithms course, dynamic programming, histor-
ical sources

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGCSE’06March 1-5, 2006, Houston, Texas, USA.

Copyright 2006 ACM 1-59593-259-3/06/000355.00.

Inna Pivkina
Dept. Comp. Sci.
New Mexico State University
Las Cruces, NM 88003

ipivkina@cs.nmsu.edu

Karen Villaverde
Dept. Comp. Sci.
New Mexico State University
Las Cruces, NM 88003

kvillave@cs.nmsu.edu

1. INTRODUCTION AND PEDAGOGY

We are part of a collaboration of mathematics and com-
puter science faculty teaching with student projects based
on primary historical sources. Our approach has arisen by
combining and extending two successful and well-developed
programs in mathematics instruction at New Mexico State
University. For many years we have been teaching cal-
culus with substantial student projects, and we have also
been developing student learning from primary historical
sources in various mathematics courses. Our current team
is focused on melding these learning approaches via student
projects based on primary sources, specifically in the context
of courses with a discrete mathematics component for ma-
jors in both computer science and mathematics. The idea
is for students to gain the rich advantages that accrue from
studying primary sources, an approach common in the hu-
manities, but traditionally uncommon in mathematics and
the sciences. The practice of teaching mathematics with pri-
mary historical sources is now growing at every level from
primary to graduate school, and around the world.

There is increasing recognition that an historical point of
view, including studying original sources, provides context,
motivation and direction to mathematics teaching [2, 3, 5,
7). We have a web resource site devoted to this [6], and one
specifically devoted to discrete mathematics [4]. For teach-
ing algorithms, while there is an excellent account of their
history [1], our aim focuses on undergraduate curricular ma-
terials ready for classroom use.

Experience with students shows that reading the origi-
nal work of some of the greatest minds in history provides
improved motivation through understanding the originating
problems and driving forces at the conceptual roots of ideas
and methods of the subject. Primary sources also foster a
broader perspective, reveal mathematical and social context,
and hone students’ verbal and deductive skills. Struggling
with original texts has a flavor of adventure and thrill, dis-
plays the primordial creativity of geniuses of the past, and
throws light upon the true nature of the subject and the
practice of research, and upon the genesis and progress of
the subject from then to now. This creative immersion into
the difficulties of the past helps students better understand

the problems of today. Finally, students gain a more pro-
found technical comprehension, since the initial simplicity
of a theory can be a strong help in understanding it.

In the context of computer science, a particular advan-
tage is the rediscovery of the conceptual roots it shares with
discrete mathematics. Typically, the perceived history of
computer science is very short. This approach allows one to
connect computer science to a longer history, to show that
computer science did not appear from nowhere, and that its
roots were developed throughout the centuries in other dis-
ciplines. Additionally, students practice the skill of moving
from verbal descriptions of problems to precise mathemat-
ical formulations, and must often recognize an organizing
concept for a detailed procedure. Such abilities are vital not
only for mathematics and the sciences, but especially today
for software engineers, who must translate a verbal request
into precise code changes, and then realize what effect these
changes will have on the global structure of a large pro-
gram or a body of interacting programs. Applying modern
programming techniques to historical challenges and seeing
how problems which used to be hard can be solved easily
today, stimulates student interest, motivation and general
appreciation for science.

2. PROJECT DESCRIPTION

Dynamic programming is an important paradigm for al-
gorithm development. It is usually taught to computer sci-
ence students in an Algorithms course in the junior/senior
year. Several typical examples of problems used in teach-
ing dynamic programming lead to what are called Catalan
Numbers, e.g. the optimal polygon triangulation problem
and the optimal binary search tree problem. One needs to
understand that the Catalan Numbers grow very rapidly to
appreciate that brute-force algorithms are computationally
inefficient to solve these problems. Often the formula for the
Catalan numbers is presented to the students as a fact with-
out proof. The project presented here allows the students
to learn about the Catalan numbers and an elegant proof
to derive the closed formula for the n*" Catalan number in
a much more interesting fashion. The project makes use
of a historical source from 1838 by French mathematician
Lamé (translated to English by one of the authors of this
paper), which presents a brilliant proof for the formula for
the n*" Catalan number by comparing two different ways of
counting polygon triangulations. The project calls for care-
ful reading of the source and for the students to perform a
number of interlaced mathematical and computational exer-
cises based on the paper. The project allows the students to
learn/practice a number of important concepts in computer
science and discrete mathematics including recursive think-
ing, induction, counting and enumerating structures, effi-
cient programming, comparison of run times of algorithms,
importance of efficient algorithm design, etc.

