
Logic Programs with Abstract Constraint Atoms: The
Role of Computations

Lengning Liu1, Enrico Pontelli2, Tran Cao Son2, and Mirosław Truszczýnski1

1 Department of Computer Science, University of Kentucky, Lexington,KY 40506, USA,
{lliu1,mirek}@cs.uky.edu

2 Department of Computer Science, New Mexico State University, Las Cruces, NM 88003,
USA, {epontell,tson}@cs.nmsu.edu

Abstract. We provide new perspectives on the semantics of logic programs with
constraints. To this end we introduce several notions ofcomputationand propose
to use theresultsof computations as answer sets of programs with constraints.
We discuss the rationale behind different classes of computations and study the
relationships among them and among the corresponding concepts of answer sets.
The proposed semantics generalize the answer set semantics for programs with
monotone, convex and/or arbitrary constraints described in the literature.

1 Introduction and Motivation
In this paper we study logic programs witharbitrary abstract constraints (which we also
simply refer to asconstraints). Programs with constraints generalize normal logic pro-
grams, programs with monotone and convex constraints [11, 16], and several classes of
programs with aggregates (e.g., [2, 6, 18]). Intuitively, aconstraintA represents acon-
dition on models of the program containingA. The definition ofA includes anexplicit
description of conditions interpretations have to meet in order to satisfy it. The syn-
tax of such programs and one possible semantics have been proposed in [15]. Another
semantics has been proposed in [21]. Following the approachproposed in [11], and
exploiting analogies to the case of normal logic programs, we introduce several other
semantics based oncomputationsfor programs with constraints. We argue that there-
sultsof (some types of) computations adequately generalizeanswer setsof programs
with constraints.

The notion of ananswer setof a logic program [8] is the foundation for answer-set
programming (ASP) [14, 17]. Intuitively, an answer set represents beliefs of an agent,
given a logic program encoding its knowledge base. Researchers developed several
characterizations of answer sets, providing a reasoner with alternative ways to deter-
mine them. The original definition of answer sets [8] naturally leads to a “guess-and-
check” approach. We first guess a candidate for an answer set,and then we validate
the guess. The validation consists of recomputing the guessstarting with the empty set
and iterating theone-step provability operator[22] for the Gelfond-Lifschitzprogram
reduct [8]. Alternatively, we can compute an answer set starting with the empty set.
At each step, we include in the set under construction the heads of someof the rules
applicable at this step; typically, we include all the rulesselected during the previous
stepsplussome additional ones. Once the process stabilizes, we need to check that the

final result does not block any rules chosen to fire earlier [12, 13]. In this second ap-
proach, we replace the initial non-deterministic step of guessing the answer set with
non-deterministic choices of rules to fire at each step of theconstruction.

Example 1.Let us consider the programP1 consisting of the following rules:
a← not b c← a b← not a d← b.

This program has two answer sets:{a, c} and {b, d}. In the “guess-and-check” ap-
proach, we might guess{a, c} as a candidate answer set. To verify the guess, we com-
pute the Gelfond-Lifschitz reduct, consisting of the rulesa← , c← a andd← b. Next,
we iterate the one-step provability operator for the reductto compute its least Herbrand
model—which corresponds to{a, c}. Since it coincides with the initial guess, the guess
is validated as an answer set. In this way, we can also validate the guess{b, d}. How-
ever, the validation of{a} fails—i.e.,{a} is not an answer set.

The other approach starts with the empty interpretation,∅, which makes two rules
applicable:a← not b andb ← not a. The algorithm needs to select some of them to
“fire”, say, it selectsa← not b. The choice results in the new interpretation,{a}. Two
rules are applicable now:a ← not b andc ← a. The algorithm selects both rules for
firing. The interpretation that results is{a, c}. The same two rules that were applicable
in the previous step are applicable now. Thus, there is no possibility to add new elements
to the current set. The computation stabilizes at{a, c}. Since{a, c} does not block any
of the rules fired in the process,{a, c} is an answer set. ⊓⊔

We note that the first approach starts with a tentative answerset of the program, while
the second starts with theemptyinterpretation. In the first approach, we guess the entire
answer set at once and, from that point on, proceed in a deterministic fashion. In the
second approach we construct an answer setincrementallymaking non-deterministic
choices along the way. Thus, each approach involves non-determinism. However, in the
second approach, the role of non-determinism is generally reduced. In this paper we
cast these two approaches in terms of abstract principles related to a notion ofcomputa-
tion. We then lift these principles to the case of programs with abstract constraints and
propose several new semantics for such programs.

The interest in ASP has been fueled by the development of software to compute
answer-sets of logic programs, most notably SMODELS and DLV , which allow pro-
grammers to tackle complex real-world problems (e.g., [1, 5, 10]). To facilitate declara-
tive solutions of problems in knowledge representation andreasoning, researchers pro-
posed extensions of the logic programming language, which support constraints and
aggregates [2–4, 6, 9, 17–19]. This development stimulatedinterest in logic program-
ming formalisms based onabstract constraint atoms[15, 16]. The concept of an abstract
constraint atom is general and encompasses several language-level extensions including
aggregates. The introduction of constraints brought forththe question of how to extend
the semantics of answer sets to the case of programs with constraints. Researchers pro-
posed several possible approaches [3, 4, 6, 19–21]. Theyall agree on specific classes
of programs with constraints including normal logic programs (viewed as programs
with constraints), programs withmonotoneconstraints [16], and programs withconvex
constraints [11]. However, they differ on programs with arbitrary constraints.

