
Formalizing Commitments Using Action Languages

Tran Cao Son and Enrico Pontelli Chiaki Sakama
Computer Science Computer and Communication Sciences

New Mexico State University Wakayama University
tson|epontell@cs.nmsu.edu sakama@sys.wakayama-u.ac.jp

October 28, 2010

Abstract

This paper presents an action language, called Lmt, for representing and reasoning about
commitments in multi-agent domains. The language is an extension of the language L, with
new features motivated by the problem of representing and reasoning about commitments.
These features include time, delayed effects, ir/reversible effects, concurrent actions, and
multi-agents, for specifying and reasoning about narratives in multi-agent domains. The paper
provides a transition-based semantics for Lmt, which makes it possible to define an entail-
ment relation between queries and multi-agent narratives with time constraints. The paper also
demonstrates how features and properties of commitments can be described in this action lan-
guage. In particular, it shows how Lmt can handle both simple commitment actions as well as
complex commitment protocols. Furthermore, the semantics of Lmt provides a uniform solu-
tion to different problems in reasoning about commitments such as the problem of (i) verifying
whether an agent fails (or succeeds) to deliver on its commitments; (ii) identifying outstanding
commitments; and (iii) suggesting ways to satisfy outstanding commitments.

1 Introduction and Motivation

Consider the following conversation between agents A and B:
Agent A: Do you want to do something tonight?
Agent B: Sure, what do you want to do?
Agent A: Let us have a pot-luck dinner with X . I will prepare some sandwiches and call X . But

can you pick her up? Also, could you bring some soft-drinks?
Agent B: Sure. How about 7pm?
Agent A: Great.
The conversation highlights a number of activities that A and B promise to perform: A needs to
prepare the sandwiches and call X . These activities need to be completed before 7pm. B, on the
other hand, needs to show up at A’s flat by 7pm with soft-drinks and with X . These activities
are referred to as commitments between A and B. This conversation also provides a number of

1

interesting questions. What happens if A fails to make the phone call to X? What happens if B
does not have enough money to buy the drinks? CanB askA for money or canB askX to bring the
soft-drinks? More generally, what does it mean for an agent to satisfy (or violate) a commitment?
What does it mean for an agent to ask other agents for help in fulfilling her commitments? How
and when can we say that an agent has satisfied (or violated) a commitment?

Commitments are integral parts of societies of agents. Modeling commitments has been an
intense topic of research in autonomous agents.

The focus has often been on the development of ontologies for commitments [5, 13], on the
identification of basic requirements for formalisms to represent and reason about commitments
[11], and the development of formalisms for specifying and verifying protocols or tracking com-
mitments [6, 17, 10].

Commitments are strongly related to agents’ behavior and capabilities, and they are often as-
sociated with time constraints, such as a specific time (or time interval) in the future. For example,
B can satisfy her commitment only if she has enough money to buy the soft-drinks; A can satisfy
her commitment only if she has enough materials and knows how to make sandwiches; a customer
will not pay for the promised goods if the goods have not been delivered; a client will have to
wait for her check if the insurance agent does not follow through with her promise of entering her
claim into the system; or an on-line shopper needs to pay for the order within 10 minutes after
clicking the ‘Check Out’ button before the browser times out. As such, it is natural to think that
any formalization of commitments should be considered in conjunction with a formalization of ac-
tions and changes. This also raises the question of whether high-level action languages, a popular
formalism for representing and reasoning about actions and changes, are adequate for representing
and reasoning about commitments, and if not, what additional features are needed for this purpose.

Action languages (e.g., A, B, and C [9]), with their English like syntax and simple transition
function based semantics, provide an easy and compact way for describing dynamic systems. Un-
like event calculus—an action description formalism often used in the literature for reasoning about
commitments—action languages can elegantly deal with indirect effects of actions and static laws.
Furthermore, off-the-shelf implementations of various action languages are available.1 Existing
action languages, on the other hand, do not provide means for expressing statements like “I will
make some sandwiches” or “I will come at 7pm.” Both statements are about achieving a certain
state of the world without specifying how. The first statement does not indicate a specific time in
the future while the second does. Moreover, with a few exceptions, action languages have been
developed mostly for single-agent environments.

In this paper, we will develop an action language, called Lmt, suitable for formalizing com-
mitments. We achieve this by extending the action language L [1, 2, 3] with features such as
multi-agency and future effects of actions. The introduction of these features allows represent-
ing and reasoning about actions with reversible and irreversible future effects. To the best of our
knowledge, a combination of these types of actions has not been considered in the literature. The
language supports also observations and protocols. We show that several tasks related to reasoning

1Several implementations can be found at potassco.sourceforge.net/labs.html

2

with commitments, such as identifying satisfied, outstanding, and unsatisfied commitments, can
be uniformly expressed as queries in Lmt. Furthermore, the problem of finding a way to satisfy
outstanding commitments can be directly addressed using planning. The language also provides a
natural means for specifying, verifying, and reasoning about protocols among agents.

2 The Language L with Concurrency

In this section, we review the language L, as developed in [2], enhanced with novel capabilities
to express concurrent actions. The language L has been already extended in [3] with static causal
laws, sensing actions, and observables for diagnosis within narratives. The presentation in this
paper follows [3] and considers concurrent actions. The description of the language is divided in
three components: a domain description language LD, a language to specify observations LO, and
a query language LQ.

2.1 LD: The Domain Description Language

The signature of LD consists of two non-empty disjoint sets of symbols: the set of fluents F , and
the set of actions,A. A fluent literal (or literal) is either a fluent or a fluent preceded by ¬. Given a
literal `, we denote with ¯̀ its complement. A fluent formula is a propositional formula constructed
from literals. A domain description in LD consists of axioms of the following forms:

a causes ` if ψ (1)

ϕ if ψ (2)

impossible A if ψ (3)

where a is an action, ` is a literal, ψ and ϕ are sets of literals (interpreted as conjunctions), and A
is a set of actions.

Axioms of type (1), (2), and (3) are referred to as dynamic laws, static laws (or state con-
straints), and non-executability laws, respectively. Intuitively, a dynamic law describes the direct
effects of execution of one action (possibly concurrently to other actions), static laws describe
integrity constraints on states of the world, and non-executability laws describe conditions that pre-
vent the (concurrent) execution of groups of actions. In axioms of type (1) and (3) we will omit the
if part if ψ is a tautology.

A domain description given inLD defines a transition function, which maps a set of actions and
a state to a set of states. Intuitively, given a set of actionsA and a state s, the transition function ΦD

defines the set of states that may be reached after executing A in state s. If ΦD(A, s) is an empty
set it means that A is not executable in s.

Let D be a domain description in the language of LD. An interpretation I of the fluents in
LD is a maximal consistent set of fluent literals drawn from F . A fluent f is said to be true (resp.
false) in I iff f ∈ I (resp. ¬f ∈ I). The truth value of a fluent formula in I is defined recursively

3

over the propositional connective in the usual way. For example, f ∧ q is true in I iff f is true in I
and q is true in I . We say that ϕ holds in I (or I satisfies ϕ), denoted by I |= ϕ, if ϕ is true in I .

Let I be an interpretation and K be a set of static causal laws of the form ϕ if ψ. We say that
I is closed under K if for every rule ϕ if ψ in K, if I |= ψ then I |= ϕ. By ClK(I) we denote
the smallest superset of I which is closed under K. If K is the set of all the static laws in a domain
descriptionD, then we denote with ClD(I) the set ClK(I) for K equal to the set of all causal laws
in D. A state of D is an interpretation that is closed under the set of static causal laws of D.

A set of actions B is prohibited (not executable) in a state s if there exists an executability
condition of the form (3) in D such that A ⊂ B and s |= ϕ.

The effect of an action a in a state s of D is the set of formulas eA(s) = {` | D contains a law
a causes ` if ψ, a ∈ A, and s |= ψ}.

Given the domain description D containing a set of static causal laws R, we formally define
ΦD(A, s), the set of states that may be reached by executing the set of actions A in s as follows.