In Section 2.1 we present the historical source. In Sec-
tion 2.2 we present the project. In addition to the project
discussed in this paper the historical source can be used as
a basis for other projects as well. For example, there is a
mathematical sciences project based on the same historical
sourse ([4]).

2.1 The Historical Source

Excerpt from a letter of Monsieur Lamé to Monsieur Li-
ouville on the question: Given a convex polygon, in how

many ways can one partition it into triangles by means of
diagonals?!

Translation copyright (©) 2004 by David Pengelley
(Individual educational use only of this translation
may be made without permission)

Journal de Mathématiques Pures et Appliquées (Journal de
Liouville) 3 (1838), 505-507.
(math-doc.ujf-grenoble.fr/JMPA /)
(gallica.bnf.fr/Catalogue/noticesInd/FRBNF34348784.htm)

“The formula that you communicated to me yesterday is
easily deduced from the comparison of two methods leading
to the same goal.

“Indeed, with the help of two different methods, one can
evaluate the number of decompositions of a polygon into
triangles: by consideration of the sides, or of the vertices.

I.

“Let ABCDEF ... be a convex polygon of n + 1 sides,
and denote by the symbol Py the total number of decompo-
sitions of a polygon of k sides into triangles. An arbitrary
side AB of ABCDEF ... serves as the base of a triangle,
in each of the P,+1 decompositions of the polygon, and the
triangle will have its vertex at C, or D, or F'...; to the trian-
gle C'BA there will correspond P, different decompositions;
to DBA another group of decompositions, represented by
the product P3P,_1; to EBA the group PiP,_2; to FBA,
PsP,_3; and so forth, until the triangle ZAB, which will
belong to a final group P,. Now, all these groups are com-
pletely distinct: their sum therefore gives P,4+1. Thus one
has

Poi1 =P, +PsPo1+ PiPpo+ PPy 3+ +
Po3Ps5+ PooPy+ PoaPs + Py (1)

II.

“Let abcde ... be a polygon of n sides. To each of the
n — 3 diagonals, which end at one of the vertices a, there
will correspond a group of decompositions, for which this
diagonal will serve as the side of two adjacent triangles: to
the first diagonal ac corresponds the group P3P, _1; to the
second ad corresponds PyP,_2; to the third ae, PsP,_3,
and so forth until the last ax, which will occur in the group
P3P, _1. These groups are not totally different, because it
is easy to see that some of the partial decompositions, be-
longing to one of them, is also found in the preceding ones.
Moreover they do not include the partial decompositions of
P,, in which none of the diagonals ending in a occurs.

“But if one does the same for each of the other vertices
of the polygon, and combines all the sums of the groups of
these vertices, by their total sum

n(PsPn-1+ PiPp2+ -+ Pn_oPs+ Po_1P3)

1See a Memoir of Segner (Novi Commentarii Acad. Petrop.,
vol. VII, p. 203). The author found equation (1) of M. Lamé;
but formula (3) presents a much simpler solution. Formula
(3) is no doubt due to Euler. It is pointed out without proof
on page 14 of the volume cited above. The equivalence of
equations (1) and (3) is not easy to establish. M. Terquem
proposed this problem to me, achieving it with the help
of some properties of factorials. I then communicated it
to various geometers: none of them solved it; M. Lamé has
been very successful: I am unaware of whether others before
him have obtained such an elegant solution. J. LIOUVILLE

one will be certain to include all the partial decompositions
of P,; each of these is itself repeated therein a certain num-
ber of times.

“Indeed, if one imagines an arbitrary such decomposition,
it contains n — 2 triangles, having altogether 3n — 6 sides;
if one removes from this number the n sides of the poly-
gon, and takes half of the remainder, which is n — 3, one will
have the number of diagonals appearing in the given decom-
position. Now, it is clear that this partial decomposition is
repeated, in the preceding total sum, as many times as these
n — 3 diagonals have ends, that is 2n — 6 times: since each
end is a vertex of the polygon, and in evaluating the groups
of this vertex, the diagonal furnished a group including the
particular partial decomposition under consideration.

“Thus, since each of the partial decompositions of the
total group P, is repeated 2n — 6 times in

n(PsPn_1+ PsPn2+ -+ Pn_oPs+ Po_1P3),
one obtains P,, upon dividing this sum by 2n — 6. Therefore
one has
n(PsPn_1+ PsPp_2+ -+ Phn_2oPy + P,_1P3)

Pr = 2n — 6 ’
(2)

II1.

