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Abstract. We present a logic programming based conditional planner that is ca-

pable of generating both conditional plans and conformant plans in the presence
of sensing actions and incomplete information. We prove the correctness of our
implementation and show that our planner is complete with respect to the 0-

approximation of sensing actions and the class of conditional plans considered
in this paper. Finally, we present preliminary experimental results and discuss
further enhancements to the program.

1 Introduction

Classical planning assumes that agents have complete information about the world. For
this reason, it is often labeled as unrealistic because agents operating in real-world envi-
ronment often do not have complete information about their environment. Two impor-
tant questions arise when one wants to remove this assumiptiarto reason about the
knowledge of agenandwhat is a planin the presence of incomplete information. The

first question led to the development of several approaches to reasoning about effects of
sensing (or knowledge producing) actions [11, 15, 16, 22, 24, 26]. The second question
led to the notions otonditional plansand conformant plansvhich lead to the goal
regardless of the value of the unknown fluents in the initial situation. The former con-
tains sensing actions and conditionals such as the well-known “if-then-else” construct
and the latter is a sequence of actions. In this paper, we refer to conditional planning
and conformant planning as approaches to planning that generate conditional plans and
conformant plans, respectively.

Approaches to conditional planning can be characterized by the techniques em-
ployed in its search process or by the action formalism that supports its reasoning
process. Most of the early conditional planners implement a partial-order planning al-
gorithm [9, 10, 20, 19, 27] and use Situation Calculus or STRIPS as the main vehicle
in representing and reasoning about actions and their effects. Among the recent ones,



CoPlasS [14] is aregression planner implemented in Sicstus Prolog that uses a high-level
action description language to represent and reason about effects of actions, including
sensing actions; and FLUX [25], implemented in constraint logic programming, is ca-
pable of generating and verifying conditional plans. A conditional planner based on a
QBF theorem prover was recently developed [21].

Conformant planning [2, 3, 6, 7, 23] is another approach to deal with incomplete in-
formation. In conformant planning, a solution is a sequence of actions that achieves
the goal from every possible initial situation. Recent experimental result shows [3] that
conformant planning based on model checking is computationally competitive com-
pared to other approaches to conformant planning such as those based on heuristic
search algorithms [2] or those that extends Graphplan [23]. A detailed comparison in
[7] demonstrates that a logic programming based conformant planner is competitive
with other approaches to planning.

The most important difference between conditional planners and conformant plan-
ners lies in the fact that conditional planners can deal with sensing actions and confor-
mant planners cannot. Consequently, there are planning problems solvable by condi-
tional planners but not by conformant planners. Following is one of such examples.

Example 1 (Defusing A Bomk;rom [24]) An agent needs to defuse a bomb. He was
given a procedure for completing the job, which works when a special lock on the
bomb is in theoff position (i.e.,locked). Applying the procedure when the lock is in
theunlocked position will cause the bomb to explode and kill the agent. The agent can
determine if the lock is locked or not Byoking at the lock. He can alsturn the lock

from thelocked position to theunlocked position and vice-versa. He can only execute
the above actions if the bomb has not exploded. Initially, the agent knows that the bomb
is not defused and is not exploded. His goal is to safely defuse the bomb.

Intuitively, the agent can safely defuse the boml{dylooking at the lock to deter-
mine the position of the lock. He will then know exactly whether the lock is locked or
not. If the lock is not locked, hé1) turns the lock to the locked position and applies
the procedure to defuse the the bomb; otherwise, he simply nedt&)tapply the
procedure to defuse the bomb.

Observe that no sequence of actions can achieve the goal from every possible initial
situation, i.e.there exists no conformant plahat can help the agent to achieve his
goal.

In this paper, we investigate the useapfwer set programming conditional planning.

Given a planning problem with sensing actions and incomplete information about the
initial situation, we translate it into a logic program whose answer sets — which can be
computed using the well-known answer set solganedelg17] or dlv [5] — correspond

to conditional plans satisfying the goal. We discuss the advantages and disadvantages of
the approach and provide the results of our initial experiments. We will review the basics
of an action language with sensing actions in the next section. Afterward, we present
the main result of this paper, a logic programming encoding of a conditional planner
with sensing actions. We then discuss the properties of our logic program. Finally, we
discuss some desirable extensions of the current work.



