
T.C. Son
P.H. Tu
X. Zhang

Reasoning about Sensing Actions in
Domains with Multi-Valued Fluents

Abstract. In this paper, we discuss the weakness of current action languages for sensing

actions with respect to modeling domains with multi-valued fluents. To address this prob-

lem, we propose a language with sensing actions and multi-valued fluents, called AMK ,

provide a transition function based semantics for the language, and demonstrate its use

through several examples from the literature. We then define the entailment relation-

ship between action theories and queries in AMK , denoted by |=AMK , and discuss some

properties about AMK .

Keywords: Actions Languages, Sensing Actions, Multi-valued Fluents, Incomplete Infor-

mation.

1. Introduction and Motivation

Sensing (or knowledge producing) actions have been the topic of intensive
research in reasoning about action and change and planning (see e.g. [7, 9,
11–14]). Situation calculus based approaches such as [7, 11, 12] can be used
in domains with multi-valued fluents since functional fluents are allowed
in situation calculus. Additionally, in [7], we can find several examples in
the UNIX domain articulating the need for dealing with sensing actions in
domains with multi-valued fluents.

On the other hand, approaches to reasoning about sensing actions using
high-level description language by extending the language A in [4, 5] such as
[9, 13] concentrate on providing solution to the frame problem for domains
with Boolean fluents and sensing actions. In [2], the approach of [13] is ex-
tended to deal with domains with state constraints (or static causal laws).
As such, the simplification to domains with Boolean fluents does not nec-
essarily limit the expressiveness of the languages developed along this line
with respect to domains with multi-valued fluents since these domains can
be easily represented using Boolean fluents with state constraints. Although
adequate for certain representational and reasoning purposes, this solution
is too cumbersome and not intuitive. We will illustrate this problem in the
next example.

Consider the traffic light domain that consists of a traffic light and the
only action look. Looking at the light will tell us whether the traffic light
is either red, yellow, or green. This domain can be best described by the
action look and a fluent denoting the color of a traffic light whose value

Studia Logica 68: 1–26, 2001.
c© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

2 T. C. Son, P. H. Tu, and X. Zhang

is either red, yellow, or green. In the case of Boolean fluents, we may
need to use three Boolean fluents is red, is yellow, and is green to repre-
sent the fact that the traffic light is either red, yellow, or green and in
addition, a set of state constraints stating that it has only one color at
a time such as1 “is red if ¬is yellow,¬is green”, “¬is red if is yellow”,
“¬is red if is green”, etc. To complete the description, we need to spec-
ify the effect of the action look. Using the language AK in [13], we may
need to introduce at least two out of the following three k-propositions2,
“look determines is red”, “look determines is green”, and “look
determines is yellow”. This is because the third fluent can be uniquely
determined from the other two. Although satisfactory for predicting and
reasoning about the effects of the action look, this solution is clearly not
intuitive and cumbersome.

It is easy to see that a rather better and more intuitive description
for the the traffic light domain would be one consisting of a single flu-
ent, say color, whose domain is {red, green, yellow}, and an k-proposition
“look determines color”. From the representational perspective, this is
a clear call for a direct treatment of multi-valued fluents. Furthermore, as
static causal laws are a source of non-determinism and thus could potentially
make the reasoning process (and therefore, the planning process) harder, it
is advantageous to eliminate unnecessary static causal laws like those that
express the fact that the value of color is unique.

Our main goal in this paper is to develop a language for sensing actions
with multi-valued fluents. We call this language AMK as it is an extension
of the language AK to multi-valued fluents. To the best of our knowledge,
AMK is the first high-level, transition function based semantics language
that allows both sensing actions and multi-valued fluents. We note that
among the variants of the language A, the action language AR in [6] intro-
duces nonpropositional fluents that are similar to our multi-valued fluents
but does not consider sensing actions. Multi-valued fluents could also be en-
coded in the language K [3] but this language does not allow sensing actions
either.

In the next sections we will define AMK and illustrate its use through
several examples taken from the literature. We will then discuss the rela-
tionship between the two languages AMK and AK and conclude the paper
with a short discussion on future work.

1Though seemingly redundant, such constraints are needed in the current transition
function based approaches to reasoning about sensing actions.

2In [9], causes to knows is used instead of determines.

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 3

2. Language AMK

This section begins with the AMK syntax, and then illustrates its use
through some well-known planning problems from the literature. Afterward,
the notions of observations, queries and plans are introduced, followed by
the semantics of AMK .

2.1. Syntax

The alphabet of a domain description in AMK consists of a set of action
names A, and a set of fluent names F. Each fluent f in F has a domain
dom(f) associated with it that prescribes what value f can take.

An atom is of the form f = v where f is a fluent and v ∈ dom(f). A fluent
literal (or literal for short) is an atom or its negation and a (fluent) formula is
a propositional formula constructed from fluent literals. For convenience, we
use f 6= v to denote the negation of f = v (or ¬(f = v)). The two constants
true and false are used to represent tautology and falsity, respectively. To
describe a domain description, we use propositions of the following forms

executable a if ϕ (i)
a causes f = v if ϕ (ii)

a partitions f into {Vj}j∈S (iii)
f = v if ϕ (iv)

where

• a is an action name in A;

• f is a fluent in F and v is some value belonging to dom(f);

• ϕ is a formula; and

• S is a set of indices and {Vj}j∈S is a partition of the domain of the
fluent f , i.e., a (possibly infinite) sequence of pairwise disjoint sets of
values belonging to dom(f) such that ∪j∈SVj = dom(f).

Intuitively, the above propositions describe the executability conditions,
effects of an actions, and state constraints. Propositions of the form (i)
state the conditions for which a is executable. It says that for a to be
executable, the formula ϕ must hold (precise meaning of hold is given in
Section 2.4). Propositions of the form (ii) describe the conditional effects of
a non-sensing action on the value of a fluent. It says that the execution of a
in any situation where the condition ϕ holds will cause the fluent f to take

4 T. C. Son, P. H. Tu, and X. Zhang

the value v. Propositions of the form (iii) describe the effect of a sensing
action. It says that executing an action a will help an agent to partially
determine the value of the fluent f in that it knows the possible values of f .
In what follows, we will use a determines f as a shorthand for a proposition
of the form (iii) where each of the Vj ’s contains exactly one element, i.e.,
executing a helps the agent to precisely determine f ’s value. Propositions
of the form (iv) describe the state constraints, i.e., the relationship between
fluents. It states that the value of f is v in any situation where ϕ holds.

It is worth noting here that we do not allow negative literals of the form
f 6= v to appear in the place of f = v in propositions (ii) and (iv). Allowing
this would mean considering domains with non-deterministic actions which
is not the main topic of this paper and deserves a throughout discussion.
We leave it as one of the topics of our future research.

Two effect propositions a causes f = v if ϕ and a causes f = v′ if ϕ′,
where v, v′ ∈ dom(f) and v 6= v′, are called contradictory if there exists a
state in which both ϕ and ϕ′ hold simultaneously.