What makes the task of defining answer sets for programs with arbitrary constraints
difficult and interesting is thenonmonotonicbehavior of such constraints. For instance,

let us consider the constraint({p(1), p(−1)}, {{p(1)}}) (we introduce this notation in
Section 3), which can be seen as an encoding of the aggregate SUM({X | p(X)}) ≥
1.3 This aggregate atom is true in the interpretation{p(1)} but false in{p(1), p(−1)}.

The contribution of this paper is the development of a general framework for defin-
ing and studying answer sets for logic programs with arbitrary constraints. Our propos-
als rely on an abstract notion of incrementalcomputationand can be traced back to one
of the two basic approaches to computing answer sets of normal logic programs that we
mentioned above. This notion generalizes an approach developed in [11, 16] for the case
of programs with monotone and convex constraints. In the paper, we study properties
of the notions of answer set we introduce, and relate them to the earlier proposals.

2 Computations in Normal Logic Programs—Principles
We start by motivating the notion of acomputation, which is central to our paper. To
this end, we look at the case of normal logic programs and build on our discussion in
Example 1. In particular, we show how to use computations to characterize answer-sets.
We represent propositional interpretations as sets of atoms. A program rule whose body
is satisfied by an interpretationM is calledM-applicable. We writeP (M) to denote
the set of allM -applicable rules in a programP . The one-step provability operator
assigns to an interpretationM the set of the heads of all rules inP (M). We denote this
operator byTP . Fixpoints ofTP aresupportedmodels ofP . An interpretationM is a
stable modelor, as we will say here, ananswer setof P if M is the least model of the
Gelfond-Lifschitz reductPM .

We define computations as sequences〈Xi〉
∞

i=0 of sets of atoms (propositional inter-
pretations), whereXi represents the status of the computation at stepi. In particular,
we require thatX0 = ∅. The basic intuition is that a computation, at each stepi ≥ 1,
revises its previous statusXi−1. We base the revision on a non-deterministic operator,
ConclP (X), that provides the set of revisions ofX that can be justified according to a
logic programP and a set of atomsX. Formally, a set of atomsY is groundedin a set
of atomsX and a programP if

Y ⊆ {a | (a← body) ∈ P andX |= body}.

We writeConclP (X) to denote the set of all possible setsY grounded inX andP .
We require that computations satisfy theprinciple of revision:

(R) Revision principle: each successive element in a computation must be
grounded in the preceding one and the program, i.e.,Xi ∈ ConclP (Xi−1),
for everyi, 1 ≤ i.

A computation of an answer set of a program, using a method as described in Example
1, produces a monotonically increasing sequence of sets, each being a part of the answer
set being built. Thus, at each step not only new atoms are computed, but also all atoms
established earlier are recomputed. This suggests the principle ofpersistence of beliefs:

(P) Persistence of beliefs: each next element in the computation must contain
the previous one (once we “revise an atom in”, we keep it), i.e., Xi−1 ⊆ Xi,
for everyi, 1 ≤ i.

3 We assume that1,−1 are the two available constants.

For a sequence〈Xi〉
∞

i=0 satisfying the principle(P), we defineX∞ to be theresult
of 〈Xi〉

∞

i=0 by settingX∞ =
⋃

∞

i=0 Xi. The result of the computation should be an
interpretation that could not be revised further. This suggests one more basic principle
for computations, the principle ofconvergence:

(C) Convergence: the computation process continues until it becomes stable
(no additional revisions can be made), i.e.,X∞ = TP (X∞), whereTP is the
one-step provability operator. In other words,X∞ is a supported model ofP .

Definition 1. Let P be a normal logic program. A sequence〈Xi〉
∞

i=0 is a computation
for P if 〈Xi〉

∞

i=0 satisfies the principles(R), (P) and(C), andX0 = ∅.

Computations are indeed relevant to the task of describing answer sets of normal logic
programs. We have the following result.

Proposition 1. Let P be a normal logic program. If a set of atomsX is an answer set
of P then there exists a computation forP , 〈Xi〉

∞

i=0, such thatX = X∞.

Proof (Sketch).The sequence〈X〉∞i=0 can be obtained from the iterations of the one-
step provability operator of the Gelfond-Lifschitz reductof the programP . ⊓⊔

Proposition 1 implies that the principles(R), (P) and(C) give a notion of computation
broad enough to derive any answer set. Is this concept of computation what is needed
to precisely characterize answer sets? In other words, doeseverysequence of sets of
atoms starting with the∅ and satisfying the principles(R), (P) and(C) result in an
answer set? This is indeed the case forpositivenormal logic programs, more commonly
referred to as Horn programs.

Proposition 2. Let P be a positive logic program. The result of every computationis
equal to the least model ofP , that is, to the unique answer set ofP .

However, in the case of arbitrary normal programs, there arecomputations that do not
result in answer sets.

Example 2.Consider the programP2 containing the two rulesa← not a anda← a.
The sequenceX0 = ∅, X1 = {a}, X2 = {a}, . . . satisfies(R), (P) and(C) and so, it
is a computation forP . However,X =

⋃
∞

i=0 Xi = {a} is not an answer set ofP2. ⊓⊔

It follows that the notion of a computation defined by the principles(R), (P) and
(C) is too broad to describe exactly the notion of an answer set. Let us come back
to Example 2. There,a ∈ X1 because the body of the first rule is satisfied by the
set∅. However, the body of the first rule isnot satisfied in every setXi for i ≥ 1.
Nevertheless,a ∈ Xi, for i ≥ 2, since the body of thesecondrule is satisfied byXi−1.
Thus, the reason for the presence ofa in the next revision changes between the first and
second step. This is why that sequence does not result in an answer set, even though it
satisfies the principle(P), which guarantees that atoms once revised in will remain in
throughout the rest of the computation.