• If A is not prohibited (i.e., executable) in s, then

ΦD(A, s) = {s′ | s′ = ClD((s ∩ s′) ∪ eA(s)) and s′ is a state};

• If A is prohibited (i.e., not executable) in s, then ΦD(A, s) is ∅.

The function ΦD is extended to define Φ̂D for reasoning about the effects of sequences of sets of
actions as follows. For a state s and a sequence of sets of actions α = [A1, . . . , An], let αn−1 =
[A1, . . . , An−1], we define

Φ̂D(α, s) =

{s} if n = 0
∅ if Φ̂D(αn−1, s) = ∅ ∨ ∃s′.[s′ ∈ Φ̂D(αn−1, s) ∧ Φ(An, s

′) = ∅]⋃
s′∈dΦD(αn−1,s)

Φ(An, s
′) otherwise

We will commonly assume noop ∈ A, an action that is always executable and not affecting the
state of the world.

2.2 LO: The Observation Language

The language LO is built from sequences of sets of actions, fluent formulas, and a set of situation
constants S, containing two special constants, s0 and sc, denoting the initial situation and the current
situation. Observations in LO are axioms of the forms:

ϕ at s (4)

α between s1, s2 (5)

α occurs at s (6)

s1 ≺ s2 (7)

4

where ϕ is a fluent formula, α is a (possibly empty) sequence of sets of actions, and s, s1, s2 are
situation constants which differ from sc.

Axioms of the forms (4) and (7) are called fluent facts and precedence facts, respectively. (4)
states that ϕ is true in the situation s. (7) says that s1 occurs before s2. Axioms of the forms (5) and
(6) are referred to as occurrence facts. (6) indicates that α starts its execution in the situation s. On
the other hand, (5) states that α starts and completes its execution in s1 and s2, respectively.

2.3 Narratives

A narrative is a pair (D,Γ) where D is a domain description and Γ is a set of observations of the
form (4)-(7) such that {s0 ≺ s, s ≺ sc | s ∈ S } ⊆ Γ. In our examples, we will often omit the set
of precedence facts related to s0 and sc when we define Γ.

Observations are interpreted with respect to a domain description. While a domain descrip-
tion defines a transition function that characterizes what states may be reached when an action is
executed in a state, a narrative consisting of a domain description together with a set of observa-
tions defines the possible situation histories of the system. This characterization is achieved by two
functions, Σ and Ψ. While Σ maps situation constants to sequences of sets of actions, Ψ picks one
among the various transitions given by ΦD(A, s) and maps sequences of sets of actions to a unique
state.

More formally, let (D,Γ) be a narrative. A causal interpretation of (D,Γ) is a partial function
Ψ from action sequences to interpretations, whose domain is nonempty and prefix-closed.2 By
Dom(Ψ) we denote the domain of a causal interpretation Ψ. Notice that [] ∈ Dom(Ψ) for every
causal interpretation Ψ, where [] is the empty sequence of sets of actions. A causal model of D is
a causal interpretation Ψ such that:

(i) Ψ([]) is a state of D; and
(ii) for every α ◦ [A] ∈ Dom(Ψ), Ψ(α ◦ [A]) ∈ ΦD(A,Ψ(α)).

A situation assignment of S with respect to D is a mapping Σ from S into the set of sequences of
sets of actions of D that satisfy the following properties:

(i) Σ(s0) = [];
(ii) for every s ∈ S, Σ(s) is a prefix of Σ(sc).

An interpretation M of (D,Γ) is a pair (Ψ,Σ), where Ψ is a causal model of D, Σ is a situation
assignment of S, and Σ(sc) belongs to the domain of Ψ. For an interpretation M = (Ψ,Σ) of
(D,Γ):

(i) α occurs at s is true in M if the sequence Σ(s) ◦ α is a prefix of Σ(sc);
(ii) α between s1, s2 is true in M if Σ(s1) ◦ α = Σ(s2);

(iii) ϕ at s is true in M if ϕ holds in Ψ(Σ(s));
(iv) s1 ≺ s2 is true in M if Σ(s1) is a prefix of Σ(s2).

2A set X of action sequences is prefix-closed if for every sequence α ∈ X , every prefix of α is also in X . The
symbol ◦ denotes list concatenation.

5

Given two sequences of sets of actions α = [A1, . . . , An] and α′ = [B1, . . . , Bm], we say that α
is a subsequence of α′, denoted by α ¿ α′, if α can be obtained from α′ by (i) deleting some Bi

from α′; and (ii) replacing some action a ∈ A in the remaining Bi by noop. An interpretation
M = (Ψ,Σ) is a model of a narrative (D,Γ) if:

(i) facts in Γ are true in M ;
(ii) there is no other interpretation M ′ = (Ψ,Σ′) such that M ′ satisfies condition (i) above and

Σ′(sc) is a subsequence of Σ(sc).

Observe that these models are minimal in the sense that they exclude extraneous actions. A narra-
tive is consistent if it has a model.

2.4 LQ : The Query Language

Let us define a query language LQ for narratives. Queries in LQ are of the form:

ϕ after α at s (8)

where α is a sequence of sets of actions. A query q of the form (8) is true in a modelM = (Ψ,Σ) of
a narrative (D,Γ), denoted by (D,Γ) |=M q, if ϕ is true in Φ̂D(α,Ψ(Σ(s)). A query q is entailed
by a narrative (D,Γ), denoted by (D,Γ) |= q, if q is true in every model of (D,Γ).

3 Lm for Multiagent Domains

The action language L can be extended for specifying and reasoning about multiagent narratives.
We will denote the new language with Lm. To this end, we assume that each agent will have
its own set of fluents and actions. Formally, a multiagent domain is defined over a signature
〈AG, {Fi,Ai}i∈AG〉 where AG is a set of agent identifiers and Fi and Ai are the set of fluents
and the set of actions of the agent i, respectively. We assume thatAi ∩Aj = ∅ for any two distinct
i, j ∈ AG. Observe also that

⋂
i∈S Fi may be not empty for some S ⊆ AG. This represents the

fact that fluents in
⋂

i∈S Fi are relevant to all the agents in S.
A multiagent domain specification is a set of axioms (1), (2), and (3) where a ∈ ⋃

i∈AG Ai

in each axiom of the form (1), and for each set of actions A in an axiom (3), A is a finite set
A ⊆ ⋃

i∈AG Ai.

Example 1 Let us consider the Netbill example presented in [14] modeling a protocol between a
merchant and a customer. The customer can make a request for a quote, accept a quote, or send a
payment. The merchant can send a quote, the goods, or the receipt. In this example, the agents are
the merchant and the customer, i.e., AG = {m, c}. The signatures of the agents are:

merchant Fm =

8
<
:

request, pay,
goods, receipt,
quote, accept

9
=
; Am =

8
<
:

sendQuote,
sendGoods,
sendReceipt

9
=
;

customer Fc =

8
<
:

request, pay,
goods, receipt,
quote, accept

9
=
; Ac =

8
<
:

sendRequest,
sendAccept,
sendPayment

9
=
;

6

The description of the actions for the two agents is encoded by the following axioms:

Dc Dm

sendRequest causes request sendGoods causes goods
sendPayment causes pay sendReceipt causes receipt
sendAccept causes accept sendQuote causes quote
impossible {sendAccept} if ¬quote impossible {sendReceipt} if ¬pay

impossible {sendGoods} if ¬accept

The last two laws state that the Merchant cannot execute the action sendReceipt if ¬pay is true
(the Customer has not paid yet); he cannot execute the action sendGoods if ¬accept is true (the
Customer has not accepted the offer). On the other hand, the Customer cannot execute the action
sendAccept if he has not received the quote. 2

The semantics of a multiagent domain is defined by the transition function ΦD where D =⋃
i∈AG Di is the domain description defined over the set of fluents

⋃
i∈AG Fi and the set of actions⋃

i∈AG Ai. For later use, we define an action snapshot as a set {ai}i∈AG where ai ∈ Ai ∪ {noop}.
Intuitively, each action snapshot encodes the set of actions that the agents inAG concurrently exe-
cute in a state. A trajectory is a sequence s0β0s1β1 . . . βn−1sn such that each βj is a snapshot and
si ∈ ΦD(si−1, βi−1) for 1 ≤ i ≤ n.