A domain description D is a set of propositions of the forms (i)-(iii)
without contradictory effect propositions. For simplicity, we assume that for
every domain description D, each action a occurs in at most one proposition
of the form (i) and by default executable a if true belongs to D unless
otherwise specified. We also assume that non-sensing actions and sensing
actions do not overlap each other, and each sensing action a occurs in at
most one proposition of the form (iii).

With the introduction of multi-valued fluents, the traffic light domain
representation now becomes trivial. It can be represented by one proposition

look partitions color into {red}, {green}, {yellow}

with the obvious meanings associated to the action look and the fluent
color. We now demonstrate the use of AMK through some examples in the
literature. The first one, which is taken from [7], is about the UNIX domain.

Example 1 (UNIX domain). In this domain, actions are UNIX commands
such as ls, cd, ping, etc. The domain, denoted by Du, can be represented in
AMK by the following propositions

cd(D) causes curdir = D if exists(D)
ls determines files(curdir)
ls(X) determines exists(X)

ping(M) determines alive(M)
exists(D) if exists(D/X)

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 5

where curdir, files(D), exists(X), and alive(M) are fluents denoting the
current directory, the files in a directory D, the existence of a directory or a
file X, and the aliveness of a machine M respectively. The domains of the
first two fluents are the the set of valid directory names and the set of valid
file names correspondingly. The latter two are Boolean fluents.

The first proposition says that executing action cd(D) will change the
current directory (curdir) to D if D exists. The second proposition describes
the effect of the (sensing) action ls: executing ls allows us to determine the
files in the current directory. The third proposition is similar to the previous
one, except that it allows us to determine the existence of a particular file or
directory. The next proposition describes the fact that executing ping tells
us whether or not a particular machine is alive. Finally, the last proposition
is a static causal law stating that a directory exists if one of its sub-directories
or files exists. ¤

The next example, taken from [15], is about a patient whose sickness can
be cured if the doctor is able to give her the right medication.

Example 2 (Illness Domain). In this domain, there are 5 different kinds of
illnesses, i1, . . . , i5, each of which needs a particular medication. A patient is
sick and we need to find an appropriate cure for her. Taking right medication
can make the patient get cured but using wrong medication is fatal.

Performing a throat culture will return either red, blue, or white which
determine the group of illnesses that the patient has. Inspecting the color
allows us to observe the color returned by a throat culture depending on the
sickness of the patient. Taking a blood sample tells us whether the patient
has a high white cell count that we can know after analyzing the blood.
This domain can be represented in AMK as follows. First, the set of fluents
consists of the following fluents:

• i (stands for illness) with dom(i) = {i1, . . . , i5, none}; where none
denotes that the patient is healthy;

• color with dom(color) = {red, blue, white};
• hc (stands for high blood count), tcd (throat culture test done), dead,

and bsd (blood sample done). All of them are Boolean fluents.

The set of actions is described next.

• stain: indicates that a throat culture is done, i.e., this action makes
tcd becomes true;

6 T. C. Son, P. H. Tu, and X. Zhang

• inspect: this action can be executed only when the throat culture is
done and it tells us the color of the test, depending on the illness;

• blood sample: this action makes bsd true;

• analyze blood: is executable only when the blood sample is count and
determines whether hc is true;

• medicate(X): takes the medication X where X ∈ {c1, . . . , c5};
The domain, denoted by Ds, consists of the following propositions

executable inspect if tcd color=blue if (i=i3 ∨ i=i4) ∧ tcd
executable analyze blood if bsd color=red if (i=i1 ∨ i=i2) ∧ tcd
stain causes tcd color=white if i=i5 ∧ tcd
blood sample causes bsd ¬hc if (i=i2 ∨ i=i4) ∧ bsd
medicate(cj) causes i=none if i=ij hc if (i=i1 ∨ i=i3 ∨ i=i5) ∧ bsd
medicate(cj) causes dead if i 6=ij
analyze blood determines hc
inspect determines color

where the last two propositions are for j = 1, . . . , 5. ¤
In the next example, we consider a blocks world domain with two blocks.

Example 3 (Blocks World domain). Consider a blocks world with two
blocks – a and b, and a robot. The robot has an arm that can pickup,
putdown, stack, or unstack a block; it can also sense whether it is holding
block a (likewise, block b) or not.

To represent this domain, we use fluents loc(X) where X ∈ {a, b} to
denote the location of the block X. The domains of these fluents are
dom(loc(a)) = {onTable, inHand, on(b)} and dom(loc(b)) = {onTable,
inHand, on(a)}.

The domain, denoted by Db, consists of the following propositions

executable pickup(X) if loc(X) = onTable

executable putdown(X) if loc(X) = inHand

executable stack(X) if loc(X) = inHand

executable unstack(X) if loc(X) = on(Y)
pickup(X) causes loc(X) = inHand if loc(X) = onTable

putdown(X) causes loc(X) = onTable if loc(X) = inHand

stack(X) causes loc(X) = on(Y) if loc(X) = inHand

unstack(X) causes loc(X) = inHand if loc(X) = on(Y)
loc(X) = onTable if loc(Y) = inHand ∨ loc(Y) = on(X)

sense(X) partitions loc(X) into {onTable, on(Y)}, {inHand}

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 7

where X and Y are in {a, b} and X 6= Y . ¤
The last example demonstrates that the partition created by a sensing

action can be infinite.

Example 4 (Gas Domain). Consider a simple domain that consists of only
one action look at indicator and one fluent gas in tank. Looking at the gas
indicator will tell us the amount of gasoline available in the tank. Further-
more, we know in advance the capacity of the tank is 20 gallons, i.e., the
domain of the fluent gas in tank is [0,20].

This domain, denoted by Dg, can be described by a single proposition

look at indicator determines gas in tank

¤
Note that there is a subtle difference between look at indicator (Example

4) and sensing actions in the previous examples. While the partition created
by gas in tank is infinite, the partitions created by sensing actions in the
previous examples are finite.

2.2. Observations

An observation in AMK is of the form

initially l (v)

where l is a literal. When l is of the form f = v (resp. f 6= v), we say that (v)
is a positive (resp. negative) observation. It is worth noting that there exists
a difference between observations in the Boolean and multi-valued fluent
settings. In the Boolean case, an arbitrary observation would allow us to
know the precise value of the fluent appearing in it. A negative observation
in multi-valued domains, say initially f 6= v where |dom(f)| > 2, does not
however allow us to know the precise value of f . It only limits the set of
possible values of f rather.

An action theory is a pair (D, O) where D is a domain description and
O is a set of observations. Again, for simplicity, we assume that each fluent
in D occurs in at most one observation in O.

For the UNIX domain, some of the observations may be the fact that
the current directory is /mydoc/papers, the file name paper.tex is in the
directory /mydoc, the machine named church.domain is alive, etc. This
information can be represented by the following set of observations

Ou =





initially curdir = /mydoc/papers
initially alive(church.domain)
initially in(paper.tex, files(/mydoc))

8 T. C. Son, P. H. Tu, and X. Zhang

For the illness domain, we know that the patient is not dead but has some
illness. We also know that none of the tests has been done. This information
can be represented by the following set of observations

Os =





initially i 6= none
initially ¬dead
initially ¬tcd
initially ¬bsd

For the block worlds domain, we assume that the robot knows that a is
initially on the table, i.e., Ob = { initially loc(a) = onTable}.

