
Planning with Sensing Actions and Incomplete
Information using Logic Programming

Tran Cao Son‡ Phan Huy Tu‡ Chitta Baral†

‡ Department of Computer Science
New Mexico State University
PO Box 30001, MSC CS
Las Cruces, NM 88003, USA
{tson,tphan }@cs.nmsu.edu

† Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287, USA
chitta@asu.edu

Abstract. We present a logic programming based conditional planner that is ca-
pable of generating both conditional plans and conformant plans in the presence
of sensing actions and incomplete information. We prove the correctness of our
implementation and show that our planner is complete with respect to the 0-
approximation of sensing actions and the class of conditional plans considered
in this paper. Finally, we present preliminary experimental results and discuss
further enhancements to the program.

1 Introduction
Classical planning assumes that agents have complete information about the world. For
this reason, it is often labeled as unrealistic because agents operating in real-world envi-
ronment often do not have complete information about their environment. Two impor-
tant questions arise when one wants to remove this assumption:how to reason about the
knowledge of agentsandwhat is a planin the presence of incomplete information. The
first question led to the development of several approaches to reasoning about effects of
sensing (or knowledge producing) actions [11, 15, 16, 22, 24, 26]. The second question
led to the notions ofconditional plansandconformant planswhich lead to the goal
regardless of the value of the unknown fluents in the initial situation. The former con-
tains sensing actions and conditionals such as the well-known “if-then-else” construct
and the latter is a sequence of actions. In this paper, we refer to conditional planning
and conformant planning as approaches to planning that generate conditional plans and
conformant plans, respectively.

Approaches to conditional planning can be characterized by the techniques em-
ployed in its search process or by the action formalism that supports its reasoning
process. Most of the early conditional planners implement a partial-order planning al-
gorithm [9, 10, 20, 19, 27] and use Situation Calculus or STRIPS as the main vehicle
in representing and reasoning about actions and their effects. Among the recent ones,

CoPlaS [14] is a regression planner implemented in Sicstus Prolog that uses a high-level
action description language to represent and reason about effects of actions, including
sensing actions; and FLUX [25], implemented in constraint logic programming, is ca-
pable of generating and verifying conditional plans. A conditional planner based on a
QBF theorem prover was recently developed [21].

Conformant planning [2, 3, 6, 7, 23] is another approach to deal with incomplete in-
formation. In conformant planning, a solution is a sequence of actions that achieves
the goal from every possible initial situation. Recent experimental result shows [3] that
conformant planning based on model checking is computationally competitive com-
pared to other approaches to conformant planning such as those based on heuristic
search algorithms [2] or those that extends Graphplan [23]. A detailed comparison in
[7] demonstrates that a logic programming based conformant planner is competitive
with other approaches to planning.

The most important difference between conditional planners and conformant plan-
ners lies in the fact that conditional planners can deal with sensing actions and confor-
mant planners cannot. Consequently, there are planning problems solvable by condi-
tional planners but not by conformant planners. Following is one of such examples.

Example 1 (Defusing A Bomb).(From [24]) An agent needs to defuse a bomb. He was
given a procedure for completing the job, which works when a special lock on the
bomb is in theoff position (i.e.,locked). Applying the procedure when the lock is in
theunlocked position will cause the bomb to explode and kill the agent. The agent can
determine if the lock is locked or not bylooking at the lock. He can alsoturn the lock
from thelocked position to theunlocked position and vice-versa. He can only execute
the above actions if the bomb has not exploded. Initially, the agent knows that the bomb
is not defused and is not exploded. His goal is to safely defuse the bomb.

Intuitively, the agent can safely defuse the bomb by(a) looking at the lock to deter-
mine the position of the lock. He will then know exactly whether the lock is locked or
not. If the lock is not locked, he(b1) turns the lock to the locked position and applies
the procedure to defuse the the bomb; otherwise, he simply needs to(b2) apply the
procedure to defuse the bomb.

Observe that no sequence of actions can achieve the goal from every possible initial
situation, i.e.,there exists no conformant planthat can help the agent to achieve his
goal.

In this paper, we investigate the use ofanswer set programmingin conditional planning.
Given a planning problem with sensing actions and incomplete information about the
initial situation, we translate it into a logic program whose answer sets – which can be
computed using the well-known answer set solverssmodels[17] ordlv [5] – correspond
to conditional plans satisfying the goal. We discuss the advantages and disadvantages of
the approach and provide the results of our initial experiments. We will review the basics
of an action language with sensing actions in the next section. Afterward, we present
the main result of this paper, a logic programming encoding of a conditional planner
with sensing actions. We then discuss the properties of our logic program. Finally, we
discuss some desirable extensions of the current work.

