Horn Clause Transformation for Program Verification

Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti

1 DEC, University ‘G. d’Annunzio’, Chieti-Pescara, Italy
{emanuele.deangelis, fabio.fioravanti}@unich.it
2 DICII, University of Rome ‘Tor Vergata’, Italy
pettorossi@info.uniroma2.it
3 IASI-CNR, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. Horn clauses and constraints are very popular formalisms for specifying and verifying properties of programs written in a variety of programming languages, including imperative, functional, object-oriented, and concurrent languages. We briefly present an approach to the verification of imperative programs based on transformations of Horn clauses with constraints, also called Constrained Horn Clauses. The approach is to a large extent parametric with respect to the programming language and allows us to exploit the very effective techniques and tools that have been developed in the fields of logic programming and constraint solving.

1 Introduction

Horn clauses and constraints have been advocated by many researchers as suitable logical formalisms for the specification and the automated verification of properties of imperative programs [10,15,16,19,20]. Indeed, the verification conditions (or assertions) that express the correctness of a given program, can often be written as implications of the form

\[A_0 \leftarrow c, A_1, \ldots, A_n \]

where \(A_0 \) is either an atomic formula or false, \(c \) is a constraint in a suitable first order theory, and \(A_1, \ldots, A_n \) are atomic formulas. For instance, consider the following C-like program \(prog \):

\[
\begin{align*}
x &= 0; \\
y &= 0; \\
\text{while } (x < n) \{ & x = x + 1; \\
& y = y + 2 \}
\end{align*}
\]

and assume that we want to prove the following Hoare triple: \(\{ n \geq 1 \} \ prog \{ y > x \} \).

This triple is valid if the set consisting of the following verification conditions is satisfiable:

\[
\begin{align*}
C1. & \quad p(X, Y, N) \leftarrow X = 0, Y = 0, N \geq 1 \\
C2. & \quad p(X + 1, Y + 2, N) \leftarrow X < N, p(X, Y, N) \\
C3. & \quad false \leftarrow X \geq N, Y \leq X, p(X, Y, N)
\end{align*}
\]
Clauses $C1$–$C3$ state that $p(X, Y, N)$ is a loop invariant, which holds upon initialization (clause $C1$), is preserved during the loop (clause $C2$), and implies the postcondition $Y > X$ upon exit, when $X \geq N$ holds (clause $C3$).

Recently, in the literature on automated program verification the term Constrained Horn Clauses (CHCs) has been used to denote the class of logical formulas such as clauses $C1$–$C3$ above, with constraints in arbitrary theories (not integer arithmetics only). Thus, CHCs are syntactically the same as Constraint Logic Programs [14]. However, the term Constraint Logic Program evokes an operational interpretation based on a refutation procedure (that is, a procedure for proving the unsatisfiability of a set of formulas), while the term Constrained Horn Clauses has no operational implication. Moreover, many techniques for Constrained Horn Clauses search for a model, expressible in the constraint theory, that proves the satisfiability of the clauses.

A large variety of CHC solvers have been developed to verify the satisfiability of sets of Constrained Horn Clauses modulo various theories: (linear or non-linear) integer arithmetics, real (or rational) arithmetics, booleans, integer arrays, lists, heaps, and other data structures [3,10,12,13].

Note that in the example above, the evaluation of the goal consisting of clause $R3$ will not terminate using standard Constraint Logic Programming systems. Tabling will not help either, as infinitely many answers should be memoized. In contrast, CHC solvers will prove satisfiability by making use of constraint-based abstraction techniques.

2 A Transformation-Based Approach to Program Verification

In the last few years we have developed an approach for the verification of imperative programs that combines well-established techniques introduced in the field of analysis and transformation of Constraint Logic Programming and techniques for CHC solving [5,6,7,8,9]. Our approach, depicted in Figure 1, is parametric with respect to both: (i) the programming language, and (ii) the class of properties to be verified, as long as they can be encoded as CHCs.

![Fig. 1. The VeriMAP architecture.](image-url)
Suppose we are given a program \(\text{prog} \) in a programming language \(\text{PL} \) and a property \(\varphi \) in a class \(\Phi \) of properties. The system for automatically verifying whether or not \(\text{prog} \) satisfies \(\varphi \) is made out of the following four components.

1. A translator from \(\text{PL} \) and \(\Phi \) (see the ‘PL-to-CHC’ box), that constructs a CHC encoding of \(\text{prog} \) and \(\varphi \).