The above extension is sufficient to allow us to consider a multiagent narrative. In the presence
of multiple agents, some extensions to the observation language, the query language, and the notion
of a narrative are necessary:

• Instead of a sequence of sets of actions in (5) or (6), we consider a sequence of action
snapshots.

• A multiagent narrative is a pair (D,Γ) whereD is a multi-agent domain specification defined
over a signature 〈AG, {Fi,Ai}i∈AG〉, and Γ is a set of observations with the above changes.

• The query language also consider sequences of action snapshots instead of sequences of sets
of actions.

Example 2 Given the domain in Example 1, N = (D,Γ) is a narrative where
• D is the domain description described in Example 1;
• Γ consists of the precedence facts s0 ≺ s1 ≺ s2 ≺ s3 ≺ sc and the following observations:

¬pay ∧ ¬accept ∧ ¬quote ∧ ¬goods at s0
[{sendRequest, noop}] occurs at s0
[{sendAccept, noop}] occurs at s2
[{sendQuote, noop}] between s1, s2

where s0, s1, s2, s3, sc are situation constants.
Let M = (Ψ,Σ) where

7

• Σ(s0) = [],

• Σ(s1) = {sendRequest, noop},3

• Σ(s2) = [{sendRequest, noop}, {noop, sendQuote}], and

• Σ(s3) = Σ(sc) = Σ(s2) ◦ [{sendAccept, noop}].
and Ψ([]) = {¬f | f ∈ Fc ∪ Fm} which can be easily extended to allow M to be a model of N .
2

4 Considering Time: The Action Language Lmt
Example 2 shows that specifying and reasoning about multiagent narratives can be effectively done
using Lm. The language, however, does not allow for the specification of durative actions. As a
result, it is not possible to specify deadlines or time constraints within L (or Lm). For example, the
following statements cannot be represented:

• The customer is interested in the quote only within 2 hours from the completion of the
request.

• The price on the quote is valid only for one day.
• The delivery only takes three days.

In this section, we propose an extension of Lm, called Lmt, that supports the representation of
durative actions and time constraints in the observation and query languages. Before moving to the
definition of the language, let us discuss a few issues that arise when actions with duration, time,
and deadlines are considered. Consider the execution of an action a; we can observe the following
situations:

• An effect of a might be delayed. For example, sending the goods to the customer causes the
goods to be delivered after three days;

• An effect of a could be override by the execution of another action. For example, consider
two actions: pumping gasoline into the tank causes the tank to be full after 5 minutes; drilling
a hole in the tank takes only 1 minute and will cause the tank never to be full. The execution
of drilling 1 minute after initiating the pumping action will cause the tank to never become
full. Thus, the execution of the action drill makes the tank no longer full and this effect
cannot be reversed by other actions.

In the following, we will propose a way to deal with these types of issues. To address the first issue,
we introduce the notion of annotated fluents, i.e., fluents associated to relative time points, and use
annotated fluents in axioms of the form (1)-(3). To deal with the second issue, we introduce the
notions of irreversible and reversible processes.

3The first and second action are from the customer and the merchant, respectively.

8

4.1 Syntax of Lmt

We assume an arbitrary but fixed multiagent signature 〈AG, {Fi,Ai}i∈AG〉 as in the previous sec-
tion. For simplicity, we assume that noop belongs to everyAi. The signature of Lmt contains also
a countable set of process names P .

An annotated literal is a formulae of the form `t, where ` is a fluent literal and t > 0 is
an integer, representing a future point in time. We also allow annotations of the form `∨[t1,t2],
denoting `t1 ∨ · · · ∨ `t2 for t1 ≤ t2. Annotated formulae are propositional formulae that use
annotated literals. Given a fluent formula ϕ (i.e., where fluents are not annotated), ϕt (ϕ∨[t1,t2])
is the formula obtained by replacing each literal ` in ϕ with the annotated literal `t (`∨[t1,t2]). An
annotated formula is single time if it is of the form ϕ∨[t1,t2] for some non-annotated formula ϕ. An
annotated formula is actual if no literal in the formula is annotated. For an annotated formula ϕ,
ϕ+t is the formula obtained by replacing each `r in ϕ with `r+t.

A multi-agent domain specification is a collection of laws of the form (1)-(3) and laws of
following forms:

ϕ starts process id [reversible|irreversible] `t̂ (9)

ϕ stops process id (10)

a starts process id [reversible|irreversible] `r̂ if ϕ (11)

a stops process id if ϕ (12)

where ϕ is a set of fluent literals, a ∈ ∪i∈AGAi, `t̂ and `r̂ are time annotated literals, of the form
∨[t1, t2] with 1 ≤ t1 ≤ t2 and ∨[r1, r2] with 0 ≤ r1 ≤ r2,4 and process id belongs to P .

The main novelty is the introduction of the notion of process. A process is associate to a delayed
effect, denoted by `t̂, and the time interval t̂ indicates when the process will produce its effect. A
process can be started by an action or a property. Each reversible process can be interrupted by
a stops action/condition before materializing its effects, while irreversible processes cannot be
interrupted and will materialize their effects.

Example 3 Consider the domain from Example 1. Let us assume that if the customer sends the
payment, then the payment will be completed within 3 to 5 working days. The customer, however,
can cancel the payment before it is completed. This can be represented in Lmt by the laws

sendPayment starts payment process reversible pay∨[3,5] (13)

cancelPayment stops payment process (14)

impossible {cancelPayment} if pay (15)

The first law creates a reversible process, since its effect can be reversed by the second law. The
third law states a non-executability condition. 2

4For simplicity of the presentation, we do not consider ∧[t1, t2]. This is because a law with the annotation ∧[t1, t2]
can be replaced by a set of laws whose annotation is ∨[ti, ti] for t1 ≤ ti ≤ t2.

9

4.2 Transition Function for Lmt

The notion of a state in a Lmt domain D is similar to a state in L domain, in that it is an interpreta-
tion of the fluents inD and needs to satisfy the constraints imposed by static laws inD. In presence
of processes, a state of the world needs to account for changes that will occur only in the future,
when a process reaches its completion. For example, the action sendPayment in (13) states that
the action starts a process named payment process whose effect is to make pay true 3, 4, or 5 units
of time after the execution of the action. For this reason, we introduce the notion of an extended
state as a triple (s, IR,RE) where s is a state and IR and RE are sets of pairs of future effects,
each of the form (x : `t̂), where x is a process name and `t̂ is an annotated fluent. Intuitively, s
encodes the current state of the world, while IR and RE contain the irreversible and reversible
processes, respectively. (s, IR,RE) is complete if IR = ∅ and ER = ∅.

Let us discuss the transitions between extended states. In presence of future effects encoded by
the processes, the world changes due to (i) the completion of a process; or (ii) action occurrences.
Figure 1 illustrates this. On the left, we have an extended state (s, {(x : p1)}, ∅) with (x : p1) as
a process whose effect is p. Intuitively, if nothing happens, we would expect that p would be true
in the world state one unit of time from the current time. This results in the new state of the world
s \ {¬p} ∪ {p}, which happens to have no more future effects. On the right, for the same extended
state, action a, whose effect is to make q true in the next moment of time, occurs. We expect the
next world state to be s \ {¬p,¬q} ∪ {p, q}.

<s, {(x:p
1
)},{}> <s \ {¬p} ∪ {p}, {},{}> <s, {(x:p

1
)},{}> <s \ {¬p,¬q} ∪ {p,q}, {},{}>

a causes q

Figure 1: Transitions Between Extended States (Inertia vs. Dynamic)

The above discussion leads us to define the semantics of Lmt domains in two steps. First, we
specify an update function, which computes the extended state which is t units of time from the
current state assuming that no action occurs during this time span. Second, we define the transition
function that takes into consideration the action occurrences.