“The first formula (1) gives
P3Pn71 +P4Pn72+"'+Pn72P4+Pn71P3 :Pn+1_2Pn7
and the second (2) gives

PyPas+ PP g+ 4 PusPy+ PoPy= 22— Op
so finally
Pusr—2P, =22 =Cp
or
P = =6p (3)

This is what was to be proven.”
Paris, 25 August, 1838

2.2 The Project: Counting Triangulations of
Polygons

2.2.1 Understanding Triangulations

A diagonal in a (convex) polygon is a straight line that
connects two non-adjacent points. Two diagonals are dif-
ferent if they have at least one different endpoint. A tri-
angulation of a polygon is a division of the polygon into
triangles by drawing non-intersecting diagonals. For exam-
ple, the 6-sided polygon ABCDEF below is triangulated
into 4 triangles by using the diagonals AD, AE, BD.

Two triangulations are different if at least one of the di-
agonals in a triangulation is different from all diagonals in
the other triangulation.

TASKS:

1.1 Draw a triangulation of ABCDEF that is different
from the triangulation in Figure 1. How many diago-
nals does your triangulation have? How many trian-
gles does it divide ABCDEF into?

A B

Figure 1: A Triangulation of ABCDFEF

1.2 Consider an n-sided polygon A;As...A,. How many
different possible diagonals does the polygon have?
Note: We are talking about all possible diagonals,
not just diagonals in a triangulation.

1.3 In Section II of Lamé’s paper there is a statement that
any triangulation of an n sided polygon has n—2 trian-
gles and n — 3 diagonals. Prove that these statements
are true using mathematical induction.

2.2.2 Optimal Triangulation and Counting Triangu-

lations

The Optimal Polygon Triangulation Problem is the fol-
lowing: Given an n-sided polygon A1 As ... A, and a weight
w;,;j for each diagonal A;Aj, find a triangulation of the poly-
gon such that the sum of the weights of the diagonals in the
triangulations is minimized. A naive way to solve the prob-
lem is to generate all possible triangulations one by one,
calculate their weight (i.e. sum of weights of all the diago-
nals in the triangulation) and keep the best. The efficiency
of this naive method depends on the number of possible
triangulations of a polygon with n sides. Thus, we would
like to count how many different triangulations an n-sided
polygon has. The problem of counting the number of poly-
gon triangulations of an n-sided polygon was first proposed
by Leonhard Euler in the mid 18th century and studied by
many famous mathematicians including Segner and Eugene
Charles Catalan. In a short paper, in 1838, Gabriel Lamé
provided an elegant method for this counting.

TASKS:

2.1 Read Section I in Lamé’s paper. Explain what Lamé
is saying in your own words and derive the general
recursive formula for P,41 (formula (1) in the paper).

2.2 Use the recursive formula to calculate P; for i = 2,3, 4,
5, 6,7,8 by hand and display it as a table.

2.3 Draw all triangulations of polygons with n sides for
n =4,5.

2.4 Lamé’s recurrence relation in his section 1 for n = 5
yields

Ps = Ps + P3Py + P4Ps + Ps.

Draw all triangulations of a 6-sided polygon classified
into groups according to the idea of the recurrence re-
lation, i.e., the triangulations should be classified into
four groups with each group corresponding to a term
on the right-hand side of the recurrence above.

2.5 Write a simple recursive function SRC AT (n) (stands
for ”Simple Recurrence CATalan”) in Java that given
an input n calculates P, using the recurrence rela-
tion (1) in Lamé’s paper directly.

2.6 Write another Java program that repeatedly uses func-
tion SRCAT to calculate P; for ¢ = 3,4,5.... Restrict
the total time your program uses to 10 minutes. What
is the largest value Ny of ¢ for which your program
calculates P;? Print out a table with 7 and the time
required in seconds by SRCAT to calculate each of
the P; values. Your table should have a row for each
1=3,4,5... No.

2.7 From your calculations you may observe that it seems
that for all n > 3 P,+1 > 2% P,. Give a simple
mathematical argument that establishes the truth of
this statement.

2.8 Prove that for all n > 3, P, > 2"/8. Hint: Mathe-
matical induction.

2.9 What does this tell you about the efficiency of the
naive algorithm for solving the optimal polygon trian-
gulation problem?

2.10 Write a Java program that repeatedly uses the recur-
rence given in formula (1) in Lamé’s paper to calculate
P; fori = 3,4,5... but that stores the computed values
in an array systematically and uses them as needed.
Restrict the total time your program uses to 10 min-
utes. What is the largest value My of ¢ for which your
program calculates P;?