2 Preliminaries
In this paper, we use a variation of the languageAK with its 0-approximation [24]
as the representation language for our planner. We adopt the 0-approximation ofAK

as the complexity of the planning problem with respect to this approximation (under
limited sensing) isNP-complete [1] which is lower than the complexity of the problem
with respect to theAK semantics. This allows us to use different systems capable of
computing answer sets of logic programs in our implementation.AK extends the high-
level action description languageA of Gelfond and Lifschitz [8] by introducing two
new types of propositions, theknowledge producing propositionand theexecutability
condition. In this paper, we will also allowstatic causal lawsand sensing actions which
determine the truth value of more than one fluent with the restriction that the action
theories are deterministic (precise definition follows shortly). We now review the basics
of the languageAK and discuss the notion of a conditional plan.

2.1 Action LanguageAK – Syntax
Propositions inAK are of the following form:

causes(a, f, {p1, . . . , pn}) (1)

executable(a, {p1, . . . , pn}) (2)

if(f, {p1, . . . , pn}) (3)

determines(a, {l1, . . . , lm}) (4)

initially (f) (5)

wheref andpi’s are fluent literals (afluent literalis either a fluentg or its negation¬g),
eachli is a fluent literal, anda is an action.

(1) represents the conditional effect of actiona while (2) states an executability
condition ofa. A static causal lawis of the form (3) and states that wheneverp1, . . . , pn

hold thenf must hold. A proposition of the form (4) states that the value of fluent literals
li’s, calledsensed-fluent literals, will be known aftera is executed. We will require that
the li’s are mutually exclusive, i.e., in every state of the real world at most one of the
li’s holds. Propositions of the form (5), also calledv-propositions, are used to describe
the initial situation. An action theory is given by a pair(D, I) whereD consists of
propositions of the form (1)-(4) andI consists of propositions of the form (5).D andI
will be called thedomain descriptionandinitial situation, respectively.

Actions occurring in (1) and (4) are called non-sensing actions and sensing actions,
respectively. In this paper, we assume that the set of sensing actions and the set of non-
sensing actions are disjoint. We will also assume that each sensing action occurs in only
one proposition of the form (4).

Example 2.The domain in Example 1 can be represented by the following action the-
ory:

D1 =





causes(disarm, exploded, {¬locked}) if(dead, {exploded})
causes(disarm, disarmed, {locked}) executable(disarm, {¬exploded,¬dead})
causes(turn,¬locked, {locked}) executable(turn, {¬exploded,¬dead})
causes(turn, locked, {¬locked})
determines(look, {locked,¬locked}) executable(look, {¬exploded,¬dead})





I1 =
{

initially (¬dead) initially (¬disarmed) initially (¬exploded)
}

2.2 Conditional Plan
In the presence of incomplete information and sensing actions, we need to extend the
notion of a plan from a sequence of actions so as to allow conditional statements such as
if-then-else, while-do, or case-endcase (see e.g. [12, 15, 24]). Notice that an if-then-else
statement can be replaced by a case-endcase statement. Moreover, if we are interested
only in plans with bounded length, then whatever can be represented by a while-do
statement with a non-empty body could be represented by a set of case-endcase state-
ments. Therefore, in this paper, we limit ourselves to conditional plans with only the
case-endcase construct. Formally, we consider conditional plans defined as follows.

Definition 1 (Conditional Plan).

1. A sequence of non-sensing actionsa1; . . . ; ak (k ≥ 0), is a conditional plan.
2. If a1; . . . ; ak−1 is a non-sensing action sequence,ak is a sensing action that deter-

minesf1, . . . , fn, andc1, . . . , cn are conditional plans, then
a1; . . . ; ak−1; ak; case({fi → ci}n

i=1) is a conditional plan.
3. Nothing else is a conditional plan.

To execute a plana1; . . . ; ak−1; ak; case({fi → ci}n
i=1), the agent first executes

a1, . . . ak. It then evaluatesfi with respect to its knowledge. If it knows that one of the
fi is true it executesci. If none of thefi’s is true, then the plan fails and the execution
of the conditional plan which contains this conditional plan also fails. It is easy to see
that the following conditional plan achieves the goal of the agent in Example 1:

c1 = look; case({locked → disarm, ¬locked → turn; disarm}).
2.3 0-Approximation of Semantics ofAK

The 0-approximation of an action theory(D, I) is defined by a transition functionΦ
that maps pairs of states and actions into sets of states. Ana-stateis a pair〈T, F 〉,
whereT andF are disjoint sets of fluents. Intuitively,T (resp.F) is the set of fluents
which are known to be true (resp. known to be false) in〈T, F 〉.

Given a fluentf and an a-stateσ = 〈T, F 〉, we say that a fluentf is true(resp.false)
in σ if f ∈ T (resp.f ∈ F); andf is known(resp.unknown) in σ if f ∈ T ∪ F (resp.
f 6∈ T ∪ F). A positive (resp. negative) fluent literalf is said tohold in σ if f ∈ T
(resp.f̄ ∈ F). A set of fluent literalsX holds inσ if eachl ∈ X holds inσ. An a-state
is completeif for every fluentf of the theory,f ∈ T ∪ F ; it is incomplete otherwise.
An a-stateσ satisfies if(f, {f1, . . . , fn}) if it is the case that if{f1, . . . , fn} holds inσ
thenf holds inσ. The truth value of fluent formula inσ is defined in the standard way,
e.g.,f ∧ g (resp.f ∨ g) holds inσ iff f holds inσ and (resp. or)g holds inσ. A state
in (D, I) is an a-state that satisfies all static causal laws of the theory.