For the gas domain, we initially know nothing about the gas available in
the tank, i.e., the set of observations is empty and denoted by Og = ∅.

2.3. Plans and Queries

As discussed in [8], in the presence of incomplete information and knowledge
producing actions, we need to extend the notion of a plan from a sequence
of actions so as to allow conditional statements. In this paper, we consider
plans that are defined as follows. A plan is either

• an empty sequence of action, denoted by [];

• or a sequential structure of the form [a; p] where a is an action and p
is a plan.

• or a if-then-else structure of the form [if ϕ then p1 else p2] where
ϕ is a formula and p1 and p2 are plans;

Intuitively, the if-then-else plan is a branching statement where the agent
evaluates the condition ϕ with respect to its knowledge and decides on which
plan to execute. If it knows that ϕ is true (resp. false), it executes p1 (resp.
p2). Otherwise (ϕ is unknown), the if-then-else plan fails and the execution
of the plan which contains this statement also fails.

There are two kinds of queries that we can ask our action theories. They
are of the form

knows ϕ after p (vi)
kwhether ϕ after p (vii)

where p is a plan and ϕ is a formula. Intuitively, the first query is about
asking if an action theory entails that ϕ will be known to be true after
executing the conditional plan p in the initial situation, and the second

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 9

query is about asking if an action theory entails that ϕ will be known after
executing the plan p in the initial situation.

As an example, intuitively (Ds, Os) entails knows ¬dead after [] be-
cause we know that the patient is not dead initially. The theory, however,
does not entail kwhether (i = i1) after [] because we do not know whether
the patient has the sickness i1 or not.

2.4. Semantics

Given a domain description D, an interpretation s of D assigns each fluent
f ∈ F a value v ∈ dom(f), denoted by s(f) = v. An interpretation s satisfies
an atom f = v (resp. f 6= v) if s(f) = v (resp. s(f) 6= v). When s satisfies
a literal l, we say that l holds in s and write s |= l. The truth value of a
formula ϕ, denoted by s(ϕ), with respect to an interpretation s is defined as
usual. When s(ϕ) is true we say that s satisfies ϕ and write s |= ϕ.

An interpretation s is a state if for every proposition of the form (iv),
whenever s |= ϕ holds, so does s |= l.

Two states s1 and s2 agree on a fluent f with respect to a partition

{Vj}j∈S of f , denoted by s1
f,{Vj}j∈S∼ s2, if s1(f) ∈ Vj iff s2(f) ∈ Vj . In this

case, s1 and s2 represent two possible worlds that an agent think he might
be in when he does not know the exact value of the fluent f .

A k-state is a set of states. A combined state (or c-state for short) is
a pair 〈s,Σ〉 where s is a state and Σ is a k-state. Intuitively, the first
component (sometimes called top part) in a c-state 〈s,Σ〉 is the real state
of the world and the second component (called bottom part) is the set of
possible states which an agent believes it might be in. We say a c-state
σ = 〈s,Σ〉 is grounded if s ∈ Σ. Intuitively, grounded c-states correspond
to the assumption that the world state belongs to the set of states that the
agent believes it might be in.

A formula ϕ is known to be true in a c-state σ = 〈s,Σ〉 if it is known
to be true in every state in Σ. ϕ is known to be false in σ = 〈s,Σ〉 if it is
known to be false in every state in Σ. Otherwise, ϕ is unknown.

Before formally defining the transition function of a domain D, we intro-
duce some more notations. A (fluent) assignment is of the form f = v where
f is a fluent and v is some value in dom(f). A set of (fluent) assignments is
said to be domain-consistent if it does not contain more than one assignment
for every fluent. In what follows, whenever we refer to a set of assignments,
we mean it is domain-consistent.

Given a set of assignments S and a fluent f , the value of f with respect
to S, denoted by S(f), is defined as follows. S(f) = v if f = v belongs to

10 T. C. Son, P. H. Tu, and X. Zhang

S; otherwise, we say that S(f) is unknown and write S(f) = unknown. S
satisfies an atom f = v, denoted by S |= (f = v), if S(f) = v. S satisfies
f 6= v if S(f) = v′ for some v′ in dom(f) \ {v}. The truth value of a formula
ϕ with respect to S is defined as usual (note that it may be true, false, or
unknown). We say that S satisfies ϕ, denoted by S |= ϕ, if the truth value
of ϕ with respect to S is true. S is said to be closed under a set of domain
constraints (form (iv)) K if for every constraint f = v if ϕ in K, whenever
S |= ϕ, so does S |= (f = v). By Cn(S ∪ K) we denote the smallest set
of assignments from D that contains S and is closed under K and domain-
consistent. Notice that Cn(S∪K) might not exist but it is unique if it does.
The following proposition shows this.

Proposition 1. For a set of assignments S and a set of constraints of the
form (iv) K, Cn(S ∪K) is unique if it exists.

Proof. For a set of assignments X, let

∆(X, K) = {f = v | (f = v if ϕ) ∈ K, X |= ϕ}

and

T (X) =





X ∪∆(X,K) if X ∪∆(X, K) is domain-consistent

undefined otherwise

Let T 0(S) = S and, for i ≥ 0, let T i+1(S) = T (T i(S)). It is easy to show that
(by induction) if Cn(S ∪K) exists then T i(S) is defined, T i(S) ⊆ T i+1(S),
and T i(S) ⊆ Cn(S ∪K) for all i ≥ 0. Therefore limi→∞T i(S) exists. Let
S′ denote such limit. Clearly, S′ is closed under K. From the minimality of
Cn(S ∪K), we have that Cn(S ∪K) = S′, which implies that Cn(S ∪K) is
unique. ¤

We now determine the possible next states after the execution of an
action in a given state. An action a is executable in a state s if there exists
a proposition (i) in D such that s |= ϕ. For a non-sensing action a and a
state s, if a is executable in s then the direct effects of a on s, e(a, s), is
defined by the following set of assignments

e(a, s) = {f = v | D contains an effect proposition (ii) such that s |= ϕ}

However, in the presence of static causal laws, in addition to e(a, s), there
may be some other indirect effects (or ramifications). We follow [10] to define

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 11

the possible next states after the execution of a in s as follows

Res(a, s) = {s′ | s′ is a state such that s′ = Cn((s ∩ s′) ∪ e(a, s) ∪R)}3

where R denotes the set of proposition of the form (iv) in D. When Res(a, s)
is empty, we say that the execution of a in s fails and results in an undefined
state ⊥. The transition function Φ between c-states is defined as follows.