2.11 Extend your program to print out a table of values
of i and time required in seconds to compute P; for
i=3,4,... M.

2.12 Graph the tables obtained in 2.6 and 2.11. Analyse
these graphs and write down your observations.

2.2.3 Lan&’s Method for deriving a formula for,

Section II of Lamé’s paper gives an alternative way of
counting triangulations of a polygon. Read this section care-
fully.

TASKS:

Consider a 6-sided polygon ABCDEF'.
3.1 Draw all triangulations of the polygon where:

— AC is one of the diagonals in the triangulation.
— AD is one of the diagonals in the triangulation.

— AF is one of the diagonals in the triangulation.
How many total triangulations did you draw?

3.2 Repeat the same with vertex B as the “special” vertex,
i.e., draw all triangulations where:

— BD is one of the diagonals in the triangulation.
— BFE is one of the diagonals in the triangulation.

— BF is one of the diagonals in the triangulation.

How many total triangulations did you draw?

3.3 Do the same with vertices C, D, E, F' being “special”.

3.4 Consider the triangulation of ABCDEF in figure 1
(of section 1). How many times is that triangulation
repeated in all the triangulations that you drew for
polygon ABCDEF in this section? Identify the diag-
onals in whose group it was drawn.

3.5 Do the same for the different triangulations of polygon
ABCDEF that you drew in section 1.

3.6 What would you guess about the number of times any
triangulation of ABCDEF is repeated? Argue why
your guess is correct.

3.7 Consider the n-sided polygon A1As...A,. Let P; de-
note the number of different triangulations of a poly-
gon with ¢ sides.

(a) Calculate, in terms of P;’s, the number of trian-
gulations of this polygon that have A1 A3 as a di-
agonal, that have A1 A4 as a diagonal, that have
A1 A;j as a diagonal.

(b) Consider drawing triangulations treating A; as
the “special” vertex. That is, draw all triangula-
tions where A; A3 is a diagonal, then draw all tri-
angulations where A; A4 is a diagonal, etc. all the
way up to where A; A, _1 is a diagonal. What is
the number of triangulations you draw (in terms
of P;’s) when A; is treated as a special vertex?

(¢) Suppose we repeat the above process with another
vertex (say A2) being the special vertex instead
of A1. What can you say about the number of
triangulations drawn as compared to the number
of triangulations drawn when A; was chosen as
the special vertex? Explain in your own words
why this is true.

(d) Consider doing what you did for A; in (b) succes-
sively for each vertex. That is, enumerate all tri-
angulations treating A; as a special vertex, treat-
ing Az as a special vertex, ...treating A, as a
special vertex. Now consider the specific trian-
gulation of A1As>... A, obtained by drawing the
diagonals A;Asz, A1As4,...,A1A,—1. How many
times is this triangulation enumerated? What
about the triangulation obtained by drawing the
diagonals A1 A4, A1As, ..., A1Ap_2 and the two
diagonals A2 A4, An—2A,7 Justify your answer.

() What is your guess as to how many times any
specific triangulation is enumerated? Explain in
your own words why this is the case.

3.8 Combine (b) and (e) to derive the formula (2) in Lamé’s
paper. Explain in your own words how this formula is
obtained.

3.9 Combine formulas (1) and (2) in Lamé’s paper to ob-
tain the formula (3) in Lamé’s paper. Show all the
steps in your calculation. Explain why this formula is
better in terms of calculation of values of P,.

3.10 Using formula (3) in Lamé’s paper, show that Pny2 =

n+r1(2:) where (2;) = % Hint: Mathematical In-

duction.

3.11 Write a simple recursive function ASRCAT (n) (for
” Another Simple Recurvise CATalan”) in Java that
given an input n calculates P, using the recurrence
relation (3) in Lamé’s paper directly.

3.12 Write another Java program that repeatedly uses func-
tion ASRCAT to calculate P; for i = 3,4,5.... Re-
strict the total time your program uses to 10 minutes.
What is the largest value Lo of i for which your pro-
gram calculates P;?

3.13 Extend your program to print out a table of values
of i and time required in seconds by ASRCAT(n) to
compute each of the P; values for ¢ = 3,4, ... Lo. Your
table should have a row for each i = 3,4,5... Lo.

3.14 Write a better Java program using the ideas from dy-
namic programming (”store and re-use”) that repeat-
edly calculates P; for i = 3,4,5.... Restrict the total
time your program uses to 10 minutes. What is the
largest value Ly of ¢ for which your program calculates
P;.