A stateσ = 〈T, F 〉 is said to extend an a-stateσ′ = 〈T ′, F ′〉, denoted byσ′ ¹ σ, iff
T ′ ⊆ T andF ′ ⊆ F ; in addition, ifT ′ 6= T or F ′ 6= F , we say thatσ properly extends
σ′ and writeσ′ ≺ σ. If σ′ ¹ σ, and there exists no stateσ+ such thatσ′ ¹ σ+ ≺ σ,
we say thatσ minimally extendsσ′. For an a-stateσ, by ClD(σ) we denote the set
of states ofD that minimally extendsσ. Notice thatClD(σ) might be empty. It is
also possible thatClD(σ) contains more than one elements. In this case, we say that
D is non-deterministic. Since our main goal in this paper is to generate plans in the
presence of sensing actions and incomplete knowledge about the initial situation, we

will assume that action theories in consideration are deterministic, i.e., given an a-state
σ, |ClD(σ)| ≤ 1.

Given an actiona and a stateσ, Φ(a, σ) denotes the set of states that may be reached
after the execution ofa in σ. An actiona is executable in a stateσ if D contains a
proposition executable(a, {p1, . . . , pn}) andpi’s hold inσ. Executing a sensing-action
a in a state will cause one of the sensed-fluent literals that occur in the proposition of the
form (4) containinga to be true. Executing a non-sensing actiona in a stateσ will cause
some fluents to become true, some become false,some may become true, andsome may
become false1. These four sets of fluents are denoted bye+

a (σ), e−a (σ), F+
a (σ), and

F−a (σ), respectively. The result functionRes of D is defined byRes(a, 〈T, F 〉) =
〈(T ∪ e+

a) \ F−a , (F ∪ e−a) \ F+
a 〉.

Definition 2 (Transition Function). Given a domain descriptionD, and actiona and
a stateσ = 〈T, F 〉, Φ(a, σ) is defined as follows:

– If a is not executable inσ thenΦ(a, σ) = {⊥}, where⊥ denotes an undefined state.
– If a is executable inσ anda is a non-sensing action then

Φ(a, σ) =
{{⊥} if ClD(Res(a, σ)) = ∅

ClD(Res(a, σ)) otherwise

– If a is executable inσ anda is a sensing action that occurs in a proposition of the
form determines(a, {l1, . . . , lk}) then

Φ(a, σ) =





{⊥} if ClD(〈T, F 〉 ∪ {li}) = ∅ for somei⋃k
i=1 ClD(〈T, F 〉 ∪ {li}) if ClD(〈T, F 〉 ∪ {li}) 6= ∅ for all i′s

and none of thel′js is known inσ
{σ} otherwise

where, for a fluentl, 〈T, F 〉∪{l} = 〈T ∪{l}, F 〉 and〈T, F 〉∪{¬l} = 〈T, F ∪{l}〉.
We say that a domain descriptionD is consistentif for every pair of a stateσ and an
actiona, if a is executable inσ then⊥ 6∈ Φ(a, σ). The extended transition function̂Φ
which maps pairs of conditional plans and states into sets of states is defined next.

Definition 3 (Extended Transition Function).Given a stateσ and a conditional plan
c, Φ̂(c, σ) is defined as follows:

– If c = [] thenΦ̂(c, σ) = {σ},
– If c = a1; . . . ; ak, wherek > 0 andai’s are non-sensing actions then

Φ̂(c, σ) =
⋃

σ′∈Φ(a1,σ) Φ̂([a2; . . . ; ak], σ′),
– If c = a; case({fi → ci}n

i=1) anda is a sensing action then
Φ̂(c, σ) =

⋃
σ′∈Φ(a,σ) Ê(case({fi → ci}n

i=1), σ
′) where

Ê(case({fi → ci}n
i=1), γ) =

{
Φ̂(ci, γ) if fi holds inγ
{⊥} if none of thefi holds inγ,

1 Space limitation does not allow us to include a detailed review of the 0-approximation ofAK

(see [24]).

– If c = a1; . . . , ak; case({fi → ci}n
i=1) andk > 1 then

Φ̂(c, σ) =
⋃

σ′∈Φ̂([a1;...,ak−1],σ) Φ̂([ak; case({fi → ci}n
i=1)], σ

′),
– For every conditional planc, Φ̂(c,⊥) = {⊥}.

For an action theory(D, I), let T0 = {f | f is a fluent, initially (f) ∈ I} andF0 =
{f | f is a fluent, initially (¬f) ∈ I}. A stateσ is called aninitial stateof (D, I) if
σ ∈ ClD(〈T0, F0〉). A model is a pair(σ0, Φ) whereσ0 is an initial state andΦ is the
transition function of(D, I). The entailment relation of(D, I) is defined next.