2. A Verification Condition Generator (see the ‘VC Generator’ box), that takes as input (i) the CHC encoding of \(\text{prog} \) and \(\varphi \), (ii) a set of CHCs that encode an interpreter for \(\text{PL} \), and (iii) a set of CHCs that encode the proof rules for proving formulas in \(\Phi \). The output of the VC Generator is a set \(\text{VC} \) of verification conditions for \(\text{prog} \) and \(\varphi \), that is, a set of CHCs which is satisfiable if and only if \(\varphi \) holds for \(\text{prog} \).

3. A solver for Constrained Horn Clauses (see the ‘CHC Solver’ box), that checks the satisfiability of \(\text{VC} \). The output can be true (\(\varphi \) holds for \(\text{prog} \)), false (\(\varphi \) does not hold for \(\text{prog} \)), or unknown (the CHC solver was not able to prove satisfiability or unsatisfiability with the given computing resources). Since the satisfiability of CHCs is, in general, an undecidable property, no solver can be both complete and terminating, and hence the answer unknown cannot be avoided.

4. A transformer for Constrained Horn Clauses (see the ‘CHC Transformer’ box), that works as follows. If the solver returns unknown, then the CHC transformer derives, from the given set of CHCs, a new, equisatisfiable set of CHCs by applying some transformation rules, such as unfolding and folding [11], under the guidance of suitable transformation strategies. The objective of this transformation is to derive a new set of CHCs for which, hopefully, the solver is able to return either true or false. The loop consisting of an application of the CHC Solver, possibly followed by an application of the CHC Transformer, may be iterated until we get either a definite answer (that is, true or false) or we exhaust the computing resources.

3 Generating Verification Conditions by Specializing Interpreters

The translation of the programs written in the programming language \(\text{PL} \) and the properties in the class \(\Phi \) to CHCs consists in a change of representation that can be realized by using standard parsing and translation tools [18].

The VC Generator has a much more crucial role in our approach, as it ensures the parametricity with respect to the programming language \(\text{PL} \) and the class \(\Phi \) of properties. The parametricity with respect to the programming language is achieved by following a method first proposed by Peralta et al. [19], which makes use of a specialization transformation technique. Indeed, the VC Generator takes as input an interpreter of \(\text{PL} \) written as a set of CHCs (which can be viewed as a logic program executing the imperative program), and then it specializes the interpreter with respect to the specific program \(\text{prog} \) to be verified (which can be viewed as the input to the CHC interpreter). This approach has been shown
to be effective and scalable for developing analysis and verification techniques for several languages, such as C, Java, and Java bytecode, and for several styles of presenting the operational semantics of a programming language, such as the small-step or big-step semantics [1,3,5,8,17].

In the case of an imperative language with the small-step semantics, the CHC interpreter encodes a binary transition relation \(\text{tr} \) between configurations, representing states of the program execution. To get an idea of how the interpreter is written, now we give the semantic rule for the labelled assignment \(\ell: x := e \) (assuming that the program in which it occurs is a sequence of labelled commands).

\[
\text{tr}(\text{cf(cmd(L, \text{asgn}(X, expr(E))))}, \text{Env}), \text{cf(cmd(L1, C)), Env1}) \leftarrow \\
\text{eval}(E, \text{Env}, V), \text{update}(\text{Env}, X, V, \text{Env1}), \text{nextlab}(L, L1), \text{at}(L1, C)
\]

Configurations are represented by terms of the form \(\text{cf(cmd(L, C)), Env} \), where:

(i) \(\text{cmd}(L, C) \) encodes a command \(C \) with label \(L \), and (ii) \(\text{Env} \) encodes the environment as a list of \(\langle \text{variable identifier, value} \rangle \) pairs. The term \(\text{asgn}(X, expr(E)) \) encodes the assignment of the value of the expression \(E \) to the variable identifier \(X \). The predicate \(\text{eval}(E, \text{Env}, V) \) holds iff \(V \) is the value of the expression \(E \) in the environment \(\text{Env} \). The predicate \(\text{update}(\text{Env}, X, V, \text{Env1}) \) holds iff \(\text{Env1} \) is the environment obtained by replacing the value of the variable identifier \(X \) in the environment \(\text{Env} \) by the new value \(V \). \(\text{nextlab}(L, L1) \) holds iff \(L1 \) is the label of the command textually following the command with label \(L \) in the given program. \(\text{at}(L1, C) \) holds iff \(C \) is the command at label \(L1 \) in the given program.