3.15 Extend your program to print out a table of values of
1 and the time required in seconds to calculate each of
the P; values. Your table should have a row for each
i =3,4,5... L.

3.16 Graph the tables obtained in 3.13 and 3.15. Analyse
all four graphs obtained and write down your observa-
tions. How do the results for the second two programs
compare with your first two programs? How fast does
the running time of the last two programs grow?

3.17 Discuss how the choice of Lamé’s formulas (1) or (3),
or using dynamic versus naive recursive programming
influences the effectiveness of computation.

3. CLASSROOM EXPERIENCE AND CON-
CLUSIONS

The project has been used twice in a junior level com-
puter science course “Algorithms and Data Structures” at
New Mexico State University, a 4 credit course with lab).
In Fall 2004 the project was worked on by students dur-
ing the lab while dynamic programming was being covered
during lectures. The project, as shown above, was 15% of
the course grade and had four parts with about 8 problems
each. The problems involved proof by induction, program-
ming, enumerating structures, drawing conclusions, quan-
titative analysis and comparison of algorithm speeds, etc.
Students worked individually on their project. Each part of
the project lasted one week. During the lab, the students
asked questions, developed proofs, made observations, etc.
Students felt after completing their project that they really
appreciated the benefits of dynamic programming. Some of
the students thought the project was too hard (especially
the proofs) and that it should have counted for more than
15% of their grade.

To address students’ concerns a modified version of the
project was used in Spring 2005. The modified version had
significantly fewer questions requiring proofs, and fewer pro-
gramming tasks. The revised project was in two parts,
with 10 questions and 8 questions. Students had a week
to do each part. No other assignments were given to stu-
dents during these two weeks. Students did the project in

teams of 1-2. The project was assigned when dynamic pro-
gramming was introduced in lectures. It counted for 15% of
the course grade. Some of the students again perceived the
project as hard. However, everybody performed much bet-
ter on the project than on other assignments in the course.
This can be explained by the increase in the students’ mo-
tivation and interest due to the use of the historical source.
Pre-course and post-course questionnaires sought to evalu-
ate the usefulness of the project. Out of nineteen students,
seventeen said that there were benefits in learning mathe-
matics from historical sources. Some of the benefits which
students listed are: “context provides a hook to hang the
information on”, “helps to understand where other mathe-
matics concepts come from”, “learn by example”, “I think
it makes it a little more interesting”, “understand how to
reinvent certain ideas when necessary”, “to know how easy
it is now”. After the course students’ confidence with their
mathematical skills increased (from 26% being very confi-
dent to 32%). The course also helped students understand
the importance of mathematics for computer science. In
pre-course questionnaires 47% of the students thought that
mathematics was very important, 47% somewhat important,
and 6% not important. In the post-course questionnaires,
58% said it was very important, 42% somewhat important,
and none said that it was not important. One of the students
wrote about the use of historical projects: “it really expands
one’s horizons and you come away more knowledgeable and
more informed”.

We conclude that this project based on a historical source
can be an effective and interesting way of teaching dynamic
programming, and increases students’ appreciation of the
connection between mathematics and computer science.

4. ACKNOWLEDGEMENTS

Supported by grant DUE-0231113 from the Division of
Undergraduate Education of the National Science Founda-
tion.

5. REFERENCES

[1] J.-L. Chabert (ed.). A history of algorithms : from the
pebble to the microchip. Springer, New York, 1999.

[2] J. Fauvel and J. Van Maanen. History in Mathematics
FEducation. Kluwer, Boston, 2000.

[3] V. Katz, (ed.). Using History to Teach Mathematics.
Mathematical Association of America, Washington
D.C., 2000.

[4] J. Lodder, et al. Teaching Discrete Mathematics via
Primary Historical Sources.
http://www.math.nmsu.edu/hist_projects/, 2003-.

[5] R. Laubenbacher and D. Pengelley. Mathematical
Ezpeditions: Chronicles by the Explorers.
Springer-Verlag, New York, 2000.

[6] R. Laubenbacher and D. Pengelley. Teaching with
Original Historical Sources in Mathematics.
http://www.math.nmsu.edu/ history, 1999-.

[7] F. Rickey. The Necessity of History in Teaching
Mathematics. In R. Calinger (ed.), Vita Mathematica:
Historical Research and Integration with Teaching,
pages 251-256. Mathematical Association of America,
Washington D.C., 1996.