Definition 4. Let (D, I) be a consistent action theory,c be a conditional plan, andφ
be a fluent formula. We sayD |=I φ after c if for every model(σ0, Φ) of (D, I) it
holds that⊥ 6∈ Φ̂(c, σ0) andφ holds in every stateσ belonging toΦ̂(c, σ0).

Example 3.For the action theory(D1, I1) in Example 2, we have that
D1 |=I1 ¬dead ∧ ¬exploded ∧ disarmed after c1

wherec1 = look; case({locked → disarm, ¬locked → turn; disarm}).

3 A Logic Programming Based Conditional Planner
We now present a logic programming based conditional planner. Given a planning prob-
lemP = (D, I,G), where(D, I) is an action theory andG is a conjunction of fluent
literals, representing the goal, we will translateP into a logic programπ(P) whose an-
swer sets represent solutions toP. Our intuition behind this task rests on an observation
that each conditional planc (Definition 1) corresponds to a labeled plan treeTc (Figure
1) defined as follows.

qnil

T[]

qa

Ta

q
q
b

a

Ta;b

q
q q¡

¡
@

@

q

f ¬f

c d

a

b

T1

q
q q

q q q q

¡
¡

@
@

¢
¢

A
A

¢
¢

A
A

f ¬f

g ¬g h ¬h

c1 c2 d1 d2

a

b1 b2

T2

¡
¡

@
@

q
q qq

q

a

b

c
d

a1

rg
y

T3

T2=a;case({f→b1;case({g→c1,¬g→c2}),¬f→b2;case({h→d1,¬h→d2}))
T1=a;b;case({f→c,¬f→d}); T3=a;case({r→d;b,g→c,y→a1})

Fig. 1. Sample plan trees

• For c = a1; . . . ; ak, whereai’s are non-sensing actions,Tc is a tree withk nodes
labeleda1, . . . ,ak, respectively, andai+1 is the child ofai for i = 1, . . . , k − 1. If
c = [], Tc is the tree with only one node, whose label isnil (the empty action). The
label for each link ofTc is empty string.

• For c = a1; . . . ; ak; case({f1 → ci}n
i=1), whereak is a sensing action that deter-

minesfi’s and otherai’s are non-sensing actions,Tc is a tree whose root has the
labela1, ai has a child with the labelai+1 for i = 1, . . . , k − 1, ak hasn children,
theith child (from left to right) is the root ofTci and the label of the link isfi. The
label of the link betweenai andai+1 (1 ≤ i ≤ k − 1) is empty.

For a conditional planc, let w be the number of leaves ofTc andh be the number of
nodes along a longest path between the root and nodes ofTc. w andh will be called
the width andheightof Tc respectively. Let us denote the leaves ofTc by l1, . . . , lw.
We map each nodek of Tc to a pair of integersnk = (tk,pk), where1 ≤ tk ≤ h and
1 ≤ pk ≤ w, in the following way:

– For thei-th leaf li of Tc, nli = (tli , i) wheretli is the number of nodes along the
path fromli to the root ofTc.

– For each interior nodek of Tc with childrenk1, . . . , kr wherenkj
= (tkj

, pkj
),

nk = (min{tk1 , . . . , tkr
}, min{pk1 , . . . , pkr

}).
From the construction ofTc, it is easy to see that, independent of how we number the
leaves ofTc, we have that

1. If k1, . . . , kr are the children ofk with nkj
= (tkj

, pkj
), thentki

= tkj
for every

pair of i, j, 1 ≤ i, j ≤ r.
2. The root ofTc is always mapped to the pair(1, 1).

One of the possible mappings for the trees in Figure 1 is given in Figure 2.

q(1,1)

T[]

q(1,1)

Ta

q
q

(2,1)

(1,1)

Ta;b

q
q q¡

¡
@

@

q

f ¬f

(3,1) (3,2)

(1,1)

(2,1)

T1

q
q q

q q q q

¡
¡

@
@

¢
¢

A
A

¢
¢

A
A

f ¬f

g ¬g h ¬h

(3,3) (3,4) (3,1) (3,2)

(1,1)

(2,3) (2,1)

T2

¡
¡

@
@

q
q qq

q

(1,1)

(2,3)

(1,1)
(1,3)

(1,2)

rg
y

T3

Fig. 2. A possible mapping for the trees in Figure 1

The above observation suggests us to add one more parameter to encode condi-
tional plans. In our representation, besides the maximal length of the plan (the height of
the tree), denoted bylength, we have another parameter denoting its maximal width,
denoted bylevel. A plan is encoded on the gridlength × level. Action occurrences
will happen at the nodes of the grid and links connecting different paths representing
case statements. The root of the tree will be at the node(1, 1). We use variables of the
typetime andpath, respectively, to denote the position of a node relatively to the root.
Instead of the predicateholds(F, T) (see e.g. [4, 13]) that the fluent literalF holds at
the timeT , we useh(F, T, P) (unknown(F, T, P)) to represent the fact thatF is true
(unknown) at the node(T, P) (the time momentT , on the path numberP).