2 Preliminaries

In this paper, we use a variation of the languade with its O-approximation [24]

as the representation language for our planner. We adopt the 0-approximatigpn of

as the complexity of the planning problem with respect to this approximation (under
limited sensing) isNP-complete [1] which is lower than the complexity of the problem
with respect to thedx semantics. This allows us to use different systems capable of
computing answer sets of logic programs in our implementatigp extends the high-
level action description languagé of Gelfond and Lifschitz [8] by introducing two
new types of propositions, tHeowledge producing propositicend theexecutability
condition In this paper, we will also allowtatic causal lawsind sensing actions which
determine the truth value of more than one fluent with the restriction that the action
theories are deterministic (precise definition follows shortly). We now review the basics
of the languaged - and discuss the notion of a conditional plan.

2.1 Action LanguageAx — Syntax
Propositions indx are of the following form:

causesa, f,{p1,...,on}) Q)
executabl€a, {p1,...,pn}) (2
if(fa{p17-~"pn}) (3)
determineqa, {l1,...,lm}) 4)
initially (f) (5)

wheref andp;’s are fluent literals (8uent literalis either a flueny or its negationg),
eachi; is a fluent literal, and is an action.

(1) represents the conditional effect of acti@rwhile (2) states an executability
condition ofa. A static causal laws of the form (3) and states that wheneyer. .., p,
hold thenf must hold. A proposition of the form (4) states that the value of fluent literals
l;'s, calledsensed-fluent literajsvill be known aftera is executed. We will require that
thel;’s are mutually exclusive, i.e., in every state of the real world at most one of the
l;'s holds. Propositions of the form (5), also callegropositionsare used to describe
the initial situation. An action theory is given by a p&b, I) where D consists of
propositions of the form (1)-(4) anficonsists of propositions of the form (8).and/
will be called thedomain descriptiomndinitial situation, respectively.

Actions occurring in (1) and (4) are called non-sensing actions and sensing actions,
respectively. In this paper, we assume that the set of sensing actions and the set of non-
sensing actions are disjoint. We will also assume that each sensing action occurs in only
one proposition of the form (4).

Example 2.The domain in Example 1 can be represented by the following action the-
ory:

causes$disarm, exploded, {-locked}) if (dead, {exploded})
causesdisarm, disarmed, {locked}) executablédisarm,{—exploded, ~dead})
D = causes$turn, —locked, {locked}) executabléturn, {—exploded, —dead})
causes$turn, locked, {—locked})
determineglook, {locked, —locked}) executablélook, {—exploded, ~dead})
L = { initially (—dead) initially (—disarmed) initially (mexploded) }



2.2 Conditional Plan

In the presence of incomplete information and sensing actions, we need to extend the
notion of a plan from a sequence of actions so as to allow conditional statements such as
if-then-else, while-do, or case-endcase (see e.g. [12, 15, 24]). Notice that an if-then-else
statement can be replaced by a case-endcase statement. Moreover, if we are interested
only in plans with bounded length, then whatever can be represented by a while-do
statement with a non-empty body could be represented by a set of case-endcase state-
ments. Therefore, in this paper, we limit ourselves to conditional plans with only the
case-endcase construct. Formally, we consider conditional plans defined as follows.

Definition 1 (Conditional Plan).

1. A sequence of non-sensing actians. . . ; ax (k > 0), is a conditional plan.

2. Ifaq;...;ar—1 iS@non-sensing action sequeneg,is a sensing action that deter-
minesfy, ..., fn, andcy, .. ., ¢, are conditional plans, then
ag;...;ak—1;ar; case({f; — ¢;}*_,) is a conditional plan.

3. Nothing else is a conditional plan.

To execute a plany;...;ax—1;ar;case({fi — ¢;}1—,), the agent first executes
a1, ...ax. It then evaluateg; with respect to its knowledge. If it knows that one of the
fi is true it executes;. If none of thef;’s is true, then the plan fails and the execution
of the conditional plan which contains this conditional plan also fails. It is easy to see
that the following conditional plan achieves the goal of the agent in Example 1:

c1 = look; case({locked — disarm, —locked — turn;disarm}).
2.3 0-Approximation of Semantics of A
The 0-approximation of an action theof¥, I) is defined by a transition functiof
that maps pairs of states and actions into sets of states-#tateis a pair (7, F),
whereT and F' are disjoint sets of fluents. Intuitively; (resp.F’) is the set of fluents
which are known to be true (resp. known to be falselinF’).