Definition 1 (Transition Function). Let D be a domain description. For
an action a and a c-state σ = 〈s,Σ〉,

• if σ = ⊥ or a is not executable in s then Φ(a, σ) = {⊥};

• if a is a non-sensing action and executable in s

– Res(a, s) = ∅ then Φ(a, σ) = {⊥};
– Res(a, s) 6= ∅ then Φ(a, σ) = {〈s1, Σ′〉 | s1 ∈ Res(a, s)} where

Σ′ = {s′ | s′ ∈ Res(a, s′′) for some s′′ ∈ Σ s.t. a is executable in
s′′};

• if a is a sensing action and executable in s with the proposition
a partitions f into {Vj}j∈S in D then Φ(a, σ) = {〈s,Σ′〉}, where

Σ′ = {s′ | s′ ∈ Σ s.t. a is executable in s′ and s′
f,{Vj}j∈S∼ s}.

It is easy to see that if 〈s,Σ〉 is a grounded c-state and ⊥ 6∈ Φ(a, 〈s,Σ〉)
then Φ(a, 〈s,Σ〉) is a set of grounded c-states. In the next definition, we
define initial states and initial c-states of an action theory.

Definition 2 (Initial states and c-states). For an action theory (D, O),

• a state s0 is called an initial state of (D, O) if s0 |= l for every propo-
sition initially l in O;

• a c-state 〈s0, Σ0〉 is called an initial c-state of (D,O) if s0 is an initial
state and Σ0 is the set of all initial states of (D, O).

It is worth noticing that each initial c-state is grounded. To determine
the c-states resulting from the execution of a plan in a c-state, we extend
the transition function to the extended transition function Φ̂ as follows.

3Note that by the definition of assignments, a state can also be viewed as a set of
assignments.

12 T. C. Son, P. H. Tu, and X. Zhang

Definition 3 (Extended Transition Function). Let (D, O) be an action the-
ory and Φ be the transition function of D. For a plan p and a c-state
σ = 〈s,Σ〉,

• if σ = ⊥ then Φ̂(p, σ) = {⊥}; otherwise,

• if p = [] then Φ̂(p, σ) = {σ};
• if p = [a; p′], where a is an action and p′ is a plan, then

Φ̂(p, σ) =
⋃

σ′∈Φ(a,σ)

Φ̂(p′, σ′);

• if p = [if ϕ then p1 else p2], where ϕ is a formula, p1 and p2 are
plans, then

Φ̂(p, σ) =





Φ̂(p1, σ) if ϕ is known to be true in σ;
Φ̂(p2, σ) if ϕ is known to be false in σ;
{⊥} if ϕ is unknown in σ.

We will now define the entailment relation |=AMK
.

Definition 4 (Entailment). For an action theory (D,O),

• (D, O) entails a query knows ϕ after p, denoted by

(D, O) |=AMK
knows ϕ after p,

if for every initial c-state σ0 = 〈s0, Σ0〉, ⊥ 6∈ Φ̂(p, σ0) and ϕ is known
to be true in every c-state in Φ̂(p, σ0).

• (D, O) entails a query kwhether ϕ after p, denoted by

(D, O) |=AMK
kwhether ϕ after p,

if for every initial c-state σ0 = 〈s0, Σ0〉, ⊥ 6∈ Φ̂(p, σ0) and ϕ is known
(to be true or false) in every c-state in Φ̂(p, σ0).

We now illustrate the intuition of the above definition through the action
theories (Du, Ou), (Ds, Os), (Db, Ob), and (Dg, Og). It is easy to see that
the following proposition holds for the UNIX domain.

Proposition 2. For the UNIX domain,

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 13

• (Du, Ou) |=AMK
knows (curdir = /mydoc) after [cd(/mydoc)] and,

• (Du, Ou)|=AMK
kwhether exists(f) after [ls(f)].

The first item tells us that the current directory will change to /mydoc
after the action cd(/mydoc) is executed (this directory exists since one of
its sub-directories /mydoc/paper exists). The second item says that after
executing the action ls(f) we will know whether or not the file f exists.

We will now show that the plan ps = [stain; inspect; blood sample;
analyze blood] will help us to determine the illness of the patient.

Proposition 3. For the illness domain,

(Ds, Os) |=AMK
kwhether (i = ij) after ps (j ∈ {1, . . . , 5}).

Proof. Let us denote a state of this domain by a tuple 〈i, dead, tcd, bsd,
color, hc〉. The table on the next page shows the computation related to the
proof of this proposition. The second to seventh column contains the possible
values of a fluent. The column #s and #c−states contains the number of
states and c-states, respectively. The first subtable represents initial states
and c-states. The subsequent subtables denote states and c-states after the
execution of ps up to the action whose name appears in the first column.
For example, in the subtable with stain in the first column and five rows, the
c-states resulting from the execution of [stain] from one of the initial c-state
are of the form 〈s,Σ〉 where s is a state specified by the corresponding row
and Σ is the set of states specified by the rows which have the value of i
belonging to the set specified in the right side of the equation in the last
column (ALL indicates all possible states).

It is easy to see that there are 30 initial states since i can take the values
{i1, . . . , i5}, color can be either red, blue, or white, and hc can be either
true or false (the first row of the table). Executing stain will reduce the
number of states and the number of c-states to 10 possible c-states. Execut-
ing inspect will not reduce the number of c-states but significantly reduce
the size of the k-state. Indeed, the k-state of a c-state now contains either
4 or 2 states. Execution of blood sample will further reduce the number of
possible c-states to 5 and executing analyze blood will result in 5 c-states,
whose bottom part contains exactly one state which is the top part. That
means that after the above sequence of action, one can know exactly the
illness of the patient, and hence, find an appropriate cure for her.

14 T. C. Son, P. H. Tu, and X. Zhang

i dead tcd bsd color hc # s # c-states

initial − false false false − − 30 30 (Σ=ALL)

stain i1 false true false red − 2 2 (Σ=ALL)
i2 false true false red − 2 2 (Σ=ALL)
i3 false true false blue − 2 2 (Σ=ALL)
i4 false true false blue − 2 2 (Σ=ALL)
i5 false true false white − 2 2 (Σ=ALL)

inspect i1 false true false red − 2 2 (Σ={i1, i2})
i2 false true false red − 2 2 (Σ={i1, i2})
i3 false true false blue − 2 2 (Σ={i3, i4})
i4 false true false blue − 2 2 (Σ={i3, i4})
i5 false true false white − 2 2 (Σ={i5})

blood- i1 false true true red true 1 1 (Σ={i1, i2})
sample i2 false true true red false 1 1 (Σ={i1, i2})

i3 false true true blue true 1 1 (Σ={i3, i4})
i4 false true true blue false 1 1 (Σ={i3, i4})
i5 false true true white true 1 1 (Σ={i5})

analyze- i1 false true true red true 1 1 (Σ={i1})
blood i2 false true true red false 1 1 (Σ={i2})

i3 false true true blue true 1 1 (Σ={i3})
i4 false true true blue false 1 1 (Σ={i4})
i5 false true true white true 1 1 (Σ={i5})

¤

Let p6 = [] and pj = [if i = ij then medicate(cj) else pj+1] for
j = 1, . . . , 5. The below proposition follows directly from Proposition 3.