These considerations suggest that useful classes of computations can be obtained by
requiring that not only atoms but alsoreasonsfor including atoms persist. Intuitively, we
would like to associate with each atom included inXi a rule that supports the inclusion,
and this rule should remain applicable from that point on. More formally, we state this
principle as follows:

(Pr) Persistence of Reasons: for everya ∈ X∞ there is a rulera ∈ P (called
thereasonfor a) whose head isa and whose body holds in everyXi, i ≥ ia−1,
whereia is the least integer such thata ∈ Xia

.

This principle is exactly what is needed to characterize answer sets of normal logic
programs.

Definition 2. LetP be a normal logic program. A computation〈X〉∞i=0 for P is persis-
tent if it satisfies the principle(Pr).

Proposition 3. LetP be a normal logic program. A setX is an answer set ofP if and
only if there is a persistent computation forP such that its result isX.

We now observe that, in general, the operatorConclP offers several choices for revising
a current interpretationXi−1 intoXi during a computation. The question is whether this
freedom is necessary or whether we can restrict the principle (R) and still characterize
answer sets of normal logic programs.

Example 3.Let P3 be the normal logic program:

a← not b c← not b e← a, c f ← a,not c.

This program has only one answer setM = {a, c, e}, which corresponds to the com-
putation∅, {a, c}, {a, c, e}. In this computation, at each stepi = 1, 2, we take asXi

a greatest element ofConclP3
(Xi−1), which exists and is given byTP3

(Xi−1). Thus,
the next element of the computation is the result of firingall applicablerules.

On the other hand, selecting an element inConclP3
(X) other thanTP3

(X) can re-
sult in sequences that cannot be extended to a computation. For example, the sequence
∅, {a}, {a, f} represents a potential computation since it satisfies the (R) and (P) prin-
ciples. Yet, no possible extension of this sequence satisfies the (C) principle. ⊓⊔

This example indicates that interesting classes of computations can be obtained by re-
stricting the operatorConclP . Since for everyX we haveTP (X) ∈ ConclP (X), we
could restrict the choice for possible revisions ofX based onP to TP (X). The class of
computations obtained under this restriction is apropersubset of the class of computa-
tions. For instance, the programP1 from Example 1 does not admit computations that
reviseXi−1 into Xi = TP (Xi−1). Thus, the class of such computations is not adequate
for the task of characterizing answer sets of normal logic program. We note, though,
that they do characterize answer sets for some special classes of logic programs, for
instance, for stratified logic programs.

To obtain a general characterization of answer sets by restricting the choices offered
by ConclP (X), we need to modify the operatorTP (X). The first approach to comput-
ing answer sets, discussed in the introduction provides a clue: we need to change the
notion of satisfiability used in the definition ofTP (X).

Let M ⊆ At . We define the satisfiability relation|=M , between sets of atoms and
conjunctions of literals, as follows: we say thatS |=M F holds (whereS ⊆ At andF

is a conjunction of literals) ifS |= F andM |= F . That is, the satisfaction is based not

only onS but also onM (the “context”). We now define the (context-based) one-step
provability operatorTM

P as follows:

TM
P (X) = {a | a← body ∈ P, X |=M body}.

We note thatTM
P (X) ∈ ConclP (X). Thus, we obtain the following result.

Proposition 4. LetP be a normal logic program. A sequence〈Xi〉
∞

i=0 of sets of atoms
that satisfies properties(P) and (C), as well as the propertyXi = TM

P (Xi−1), for
i = 1, 2, . . ., is a computation forP .

If a computation is determined by the satisfiability relation |=M in the way described
in Proposition 4, we call it anM -computation. Not allM -computations define answer
sets. Let us consider the programP2 from Example 2. The sequenceX0 = ∅, Xi = {a},
i = 1, 2, . . ., is a∅-computation forP2. But the result of this computation ({a}) is not
an answer set forP2.

The problem is thatM -computations may not to be persistent. In fact, the∅-
computation described above is not. It turns out that if we impose the condition of
persistence onM -computations, their results are answer sets.

Proposition 5. Let P be a normal logic program andM ⊆ At . If an M -computation
is persistent then its result is an answer set forP .

It is also the case that every answer set is the result of some persistentM -
computation.

Proposition 6. LetP be a normal logic program. A setM of atoms is an answer set of
P if and only if there exists a persistentN -computation whose result isM .

A even stronger result can be proved—in which answer sets are characterized by a
proper subclass of persistentM -computations. We call anM -computationself-justified
if its result isM .

Proposition 7. LetP be a normal logic program. A setM ⊆ At is an answer set ofP
if and only ifP has a self-justifyingM -computation (whose result, by the definition, is
M).

One can check that self-justifiedM -computations are persistent. Moreover, in gen-
eral, the class of self-justifiedM -computations is a proper subclass ofM -computations.
Thus, we can summarize our discussion in this section as follows. Answer sets of nor-
mal logic programs can be characterized as the results of persistent computations, per-
sistentM -computations, and self-justifiedM -computations, with each subsequent class
being a proper subclass of the preceding one.