We now describe the programπ(P). Due to the fact that we use thesmodelssystem
in our experiment,π(P) contains some rules that are specific tosmodelssuch as the
choice rule. In describing the rules ofπ(P), the following convention is used:T de-
notes a variable of the sorttime, P, P1, . . . denote variables of the sortpath, F, G are
variables denotingfluent literals, S, S1, . . . denote variables representing sensed-fluent
literals, andA,B are variables representingaction. We will also writeF̄ to denote the
contrary ofF . The main predicates ofπ(P) are listed below:

– h(L, T, P) is true if literalL holds at(T, P),
– possible(A, T, P) is true if actionA is executable at(T, P),
– occ(A, T, P) is true if actionA occurs at(T, P),
– used(T, P) is true if starting fromT , the pathP is used in constructing the plan,
– ph(L, T, P) is true if literalL possibly holds at(T, P), and
– br(S, T, P, P1) is true if node(T + 1, P1) is a child of(T, P) whereS (a sensed-

fluent literal) holds at(T + 1, P1).

The main rules, divided into different groups, are given next. Notice that they are just
shown in an abstract form in which atoms indicating the sort of variables, such as
time, path, literal, andsense, that occur in the rule are omitted. For example, if a
rule contains a variableT of sorttime, it should be understood implicitly that the body
of the rule also contains the atomtime(T). Similarly, if F̄ , whereF is a literal, appears
in the rule, then its body also contains the two atomsliteral(F) andcontrary(F, F̄)

– Rules encoding the initial situation.If initially (f) ∈ I, π(P) contains the fact

h(f, 1, 1) ← (6)

This says that ifinitially (f) ∈ I thenf must hold at(1, 1), the root of our tree2.
– Rule for reasoning about action’s executability.For each proposition of the form

(2), π(P) contains the rule

possible(a, T, P) ← h(p1, T, P), . . . , h(pn, T, P). (7)

– Rule for reasoning with static causal laws.For each proposition of the form (3),
π(P) contains the rule

h(f, T, P) ← h(p1, T, P), . . . , h(pn, T, P). (8)

– Rules for reasoning about the effects of non-sensing actions.For each proposition
of the form (1), we add toπ(P) the following rules:

h(f, T+1, P) ← occ(a, T, P), possible(a, T, P), h(p1, T, P), . . . , h(pn, T, P). (9)

ab(f, T, P) ← occ(a, T, P), possible(a, T, P), ph(p1, T, P), . . . , ph(pn, T, P).(10)

h(F, T+1, P) ← h(F, T, P), not h(F, T+1, P), not ab(F, T, P). (11)

ph(F, T, P) ← not h(F , T, P). (12)

Here,a is a non-sensing action. It changes the world according to theRes function.
The first rule encodes the effects ofa containing ine+

a (σ) ande−a (σ) while the
second rule indicates that the value off could potentially be changed by the action
a. This rule, when used in conjunction with the inertial rule (11), will have the
effect of removing what will possibly become falseF−a (σ) (or trueF+

a (σ)) from
σ, the current state.

– Rules for reasoning about the effects of sensing actions.For each proposition
determines(a, {l1, . . . , ln}) in D, π(P) contains the set of facts{sense(li) | i =
1, . . . , n} and the following rules:

br(l1, T, P, P) ← occ(a, T, P), possible(a, T, P). (13)

1{br(li, T, P, P1):new br(P, P1)}1 ← occ(a, T, P), possible(a, T, P). (14)

(for i = 2, . . . , n)
← occ(a, T, P), known(li, T, P). (15)

2 Recall that the root of the tree always has the label(1, 1).

The first two rules, in conjunction with the rules (20)–(22), state that when a sens-
ing actiona that senses the fluent literalsli’s occurs at the node(T, P), n − 1
new branches will be created and on each of the branch, one and only one of the
sensed-fluent literal will become true. The last rule is a constraint that preventsa
from occurring if one of theli’s is already known. We note that the rule (14) has a
different syntax than normal logic programming rule. They are introduced in [18]
to ease the programming withsmodels. The next rules describe the effect of the
execution of a sensing actions.

new br(P, P1) ← P < P1. (16)

used(T + 1, P1) ← br(S, T, P, P1). (17)

h(S, T+1, P1) ← br(S, T, P, P1). (18)

h(G,T+1, P1) ← br(S, T, P, P1), h(G,T, P). (19)

← S 6= S1, br(S, T, P1, P2), br(S1, T, P3, P2). (20)

← P3 6= P1, br(S1, T, P1, P2), br(S2, T, P3, P2). (21)

← T > 0, P1 6= P2, br(S, T, P1, P2), used(T, P2). (22)

Rule (16) and the last three constraints make sure that none of the already in-use
branches is selected when a new branch is created. The next two rules record that
the pathP is used starting from(T +1, P) and thatS will be true at(T +1, P) when
the literalbr(S, T, P1, P) is true. Rule (19) plays the role of the inertial rule with
respect to sensing actions. It makes sure whatever holds at(T, P) will continue to
hold at(T+1, P).