Proposition 4. For the illness domain,

(Ds, Os) |=AMK
knows (i = none) after [ps; p1].

In the next proposition we show that executing the action look will tell
us whether or not the tank is empty in (Dg, Og).

Proposition 5. For the gas domain and a number v ∈ [0, 20],

(Dg, Og) |=AMK
kwhether (gas in tank = v) after [look].

Proof. Observe that any state in this domain consists of a single atom
gas in tank = v for some v ∈ [0, 20]. Let sv = {gas in tank = v} and
Σ0 = {sv | v ∈ [0, 20]}. Clearly, for every v ∈ [0, 20], σv = 〈sv,Σ0〉 is an
initial c-state. On the other hand, since Φ(look, σv) = {〈sv, {sv}〉}, we can
conclude that (Dg, Og) |= kwhether (gas in tank = v) after look. ¤

The next proposition shows that it is not always the case that the value
of a fluent is known after the execution of an action which senses that fluent.

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 15

Proposition 6. For the block world domain,

(Db, Ob) 6|=AMK
kwhether (loc(b) = on(a)) after [sense(b)].

Proof. It is easy to see that there are only five states in this domain
s1 = {loc(a) = onTable, loc(b) = onTable},
s2 = {loc(a) = onTable, loc(b) = inHand},
s3 = {loc(a) = onTable, loc(b) = on(a)},
s4 = {loc(a) = inHand, loc(b) = onTable}, and
s5 = {loc(a) = on(b), loc(b) = onTable}

and the set of possible initial states is Σ0 = {s1, s2, s3}. This gives us
three initial c-states 〈si,Σ0〉 (i = 1, 2, 3). Executing sense(b) results in three
c-states 〈s1, {s1, s3}〉, 〈s2, {s2}〉, and 〈s3, {s1, s3}〉. Because s1 |= ¬(loc(b) =
on(a)) and s3 |= (loc(b) = on(a)) we have that loc(b) = on(a) is unknown in
〈s1, {s1, s3}〉. According to the definition of entailment, it follows that

(Db, Ob) 6|=AMK
kwhether (loc(b) = on(a)) after [sense(b)].

¤

3. Relationship Between AMK Domains and Boolean
Domains

As we have informally discussed in the beginning, the introduction of discrete
and finite multi-valued fluents in AMK does not increase its expressiveness
in comparison to its predecessor AK (by AK we mean the language AK

in [2]) extended with state constraints. We will now show that each AMK

action theory, (D,O), with discrete, finite multi-valued fluents whose sensing
actions are of the simple form a determines f can be translated into a
semantically equivalent AK action theory (Db, Ob). In what follows, we
attach a superscript b to elements of the theory (Db, Ob) to distinguish them
with their counterparts in (D, O). The translation is as follows.

• Db contains the set of Boolean fluents {fv | f ∈ F and v ∈ dom(f)}.
• Db has the same set of actions as D does.

• A literal l ≡ f = v (resp. f 6= v) in D is translated into a corresponding
literal lb ≡ fv (resp. ¬fv) in Db.

• A formula ϕ in D is translated into a corresponding formula ϕb in
Db by replacing each literal l that occurs in ϕ with lb. For instance,
(f = 1) ∧ (g 6= 2) becomes f1 ∧ ¬g2.

16 T. C. Son, P. H. Tu, and X. Zhang

• For every proposition of the form (i), Db contains the proposition

executable a if ϕb. (viii)

• For every proposition of the form (ii), Db contains

a causes fv if ϕb (ix)

and the set of propositions

{a causes ¬fv′ if ϕb | v′ ∈ dom(f) \ {v}}. (x)

• For every sensing action a with a determines f ∈ D, Db contains the
following propositions

{a determines fv | v ∈ dom(f)}. (xi)

• For every proposition of the form (iv), Db contains

fv if ϕb (xii)

and the set of propositions

{¬fv′ if ϕb | v′ ∈ dom(f) \ {v}}. (xiii)

• For every fluent f ∈ F, Db contains the following sets of constraints

{fv if
∧

v′∈dom(f)\{v}
¬fv′ | v ∈ dom(f)} (xiv)

{¬fv if fv′ | f ∈ F, v, v′ ∈ dom(f), v 6= v′}. (xv)

• The set of observations in Db is

Ob = { initially lb | initially l ∈ O}. (xvi)

• Nothing else in Db and Ob.

Similarly, for a plan p in AMK , we construct a corresponding plan pb in
AK by replacing each formula ϕ occurring in p with ϕb and leaving actions
unchanged.

We will now discuss some properties of the translation from (D, O) into
(Db, Ob). First, note that the size of an action theory (D, O) depends on

• the number of actions, i.e., the size of A;

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 17

• the number of fluents, i.e., the size of F;

• the size of fluent domains, i.e., Σf∈F|dom(f)|;

• the number of propositions in D; and

• the length of formulae, i.e., the number of literals, occurring in the
propositions in D.

Assume that we only need a constant amount of bytes to encode fluents and
actions then we can define the size of a proposition in (D,O) by the length
of the formula occurring in it, e.g., the size of a causes f if ϕ is the length
of ϕ. Then the size of an action theory (D,O) is defined as the sum of

1. the sum over the size of all propositions in (D, O);

2. the number of actions;

3. the number of fluents;

4. the sum over |dom(f)| for f ∈ F.

Under the assumption that (D, O) is a discrete and finite multi-valued fluent
action theory, we have the following observations.

• The translation of each fluent f in (D, O) into the set of fluents and
constraints of the forms (xiv) and (xv) in (Db, Ob) is bounded by a
polynomial function of the size of dom(f);

• The translation of a formula ϕ into ϕb is bounded by a polynomial
function of the length of ϕ;

• The translation of a proposition of the forms (i)– (iv) in (D, O) into
propositions of the forms (viii) – (xiii) in (Db, Ob) is bounded by a
polynomial function of the length of ϕ;

• The translation of a proposition of the form (iii) in (D, O) into propo-
sitions of the form (xi) in (Db, Ob) is bounded by a polynomial function
of |dom(f)|; and

• The translation of an observation of the form (v) in (D, O) into propo-
sitions of the form (xvi) in (Db, Ob) can be done in constant time.

This implies that the following proposition holds.

18 T. C. Son, P. H. Tu, and X. Zhang

Proposition 7. For a discrete and finite multi-valued fluents action theory
(D, O),

• the translation from (D, O) into (Db, Ob) can be performed in polyno-
mial time in the size of (D,O); and

• the size of (Db, Ob) is polynomially bounded in the size of (D,O).

It is easy to see that a formula ϕb in (Db, Ob) can be translated into
a unique formula ϕ in (D, O) whose binary version is exactly ϕb. We can
prove the following

Proposition 8. For a discrete and finite multi-valued fluents action theory
(D, O), a plan p, and formula ϕ

(D, O) |=AMK knows ϕ after p iff (Db, Ob) |=AK knows ϕb after pb

and,

(D, O) |=AMK
kwhether ϕ after p iff (Db, Ob) |=AK

kwhether ϕb after pb.