The update of an extended state (s, IR,RE) is used to move forward by one time step; the
time of the annotated fluents is decreased by one. Fluents that have become actual are used to
update the state—in such a case we need to ensure that irreversible changes prevail over reversible
ones. Formally, for ŝ = (s, IR,RE), the set of literals that should be used in updating s in the
next moment of time is

τ(ŝ) = {` | (x : `1) ∈ IR} ∪ {` | (x : `1) ∈ RE such that 6 ∃(z : ¯̀1) ∈ IR}.
For a state s, the set of processes started and stopped by s in the next moment of time is IR1(s) =
{(process id : `t̂) | there exists a law of the form (9) with the option irreversible such that s |= ϕ},
RE1(s) = {(process id : `t̂) | there exists a law of the form (9) with the option reversible such

10

that s |= ϕ}, and P2(s) = {process id | there exists a law of the form (10) such that s |= ϕ}. For
a set of process names N and a set of future effects X , let X \ N = X \ {(x : `t) | x ∈ N, (x :
`t) ∈ X}).

The update of ŝ by one unit of time is a set of extended states defined as follows:

update(ŝ) = {(s′, I(IR, s′), R(ER, s′) | s′ = ClD(τ(ŝ) ∪ (s ∩ s′)) and s′ is a state}

where, I(IR, s′) = (IR − 1) ∪ IR1(s′) and R(ER, s′) = ((RE − 1) ∪ RE1(s′)) \ P2(s′), and
for a set of future effects X , by X − d we denote the set {(x : `t−d) | (x : `t) ∈ X}. Intuitively, s′

is a state that satisfies the effects that need to be true one unit from the current state. For an integer
t > 0, let ŝ+ t =

⋃
û∈update(ŝ+t−1) update(û) where ŝ+ 0 = ŝ.

Let us now consider the case where an action snapshot α = {ai}i∈AG is executed in the ex-
tended state ŝ. Intuitively, there are two possible types of effects: the direct effect of the actions
(eα(s)) and the processes that are created by the actions. We know that eα(s) must be satisfied in
the next time point.

The effects of the processes starting byα in s, denoted by procsα(s), is a set of pairs (IR′, RE′)
where:

• For each (ai starts pid irreversible `∨[t1,t2] if ϕ) in D, with ai ∈ α and s|=ϕ, we have that
IR′ contains (pid : `t) for some t s.t. t1 ≤ t ≤ t2;

• For each (ai starts pid reversible `∨[t1,t2] if ϕ) in D, with ai ∈ α, and s|=ϕ, we have that
RE′ contains (pid : `t) for some t s.t. t1 ≤ t ≤ t2.

In addition, the set of processes stopped by α in s, denoted by stopα(s), is a set of process names
and is defined as {pid | (ai stops pid if ϕ) is in D and s |= ϕ}. Intuitively, each (IR′, RE′)
encodes a possible set of effects that the snapshot α can create given the current state of the world
is s. stopα(s), on the other hand, is the set of processes that needed to be stopped. We are now
ready to define transition function Φt

D for Lmt domains which maps extended states and action
snapshots to sets of extended states. We need some additional notations. We assume that > is a
special process name in P that does not appear in any laws of D. For a set of literals L, we define
⊕(L) = {(> : `1) | ` ∈ L}.

Given an extended state ŝ = (s, IR,RE), a fluent literal ` holds in ŝ if ` holds in s. The notion
of executability of a set of actions can be carried over to Lmt domains without changes as it only
considers the current state of the world. The transition function Φt

D is then defined by

Φt
D(α, ŝ) =

⋃

(I,R)∈procsα(s)

update((s, IR ∪ I ∪ ⊕(eα(s)), (RE ∪R) \ stopα(s))

if α is executable in s, and Φt
D(ŝ, α) = ∅ otherwise. Intuitively, Φt

D(ŝ, α) encodes the possible
trajectories of the world given that α is executed in ŝ. We extend Φt

D to Φ̂t
D which operates on

sequences of action snapshots in the same way as done for ΦD.
In presence of time, we might be interested in the states of the world given that α is executed t

11

units of time from the current state of the world. We overload Φt
D and define

Φt
D(ŝ, α, t) = Φ̂t

D(ŝ, [{noop}i∈AG , . . . , {noop}i∈AG︸ ︷︷ ︸
t

] ◦ [α])

We also write Φt
D(ŝ, α, t)+t1 to denote

Φt
D(ŝ, α, t) + t1 =

⋃

ŝ′∈Φt
D(ŝ,α,t)

Φ̂t
D(ŝ′, [{noop}i∈AG , . . . , {noop}i∈AG︸ ︷︷ ︸

t1

])

Intuitively, a member of Φt
D(ŝ, α, t) + t1 is a possible extended state after t1 time steps from the

execution of α, which in turn was executed t time steps from the extended state ŝ.
The next example illustrates the computation of Φt

D.

Example 4 Let us consider the domain in Example 1 with the changes proposed in Example 3.
Consider he state s0 = {request, quote, accept,¬pay,¬receipt,¬goods}. Let ŝ0 = (s0, ∅, ∅)
and α1 = {noop, sendGoods}. We have that α1 is executable in s0. We have that eα1(s0) =
{goods}. So, Φt

D(ŝ0, α1) = update((s0, {(> : goods1)}, ∅)) = {(s′0, ∅, ∅)}where s′0 = {request, quote, accept,¬pay,¬receipt, goods}.
Let û = (s′0, ∅, ∅) and α2 = {sendPayment, noop}. It is easy to see that

Φt
D(û, α2) = {update((s′0, ∅, {(payment process : payi)})) | i = 3, 4, 5}

Therefore,
Φt

D(û, α2) + 3 = {(u′, ∅, ∅)} ∪ {update((s′0, ∅, {(payment process : payi)})) | i = 1, 2}
where u′ = {request, quote, accept, pay,¬receipt, goods}. It is easy to see that
Φt

D(û, α2) + 5 = {(u′, ∅, ∅)}. 2

Let us define a timed action snapshot to be a pair (α, t) where α is an action snapshot and t is
a time reference. Φ̂t

D can also be extended to a transition function that operates on sequences of
timed action snapshots A = [(α1, t1), . . . , (αn, tn)] where t1 < t2 < . . . < tn and αi’s are action
snapshots as follows:

• For n = 0: Φ̂t
D(ŝ, A) = ŝ; and

• For n > 0: Φ̂t
D(ŝ, A) =

⋃
û∈Φt

D(ŝ,α1,t1) Φ̂t
D(û, B)

where B=[(α2, t2 − t1), . . . , (αn, tn − t1)] if Φ̂t
D(û, B) 6= ∅ for every û∈Φt

D(ŝ, α1, t1);
otherwise, Φ̂t

D(ŝ, A) = ∅.

For a state s and a sequence of timed action snapshot A, we define Φ̂t
D(s,A) = Φ̂t

D((s, ∅, ∅), A).

Example 5 Let us continue with Example 4. Let α3 = {noop, cancelPayment} and the se-
quence A = [(α2, 0), (α3, 1)]. Consider the extended state û. We have that

Φ̂t
D(û, A) =

⋃
v̂∈Φt

D(û,α2) Φt
D(v̂, α3)

=
⋃

i∈{2,3,4}Φt
D((s′0, ∅, {(payment process : payi) | i = 2, 3, 4})

= {(s′0, ∅, ∅)}

12

In other words, the payment was canceled before pay becomes true. On the other hand, for A =
[(α2, 0), (α3, 3)] we have that Φ̂t

D(û, A) = ∅ since there exists an extended state, namely (u′, ∅, ∅)
in Φt

D(û, α2) in which α3 is not executable. 2

4.3 The Observation Language Lmt
O and Lmt Narratives

To accommodate time constraints about the observations, we extend LO with an additional type of
observations of the form

s at t (16)

and refer to the new language as Lmt
O . We will also require that α in (5)-(6) is a sequence of timed

action snapshots.
A narrative of a multi-agent system (a narrative, for short) is a pair (D,Γ) whereD is a domain

description and Γ is a set of observations of the form (4)-(7) and (16).