– Rules for reasoning about what is known/unknown.

unknown(F, T, P) ← not known(F, T, P). (23)

known(F, T, P) ← h(F, T, P). (24)

known(F, T, P) ← h(F , T, P). (25)

Rules of this group are rather standard. They say that if a fluent is true (or false) at
(T, P) then it is known at(T, P). Otherwise, it is unknown.

– Rules for generating action occurrences.

1{occ(A, T, P) : action(A)}1 ← used(T, P), not sgoal(T, P), (26)

← occ(A, T, P), not possible(A, T, P). (27)

The first rule is a choice rule that makes sure that only one action is executed at a
node of the tree where the goal has not been achieved. The next rule requires that
an action is executed only when it is executable.

– Auxiliary Rules.

literal(G) ← fluent(G). (28)

literal(¬G) ← fluent(G). (29)

contrary(F,¬F) ← fluent(F). (30)

contrary(¬F, F) ← fluent(F). (31)

used(1, 1) ← (32)

used(T+1, P) ← used(T, P). (33)

sub goal(T, P) ← not not sub goal(T, P). (34)

not sub goal(T, P) ← finally(F), not h(F, T, P). (35)

← used(length, P), not sub goal(length, P). (36)

The first two rules define what is a fluent literal. The next two rules specify thatF
and¬F are contrary literals. Rules (32) and (33) mark what nodes are used. Finally,
rules (35) and (36) represent the fact that the goal must be achieved at every path
of the plan-tree.

4 Properties ofπ(P)
In previous answer set based planners [4, 6, 7, 13], reconstructing a plan from an an-
swer set of the program encoding the planning problem is simple: we only need to
collect the action occurrences belonging to the model, order them by the time they
occur, and we have a plan, i.e., if the answer set containsocc(a1, 1), . . ., occ(an, n)
then the plan isa1, . . . , an. For π(P), the reconstruction process is not that simple
because each answer set ofπ(P) represents a conditional plan which may contain case-
statements. These conditionals, as we have discussed before, are represented by atoms
of the formbr(F, T, P, P1). Thus we have one more dimension (the path number) to
deal with and we also need to consider the occurrences of branching literals of the form
br(F, T, P, P1). Let P = (D, I,G) be a planning problem andS be an answer set of
π(P), andi, k be integers. We define:

pk
i (S) = ai,k; . . . ; ai+l−1,k; ai+l,k; case({lj → p

kj

i+l+1(S)}t
j=1)

where0 ≤ l, ai,k, . . . , ai+l−1,k are non-sensing actions,ai+l,k is a sensing action with
the proposition determines(ai+1,k, {l1, . . . , lt}) in D, S contains the action occur-
rencesocc(aj,k, t, k) for j = i, . . . , i + l and the branching literalsbr(lj , i + l, k, kj)
for j = 1, . . . , t; pk

i (S) = [] if S does not contain some atoms of the formocc(a, i1, k)
for i1 ≥ i. Intuitively, pk

i (S) is the conditional plan with the root at(i, k)
We will subsequently prove thatp1

1(S) is a solution to the planning problemP. First,
we prove thatπ(P) correctly implements the transition functionΦ (Lemma 1) and no
branching is made when non-sensing actions occur whereas branching is required when
sensing actions occur. Assume thatS is an answer set ofπ(P), we definesi,k=〈T, F 〉
whereT={f | f is a fluent,h(f, i, k) ∈ S} andF={f | f is a fluent,h(¬f, i, k) ∈ S}.
Lemma 1. Let S be an answer set ofπ(P) whose input parameters arelength and
level, i, k be integers, andocc(a, i, k) ∈ S. Then,

1. if a is a non-sensing action thena is executable insi,k, si+1,k ∈ Φ(a, si,k), and
br(f, i, k, k1) 6∈ S for every pair of a fluentf and an integerk1; and

2. if a is a sensing action with the propositiondetermines(a, {l1, . . . , lm}) in D,
thena is executable insi,k and for everyj, 1 ≤ j ≤ m,

- unknown(lj , i, k) ∈ S, and
- if j > 1, there exists some integerkj ≤ level such thatused(i, kj) 6∈ S, and

br(lj , i, k, kj) ∈ S, andΦ(a, si,k) = {si+1,k} ∪ {si+1,k2 , . . . , si+1,km}.

With the help of the above lemma we can prove the following theorem.

Theorem 1. Let P = (D, I, G) be a planning problem andS be an answer set of
π(P). Thenp1

1(S) is a conditional plan satisfying thatD |=I G after p1
1(S).

Theorem 1 shows the soundness ofπ(P). The next theorem shows thatπ(P) is com-
plete in the sense that it can generate all conditional plans which are solutions toP.