Proof. See Section 6. ¤

The above proposition has two interesting consequences. The ‘negative’
but expected one is the fact that introducing multi-valued fluents does not
increase the expressiveness of the language AK as long as domains of flu-
ents are discrete and finite. Nevertheless, the examples show that AMK is a
much better knowledge representation language for representing and reason-
ing with sensing actions in term of compactness of the representation. The
‘positive’ one, however, is about the complexity of planning with sensing
actions and incomplete information. It shows that for AMK action theories
with a deterministic transition function4 and discrete, finite domains, the
computational complexity results in [1] will hold, i.e., planning in AMK is
not harder than that in AK . We list one of them below.

Corollary 1. The planning problem with AMK finite, discrete, and deter-
ministic domains (incomplete information about the initial state and sensing
actions) is PSPACE-complete.

4(D, O) is deterministic if for every c-state σ and non-sensing action a, |Φ(a, σ)| ≤ 1.

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 19

4. Discussion and Future Work

In this paper, we concentrate on the development of a high-level action
description language with sensing actions and multi-valued fluents. The
main contribution of this paper is the language AMK with a transition
function based semantics. We illustrate the use of AMK in some examples
taken from the literature and show that adding multi-valued fluents does not
result in an increase in both expressiveness and complexity of planning with
sensing actions in discrete, finite domains. This opens the applicability of
results in approximating |=AK

(e.g. in [13]) for multi-valued fluents to deal
with the problem of huge search space. We leave it as one of the topics of our
future research. We will also investigate the allowance of negative literals of
the form f 6= v in propositions of the form (ii) or (iv) in the place of f = v.
At present, we are using AMK in developing a planner for reasoning with
sensing actions in the presence of incomplete information.

5. Acknowledgment

The authors wish to thank Chitta Baral for his comments and suggestions
on an earlier version of this paper. Tran Cao Son and Phan Huy Tu are
partially supported by the grant NSF 0220590.

6. Appendix - Proof of Proposition 8

First, let us briefly discuss the essential features of AK . The main difference
between AK and AMK is that fluents in AK are Boolean fluents, whereas
those in AMK are not. Domains in AK consist of propositions similar to
(i)–(iv) except that only Boolean literals are allowed in formulae ϕ and in
the place of f = v. Because fluents are Boolean, propositions of the form (iii)
in AK are of the simple form a determines f only, where f is a fluent. The
notions of states, c-states, and agreements on fluents between states in AK

are defined similarly as in AMK . A set of assignments in AMK corresponds
to a set of literals inAK . The notion of satisfiability of a formula with respect
to a set of literals or a state is also defined accordingly. The semantics of
AK theories is given by an entailment relation whose definition is based on
the transition function that maps from pairs of actions and c-states into sets
of c-states. For completeness of the paper, we include the definition of the
transition function of AK herewith.

20 T. C. Son, P. H. Tu, and X. Zhang

Definition 5 (Transition Function of AK). Let D be a binary domain de-
scription. For an action a and a c-state σ = 〈s,Σ〉,

• if σ = ⊥ or a is not executable in s then Φ(a, σ) = {⊥};
• if a is a non-sensing action and executable in s and

– Res(a, s) = ∅ then Φ(a, σ) = {⊥};
– Res(a, s) 6= ∅ then Φ(a, σ) = {〈s1, Σ′〉 | s1 ∈ Res(a, s)} where

Σ′ = {s′ | s′ ∈ Res(a, s′′) for some s′′ ∈ Σ s.t. a is executable in
s′′};

• if a is a sensing action and executable in s with the proposition
a determines f1, . . . , a determines fn in D then Φ(a, σ) = {〈s,Σ′〉}
where Σ′ = {s′ | s′ ∈ Σ s.t. a is executable in s′ and s′(fi) = s(fi) for
every 1 ≤ i ≤ n},

where Res(a, s) and e(a, s) are defined similarly as in AMK .

The extended transition function Φ̂ and the entailment relation for binary
domains are defined as in Definitions 3 and 4.

To prove the equivalence between the entailment relationships of AK and
AMK let us introduce some more notations. Recall that for a theory (D, O)
in AMK , (Db, Ob) by convention denotes the corresponding theory in AK

obtained from (D, O) by the translation in Section 3.
Observe that a set of literals in Db can be viewed as a set of assignments.

For this reason, we will often refer to a set of fluent literals in Db as a set
of assignments. The value of a fluent (resp. a formula) with respect to a set
of assignments in AK is defined in the same way as before. We say that a
set of assignments θb in Db is domain-consistent if for every fluent f then
either θb(fv) is undefined for all v ∈ dom(f) or there exists v ∈ dom(f) such
that θb(fv) = true and θb(fv′) = false for all v′ ∈ dom(f) \ {v}. Clearly, all
states in Db are domain-consistent since they satisfy the static causal laws
of the form (xv). As with sets of assignments in D, whenever we say θ is a
set of assignments in Db, we mean that it is domain-consistent.

We first define the equivalence relationship between fluent assignments in
D and Db and then extend this notion for states, sets of states and c-states.
We then prove several lemmas that are needed for proving Proposition 8.

For a set of assignments θ in D, let

θb = {fv | θ(f) = v, v ∈ dom(f)}∪
{¬fv′ | θ(f) = v, v ∈ dom(f), v′ ∈ dom(f) \ {v}}

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 21

and for a set of assignments ηb in Db, let

η = {f = v | v ∈ dom(f), ηb(fv) = true}
We say that θb (resp. η) is the binary (resp. multi-valued) version of θ (resp.
ηb). It is easy to see that the following lemma hold.

Lemma 1. (1) Let θ, l, and ϕ (resp. θb, lb, and ϕb) be a set of assign-
ments, a literal, and a formula in D (resp. in Db), respectively. Then
(i) θ |= l iff θb |= lb and (ii) θ |= ϕ iff θb |= ϕb.

(2) Let θ1 and θ2 (resp. θb
1 and θb

2) be two sets of assignments in D (resp.
in Db) such that θ1∪θ2 (resp. θb

1∪θb
2) is domain-consistent then θb

1∪θb
2

(resp. θ1 ∪ θ2) is domain-consistent and (i) (θ1 ∪ θ2)b = θb
1 ∪ θb

2; and
(ii) (θ1 ∩ θ2)b = θb

1 ∩ θb
2.

For a set of states S and for a c-state σ = 〈s,Σ〉 in D, let Sb = {sb | s ∈ S}
and σb = 〈sb, Σb〉. Likewise, for a set of states Sb and a c-state σb = 〈sb,Σb〉,
in Db, let S = {s | sb ∈ Sb} and σ = 〈s,Σ〉. Since a state is essentially a
set of assignments, the following lemma follows directly from the previous
lemma.

Lemma 2. Let σ and ϕ (resp. σb and ϕb) be a c-state and a formula in D
(resp. Db), respectively. Then ϕ holds in σ iff ϕb holds in σb.