Given a fluentf and an a-state = (7, F'), we say that a fluent is true (resp false
inoif f € T (resp.f € F); andf is known(resp.unknown in o if f € T U F' (resp.

f € T U F). A positive (resp. negative) fluent literglis said toholdin ¢ if f € T
(resp.f € F). A set of fluent literalsX holds ino if eachl € X holds ino. An a-state
is completdf for every fluentf of the theory,f € T'U F; it is incomplete otherwise.
An a-stater satisfiesif(f, {f1,..., f»}) ifitis the case thatif f1, ..., f,} holds inc
thenf holds ino. The truth value of fluent formula i is defined in the standard way,
e.g.,.f A g (resp.f V g) holds inc iff f holds inc and (resp. ory holds ino. A state
in (D, I) is an a-state that satisfies all static causal laws of the theory.

A statec = (T, F) is said to extend an a-staté= (7", F'), denoted by’ < o, iff
T' C TandF’ C F;inaddition, ifT” # T or F' # F, we say that properly extends
o’ and writeg’ < o. If o’/ < o, and there exists no state” such thav’ < o+ < o,
we say thatr minimally extends’. For an a-state, by Clp(c) we denote the set
of states ofD that minimally extendsr. Notice thatCip (o) might be empty. It is
also possible thaf'l; (o) contains more than one elements. In this case, we say that
D is non-deterministicSince our main goal in this paper is to generate plans in the
presence of sensing actions and incomplete knowledge about the initial situation, we



will assume that action theories in consideration are deterministic, i.e., given an a-state
o,|Clp(o)] < 1.

Given an actior and a stater, ¢(a, o) denotes the set of states that may be reached
after the execution ofi in 0. An actiona is executable in a state if D contains a
proposition executabl€a, {p1, ..., p,}) andp;’'s hold ino. Executing a sensing-action
a in a state will cause one of the sensed-fluent literals that occur in the proposition of the
form (4) containing: to be true. Executing a non-sensing actidn a stater will cause
some fluents to become true, some become fafsae may become truendsome may
become false These four sets of fluents are denotedeliyo), e; (o), F; (o), and
FE (o), respectively. The result functioRes of D is defined byRes(a, (T, F)) =
(TUe)\F; (FUe;)\ Fi).

Definition 2 (Transition Function). Given a domain descriptio, and actiona and
a statec = (T, F), #(a, o) is defined as follows:

— If ais not executable ia then®(a, o) = { L}, whereL denotes an undefined state.
— If a is executable ir anda is a non-sensing action then

{1} if Cip(Res(a,0)) =10
®(a,0) = {CZD(Res(a,l;)) otherwise

— If a is executable ir anda is a sensing action that occurs in a proposition of the
form determineqa, {l;,...,;}) then

{L} if Cip((T,F)J{l;}) = 0 for somei
o J UL, Clp((T, Fy u{l;}) if Clp((T, F) U {l;}) # O foralli's
(a,0) = and none of thés is known ino
{o} otherwise
where, for afluent, (T, F)U{l} = (TU{l}, F) and(T, F)U{~l} = (T, FU{l}).

We say that a domain descriptidn is consistentf for every pair of a stater and an
actiona, if a is executable i then L ¢ &(a, o). The extended transition functiah
which maps pairs of conditional plans and states into sets of states is defined next.

Definition 3 (Extended Transition Function). Given a stater and a conditional plan
¢, P(c, o) is defined as follows:

— If ¢ = [| thend(c, o) = {0},

- I[ C=a1;...;0k, whergk > (0 anda;’s are non-sensing actions then
?(c,0) = Uprea(a,,0) Plaz; .- . saxl,0"),

— If ¢ = a;case({f; — ¢;}7,) anda is a sensing action then
¢(C7 0) = UJ’E@(a,o’) E(case({fi - Ci}?:l)) OJ) where

3 L, aan _ J ®(ci,y) if fi holds iny
Blease(tfi = eitiza).7) = {{L} if none of thef; holds inv,

! Space limitation does not allow us to include a detailed review of the 0-approximatidg of
(see [24]).



—Ife=ay;...,ax;case({fi — ¢;}7_,) andk > 1 then

é(c’ o) = Uo"eé([aﬁ...,ak—l]ao') é([a'k§ case({fi — ci}izq)], 0'),
— For every conditional plar, ¢(c, L) = {L}.