Example 6 Let D1 be the domain description described in Example 1 with the changes in Ex-
ample 3 and Γ1 be the set of observations consisting of the observations in Example 3 and the
observation (s2 at 3). Then, N1 = (D1,Γ1) is a Lmt narrative. 2

In the following, we will extend the notion of a model of a narrative in the previous section to Lmt

domains. Given an extended state ŝ = (s, IR,ER) and an annotated literal `t, we say that `t holds
in ŝ, denoted ŝ |= `t, if

• For t = 0, ŝ |= `t if s |= `; and
• For t > 0, ŝ |= `t if û |= ` for every û ∈ ŝ+ t.
Given a Lmt narrative (D,Γ), the notions of a causal interpretation, causal model, and situation

assignment defined in Section 2 can be carried over with minor changes: a causal interpretation Ψ
is a mapping from sequences of action snapshots to extended states of D; a situation assignment is
a mapping from the set of situation S into the set of sequences of action snapshots. The notion of
interpretation needs to take into consideration time constraints and is modified as follows.

An interpretation M of (D,Γ) is a triple (Ψ,Σ,∆), where Ψ is a causal model of D, Σ is a
situation assignment of S, and ∆ is a time assignment which is a mapping from the set of prefixes
of Σ(sc) into the set of non-negative integers such that ∆([]) = 0 and ∆(β) ≤ ∆(γ) for every
β v γ v Σ(sc);5 and Ψ satisfies the following conditions:

• Ψ([]) is a complete extended state of D, and
• for every β, α such that β ◦ α v Σ(sc), Ψ(β ◦ α) belongs to Φ̂t

D(Ψ([]), (β, 0) ◦ (α,∆(β))).
Given an interpretation M of (D,Γ) and an observation o ∈ Γ, we say that o holds in M ,

denoted by M |= o, if
• for o of the form (4)-(7), M |= o iff o is true in M as defined in Sect. 2;
• M |= (s at t) if ∆(Σ(s)) = t.

5The notation β v γ denotes that β is a prefix of γ.

13

With this extension, we can define a model of a narrative (D,Γ) as an interpretation (Σ,Ψ,∆) of
(D,Γ) that satisfies Γ such that there exists no other interpretation M ′ = (Ψ,Σ′,Γ′) such that M ′

satisfies Γ and Σ′(sc) is a subsequence of Σ(sc).

Example 7 Consider the narrative N1 = (D1,Γ1) in Example 2 with the following modification
to D1: the law related to sendQuote is replaced by

sendQuote starts quote proc irreversible quote∨[2,2]

Let M = (Ψ,Σ,∆) where Ψ and Σ are defined as in Example 3 and ∆ is defined as follows.
∆(Σ(s0)) = 0, ∆(Σ(s1)) = 1, ∆(Σ(s2)) = 3, ∆(Σ(s3)) = ∆(sc) = 4. We can show that M is a
model for N1.

Now, let us consider N2 = (D2,Γ2), where D2 is obtained from D1 by including the changes
of Example 3 and the modification about the action sendQuote. Γ2 is the union of Γ1 and the
following observations:

[{noop, sendGoods}] occurs at s3 pay at s4 s3 at 5

where s4 is a new situation constant satisfying s3 ≺ s4 ≺ sc. It can be shown that in any model of
N2, Σ(s4) would have to contain the action sendPayment. 2

As Lmt extends L, queries of the form (8) can still be considered and the entailment relation
between a narrative (D,Γ) and a query ϕ after α at s is defined as in Section 2.4. In the presence
of time, given a narrative (D,Γ) and a fluent formula ϕ, we are also interested in knowing whether
ϕt is true (resp. false) in a situation s for some t1 ≤ t ≤ t2. This is expressed using a query of the
form

ϕ∨[t1,t2] at s (17)

We say that a query q of form (17) holds w.r.t. (D,Γ), denoted by (D,Γ) |= q, if, for every model
M = (Ψ,Σ,∆) of (D,Γ), there exists some t, t1 ≤ t ≤ t2, and ϕ is true in Ψ(Σ(s)) + t. As an
example, for the narrative (D2,Γ2), we can show that (D2,Γ2) |= pay∨[4,6] at s3.

5 Basic Commitments in Lmt
We demonstrate that Lmt is adequate to encode commitments and their manipulation. Commit-
ments are encoded as a new class of fluents and are manipulated by commitment actions. Due to
the lack of space, we present our study on unconditional commitments [13]. We observe that the
treatment of conditional commitments can be done similarly.

A commitment is of the form c(x, y, ϕ, t1, t2), where x, y ∈ AG, 0 < t1 ≤ t2, and ϕ is
formula. This states that the debtor x agrees to establish ϕ between t1 and t2 for the creditor y.
A commitment where we do not care when the property is made true can be expressed using a
disjunctive annotation. As an example, the statement “I will come in three hours,” told by agent A
to agent B, conveys the commitment c(A,B, arrived, 3, 3) made by A to B.

14

We would like to stress that we can still think of commitment fluents as propositions, i.e.,
c(x, y, ϕ) is a syntactic sugar for c x y name(ϕ) where name(ϕ) is a propositional variable rep-
resenting the name of the formula ϕ.

We assume that the various propositions c(x, y, ϕ) are in
⋂

i∈AG Fi. Similarly, we assume that,
to enable a meaningful communication, if c(x, y, ϕ) is a commitment fluent, then ϕ is a fluent
formula which uses fluents from Fx ∪ Fy.

Activities are identified to enable the manipulation of commitments (x is the debtor and y is
the creditor):

• Creation of a commitment: create(x, y, ϕ, t1, t2) describes the fact that agent x creates a
commitment towards agent y in the period between t1 and t2. We assume that each created
commitment is associated to a unique identifier, and at any point in time, no two active
commitments are identical;

• Discharge of a commitment: discharge(x, y, ϕ) indicates that agent x discharges a commit-
ment towards agent y (by satisfying the request);

• Release of a commitment: the syntax release(x, y, ϕ) describes the fact that agent y releases
x from its obligation;

• Assign a commitment: assign(x, y, k, ϕ, t1, t2) indicates that agent y transfers the commit-
ment to a different creditor (with a new time frame);

• Delegate a commitment: delegate(x, y, k, ϕ, t1, t2) indicates that agent x delegates the com-
mitment to another debtor (with a new time frame);

• Cancel a commitment: cancel(x, y, ϕ, ψ, t1, t2) describes the fact that agent x modifies the
terms of the commitment (by canceling the previous one and generating a new one with a
new time frame).

These manipulations of commitments are the consequence of actions performed by the agents or
conditions occurring in the state of the world. We consider two types of enabling statements, called
trigger statements, for commitment manipulation

[ϕ|a] triggers c activity (18)

where ϕ is a fluent formula, a ∈ A, and c activity is one of the activities (or commitment actions).
They indicate that the commitment activity c activity should be executed whenever ϕ holds or a
is executed.

An example of the first type of statement can be

pay triggers create(m, c, receipt, 1, 3) (19)

which encodes the fact that the merchant agrees to send the customer the receipt between 1 and 3
units of time since receiving the payment. The statement

sendAccept triggers create(c,m, pay, 1, 5) (20)

states that the customer agrees to pay for the goods between 1 to 5 units of time after sending
the acceptance notification. A more complicated trigger statement is the following, taken from an

15

example in [6],

broken triggers create(s, c, (broken⇒ paid 10 ∨ ¬broken⇒ ¬paid 10), k, k)

for k ≥ 3, which represents the agreement between the service provider (s) and a customer (c)
which states that if the printer is broken, the service provider needs to fix it within three days or
faces the consequence of paying $10 each day the printer is not fixed.

Definition 1 A domain with commitments is a pair (D,C) where D is a domain specification in
Lmt and C is a collection of trigger statements.

Intuitively, a domain with commitments is an action theory enriched with a set of (social or
contractual) agreements between agents in the domain which are expressed by the set of trigger
statements. For example, let Dn be the domain in Example 1 and C1 be the two statements (19)
and (20), we have that (Dn, C1) is a domain with commitments. Let us also represent another
example from the literature [6].

Example 8 A customer has signed a service agreement with a printer supplier: if a printer breaks
down, the supplier guarantees to send a technician on site. The technician must intervene within
three days from the call. Any delay in the intervention will incur from the supplier’s side an obli-
gation to pay a $10 penalty per day of delay, as of the fourth day.