The following lemma shows the equivalence of executability condition of
actions in D and Db.

Lemma 3. For a state s in D (resp. sb in Db) and an action a, a is executable
in s iff a is executable in sb.

Proof. Assume that a is executable in s. That means there exists a propo-
sition of form (i) such that s |= ϕ. According to the translation, there is a
corresponding proposition of the form (viii) in Db. Since ϕ holds in s, we
have ϕb also holds in sb (Lemma 2). Thus a is also executable in sb.

On the other hand, if a is executable in sb then there exists a proposition
of the form (viii) in Db such that sb |= ϕb. This implies that there exists a
proposition of the form (i) in D. From Lemma 2, we have s |= ϕ. Hence, a
is also executable in s. ¤

Lemma 4. Let s be a state in D (resp. sb be a state in Db) and a be a non-
sensing action executable in s. Then (ResAMK

(a, s))b = ResAK
(a, sb)5.

5From now on, we use subscripts AMK and AK to distinguish between the result
functions, the transition functions and the extended transition functions in D and Db.

22 T. C. Son, P. H. Tu, and X. Zhang

Proof. The lemma is trivial if ResAMK
(a, s) or ResAK

(a, sb) is empty. We
will prove this lemma by showing that

i. if u is a state in ResAMK
(a, s) then ub is in ResAK

(a, sb); and

ii. if ub is a state in ResAK
(a, sb) then u is in ResAMK

(a, s).

Let us denote the sets of constraints of the forms (xii), (xiii), (xiv), and (xv)
by R1, R2, R3 and R4 respectively. Clearly the set of constraints in Db is
Rb = R1 ∪ R2 ∪ R3 ∪ R4. It is easy to see that the following observation
holds: if θs = {f = v | f = v if ϕ ∈ R and s |= ϕ} then

θb
s = {fv | (fv if ϕb) ∈ R1 ∪R3 and sb |= ϕb}∪

{¬fv | (¬fv if ϕb) ∈ R2 ∪R4 and sb |= ϕb}

and vice versa. Thus (s ∪ θs)b = sb ∪ θb
s (Item (2), Lemma 1) and both are

domain-inconsistent.
Proof of (i). Let u be a state in ResAMK

(a, s). We will show that
ub ∈ ResAK

(a, s). By the definition of the Res function, we have

u = Cn((s ∩ u) ∪ eAMK
(a, s) ∪R)

where R denotes the set of propositions of the form (iv) in D. That is,
there exists a monotonic sequence of domain-consistent sets of assignments
s1, s2, . . . , sn (n ≥ 1) such that s1 ⊂ s2 ⊂ · · · ⊂ sn−1 = sn = u where
s1 = (s ∩ u) ∪ eAMK

(a, s) and

si+1 = si ∪ {f = v | (f = v if ϕ) ∈ R s.t. si |= ϕ} (1 ≤ i ≤ n− 1).

By Lemmas 1 and 2, we have that (eAMK
(a, s))b = eAK

(a, sb). By Item (2),
Lemma 1, and from the above observation we can show that

sb
1 = (sb ∩ ub) ∪ eAK

(a, sb) and sb
i+1 = sb

i ∪ θb
si

.

This implies that ub = sb
n and sb

1, . . . , s
b
n is a monotonic sequence. By the

definition of the closure and by Proposition 1, sb
n is Cn(ub∪Rb). As a result,

we have ub ∈ ResAK
(a, sb).

Proof of (ii). Similar to (i). ¤

Lemma 5. For a c-state σ in D (resp. σb in Db) and an action a,

(ΦAMK
(a, σ))b = ΦAK

(a, σb).

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 23

Proof. Let σ = 〈s,Σ〉 be a c-state in D. Consider the following cases
Case 1. σ = ⊥. So we have σb = ⊥. Thus, according to the definition

of the transition functions, we have ΦAMK
(a, σ) = ΦAK

(a, σb) = {⊥}. and
thus, the lemma holds for this case.

Case 2. σ 6= ⊥, a is not executable in s. By Lemma 3, a is also not exe-
cutable in sb. Again by the definitions of ΦAK

and ΦAMK
, both ΦAMK

(a, σ)
and ΦAK

(a, σb) are {⊥} and hence (ΦAMK
(a, σ))b = ΦAK

(a, σb).
Case 3. σ 6= ⊥, a is a non-sensing action executable in σ.
If ResAMK

(a, s) = ∅, by Lemma 4, we have that ResAK
(a, sb) = ∅ and

hence, (ΦAMK
(a, σ))b = ΦAK

(a, σb) = {⊥}.
Assume that ResAMK

(a, s) 6= ∅ and σ1 is a c-state in ΦAMK
(a, σ).

According to the definition of ΦAMK
then σ1 = 〈s1,Σ′〉 for some s1 ∈

ResAMK
(a, s) and,

Σ′ = {s′ | s′ ∈ ResAMK
(a, s′′), s′′ ∈ Σ, a is executable in s′′}.

By Lemma 4, we have sb
1 ∈ ResAK

(a, sb). Thus, 〈sb
1,Σ

′′〉 ∈ ΦAK
(a, σb)

where Σ′′ = {s′ | s′ ∈ ResAK
(a, s′′), s′′ ∈ Σb, a is executable in s′′}.

Furthermore, because (ResAMK
(a, s))b = ResAK

(a, sb) and by Lemma
3, we have that (Σ′)b = Σ′′, i.e., σb

1 = 〈sb
1, Σ

′b〉 ∈ ΦAK
(a, σb).

Similarly, we can show that for every c-state σb
1 in ΦAK

(a, σb), σ1 belongs
to ΦAMK

(a, σ). As a result, (ΦAMK
(a, σ))b = ΦAK

(a, σb).
Case 4. σ 6= ⊥, a is a sensing action with a determines f in D and a is

executable in σ. According to the translation, Db contains the corresponding
propositions {a determines fv | v ∈ dom(f)}. It is easy to see that by the

definition of agreement, s
f,{Vj}j∈S∼ s′ when each Vj , j ∈ S, has exactly one

element, if and only if s(vj) = s′(vj) for all j ∈ S. Let

Σ′ = {s′ | s′ ∈ Σ s.t. a is executable in s′ and s′(f) = s(f)}.

Then, we have that

Σ′b = {s′b | s′b ∈ Σb s.t. a is executable in s′b and
s′b(fv) = sb(fv) ∀v ∈ dom(f)}.

By the definition of the transition functions, we have ΦAMK
(a, σ) = {〈s,Σ′〉}

and ΦAK
(a, σb) = {〈sb, Σ′b〉}. Hence, (ΦAMK

(a, σ))b = ΦAK
(a, σb).

Similarly, we can show that if σb = 〈sb, Σb〉 is a c-state in Db then
(ΦAMK

(a, σ))b = ΦAK
(a, σb). ¤

The next lemma generalizes the previous lemma to arbitrary plans.

24 T. C. Son, P. H. Tu, and X. Zhang

Lemma 6. Let σ be a state in D (resp. σb in Db). For every plan p in
AMK , (Φ̂AMK

(p, σ))b = Φ̂AK
(pb, σb).