For an action theoryD, I), letT, = {f | f is afluent, initially (f) € I} andF, =
{f | fisafluent, initially (—f) € I'}. A stateos is called aninitial state of (D, I) if
o € Clp((To, Fy)). A model is a paif(og, $) whereoy is an initial state and is the
transition function of D, I'). The entailment relation qfD, I) is defined next.

Definition 4. Let (D, I) be a consistent action theorybe a conditional plan, and
be a fluent formula. We sa |=; ¢ after c if for every modeloo, ) of (D, I) it
holds thatL ¢ &(c,0¢) and¢ holds in every state belonging to?(c, oy).

Example 3.For the action theoryD,, I;) in Example 2, we have that
D, =5, ~dead A —exploded N disarmed after ¢
wherec; = look; case({locked — disarm, —locked — turn;disarm}).

3 A Logic Programming Based Conditional Planner

We now present a logic programming based conditional planner. Given a planning prob-
lemP = (D,I,G), where(D, I) is an action theory and' is a conjunction of fluent
literals, representing the goal, we will transl@ento a logic programr(?) whose an-

swer sets represent solutions?oOur intuition behind this task rests on an observation
that each conditional plan(Definition 1) corresponds to a labeled plan tiegFigure

1) defined as follows.

’I’L.Zl a a b Y d
1, f c ai
b c d b
Ty T,  Tap T Ty T3

Ti=asb;case({f—c,~f—d}); Ts=a;case({r—d;b,g—c,y—a1})
Ty=a;case({f—bijcase({g—c1,mg—c2}),~f—bzjcase({h—di,~h—dz}))

Fig. 1. Sample plan trees

e Forc = ay;...;ax, wherea;'s are non-sensing actions, is a tree withk nodes
labeleday, ...,ax, respectively, and, . ; is the child ofa; fori =1,... k — 1. If
¢ =[], T. is the tree with only one node, whose labeki$ (the empty action). The
label for each link off, is empty string.

e Forc = ay;...;ag;case({f1 — ¢} ), whereay is a sensing action that deter-
mines f;'s and other;’s are non-sensing actions, is a tree whose root has the
labelay, a; has a child with the label;,; fori =1,...,k — 1, a; hasn children,
thei'" child (from left to right) is the root of ., and the label of the link ig;. The
label of the link between; anda;; (1 < i < k — 1) is empty.

For a conditional plamr, let w be the number of leaves @ andh be the number of
nodes along a longest path between the root and nodé&s. af and~ will be called
the width and heightof T, respectively. Let us denote the leavesipfby i1, ..., 1.
We map each nodk of T, to a pair of integersi, = (tx,pr), wherel < t;, < h and
1 < pi. < w, in the following way:



— For thei-th leafl; of T.., n;, = (;,,1) wheret;, is the number of nodes along the
path froml; to the root ofT...
— For each interior nodé of 7. with childrenk,, ..., k, whereny, = (t,, Pk, )

ng = (min{tg,, ..., tg, F,min{pg,, ..., 0k, })-

From the construction df,, it is easy to see that, independent of how we number the
leaves off’,., we have that

1. If ky, ..., k, are the children ok with ny, = (tx,,px;), thent,, = t;, for every
pairofi,j, 1 <i,j <.
2. The root ofT, is always mapped to the pdit, 1).
One of the possible mappings for the trees in Figure 1 is given in Figure 2.

(1,1) (1,1) (1,1)

CHO RO Y @1 23)
s

(2,1) YN\ (1,3)
h (1,1)  (1,2)

(2,1) (3,1) (3.2)  (3,3) (3,4) (3,1) (3,2) (2.3)
T Ty Tapp ‘s T2 T3

Fig. 2. A possible mapping for the trees in Figure 1

The above observation suggests us to add one more parameter to encode condi-
tional plans. In our representation, besides the maximal length of the plan (the height of
the tree), denoted bi¢ngth, we have another parameter denoting its maximal width,
denoted byievel. A plan is encoded on the gridngth x level. Action occurrences
will happen at the nodes of the grid and links connecting different paths representing
case statements. The root of the tree will be at the fodE). We use variables of the
typetime andpath, respectively, to denote the position of a node relatively to the root.
Instead of the predicateolds(F,T) (see e.g. [4, 13]) that the fluent literAl holds at
the timeT, we useh(F, T, P) (unknown(F, T, P)) to represent the fact that is true
(unknown) at the nod€T", P) (the time moment’, on the path numbeP).