Theorem 2. Let P = (D, I, G) be a planning problem andp be a conditional plan
restricted to the syntax defined in Definition 1. Ifp is a solution toP then there exists
an answer setS of π(P) such thatp = p1

1(S).

Remark 1.(π(P) as a conformant planner). It is worth noticing that we can view
π(P) as a conformant planner. To see why, let us consider an answer setS of π(P) and
p1
1(S). Theorem 1 implies thatp1

1(S) achieves the goal ofP from every possible initial
state of the domain. From the construction ofp1

1(S), we know that ifS does not contain
a branching literal thenp1

1(S) is a sequence of actions, and hence, a conformant plan.
Furthermore, the definition ofπ(P) implies thatS contains a branching literal only if
level > 1. Thus, if we setlevel = 1 , π(P) is indeed a conformant planner.
Remark 2.(Size ofπ(P)). It is obvious that we can characterize the size of an action the-
ory by the number of fluents, actions, propositions, literals in the goal, and the number
of sensed-fluent literals occurring in propositions of the form (4). Letn be the maximal
number among these numbers. It is easy to see that the size ofπ(P) is polynomial inn
since the size of each group of rules is polynomial inn.
Remark 3.Because the 0-Approximation is incomplete w.r.t. to the fullAK semantics
[24], there are situations in whichP has solutions butπ(P) cannot find a solution. E.g.,
for P=(D, I,G) with D={ causes(a, f, {g}), causes(a, f, {¬g})}, I=∅, andG=f ,
p=a is a plan achievesf from every initial state; this solution cannot be found byπ(P).

5 Experiments and Discussions
We have tested our program with a number of domains from the literature. We concen-
trate on the generation of conditional plans in domainswith sensing actions. In partic-
ular, we compareπ(P) with the system SGP, one of a few planners that are capable of
generating both conditional plans and conformant plans in the presence of sensing ac-
tions and incomplete information available, fromhttp://www.cs.washington.
edu/ai/sgp.html in the bomb in the toilet with sensing actions, the cassandra,
and theillness domains. To facilitate the testing, we develop a Sicstus program that
translates a planning problemP = (D, I, G) – specified as a Sicstus program – into
the programπ(P) and then use thesmodelsto compute one solution. All experiments
were run on a Pentium III, Fujitsu FMV-BIBLO NB9/1000L laptop, 1GHz with 256 Mb
RAM and 40 GB Harddisk. The operating environment is GNU/Linux 2.4 20-8.lparse
version 1.0.13 andsmodelsversion 2.27 are used in our computation. LispWorks 4.2.0
is used in running the SGP system. The source code of the translator and the problem in
AK ontologies are available athttp://www.cs.nmsu.edu/˜tson/ASPlan/
Sensing . We detailed the results in Table 1.

For each problem, we record the computation time needed to find the first solution in
both systems in three tries. The average time is also reported. Columns with the heading

‘+’ under the headerπ(P) record the total time (smodelsand lparse) needed to find
one answer usingπ(P). The other columns record the time reported bysmodels. As it
can be seen,π(P) performs better than SGP in some domains and does not do as well
in some other domains. We observe that in many domains, where SGP performs better,
the initial state was specified using the PDDL ‘oneOf’ construct (i.e., the initial state is
one of the possible given states). This construct provides SGP with extra information. In
our encoding, we omit this information whenever the set of sensing actions is sufficient
for the planner to acquire it; otherwise, we add an extra sensing action to allow our
planner to determine the initial state. When we do so,π(P) does better than SGP (e.g.,
the problem ‘a6-prob’). We also observe that in some problems, where SGP performs
better, the search space is rather huge with a lot of repetitions of an action. This can
be seen in the problems of the ‘Bomb’ domain. In this problems, there are several
alternatives of the sensing action that detects metal in a package. SGP consistently
returns the same solution whereasπ(P) returns different solutions in different runs.

Domains/ SGP π(P)

Problem 1st 2nd 3rd Avg. 1st 2nd 3rd Avg.
+ S + S + S + S

Cassandra
a1-prob 140 170 140 150 387 190 358 210 390 190 378 197
a2-prob 40 40 40 40 811 500 810 510 809 460 810 490
a3-prob 50 50 40 47 282 110 284 110 282 130 283 117
a4-prob 300 300 300 300 704 470 705 480 705 490 705 480
a5-prob 50 30 40 40 185 80 219 70 185 80 196 77
a6-prob NA 3 NA NA NA 7,9906,8607,9776,8507,9716,9307,9796,880
a7-prob 120 120 120 120 238 80 239 90 239 80 239 83

Bomb
bt-1sa 1,790 1,630 1,660 1,6934,4913,6604,4203,5104,7023,6404,5383,603
bt-2sa 1,760 1,760 1,710 1,7435,3864,2205,3494,0705,2854,0805,3404,123
bt-3sa 1,940 1,910 1,900 1,9175,4043,9505,3494,1405,3694,0705,3744,053
bt-4sa 2,130 2,150 2,080 2,1207,3875,6507,2865,5307,3355,5307,3365,570