Our goal, in this section, was to recast answer sets of normallogic programs in
terms of computations. More specifically, taking two ways ofcomputing answer sets
as the departure point, we introduced three characterizations of answer sets in terms of
persistent computations. In Sections 4 and 5, we will show how to generalize the classes
of computations discussed here to the case of programs with constraints. In this way,
we will arrive at concepts of answer sets for programs with constraints that generalize
the concept of answer sets for normal logic programs.

3 Programs with Abstract Constraints—Basic Definitions
We recall here some basic definitions concerning programs with constraints [11, 15,
16]. We fix an infinite setAt of propositional variables. Aconstraintis an expression
A = (X,C), whereX ⊆ At is afiniteset, andC ⊆ P(X) (P(X) denotes the powerset
of X). The setX is called thedomainof A = (X,C), denoted byAdom . Elements of
C are calledsatisfiersof A, denoted byAsat . Intuitively, the sets inAsat are precisely
those subsets ofAdom thatsatisfythe constraint. A constraintA is said to bemonotone
if for everyX ⊆ Y ⊆ Adom , X ∈ Asat implies thatY ∈ Asat . A constraintA is said
to beconvexif for all X ⊆ Y ⊆ Z ⊆ Adom such thatX,Z ∈ Asat, Y ∈ Asat, too.

Constraints are building blocks of rules and programs. Arule is an expression

A← A1, . . . , Ak (1)

whereA, A1, . . . , Ak are constraints. Aconstraint program(or a program) is a col-
lection of rules. A program ismonotone(convex) if every constraint occurring in it is
monotone (convex).

Given a ruler of the form (1), the constraintA is theheadof r and the set{A1, . . . ,

Ak} of constraints is thebodyof r (sometimes we view the body of a rule as thecon-
junction of its constraints). We denote the head and the body ofr by hd(r) andbd(r),
respectively. We define theheadsetof r, writtenhset(r), as the domain of the head of
r. That is,hset(r) = hd(r)dom .

We view subsets ofAt as interpretations. We say thatM satisfiesa constraintA,
denoted byM |= A, if M ∩ Adom ∈ Asat . The satisfiability relation extends in the
standard way to conjunctions of constraints, rules and programs.

Let M ⊆ At be an interpretation. A rule isM -applicable if M satisfies every
constraint inbd(r). We denote withP (M) the set of allM -applicable rules inP . Let
P be a program. A modelM of P is supportedif M ⊆ hset(P (M)).

Let P be a program andM a set of atoms. A setM ′ is non-deterministically one-
step provablefrom M by means ofP , if M ′ ⊆ hset(P (M)) andM ′ |= hd(r) for
every ruler ∈ P (M). Thenondeterministic one-step provability operatorTnd

P for a
programP is an operator onP(At) such that for everyM ⊆ At , Tnd

P (M) consists of
all sets that are non-deterministically one-step provablefrom M by means ofP .

For an arbitrary atoma ∈ At , the constraint({a}, {{a}}) is called anelementary
constraint. Since({a}, {{a}}) has the same models asa, ({a}, {{a}}) is often iden-
tified with (and denoted by)a. For the same reason,({a}, {∅}) can be identified with
not a. Given a normal logic programP , by C(P) we denote the program with con-
straints obtained fromP by replacing every positive atoma in P with the constraint
({a}, {{a}}), and replacing every literalnot a in P with the constraint({a}, {∅}).

We note thatC(P) is a convex program [11]. One can show that supported models
of P coincide with supported models ofC(P), and answer sets ofP coincide with
answer sets ofC(P) (according to the definition from [11]). In other words, programs
with constraints are sufficient to express normal logic programs. Therefore, in this paper
we focus on programs with abstract constraints only.

4 Computations for Programs with Constraints
Our goal is to extend the concept of a computation to programswith constraints. Once
we have such a concept in hand, we will use it to define answer sets for programs with
constraints. To this end, we will build on the two characterizations of answer sets for
the case of normal logic programs, which we developed in Section 2.

In order to define computations of programs with constraints, we consider the prin-
ciples identified in Sect. 2. The key step is to generalize therevision principle. For
normal programs, it was based on sets of atoms grounded in a set of atomsX (current
interpretation) andP . We will now extend this concept to programs with constraints.

Definition 3. Let P be a program with constraints and letX ⊆ At be a set of propo-
sitional atoms. A setY is grounded inX and P if for some programQ ⊆ P (X),
Y ∈ Tnd

Q (X). We denote byConclP (X) the set of all setsY grounded inX andP .

The intuition is the same as before: a setY is grounded inX andP if it can be
justified by means of some rules inP on the basis ofX. It follows directly from the
definition that ifQ ⊆ P thenTnd

Q (X) ⊆ ConclP (X), which generalizes a similar
property in the caseP is a normal logic program: ifQ ⊆ P thenTQ(X) ∈ ConclP (X).

With this definition ofConclP (X), the principle(R) lifts without any changes. The
same is true for the principle(P) (which is independent of the choice of the class of pro-
grams). The principle(C) is also easy to generalize thanks to its alternative statement
in terms of models:

(C) Convergence: X∞ is a supported model ofP , i.e.,X∞ ∈ Tnd
P (X∞).

Finally, the principle(Pr) generalizes, as well. At a stepi of a computation that
satisfies(R), we select asXi an element ofConclP (Xi−1). By the definition of
ConclP (Xi−1), there is a programPi−1 ⊆ P (Xi−1) such thatXi ∈ Tnd

Pi−1
(Xi−1).