We now describe the program{P). Due to the fact that we use tkenodelssystem
in our experimentsr(P) contains some rules that are specificstnodelssuch as the
choice rule. In describing the rules af P), the following convention is used de-
notes a variable of the sartme, P, P, ... denote variables of the sgitith, F, G are
variables denotinfjuent literals S, S1, . . . denote variables representing sensed-fluent
literals, andA4, B are variables representiagtion. We will also write F' to denote the
contrary of F'. The main predicates af(P) are listed below:

— h(L, T, P) is true if literal L holds at(7, P),

— possible(A, T, P) is true if actionA is executable at7’, P),

— occ(A, T, P) is true if actionA occurs a{T, P),

— used(T, P) is true if starting frondl’, the pathP is used in constructing the plan,

— ph(L, T, P) is true if literal L possibly holds afT’, P), and

— br(S,T, P, P,) is true if node(T + 1, P, ) is a child of (T, P) whereS (a sensed-
fluent literal) holds afT" + 1, P;).



The main rules, divided into different groups, are given next. Notice that they are just
shown in an abstract form in which atoms indicating the sort of variables, such as
time, path, literal, and sense, that occur in the rule are omitted. For example, if a
rule contains a variabl& of sorttime, it should be understood implicitly that the body

of the rule also contains the atdrime (7). Similarly, if F', whereF is a literal, appears

in the rule, then its body also contains the two atéms-al(F) andcontrary(F, F)

— Rules encoding the initial situatiolf. initially (f) € I, #(P) contains the fact
h(f,1,1) « (6)
This says that ifinitially (f) € I thenf must hold af(1, 1), the root of our treg
— Rule for reasoning about action’s executabilifor each proposition of the form
(2), 7(P) contains the rule

possible(a, T, P) — h(p1,T, P),...,h(pn, T, P). )

— Rule for reasoning with static causal lawSor each proposition of the form (3),
m(P) contains the rule

h(f,T,P) < h(py, T, P),...,h(pn, T, P). (8)

— Rules for reasoning about the effects of non-sensing acti@rseach proposition
of the form (1), we add ta(P) the following rules:

h(f,T+1, P) « occ(a, T, P),possible(a,T, P), h(p1,T, P),...,h(pn, T, P). (9)
ab(f,T, P) « occ(a, T, P),possible(a, T, P), ph(p1, T, P), ..., ph(p,, T, P).(10)
h(F,T+1,P) — h(F,T, P),not h(F,T+1, P),not ab(F, T, P). (11)
ph(F, T, P) < not h(F, T, P). (12)

Here,a is a non-sensing action. It changes the world according té&tsdunction.
The first rule encodes the effects @fcontaining ine; (o) ande; (o) while the
second rule indicates that the valuefofould potentially be changed by the action
a. This rule, when used in conjunction with the inertial rule (11), will have the
effect of removing what will possibly become falgg (o) (or true F (o)) from
o, the current state.

— Rules for reasoning about the effects of sensing actiemseach proposition
determineqa, {l1,...,l,}) in D, =(P) contains the set of factsense(l;) | i =
1,...,n} and the following rules:

br(ly,T, P, P) < occ(a, T, P), possible(a, T, P). (13)

{or(l;, T, P, P):new_br(P, P;)}1 « occ(a, T, P),possible(a, T, P). (14)
(fori=2,...,n)

— occe(a, T, P), known(l;, T, P). (15)

2 Recall that the root of the tree always has the Idiel).



The first two rules, in conjunction with the rules (20)—(22), state that when a sens-
ing actiona that senses the fluent literalss occurs at the nodé€T’, P), n — 1

new branches will be created and on each of the branch, one and only one of the
sensed-fluent literal will become true. The last rule is a constraint that prevents
from occurring if one of the;’s is already known. We note that the rule (14) has a
different syntax than normal logic programming rule. They are introduced in [18]
to ease the programming wigmodels The next rules describe the effect of the
execution of a sensing actions.

new_br(P, Py) «— P < P. (16)
used(T + 1, Py) < br(S,T, P, Py). a7
h(S,T+1, P,) — br(S,T, P, P,). (18)
h(G,T+1,P) — br(S,T, P, P,), h(G,T, P). (19)
— S+ 8, br(S,T, Py, P),br(S1,T, Py, P).  (20)