The parametricity with respect to the class of properties is achieved by following a similar approach: the VC Generator takes as input the proof rules, written as CHCs, for the properties in \(\Phi \), and then specializes them with respect to \(\varphi \). For instance, the validity of a Hoare triple can be encoded by the following clauses:

\[
\begin{align*}
R1. \quad \text{reachFromInit}(C) & \leftarrow \text{initConf}(C) \\
R2. \quad \text{reachFromInit}(C1) & \leftarrow \text{tr}(C, C1), \text{reachFromInit}(C) \\
R3. \quad \text{false} & \leftarrow \text{errorConf}(C), \text{reachFromInit}(C)
\end{align*}
\]

where: (i) \(\text{initConf}(C) \) states that \(C \) is an initial configuration for which the precondition holds, (ii) \(\text{reachFromInit}(C) \) states that configuration \(C \) is reachable from an initial configuration, and (iii) \(\text{errorConf}(C) \) states that \(C \) is a final configuration for which the postcondition does not hold.

By specializing the clauses \(R1–R3 \), together with the clauses for the interpreter which define the predicate \(\text{tr} \), with respect to the Hoare triple considered in the introductory example, we automatically derive clauses \(C1–C3 \) shown in the Introduction. Note that the specialization removes all the references to the interpreter, and for this reason it is also called the removal of the interpreter.

4 Improving CHC Solving via CHC Transformation

The set \(VC \) of verification conditions derived via specialization by the VC Generator can be given as input to any CHC Solver with a suitable underlying
constraint theory (the theory of linear integer arithmetics, in our introductory example). However, the CHC solver may neither be able to prove the satisfiability of VC, and find a model expressible in the constraint theory, nor be able to prove the unsatisfiability of VC.

If this is the case, we can apply some transformation techniques that preserve satisfiability, that is, derive a set of clauses which is satisfiable if and only if VC is satisfiable, and by doing so, we hopefully simplify the satisfiability problem to be given as input to the CHC solver. Below we briefly describe some of these techniques.

Constraint Propagation. This transformation is a specialization technique that propagates the constraints occurring in the goals belonging to VC. This transformation works by unfolding the goals of VC, and by introducing specialized versions of the predicates derived by unfolding. One effect of Constraint Propagation is that the clauses defining the specialized predicates may have stronger constraints with respect to those occurring in the original clauses.

Clause Removal. We can remove clauses which are trivially satisfiable because they have inconsistent constraints in their body. Another case where we can remove a set of clauses and preserve satisfiability, is when these clauses define a useless predicate. The set of useless predicates in a given set Q of CHCs is the largest set U of predicates occurring in Q such that p is in U iff every clause with head predicate p is of the form $p(X) \leftarrow c, G_1, q(Y), G_2$, for some q in U.

Clause Reversal. It is often useful to propagate the constraints that occur in constrained facts, that is, in clauses of the form $A \leftarrow c$, where c is a constraint. This particular propagation can be performed by applying Constraint Propagation after a transformation, called Reversal, that interchanges the roles of the goals and constrained facts. For instance, by applying the Reversal transformation to clauses $R1$–$R3$ of Section 3, we get:

$$
RR1. \quad \text{reachFromError}(C) \leftarrow \text{errorConf}(C)
$$
$$
RR2. \quad \text{reachFromError}(C) \leftarrow \text{tr}(C, C1), \text{reachFromError}(C1)
$$
$$
RR3. \quad \text{false} \leftarrow \text{initConf}(C), \text{reachFromError}(C)
$$

Note that also the arguments of reachFromError in the head and body of clause $RR2$, respectively, are interchanged with respect to those of reachFromInit in clause $R2$. From the operational point of view, Clause Reversal reverses the flow of computation: the top-down evaluation (from the goal) of the transformed set of clauses $RR1$–$RR3$ corresponds to the bottom-up evaluation of the original clauses $R1$–$R3$.

Constraint Propagation, Clause Removal, and Clause Reversal can drastically simplify the task of verifying satisfiability. Indeed, by repeated applications of those transformations (see, in particular, the Iterated Specialization strategy [5]) we may derive a new set of verification conditions, call it VC', such that VC' either contains the clause $false \leftarrow$, and hence VC' is unsatisfiable, or contains no clauses with head $false$, and hence VC' is satisfiable.