Each such program can be viewed as areasonfor Xi. We can now state the generalized
principle(Pr) as follows:

(Pr) Persistence of Reasons: There is a sequence of programs〈Pi〉
∞

i=0 such
that for everyi, 0 ≤ i, Pi ⊆ Pi+1, Pi ⊆ P (Xi), Xi+1 ∈ Tnd

Pi
(Xi).

Having extended the principles(R), (P), (C) and(Pr) to the class of programs
with constraints, we define computations literally extending the earlier definitions.

Definition 4. Let P be a program with abstract constraints. A sequence〈Xi〉
∞

i=0 is a
computationfor P if X0 = ∅ and the sequence satisfies the principles(R), (P) and
(C). A computation ispersistentif it also satisfies the principle(Pr).

As before, we have the following containment property.

Proposition 8. Let P be a program with constraints. The class of persistent computa-
tions is apropersubset of the class of computations.

Proof (Sketch).The containment is evident. To show that it is proper, we consider the
programC(P2), whereP2 is the normal logic program from Example 2. The sequence
∅, {a}, . . . is a computation but not a persistent computation forC(P2).

It is also the case, that computations for programs with constraints generalize com-
putations for normal logic programs.

Proposition 9. Let P be a normal logic program. The class of computations (respec-
tively, persistent computations) ofP , according to the definitions in Section 2, coincides
with the class of computations (respectively, persistent computations) of the program
C(P), according to definitions in Section 3.

We conclude this section by proposing the first definition of the concept ofanswer set
for programs with constraints. To this end, we generalize the characterization of answer
sets of normal logic programs in terms of persistent computations discussed in Section
2.

Definition 5. Let P be a program with constraints. A setX is an answer setof P if
there is a persistent computation forP , whose result isX.

Since persistent computations satisfy the principle(C), answer sets of a program
P with constraints are supported models ofP , generalizing a property of normal logic
programs. As a matter of fact, the results of arbitrary computations are supported mod-
els (because of(C)). However, there are programs such that some of their supported
models cannot be reached by a computation. For instance,{a} is a supported model of
the programC(P), whereP = {a ← a}, but there is no computation forC(P) with
the result{a}.

Proposition 9 implies that our definition of answer sets for programs with con-
straints generalizes the definition of answer sets for normal logic programs.

Corollary 1. LetP be a normal logic program. A setX ⊆ At is an answer set ofP if
and only ifX is an answer set ofC(P).

It is also the case that this concept of answer sets extends that introduced in [11, 16]
for monotone and convex programs.

Proposition 10. LetP be a monotone or convex program. Then, a set of atomsX ⊆ At

is an answer set ofP according to the definition in [11, 16] if and only ifX is the answer
set ofP according to Definition 5.

5 Computations and Quasi-Satisfiability Relations
The notion of a computation discussed so far makes use of the non-deterministic oper-
atorConclP to revise the interpretations occurring along a computation. As we men-
tioned earlier, the use ofConclP provides a wide range of choices for revising a state
of a computation, essentially considering all the subsets of applicable rules.

We will now study computations, as well as related concepts resulting by relaxing
some of the postulates for computations, which can be obtained by narrowing down the
set of choices given byConclP (X) as possible revisions ofX. In the case of normal
logic programs, we accomplished this goal by means of an operatorTM

P , based on the
satisfiability relation|=M . We will now generalize that idea to the case of programs
with constraints.

Definition 6. A sequenceC = 〈Xi〉
∞

i=0 is a weak computationfor a program with
constraints,P , if X0 = ∅ and ifC satisfies the properties(P) and(C).

Thus, weak computations are sequences that do not rely on a programP when
moving from stepi to stepi+1. We will now define a broad class of weak computations
that, at least to some degree, restore the role ofP as a revision mechanism.

Let ⊲ be a relation between sets of atoms (interpretations) and abstract constraints.
We extend the relation⊲ to the case of conjunctions (sets) of constraints as follows:
X⊲A1, . . . , Ak if X⊲Ai, for everyi, 1 ≤ i ≤ k. This relation is intended to represent
some concept of satisfiability of constraints and their conjunctions. We will call such
relationsquasi-satisfiabilityrelations. They will later allow us to generalize the relation
|=M .

For a quasi-satisfiability relation⊲, we define

P ⊲(X) = {r ∈ P | X⊲bd(r)}.

In other words,P ⊲(X) is the set of all rules inP that are applicable with respect toX
under the relation⊲. Next, we defineTnd;⊲

P (X) to consist of all setsY ⊆ hset(P ⊲(X))

such thatY |= hd(r), for everyr ∈ P ⊲(X). In other wordsTnd;⊲
P works similarly to

Tnd
P , except that rules inP ⊲(X) are “fired” rather than those inP (X).

Definition 7. Let⊲ be a quasi-satisfiability relation. A weak computationC = 〈Xi〉
∞

i=0

is a⊲-weak computationfor P if Xi ∈ T
nd;⊲
P (Xi−1), for i ≥ 1.

Since we do not impose any particular properties on⊲, it is not guaranteed that
T

nd;⊲
P (X) ⊆ ConclP (X). Thus,⊲-weak computations are not guaranteed to be com-

putations.
We say that a quasi-satisfiability relation⊲ is a sub-satisfiabilityrelation if for every

X ⊆ At and every abstract constraintA, X⊲A impliesX |= A.
We note that relations|=M considered in Section 2 are sub-satisfiability relations

(with respect to the standard satisfiability relation|=).