<—P37&Pl,bT(Sl,T,Pl,PZ),bT‘(SQ,T,Pg,P2). (21)
— T >0,P, # Py, br(S,T, Py, Py),used(T, P,). (22)

Rule (16) and the last three constraints make sure that none of the already in-use
branches is selected when a new branch is created. The next two rules record that
the pathP is used starting fronfil’+1, P) and thatS will be true at(7'+1, P) when
the literalor (S, T, Py, P) is true. Rule (19) plays the role of the inertial rule with
respect to sensing actions. It makes sure whatever holds &) will continue to
hold at(7+1, P).

— Rules for reasoning about what is known/unknown.

unknown(F, T, P) <« not known(F,T, P). (23)
known(F,T, P) — h(F,T, P). (24)
known(F, T, P) «— h(F,T, P). (25)

Rules of this group are rather standard. They say that if a fluent is true (or false) at
(T, P) then it is known a{T, P). Otherwise, it is unknown.
— Rules for generating action occurrences.

Hoce(A, T, P) : action(A)}1 «— used(T, P),not sgoal(T, P), (26)
— occ(A, T, P),not possible(A, T, P). (27)

The first rule is a choice rule that makes sure that only one action is executed at a
node of the tree where the goal has not been achieved. The next rule requires that
an action is executed only when it is executable.

— Auxiliary Rules.

literal(G) « fluent(QG). (28)
literal(-GQ) «— fluent(G). (29)
contrary(F,—F) «— fluent(F). (30)



contrary(—F, F) «— fluent(F). (31)
used(1,1) « (32)
used(T+1, P) «— used(T, P). (33)
sub_goal(T, P) < not not_sub_goal(T, P). (34)
not_sub_goal(T, P) «— finally(F),not h(F,T, P). (35)

— used(length, P), not sub_goal(length, P). (36)

The first two rules define what is a fluent literal. The next two rules specifyfhat
and—F are contrary literals. Rules (32) and (33) mark what nodes are used. Finally,
rules (35) and (36) represent the fact that the goal must be achieved at every path
of the plan-tree.

4 Properties of w(P)

In previous answer set based planners [4, 6, 7, 13], reconstructing a plan from an an-
swer set of the program encoding the planning problem is simple: we only need to
collect the action occurrences belonging to the model, order them by the time they
occur, and we have a plan, i.e., if the answer set con@ing, 1), ..., occ(a,,n)
then the plan isiy, ..., a,. For 7(P), the reconstruction process is not that simple
because each answer setr¢P) represents a conditional plan which may contain case-
statements. These conditionals, as we have discussed before, are represented by atoms
of the formbr(F, T, P, P;). Thus we have one more dimension (the path number) to
deal with and we also need to consider the occurrences of branching literals of the form
br(F,T,P, P;). LetP = (D, I,G) be a planning problem anfl be an answer set of
7(P), andi, k be integers. We define:
PE(S) = aik; .- Qiti—1,k; Qi1 x; CASE{l; — pfil+1(s)}§:1)

where0 <1, a; k, ..., Gi+i—1, are NON-SeNsing actions,;  is a sensing action with
the proposition determineqa;+1,%,{l1,--.,:}) in D, S contains the action occur-
rencesocc(ajk, t, k) for j = i,...,i + [ and the branching literals(I,,7 + [, k, k;)
forj =1,...,t pk(S) = [ if S does not contain some atoms of the farea(a, iy, k)
for iy > 4. Intuitively, p¥ () is the conditional plan with the root ét, k)

We will subsequently prove that (S) is a solution to the planning problep First,
we prove thatr(P) correctly implements the transition functign(Lemma 1) and no
branching is made when non-sensing actions occur whereas branching is required when
sensing actions occur. Assume tlais an answer set of(P), we defines; ,=(T', F)
whereT={f | fisafluenth(f,i, k) € S} andF={f | fisafluenth(—f,i, k) € S}.