Intuitively, the domain can be encoded by the action

repair causes ¬broken

The collection of trigger statements contains a single statement

In the following, we will define the semantics of a domain with commitments (D,C) by trans-
lating it into a Lmt domain D′ where D′ consists of D and a collection of dynamic laws and static
laws originating from C.

• Action Triggers

Assume that a triggers c activity belongs to C. In this case,

◦ if c activity = create(x, y, ϕ, t1, t2), then the laws

a causes c(x, y, ϕ) and a starts c(x, y, ϕ) reversible done(x, y, ϕ)∨[t1,t2]

are added toD′. The dynamic law records the fact that the commitment c(x, y, ϕ) has been
made by the execution of the action a. The second law starts a process which indicates
that the commitment must be satisfied between t1 and t2.

16

◦ if c activity = discharge(x, y, ϕ) then D′ contains

a stops c(x, y, ϕ) if c(x, y, ϕ) a causes ¬c(x, y, ϕ) if c(x, y, ϕ)
a starts discharging(x, y, ϕ) irreversible ϕ if c(x, y, ϕ)

Here, the action a stops the commitment process c(x, y, ϕ) by starting a process of achiev-
ing ϕ. It also records the fact that the commitment c(x, y, ϕ) has been satisfied (the dy-
namic law).

◦ if c activity = release(x, y, ϕ) then

a stops c(x, y, ϕ) if c(x, y, ϕ) and a causes ¬c(x, y, ϕ) if c(x, y, ϕ)

belongs to D′. The action stops the commitment process and records that the commitment
has been removed.

◦ if c activity = assign(x, y, k, ϕ, t1, t2) then D′ contains

a stops c(x, y, ϕ) if c(x, y, ϕ) a causes ¬c(x, y, ϕ) if c(x, y, ϕ)
a causes c(x, k, ϕ) a starts c(x, k, ϕ) reversible done(x, k, ϕ)∨[t1,t2]

The action stops the commitment process c(x, y, ϕ) and starts the commitment process
c(x, k, ϕ). It also releases the process c(x, y, ϕ).

◦ if c activity = delegate(x, y, k, ϕ, t1, t2) then D′ contains

a stops c(x, y, ϕ) if c(x, y, ϕ) a causes ¬c(x, y, ϕ) if c(x, y, ϕ)
a causes c(k, y, ϕ) a starts c(k, y, ϕ) reversible done(k, y, ϕ)∨[t1,t2]

This is similar to the case of release, only with different debtor.
◦ if c activity = cancel(x, y, ϕ, ψ, t1, t2) then D′ contains

a stops c(x, y, ϕ) if c(x, y, ϕ) a causes ¬c(x, y, ϕ) if c(x, y, ϕ)
a causes c(x, y, ψ) a starts c(x, y, ψ) reversible done(x, y, ψ)∨[t1,t2]

The action stops the commitment process c(x, y, ϕ) and starts a new commitment c(x, y, ψ).

• Fluent Triggers

Assume that ψ triggers c activity is in C. In this case,

◦ if c activity = create(x, y, ϕ), then the static law
(c(x, t, ϕ) if ψ) is an element of D′;

◦ if c activity = create(x, y, ϕ, λ), then the static law
(c(x, y, ϕ, λ) if ψ) is an element of D′;

◦ if c activitiy = discharge(x, y, ϕ) then ¬c(x, y, ϕ) if ψ,ϕ belongs to D′.
◦ if c activity = release(x, y, ϕ) then ¬c(x, y, ϕ) if ψ is an element of D′.

17

◦ if c activity = assign(x, y, k, ϕ) then D′ contains
¬c(x, y, ϕ) if c(x, y, ϕ), ψ c(x, k, ϕ) if c(x, y, ϕ), ψ

◦ if c activity = delegate(x, y, k, ϕ) then D′ contains
¬c(x, y, ϕ) if c(x, y, ϕ), ψ c(k, y, ϕ) if c(x, y, ϕ), ψ

◦ if c activity = cancel(x, y, ϕ, λ) then D′ contains
¬c(x, y, ϕ) if c(x, y, ϕ), ψ c(x, y, λ) if c(x, y, ϕ), ψ

We further need to include some additional static laws: if c(x, y, ϕ) is present and ϕ is true,
then the commitment can be released: ¬c(x, y, ϕ) if ϕ, done(x, y, ϕ).

Let M = (D,C) be a domain with commitments. We denote with τ(C) the collection of
axioms generated from the translation process mentioned above; with a slight abuse of notation,
we denote τ(M) = D ∪ τ(C). By definition, the domain τ(M) defines a transition function
Φt

τ(M) which determines the possible evolutions of the world given a state and the sequence of
timed action snapshots [(α1, t1), . . . , (αn, tn)]. The function Φt

τ(M) can be used to specify the
transition function for M.

Definition 2 Let M = (D,C) be a domain with commitments. The transition function ΦM for
M is defined to be the function Φt

τ(M).

Example 9 Consider the domain with commitments M1 = (Dn, C2):
• Dn is the domain description described in Example 1;
• C2 is the set of statements consisting of (19), (20), and the following statements

request triggers create(m, c, quote, 1, 1)
accept triggers create(m, c, goods, 1, 1)

So, the set of fluents in τ(M1), denoted by F1, consists of F (the setof fluents of D1) and the
commitment fluents such as c(m, c, receipt), c(c,m, pay), c(m, c, quote), and c(m, c, goods), and
fluents of the form done(x, y, ϕ) which are introduced by the translation from M1 to τ(M1). Let
s0 = {¬f | f ∈ F1}, we have that

Φt
τ(M1)(s0, {sendRequest}) = {[s0, u, v]}

where u = s0 \ {request, c(m, c, quote)} ∪ {request, c(m, c, quote)} and
v = u\{done(m, c, quote)}∪{done(m, c, quote)}. The presence of c(m, c, quote) and done(m, c, quote)
in u and v is due to the laws c(x, y, quote) if request and

request starts c(x, y, quote) reversible done(x, y, ϕ)1

respectively, both are the result of the translation of the statement
request triggers create(m, c, quote, 1, 1)

into laws in τ(M1). 2

Observe that each state of τ(M) consists of fluent literals inD and commitments which appear
in τ(C). In the definition of Φt

τ(M), this is treated as any normal fluent. The presence of c(x, y, ϕ)

18

in a state indicates that the commitment c(x, y, ϕ) has been made. done(x, y, ϕ) encodes the fact
that the commitment c(x, y, ϕ) needs to be realized by the debtor. We will now define the notion
of (un)/satisfaction of commitment.

Definition 3 LetM = (D,C) be a domain with commitments and γ = [s0, . . . , sn] be a sequence
of states in τ(M). Let c(x, y, ϕ) be a commitment fluent appearing in γ. We say that c(x, y, ϕ) is

• satisfied in γ if sn |= ¬c(x, y, ϕ);
• violated in γ if sn |= c(x, y, ϕ) ∧ done(x, y, ϕ); or
• outstanding in γ if sn |= c(x, y, ϕ) and sn 6|= done(x, y, ϕ).

The reasoning about commitments given the execution of a sequence of action snapshots can then
be defined as follows.

Definition 4 Let M = (D,C) be a domain with commitments, s0 be a state in D, and A =
[(α1, t1), . . . , (αn, tn)] be a sequence of timed action snapshots. We say that a commitment c(x, y, ϕ)
is factual during the execution of A in s if there exists a sequence of states γ = [s0, . . . , sm] in
Φ̂t

τ(M)(s0, A) and c(x, y, ϕ) appears in γ.
A factual commitment c(x, y, ϕ) is

• satisfied after the execution of A in s0 if it is satisfied in every sequence of states belonging
to Φ̂t

τ(M)(s0, A).
• strongly violated after the execution of A in s0 if it is violated in every sequence of states
belonging to Φ̂t

τ(M)(s0, A).
• weakly violated after the execution of A in s0 if it is violated in some sequence of states
belonging to Φ̂t

τ(M)(s0, A).
• outstanding after the execution of A in s0 if it is not violated in any sequence of states and
not satisfied in some sequences of states belonging to Φ̂t

τ(M)(s0, A).