Sick
sick-3-1 20 20 10 17 437 70 459 50 449 60 448 60
sick-3-2 130 130 160 140 810 320 812 320 791 300 804 313
sick-3-3 500 480 550 510 2,7401,6402,7351,7902,7051,7602,7271,730
sick-3-4 2,630 2,610 2,650 2,6303,6322,3903,6522,4003,6332,4603,6392,417
sick-3-5 17,07017,37017,69017,3773,7492,5103,8102,6203,6132,7503,7242,627

Table 1.Comparison with SGP (Time in milliseconds)

Final Remarks. We present a sound and complete logic programming encoding of the
planning problem with sensing actions in the presence of incomplete information. Our
encoding shows that model-based approach to planning can be extended to planning
with sensing actions and incomplete information. This distinguishes our planner from
other model-based planners that do not deal with sensing actions [2, 3, 6, 7, 23] . We
compare our planner with the system SGP and obtain encouraging results. In the future,
we would also like to investigate methods such as use of domain knowledge to speed

3 LispWorks stops with the error “Memory limit exceeded”.

up the planning process. Furthermore, due to the fact that our planner can be viewed
as a conformant planer, we would like to test our planner against other model-based
conformant planners as well.

Acknowledgment.We would like to thank Michael Gelfond for his valuable comments
on an earlier draft of this paper. We would also like to thank the anonymous reviewers of
the paper for their constructive comments which help us to improve the paper in several
ways. The work is partially supported by NSF grants EIA-0130887 and EIA-0220590.

References
1. C. Baral, V. Kreinovich, and R. Trejo. Planning and approximate planning in presence of

incompleteness. InIJCAI, pages 948–953, 1999.
2. B. Bonet and H. Geffner. Planning with incomplete information as heuristic search in belief

space. InAIPS, 1998.
3. A. Cimatti and M. Roveri. Conformant planning via model checking. InECP, 21–34, 1999.
4. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-monotonic

logic programs. InProceedings of European conference on Planning, pages 169–181, 1997.
5. T. Eiter et al. The KR System dlv: Progress Report, Comparisons and Benchmarks.KR’98.
6. T. Eiter et al. Planning under incomplete information. In CL’2000.
7. T. Eiter et al. A Logic Programming Approach to Knowledge State Planning, II: The DLVK

System. Technical Report, TU Wien, 2003.
8. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.Journal

of Logic Programming, 17(2,3,4):301–323, 1993.
9. K. Golden. Leap Before You Look: Information Gathering in the PUCCINI planner. InProc.

of the 4th Int. Conf. on Artificial Intelligence Planning and Scheduling Systems, 1998.
10. K. Golden, O. Etzioni, and D. Weld. Planning with execution and incomplete informations.

Technical report, University of Washington, TR96-01-09, February 1996.
11. K. Golden and D. Weld. Representing sensing actions: the middle ground revisited. InKR

96, pages 174–185, 1996.
12. H. Levesque. What is planning in the presence of sensing? InAAAI, 1139–1146, 1996.
13. V. Lifschitz. Answer set planning. InICLP, 23–37, 1999.
14. J. Lobo. COPLAS: a COnditional PLAnner with Sensing actions. FS-98-02, AAAI, 1998.
15. J. Lobo, S. Taylor, and G. Mendez. Adding knowledge to the action description languageA.

In AAAI 97, pages 454–459, 1997.
16. R. Moore. A formal theory of knowledge and action. In J. Hobbs and R. Moore, editors,

Formal theories of the commonsense world. Ablex, Norwood, NJ, 1985.
17. I. Niemel̈a and P. Simons. Smodels - an implementation of the stable model and well-founded

semantics for normal logic programs. InProc. ICLP & LPNMR, pages 420–429, 1997.
18. I. Niemel̈a, P. Simons, and T. Soininen. Stable model semantics for weight constraint rules.

In LPNMR, pages 315–332, 1999.
19. M.A. Peot and D.E. Smith. Conditional Nonlinear Planning. InAIPS, pages 189–197, 1992.
20. L. Pryor and G. Collins. Planning for contingencies: A decision-based approach,JAIR, 1996.
21. J. Rintanen. Constructing conditional plans by a theorem prover.JAIR, 10:323–352, 2000.
22. R. Scherl and H. Levesque. The frame problem and knowledge producing actions. AAAI’96.
23. D.E. Smith and D.S. Weld. Conformant Graphplan. InAAAI, pages 889–896, 1998.
24. T.C. Son and C. Baral. Formalizing sensing actions - a transition function based approach.

Artificial Intelligence, 125(1-2):19–91, January 2001.
25. M. Thielscher. Programming of Reasoning and Planning Agents with FLUX. KR’02, 2002.
26. M. Thielscher. Representing the knowledge of a robot. InKR’00, 109–120, 2000.
27. D. Weld, C. Anderson, and D. Smith. Extending Graphplan to handle uncertainty and sensing

actions. InProceedings of AAAI 98, 1998.