Proof. Consider the following cases
Case 1. σ = ⊥. So, σb is also undefined, ⊥. Therefore,

(Φ̂AMK
(p, σ))b = Φ̂AK

(pb, σb) = {⊥}.

Case 2. σ 6= ⊥. We will prove the lemma by induction on the length of
the plan p but first of all let us define the length of a plan (for both AMK

and AK), denoted by len, as follows

i. len([]) = 0.

ii. len([a; p′]) = len(p′) + 1.

iii. len([if ϕ then p1 else p2]) = max{len(p1), len(p2)}+ 1.

Base case: len(p) = 0, that is, p = [] and pb = []. By the definition of the
transition function, we have Φ̂AMK

(p, σ) = {σ} and Φ̂AK
(pb, σb) = {σb}.

The conclusion of the lemma for this case follows from Lemma 5.
Hypothesis: Suppose that the lemma is true for all plans p whose length

is less than some integer k ≥ 1.
Inductive Step: Let p be a plan of length k. There are two possibilities
a) p = [a; p′] where a is an action and p′ is a plan of the length less

k. The corresponding plan in AK is pb = [a; p′b]. By Lemma 5 and by the
inductive hypothesis, we easily show that (Φ̂AMK

(p, σ))b = Φ̂AK
(pb, σb).

b) p = [if ϕ then p1 else p2], where p1 and p2 are sub-plans whose
lengths are less than k. We have that pb = [if ϕb then pb

1 else pb
2].

• If ϕ is known to be true in σ then ϕb is also known to be true in
σb (Lemma 2). Hence, Φ̂AMK

(p, σ) = Φ̂AMK
(p1, σ) and Φ̂AK

(pb, σb) =
Φ̂AK

(pb
1, σ

b). In addition, by the hypothesis, we have (Φ̂AMK
(p1, σ))b =

Φ̂AK
(pb

1, σ
b). Hence, we can conclude the inductive step for this case.

• If ϕ is known to be false in σ, the proof is similar.
• If ϕ is unknown in σ then both Φ̂AMK

(p, σ) and Φ̂AK
(pb, σb) are un-

defined, i.e., the inductive step still holds for this case as well. ¤

The final lemma is about the equivalence between initial states and be-
tween initial c-states.

Lemma 7. (i) If s0 is an initial state of (D,O) then sb
0 is an initial

state of (Db, Ob) and vice versa.

Reasoning about Sensing Actions in Domains with Multi-valued Fluents 25

(ii) If σ0 be an initial c-state of (D, O) then σb
0 is an initial c-state of

(Db, Ob) and vice versa.

Proof. Proof of (i). Assume that s0 is an initial state of (D,O). We need
to prove that sb

0 is an initial state of (Db, Ob).
Since s0 is an initial state of D, s0 |= l for all literal l such that

initially l ∈ O. Hence sb
0 |= lb for all lb such that initially lb ∈ Ob.

In addition, s0 satisfies all static causal laws in R and thus sb
0 satisfies all

static causal laws in Rb. As a result, sb
0 is an initial state of Db.

Likewise, we can prove that if sb
0 is an initial state of (Db, Ob) then s0 is

an initial state of (D, O).
Proof of (ii). Immediately follows from (i). ¤

From Lemmas 6 and 7 we can infer Proposition 8.

References

[1] Baral, C., Kreinovich, V., and Trejo, R. 2000. Computational complexity of

planning and approximate planning in the presence of incompleteness. Artificial

Intelligence 122, Elsevier, 241–267.

[2] Baral, C., McIlraith, S., and Son, T. 2000. Formulating diagnostic problem

solving using an action language with narratives and sensing. In Proceedings of the

Seventh International Conference on Principles of Knowledge and Representation and

Reasoning (KR’2000). Morgan Kaufmann, 311–322.

[3] Eiter, T., Faber, W., Leone, N., Pfeifer, G., and Polleres, A. 2000. Planning

under incomplete information. In Proceedings of the First International Conference

on Computational Logic (CL’00). Springer Verlag, LNAI 1861, 807–821.

[4] Gelfond, M. and Lifschitz, V. 1993. Representing actions and change by logic

programs. Journal of Logic Programming 17, 2,3,4, Elsevier, 301–323.

[5] Gelfond, M. and Lifschitz, V. 1998. Action languages. ETAI 3, 6.

[6] Giunchiglia, E., Kartha, G., and Lifschitz, V. 1997. Representing action: in-

determinacy and ramifications. Artificial Intelligence 95, Elsevier, 409–443.

[7] Golden, K. and Weld, D. 1996. Representing sensing actions: the middle ground

revisited. In Proceedings of the Fifth International Conference on Principles of Knowl-

edge and Representation and Reasoning (KR 1996). Morgan Kaufmann, 174–185.

[8] Levesque, H. 1996. What is planning in the presence of sensing? In Proceedings of

the Thirdteenth Conference on Artificial Intelligence. AAAI Press, 1139–1146.

[9] Lobo, J., Taylor, S., and Mendez, G. 1997. Adding knowledge to the action

description language A. In Proceedings of the Fourteenth Conference on Artificial

Intelligence. AAAI Press, 454–459.

26 T. C. Son, P. H. Tu, and X. Zhang

[10] McCain, N. and Turner, H. 1995. A causal theory of ramifications and qual-

ifications. In Proceedings of the 14th International Joint Conference on Artificial

Intelligence. Morgan Kaufmann Publishers, San Mateo, CA, 1978–1984.

[11] Moore, R. 1985. A formal theory of knowledge and action. In Formal theories of

the commonsense world, J. Hobbs and R. Moore, Eds. Ablex, Norwood, NJ.

[12] Scherl, R. and Levesque, H. 1993. The frame problem and knowledge producing

actions. In Proceedings of the Twelfth National Conference on Artificial Intelligence.

AAAI Press, 689–695.

[13] Son, T. and Baral, C. 2001. Formalizing sensing actions - a transition function

based approach. Artificial Intelligence 125, 1-2 (January), Elsevier, 19–91.

[14] Thielscher, M. 2000. Representating the knowledge of a robot. In Proceedings of

the Seventh International Conference on Principles of Knowledge and Representation

and Reasoning (KR’2000). Morgan Kaufmann, 109–120.

[15] Weld, D., Anderson, C., and Smith, D. 1998. Extending graphplan to handle

uncertainity and sensing actions. In Proceedings of the Fifteenth National Conference

on Artificial Intelligence. AAAI Press, 897–904.

Tran Cao Son
Computer Science Department
New Mexico State University
MSC CS, PO Box 30001
Las Cruces, NM 88003
USA
tson@cs.nmsu.edu

Phan Huy Tu
Computer Science Department
New Mexico State University
MSC CS, PO Box 30001
Las Cruces, NM 88003
USA
tphan@cs.nmsu.edu

Xin Zhang
Computer Science and Engineering
Arizona State University
Tempe, AZ 85287
USA
Xin.Zhang@asu.edu