Proposition 11. LetP be a program with constraints. If⊲ is a sub-satisfiability relation
then for everyX ⊆ At , T

nd;⊲
P (X) ⊆ ConclP (X) and every⊲-weak computation is a

computation.

From now on, if⊲ is a sub-satisfiability relation, we will write⊲-computationinstead
of ⊲-weak computation. We will now define another class of answersets for programs
with constraints.

Definition 8. Let P be a program with constraints and⊲ a sub-satisfiability relation.
Then,M is a⊲-answer setof P if M is the result of a persistent⊲-computation.

Since⊲-computations are computations, we have the following direct consequence
of the appropriate definitions.

Proposition 12. LetP be a program with constraints and⊲ a sub-satisfiability relation.
Then every⊲-answer set forP is an answer set forP .

A natural questions arises whether every answer set of a program with constraints is
a⊲-answer set of that program for some sub-satisfiability relation ⊲. Unlike in the case
of normal logic programs, it is not the case.

Example 4.Let P consist of three rules:

({a}, {{a}}). ({b}, {{b}}). ({c}, {{c}})← ({a, b, c}, {{a}, {a, c}, {a, b, c}}).

We first note thatX0 = ∅, X1 = {a}, X2 = {a, c}, Xi = {a, b, c}, i ≥ 3, is a
persistent computation forP . Thus,{a, b, c} is an answer set orP . However, there is
no sub-satisfiability relation⊲ such that{a, b, c} is a ⊲-answer set forP . Indeed, for
each such relation⊲ we haveT

nd;⊲
P (∅) = {a, b}, and it is impossible to derivec, as

the third rule is not applicable with respect to{a, b} (and so, also not a member of
P ⊲({a, b})). ⊓⊔

Thus, given a programP , the class of⊲-answer sets is a proper subset of the class of
answer sets ofP .

The class of⊲-answer sets forms a generalization of answer sets of normallogic
programs given by Proposition 5. We will now propose a way to generalize answer sets
of normal logic programs to programs with constraints basedon Proposition 7. In our
considerations we extend the approach proposed and studiedin [21]. Our method re-
quires a fixed mappingf that assigns to each weak computationC a quasi-satisfiability
relation⊲

f
C . For some mappingsf it yields models that are not “grounded enough” to

be called answer sets. For some other mappingsf , however, it does result in classes of
models that arguably generalize answer sets of normal logicprograms.

Definition 9. LetP be a program with constraints andf a mapping assigning to each
weak computationC a quasi-satisfiability relation⊲f

C . A weak computationC is (P, f)

self-justifiedif C is a⊲
f
C-weak computation forP . A set of atomsM is an f -model of

P if M is the result of a(P, f) self-justified weak computation.

The definition of anf -model is sound. Since weak computations satisfy the property
(C), their results are indeed models ofP , in fact, even supported models.

Several interesting classes of models of programs with constraints can be described
in terms off -models by specializing the mappingf .
Supported models.Let C be a weak computation. We define the relation⊲

supp
C as

follows: given a set of atomsX and a constraintA, X⊲
supp
C A if X∞ |= A. One can

show that for every supported modelM of P , the sequenceC = 〈∅,M,M, . . .〉 is
a weak computation self-justified with respect toP and⊲

supp
C . Thus, every supported

model ofP is asupp-model ofP . As we observed earlier, allf -models are supported
models. It follows that supported models ofP are preciselysupp-models ofP .
Mr-models.Let C be a weak computation. We define the relation⊲mr

C as follows: given
a set of atomsX and a constraintA, X⊲mr

C A if there isY ⊆ X such thatY |= A and
X∞ |= A. One can show thatmr -models ofP are precisely the answer sets ofP as
defined by [15].

The discussion ofsupp-models andmr -models was meant to show the flexibility of
our approach. It took us away, however, from the main theme ofthe paper — general-
izations of the concept of an answer set. Indeed, neither⊲

supp
C -weak computations nor

⊲mr
C -weak computations are computations (they do not satisfy the revision principle).

Therefore, we do not view their results as “generalized” answer sets but only as some
special classes of models.

To specialize the general approach of self-justified weak computations so that it
yields extensions of the concept of an answer set, we need to look for mappingsf
that ensure that self-justified weak computations are computations (satisfy the revision
principle) and are persistent.

We already saw that requiring that⊲f
C be a sub-satisfiability relation guaran-

tees that⊲f
C-weak computations are indeed computations (referred to, we recall, as

⊲
f
C-computations). We will now seek conditions guaranteeing the persistence of⊲f

C-
computations.

Under the assumption that⊲ is a sub-satisfiability relation,P ⊲(X) ⊆ P (X). This
property and the appropriate definitions imply that

T
nd;⊲
P (X) = T

nd;⊲
P ⊲(X)(X) = Tnd

P ⊲(X)(X).

Consequently, we can show the following result.

Proposition 13. Let ⊲ be a sub-satisfiability relation and letC = 〈Xi〉
∞

i=0 be a ⊲-
computation. If for every constraintA and everyi = 0, 1, . . ., Xi⊲A implies that
Xi+1⊲A, thenC is persistent.

We will now define the mappings, which assigns to every weak computationC a re-
lation⊲s

C . Namely, for a set of atomsX and a constraintA we defineX⊲s
CA if there isi

such thatX = Xi andXj |= A, for everyj ≥ i. It is clear that⊲s
C is a sub-satisfiability

relation. Thus,⊲c
C-weak computations are computations (⊲s

C-computations, to be pre-
cise). Moreover, it follows from Proposition 13 that⊲s

C-computations are persistent.