We illustrate the above definition in the next example.

Example 10 Let us consider the domain M1 and the state s0 in Example 9. Since

Φt
τ(M1)(s0, {sendRequest}) = {[s0, u, v]},

we have that c(m, c, quote) is violated after the execution of sendRequest at s0. On the other
hand, it is easy to verify that for A = [(sendRequest, 0), (sendQuote, 1)],

Φt
τ(M1)(s0, A) = {[s0, u, v′]}

where v′ = u \ {¬done(m, c, quote),¬quote, c(m, c, quote)} ∪ {done(m, c, quote), quote,
¬c(m, c, quote)}. This implies that the commitment c(m, c, quote) is satisfied after the execution
of A in s0. 2

19

Definition 4 shows that domains with commitments are adequate for representation and hypothet-
ical reasoning about commitments. In practice, the status of a commitment often depends on the
real state of the world and the actions that have been executed in the past. As such, to represent and
reason about commitments, it is necessary to consider the narrative that leads to the current state of
the world.

In the rest of this section, we will show that the transition function based semantics of domains
with commitments is also suitable for various tasks, such as verifying (un)satisfied commitments
and identifying outstanding commitments. To this end, we define the notion of a narrative with
commitments.

Definition 5 A narrative with commitments is a triple (D,Γ, C) where (D,C) is a domain with
commitments and Γ is a collection of observations of the form (4)–(7).

The semantics of a narrative with commitments (D,Γ, C) is defined by (i) translating it to the
narrative (τ(M),Γ) in Lmt where M = (D,C); and (ii) specifying models of (τ(M),Γ) to be
models of (D,Γ, C). To save space, we omit the specific details on the semantics of narratives with
commitments. We illustrate this through the next example.

Example 11 Consider the narrative N1 = (Dn,Γ, C2) where M1 = (Dn, C2) is the domain
description in Exp. 9 and Γ consists of the precedence facts s0 ≺ s1 ≺ s2 ≺ s3 ≺ sc and the
following observations:

¬pay ∧ ¬accept ∧ ¬quote ∧ ¬goods at s0
sendRequest occurs at s0
sendAccept occurs at s2

where s0, s1, s2, s3, sc are situation constants.
A model M = (Ψ,Σ,∆) for this narrative can be built as follows:

• The sequences of actions leading to the various situations are Σ(s0)=[],
Σ(s1)=[{sendRequest}], Σ(s2)=[{sendRequest}, {sendQuote}], and

Σ(s3)=Σ(sc)=[{sendRequest}, {sendQuote}, {sendAccept}].
• Ψ([]) is the state where all fluents are false and Ψ(si) = Φ̂tM1(Σ(si),Ψ([])).
• The time assignment for situation constants is given by ∆(si) = i for each i and ∆(sc) = 3.
This is because each action only takes one unit of time to accomplish.

The presence of the action sendQuote can be explained by the fact that quote is the precondition
for sendAccept. We can show that M is a model of the narrative N1.

The minimality condition of models of a narrative also allows us to prove that for every model
(Ψ′,Σ′,∆′) of M1

• the situation assignment Σ′ identical to Σ;
• Ψ′([]) must satisfy {¬pay,¬accept,¬quote,¬goods}.

This allows us to conclude that N1 |= (¬pay at s) for s ∈ S and N1 |= c(c,m, pay) ∧
¬done(c,m, pay) at sc. 2

Let us now define the notion of satisfaction of a commitment given a narrative.

20

Definition 6 LetN = (D,Γ, C) be a narrative andM be a model ofN . We say that a commitment
c(x, y, ϕ) is:

• satisfied by M if M |= ¬c(x, y, ϕ) at sc.

• violated by M if M |= (done(c, y, ϕ) ∧ c(x, y, ϕ)) at sc.
• outstanding w.r.t. M if M |= ¬done(c, y, ϕ) ∧ c(x, y, ϕ) at sc.

Example 12 For the narrative N1 = (Dn,Γ, C2) from Example 11, we can show that the com-
mitment c(m, c, quote) is satisfied, the commitment c(c,m, pay) is outstanding, and there are no
violated commitments. 2

Given a narrative N , we will say that a commitment is satisfied if it is satisfied in all models
of N ; it is strongly violated if it is violated in all models of N ; and it is weakly violated if it is
violated in some models of N .

6 Complex Commitments and Protocols

A basic commitment represents a promise made by an agent to another one, but without specify-
ing a precise procedure to accomplish the commitment. Basic commitments also do not describe
complex dependencies among “promises”.

Definition 7 (Protocol) A protocol is a formula (Pid, P) where Pid is a unique identifier and P is
of the form:

1. a set {ai}i∈AG , where ai ∈ Ai ∪ {any};

2. ?ϕ where ϕ is a formula;

3. p1; . . . ; pn where pi’s are protocols;

4. p1| . . . |pn where pi’s are protocols;

5. if ϕ then p1 else p2 where p1, p2 are protocols and ϕ is a formula;

6. while ϕ do p where p is a protocol and ϕ is a formula;

7. p1 < p2 where p1 and p2 are protocols.

Intuitively, Case (1) describes a request for execution of certain specific actions by certain agents
(any indicates that we do not care about what that agent is doing); Case (2) is a test action, which
tests for the condition ϕ in the world state; Case (3) sequentially composes protocols, i.e., it re-
quires first to meet the requirements of p1, then those of p2, etc.; Case (4) requires any of the
protocols p1, . . . , pn to be satisfied, i.e., it represents a non-deterministic choice; Case (5) is the

21

usual conditional selection and Case (6) is the iteration over protocols; Case (7) is a partial or-
dering among protocols, indicating that p1 must be completed sometime before the execution of
p2.

According to this definition, (p0, sendGoods < sendPayment < sendReceipt) is a protocol.
The language can be extended to allow statements that trigger complex commitments, analo-

gously to the case of basic commitments:

[a | ϕ] triggers complex commitment

A narrative can be extended with the following type of observation:

Pid at s (21)

where Pid is a protocol identifier. This observation states that the protocol referred to by Pid has
started execution at situation s. A narrative is a triple (D,Γ, C) where Γ can contain also protocol
observations.

For a trajectory h = s0α1s1 . . . αksk, s0 is called the start of h and is denoted by start(h).
h[i, j] denotes the sub-trajectory siαi+1 . . . αjsj . For every state s, traj(s) denotes a set of trajec-
tories whose start state is s.

Given a protocol P and a trajectory h = s0α1 . . . αksk, we say that h is an instance of (Pid, P)
if

• If P = {ai}i∈AG then k = 1 and, if α1 =
{
a1

i

}
i∈AG , then for each ai 6= any we have ai = a1

i .
• If P = ϕ then k = 0 and s0 |= ϕ.
• If P = p1; . . . ; pn then there exists some sequence of indices i0 = 0 ≤ i1 ≤ . . . ≤ in ≤ in+1 =
k such that h[iit , iit+1] is an instance of pt.

• If P = p1| . . . |pn then there exists some 1 ≤ i ≤ n such that h is an instance of pi.
• If P = if ϕ then p1 else p2 and s0 |= ϕ then h is an instance of P if it is an instance of p1;

otherwise, h must be an instance of p2.
• If P = while ϕ do p and s0 6|= ϕ then h is an instance of P if k = 0; otherwise, there is an

index 0≤i≤k s.t. h[0, i] is an instance of p and h[i, k] is an instance of P .
• If P = p1 < p2 then there exists 0 ≤ i ≤ j ≤ k such that h[0, i] is an instance of p1 and h[j, k]

is an instance of p2.

(Pid, P) |= h denotes that h is an instance of (Pid, P).
We will now complete the definition of a model of a narrative with protocols. The notion

of interpretation and the entailment relation between interpretations and observations, except for
the observations of type (21), are defined as in the previous section. For an interpretation M =
(Ψ,Σ,∆) of a narrative (D,Γ, C) and a protocol observation (Pid at s) ∈ C, we say that M |=
(Pid at s) if there exists some instance s0α1s1 . . . αksk of (Pid, P) where:

(i) s0 = Ψ(Σ(s));
(ii) Σ(s) ◦ [α1, . . . , αk] is a prefix of Σ(sc);6

6We use ◦ to denote append between lists.