Predicate Pairing. This strategy pairs together two predicates, say q and r, into one new predicate t equivalent to their conjunction. The clauses defining the new
predicate t are derived from those of q and r by applying the unfold/fold transformation rules. Predicate Pairing may ease the discovery of relations among the arguments of the two predicates q and r, and hence it may ease the satisfiability verification. Obviously, pairing may be iterated and more than two predicates may in general be tupled together.

Predicate Pairing can be applied for deriving linear clauses (clauses with at most one atom in their body) from non-linear ones. Non-linear clauses appear when we specify a program property whose preconditions or postconditions are defined by non-linear recursive predicates, like in the case of the well-known problem of computing Fibonacci numbers.

Another case where non-linear clauses appear is when we want to prove relational program properties. Let us consider two programs P_1 and P_2 with disjoint variables, and suppose that we want to prove a property of the following form: If a precondition relates the initial values of the variables of P_1 and P_2 and the executions of P_1 and P_2 both terminate, then a postcondition relates the final values of the variables of P_1 and P_2. An example of a relational property is program equivalence, which can be expressed by writing preconditions and postconditions that state that the final values of the variables of P_1 and P_2 are pairwise equal if their initial values are pairwise equal. Other relational properties relate two executions of the same program, such as monotonicity, injectivity, and functional dependencies between variables. A relational property can be encoded by a non-linear clause of the form

$$false \leftarrow \text{pre}(X, Y), \; p_1(X, X'), \; p_2(Y, Y'), \; \text{neg} \cdot \text{post}(X', Y')$$

where (i) X and Y are the initial values of the variables of program P_1 and P_2, respectively; (ii) $\text{pre}(X, Y)$ is the precondition; (iii) $\text{neg} \cdot \text{post}(X', Y')$ is the negation of the postcondition, which we assume to be expressible by a constraint; and (iv) the predicates $p_1(X, X')$ and $p_2(Y, Y')$ are predicates defining the input/output relations of programs P_1 and P_2, respectively, obtained by using the formalization of the operational semantics of the programming language presented in Section 3.

Predicate Pairing is able, in some cases, to transform satisfiability problems that are not solvable by CHC solvers into problems that are solvable. Indeed, we have shown that many satisfiability problems generated by non-linear postconditions (like, for instance, those of the Fibonacci numbers) and by relational properties (such as program equivalence), can be solved by first applying Predicate Pairing, and then giving the transformed set of clauses as input to a CHC solver over linear integer arithmetics.

5 The VeriMAP System

The VeriMAP tool implements the transformation-based verification framework presented in the previous sections. It consists of several modules that realize the boxes presented in Figure 1. Our tool is mainly implemented in Prolog, with some source code in other languages for interfacing VeriMAP with external tools.
1. PL-to-CHC Translator. VeriMAP provides a translator, based on the C Intermediate Language (CIL) infrastructure [18], that converts the given C program and property into a CHC encoding suitable for the VC Generator.

2. VC Generator. VeriMAP provides several back-ends implementing the specialization strategies to generate the VCs from different formalizations of the operational semantics of the C language. Some optimizing techniques enable users to reduce the number of clauses and predicate arguments.

3. CHC transformer. VeriMAP provides several modules implementing: (i) transformation strategies, such as Constraint Propagation, Clause Reversal, Predicate Pairing, (ii) generalization strategies, which are used for the automatic discovery of predicates corresponding to program invariants and for guaranteeing the termination of the transformation strategies, (iii) constraint solvers, which check satisfiability and entailment in the constraint theory at hand (for example, the integers or the rationals), by using both native (clpqr and CHR) or external (SMT) solvers, and (iv) constraint replacement engines, which guide the application of the axioms and the properties of the data theory under consideration (for example, the theory of arrays), and their interaction with the constraint theory (for example, the integers).

4. CHC solver. VeriMAP provides some interface modules for using external CHC solvers, that is, modules that translate CHCs into the SMT-LIB format for Eldarica [23], MathSAT [3], and Z3 [10].

The VeriMAP system is available for downloading at http://map.uniroma2.it/VeriMAP/ or via web-interface at http://map.uniroma2.it/verimapweb. Benchmarks of hundreds of examples of verification problems are also available at the above URLs.

6 Conclusions

Recent work in the field of software verification has established a strong connection between the problem of verifying the correctness of a program and the problem of checking the satisfiability of Constrained Horn Clauses. By exploiting that connection, the many techniques developed over the past three decades in the fields of analysis and transformation of Constraint Logic Programming can be used for automating the task of software verification.

References