Definition 10. Let P be a program with constraints. A set of atomsM is a strong
answer setof P (or, ans-answerset forP) if it is an s-model forP , that is, ifM is the
result of a(P, s) self-justified computation.

We will now summarize our discussion so far. Taking characterizations of answer
sets of normal logic programs as the starting point, we proposed three notions of an-
swer sets for programs with constraints. For normal logic programs, for programs with
monotone constraints, and for programs with convex constraints all three concepts co-
incide with the standard notion of an answer set. For generalprograms with constraints,
these three concepts are different. The following results summarizes the relationships
between the three classes of answer sets we introduced so far.

Proposition 14. Let P be a program with constraints. The class of strong answer sets
for P is a proper subset of the class of⊲-answer-sets forP which, in turn, is a proper
subset of the class of answer sets forP .

Example 5.Consider the programP (remember thata is shorthand for({a}, {{a}})):

a← ({a, b, c, d},P({a, b, c, d}))
b← ({a, b}, {{a}, {a, b}})
c← ({a, b, c, d}, {∅, {a}, {a, b}, {a, b, c, d}})

whereP(X) is the powerset ofX. Let us defineX⊲A if for every Y , X ∩ Adom ⊆
Y ⊆ Adom, Y ∈ Asat. Clearly,⊲ is a sub-satisfiability relation. Furthermore∅, {a},
{a, b}, {a, b} . . . is a ⊲-weak computation, sayC. On the other hand, we have that
∅ ⊲s

C({a, b, c, d},P({a, b, c, d})) and ∅⊲s
C({a, b, c, d}, {∅, {a}, {a, b}, {a, b, c, d}}).

Thus, any(P, s) self-justified computation will need to have{a, c} as its second el-
ement and will be unable to reach{a, b}. This shows that{a, b} is not a strong answer
set ofP . We note that it follows from Example 4 that the second inclusion is proper. ⊓⊔

6 Yet another class of answer sets
Given a computationC, we defined the relation⊲s

C so that it is the weakest sub-
satisfiability relation satisfying the assumptions of Proposition 13. However, in general
there may be other ways to define a sub-satisfiability relation ⊲C with respect to a given
computationC. One such definition was proposed in [21]. Namely, given a weak com-
putationC = 〈Xi〉

∞

i=0, we define⊲spt
C as follows:X⊲

spt
C A if X |= A and for each set

Y such thatX ∩ Adom ⊆ Y ⊆ X∞ ∩ Adom we have thatY |= A (or equivalently,
Y ∈ Asat). It is easy to see that⊲spt

C is a sub-satisfiability relation. Thus, it defines
computations. Secondly,⊲spt

C -computations are persistent as the relation⊲
spt
C satisfies

the assumptions of Proposition 13. Thus, the mappingspt gives rise to yet another class
of answer sets —spt-answer sets. One can show that spt-answer sets capture precisely
the semantics for aggregates proposed in [18, 19].

We have the following result relatingspt-answer sets to other classes of answer sets
considered in the previous section.

Proposition 15. Let P be a program with constraints. If a computationC is a ⊲
spt
C -

computation then it is also a⊲s
C-computation.

Example 6.Let us consider the programP consisting of two rules

({b}, {{b}})← ({a}, {{a}}) ({a}, {{a}})← ({a, b}, {∅, {a}, {a, b}})

The sequence∅, {a}, {a, b} is a ⊲s
C-computation ofP . On the other hand, it is not a

⊲
spt
C computation since∅ 6 ⊲spt

C ({a, b}, {∅, {a}, {a, b}}). ⊓⊔

Corollary 2. LetP be a program with constraints. IfM is anspt-answer set ofP then
M is a strong answer set ofP .

Next, we note that, similarly to our other classes of answer sets, the semantics defined
by spt-answer sets also collapses to the standard answer-sets semantics for normal logic
programs and to the answer-sets semantics for programs withconvex constraints [11].

The approach based on the mappingspt takes a more “skeptical” perspective than
the one embodied by the mappings. To ensure persistence, it requires thatall possible
extensions of the state in which a constraintA holds satisfyA (and not only those
actually encountered during the computation). In this way,the relations⊲spt

C are, in a
sense, the strongest relations satisfying the assumptionsof Proposition 13. This may be
perceived as a problem of this semantics —⊲spt

C -computations are localized to convex
subfragments of constraints forming program rules. In other words, they cannot jump
over “missing” satisfiers.

7 A Note on the Complexity
In this paper we introduced several classes of answer sets for programs with constraints.
We have the following result concerning the computational complexity of the problem
concerning the existence of answer sets.

Proposition 16. Assuming an explicit representation of constraints, givena program
with constraints, it is NP-complete to decide whether the program has an answer set
(respectively,⊲-answer set, strong answer set,spt-answer set).

8 Discussion and Conclusions
We grounded our study in four basic principles: revision, persistence of beliefs, per-
sistence of reasons, and convergence. We showed that there are several ways in which
the principle of revision can be realized. In a least restrictive approach, we allow any
element ofConclP (X) to be a valid revision ofX. This choice defines the class of
persistent computations and we take the results of such computations as the definition
of the first notion of an answer set. In the case of normal logicprograms and programs
with convex constraints, computations capture precisely the concept of an answer sets
as defined for these classes of programs earlier in [8, 11].