22

(iii) For every 1 ≤ j ≤ k, Ψ(Σ(s) ◦ [α1, . . . , αj]) = sj .
Def. 6 can be used unchanged for narratives with protocols.

Example 13 Let N2 = (Dn,Γ, C2) where Dn is defined as in Exp. 11, C2 is defined as in Exp. 11
with the addition of the protocol (p0, sendGoods < sendPayment < sendReceipt) and Γ consists
of the precedence facts s0 ≺ sc and the single observation p0 at s0. Observe that any instance of
p0 contains the actions sendGoods, sendPayment, and sendReceipt, in this order. The executability
condition of sendGoods implies that accept has to be true at the time it is executed. Together with
the minimality condition of models of N2, we have that for every model M = (Ψ,Σ,∆) of N2,
Ψ(s0) |= accept. We construct one model as follows:

• Σ(s0) = [] and Σ(sc) = [{sendGoods}, {sendPayment}, {sendReceipt}];
• Ψ(s0) = s0 where accept ∈ s0, and Ψ(sc) ∈ Φ̂t

τ(M2)(s0,Σ(sc));

• ∆(s0) = 0 and ∆(sc) = 3.
Observe that we can also infer that, in the above model, the customer must have paid right after
he/she received the goods (at time 1), since (i) pay must be true for sendReceipt to be executed;
and (ii) sendReceipt is executed at time 2. 2

7 Related Works

Lmt is an evolution of a classical action languages, drawing features like static causal laws from the
language B [9], narrative and observations from the language L [2, 3], and time and deadlines from
the languageADC [4]. To the best of our knowledge, Lmt is the first action language with all these
features, embedded in the context of modeling multi-agent domains. Lmt is similar to the planning
language PDDL 2.1 (and its successors) in that it provides a means for describing systems with
durative actions and delayed effects. Lmt has a transition function based semantics and considers
observations, ir/reversible processes and multiple agents, while PDDL 2.1 does not. It should also
be mentioned that Lmt differs from the event calculus in that it allows representing and reasoning
with static causal laws while event calculus does not.

Our proposal is related to several works on reasoning with commitments. The main differences
between our work and previous works lie in our use of an action language and in our formulation
of various problems as a query in our language; this also allows the use of planning to satisfy out-
standing commitments. The treatment of commitments and the ontology for commitments adopted
in this paper is largely inspired by [11, 13].

With respect to [17], our formalization of basic commitments embedded in a domain with
commitments and in a narrative of a multi-agent system allows also for a protocol specification
that subsumes that of [17]. Similar differences are present w.r.t. [10], which builds on dynamic
temporal logic.

Our approach has some relations to [6]; using a reactive event calculus, they provide a notion
similar to narratives. Besides being different from each other in the use of an action language,
our approach considers protocols and [6] does not. The same authors, in [15], propose a new

23

language for modeling commitments in which existential quantifier of time points are used. The
use of disjunctive time specification in annotating fluent formulas in our work allows us to avoid
the issues raised in [12, 15].

[7, 8] also makes use of an action language in dealing with commitments and protocols. While
we focus on formalizing commitments, the works [7, 8] use C+ in specifying protocols. A protocol
in our definition is similar to a protocol defined in [7, 8] in that it restricts the evolution of the system
to a certain sets of trajectories. In this sense, our definition of protocols provides the machineries
for off-line verification of properties of protocols [16]. By introducing the observation of the from
“Pid at s” we allow for the possible executions of a protocol in different states and hence different
contexts. However, we do not have the notion of a transformer as in [7] and the ability to handle
nested commitments as in [8].

8 Conclusion and Future Work

In this paper, we show how various problems in reasoning about commitments can be described
by a suitable instantiation of commitment actions in the language Lmt. In particular, we show how
the problem of verifying commitments or identifying outstanding commitments can be posed as
queries to a narrative with commitments. We show how the language can also be easily extended
to consider commitment protocols.

We would like to observe that our framework (Def. 6) provides a way to identify outstanding,
violated, and satisfiable commitments given a narrative (D,Γ, C). A natural question that arises is
what should the agents do to satisfy the outstanding commitments. The semantics of domains with
commitments suggests that we can view the problem of identifying a possible course of actions for
the agents to satisfy the outstanding commitments as an instance of the planning problem and thus
can be solved by planning techniques. An investigation of the application of multi-agent planning
techniques in generating plans to satisfy outstanding commitments is one of our main goals in this
research in the near future.

References

[1] M. Balduccini and M. Gelfond. Diagnostic Reasoning with A-Prolog. Theory and Practice
of Logic Programming, 3(4,5):425–461, 2003.

[2] C. Baral, M. Gelfond, and A. Provetti. Representing Actions: Laws, Observations and Hy-
pothesis. Journal of Logic Programming, 31(1-3):201–243, May 1997.

[3] Chitta Baral, Sheila McIlraith, and Tran Cao Son. Formulating diagnostic problem solving
using an action language with narratives and sensing. In Proceedings of the Seventh Interna-
tional Conference on Principles of Knowledge and Representation and Reasoning (KR’2000),
pages 311–322, 2000.

24

[4] Chitta Baral, Tran Cao Son, and Le-Chi Tuan. A transition function based characterization
of actions with delayed and continuous effects. In Proceedings of the Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR’2002), pages
291–302. Morgan Kaufmann Publisher, 2002.

[5] Cristiano Castelfranchi. Commitments: From individual intentions to groups and organiza-
tions. In Victor R. Lesser and Les Gasser, editors, Proceedings of the First International
Conference on Multiagent Systems, June 12-14, 1995, San Francisco, California, USA, pages
41–48. The MIT Press, 1995.

[6] Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. Commitment tracking via
the reactive event calculus. In 21th International Joint Conference on Artificial Intelligence
(IJCAI), Pasadena, CA, USA, pages 91–96, July, 14-17 2009.

[7] Amit K. Chopra and Munindar P. Singh. Contextualizing commitment protocol. In Hideyuki
Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone, editors, 5th International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate,
Japan, May 8-12, 2006, pages 1345–1352. ACM, 2006.

[8] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Representing and reasoning about
commitments in business processes. In Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages
1328–1333. AAAI Press, 2007.

[9] M. Gelfond and V. Lifschitz. Action languages. ETAI, 3(6), 1998.

[10] L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction Protocols in
a Temporal Action Logic. Journal of Applied Logic, 5(2), 2007.

[11] Ashok U. Mallya and Michael N. Huhns. Commitments among agents. IEEE Internet Com-
puting, 7(4):90–93, 2003.

[12] Ashok U. Mallya, Pinar Yolum, and Munindar P. Singh. Resolving commitments among au-
tonomous agents. In Frank Dignum, editor, Advances in Agent Communication, International
Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia, July 14,
2003, volume 2922 of Lecture Notes in Computer Science, pages 166–182. Springer, 2003.

[13] Munindar P. Singh. An ontology for commitments in multiagent systems. Artif. Intell. Law,
7(1):97–113, 1999.

[14] M. A. Sirbu. Credits and debits on the internet. In M. N. Huhns and M. P. Singh, editors,
Readings in Agents, pages 2990–305. Morgan Kaufmann, San Francisco, 1998.

[15] Paolo Torroni, Federico Chesani, Marco Montali, and Paola Mello. Social commitments in
time: satisfied or compensated. In DALT, 2009.

25

[16] Paolo Torroni, Pinar Yolum, Munindar P. Singh, Marco Alberti, Federico Chesani, Marco
Gavanelli, Evelina Lamma, and Paola Mello. Modelling interactions via commitments and
expectations. In Virginia Dignum, editor, Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, pages 263–284. IGI Global, Hershey,
Pennsylvania, March 2009. Chapter 11.

[17] Pinar Yolum and Munindar P. Singh. Flexible protocol specification and execution: applying
event calculus planning using commitments. pages 527–534. ACM, 2002.

26