More restrictive approaches to the revision principle narrow down choices offered
by ConclP to those offered byTnd;⊲

P , where⊲ is a sub-satisfiability relation. The re-
sults of persistent⊲-computations form another class of answer sets,⊲-answer sets,
which forms a proper subclass of the previous one. However, in the case of normal
logic programs and programs with convex constraints both notions of the answer set
coincide.

The final two approaches result from the two specializationsof a general schema
to definef -models of a program with constraints. The schema is designed to gener-
alize the guess-and-check approach for normal logic programs. It relies on a mapping
that assigns to weak computations quasi-satisfiability relations. We demonstrated two
mappings,s andspt , for which the resulting weak computations are in fact persistent
computations and so, their results can be used as answer sets. The mappings seems to
be more appropriate as it is less restrictive. The mappingspt , on the other extreme of
the spectrum, seems to be too restrictive. As we noted earlier programs that intuitively
should have answer sets do not havespt-answer sets.

This work draws attention to the concept of computation, andshows that, for pro-
grams with arbitrary constraints, there are many classes ofcomputations of interest.
In general, they give rise to different classes of answer set, by formalizing in different
ways the negation-as-failure implicitly present in (non-monotone) constraints. Three
classes of computations seem especially well suited as the basis for the generalization.
Specifically,s-answer sets,⊲-answer sets and answer sets are viable candidates for the
answer set semantics of programs with constraints, as they are grounded in some basic
and intuitive principles imposed on computations and on schemata to define computa-
tions generalizing those used earlier in the context of normal logic programs. The class
of spt-answer sets may be too restrictive. The issue whether any ofthe three classes
identified here has any significant advantage over the other two requires further studies.

We note that some of our methods go beyond generalizations ofjust answer sets.
if we weaken requirements on computations and consider the class of weak computa-
tions, the general schema of definingf -models of programs yields characterizations of
supported models and mr-answer sets [15] and so also deserves further attention.

References
1. M. Balduccini, M. Gelfond, and M. Nogueira. Answer Set Based Design of Knowledge

Systems.Annals of Mathematics and Artificial Intelligence, 2006.
2. T. Dell’Armi et al. Aggregate Functions in Disjunctive Logic Programming: Semantics,

Complexity, and Implementation in DLV. InIJCAI, pages 847–852, 2003.
3. M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable semantics

for logic programs with aggregates.ICLP, Springer Verlag, pages 212–226, 2001.
4. I. Elkabani, E. Pontelli, and T.C. Son. Smodels with CLP and its applications. In Int.

Conference on Logic Programming, Springer Verlag, pages 73–89, 2004.
5. E. Erdem, V. Lifschitz, and D. Ringe. Temporal phylogenetic networks and logic program-

ming. TPLP, 6(5):539–558, 2006.
6. W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs:

Semantics and complexity. InJELIA, pages 200–212, 2004.
7. P. Ferraris. Answer sets for propositional theories. InLogic Programming and Nonmonotonic

Reasoning, Springer Verlag, pages 119–131, 2005.
8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InJoint

Int. Conf. and Symp. on Logic Programming, pages 1070–1080, MIT Press, 1988.
9. M. Gelfond. Representing Knowledge in A-Prolog. InComputational Logic: Logic Pro-

gramming and Beyond, pages 413–451. Springer Verlag, 2002.
10. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.Theory and

Practice of Logic Programming, 3(4,5):519–550, 2003.
11. L. Liu and M. Truszczýnski. Properties of programs with monotone and convex constraints.

National Conference on Artificial Intelligence, pages 701–706. AAAI/MIT Press, 2005.
12. V.W. Marek, A. Nerode and J. Remmel. Logic Programs, Well-orderings, and Forward

Chaining.Annals of Pure and Applied Logic96:231-276, 1999.
13. V.W. Marek and M. Truszczýnski. Nonmonotonic Logic; Context-Dependent Reasoning.

Springer Verlag, 1993.
14. V.W. Marek and M. Truszczýnski. Stable models and an alternative logic programming

paradigm.The Logic Programming Paradigm, pp. 375–398, Springer, 1999.
15. V.W. Marek and J.B. Remmel. Set constraints in logic programming.In Logic Programming

and Nonmonotonic Reasoning, pages 167–179, Springer Verlag, 2004.
16. V.W. Marek and M. Truszczýnski. Logic programs with abstract constraint atoms. InNa-

tional Conference on Artificial Intelligence (AAAI)AAAI Press / The MIT Press, 2004.
17. I. Niemel̈a. Logic programming with stable model semantics as a constraint programming

paradigm.Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273, 1999.
18. N. Pelov.Semantic of Logic Programs with Aggregates. PhD thesis, K.U. Leuven, 2004.
19. T.C. Son and E. Pontelli. A Constructive Semantic Characterization ofAggregates in Answer

Set Programming.Theory and Practice of Logic Programming, 2007.
20. T.C. Son, E. Pontelli, and I. Elkabani. An Unfolding-Based Semantics for Logic Program-

ming with Aggregates.Computing Research Repository, 2006. cs.SE/0605038.
21. T.C. Son, E. Pontelli, and P.H. Tu. Answer Sets for Logic Programs with Arbitrary Abstract

Constraint Atoms.Journal of Artificial Intelligence Research, 2007. Accepted.
22. M.H. van Emden and R.A. Kowalski. The Semantics of Predicate Logic as a Programming

Language.Journal of the ACM, 23(4), 733–742, 1976.