Lemma 1. Let S be an answer set of(P) whose input parameters afength and
level, i, k be integers, andcc(a, i, k) € S. Then,
1. if a is a non-sensing action thenis executable it¥; j, s;+1,x € P(a, s; ), and
br(f,i,k, k1) ¢ S for every pair of a fluenf and an integeis;; and
2. if a is a sensing action with the propositiodeterminea, {l1,...,.,}) in D,
thena is executable i3; ,, and for everyj, 1 < j < m,
- unknown(l;,i,k) € S, and
- if j > 1, there exists some integgr < level such thatused(i, k;) ¢ S, and
bT’(lj, i, k, kj) €S, and@(a, Si,k) = {5i+1,k} @] {5i+1,k’27 RN SH—Lkm}'



With the help of the above lemma we can prove the following theorem.

Theorem 1. Let P = (D, I,G) be a planning problem and be an answer set of
7(P). Thenp?(S) is a conditional plan satisfying thdd |=; G after pi(9).

Theorem 1 shows the soundnesst¢P). The next theorem shows thatP) is com-
plete in the sense that it can generate all conditional plans which are solutiBns to

Theorem 2. Let P = (D, 1,G) be a planning problem ang be a conditional plan
restricted to the syntax defined in Definition 1plis a solution toP then there exists
an answer ses of 7(P) such thap = p}(9).

Remark 1.(m(P) as a conformant planner). It is worth noticing that we can view
7(P) as a conformant planner. To see why, let us consider an answg$et(P) and
p1(S). Theorem 1 implies that} (S) achieves the goal @ from every possible initial
state of the domain. From the constructiomfS), we know that ifS does not contain

a branching literal thep!(S) is a sequence of actions, and hence, a conformant plan.
Furthermore, the definition of(P) implies thatS contains a branching literal only if
level > 1. Thus, if we sefevel = 1, 7(P) is indeed a conformant planner.

Remark 2(Size ofr(P)). Itis obvious that we can characterize the size of an action the-
ory by the number of fluents, actions, propositions, literals in the goal, and the number
of sensed-fluent literals occurring in propositions of the form (4) rLleé the maximal
number among these numbers. It is easy to see that the siZ@ofis polynomial inn
since the size of each group of rules is polynomiatin

Remark 3Because the 0-Approximation is incomplete w.r.t. to the fulf semantics
[24], there are situations in whidh has solutions but(P) cannot find a solution. E.g.,

for P=(D, I, G) with D={ causesa, f,{g}), causes$a, f,{—g})}, I=0, andG=/,

p=a is a plan achieveg from every initial state; this solution cannot be found{{p).

5 Experiments and Discussions

We have tested our program with a number of domains from the literature. We concen-
trate on the generation of conditional plans in domawite sensing actiondn partic-
ular, we comparer(P) with the system SGP, one of a few planners that are capable of
generating both conditional plans and conformant plans in the presence of sensing ac-
tions and incomplete information available, frdntp://www.cs.washington.
edu/ai/sgp.html in the bomb in the toilet with sensing actignhe cassandra
and theillness domains. To facilitate the testing, we develop a Sicstus program that
translates a planning problef = (D, I, G) — specified as a Sicstus program — into
the programr(P) and then use themodelsto compute one solution. All experiments
were run on a Pentium Ill, Fujitsu FMV-BIBLO NB9/1000L laptop, 1GHz with 256 Mb
RAM and 40 GB Harddisk. The operating environment is GNU/Linux 2.4 2p&se
version 1.0.13 andmodelsversion 2.27 are used in our computation. LispWorks 4.2.0
is used in running the SGP system. The source code of the translator and the problem in
Ay ontologies are available &ttp://www.cs.nmsu.edu/"tson/ASPlan/
Sensing . We detailed the results in Table 1.

For each problem, we record the computation time needed to find the first solution in
both systems in three tries. The average time is also reported. Columns with the heading



‘+’ under the header(P) record the total timesmodelsandlparse) needed to find

one answer using(P). The other columns record the time reportedshyodels As it

can be seenr(P) performs better than SGP in some domains and does not do as well
in some other domains. We observe that in many domains, where SGP performs better,
the initial state was specified using the PDDL ‘oneOf’ construct (i.e., the initial state is
one of the possible given states). This construct provides SGP with extra information. In
our encoding, we omit this information whenever the set of sensing actions is sufficient
for the planner to acquire it; otherwise, we add an extra sensing action to allow our
planner to determine the initial state. When we dors@®) does better than SGP (e.g.,

the problem ‘a6-prob’). We also observe that in some problems, where SGP performs
better, the search space is rather huge with a lot of repetitions of an action. This can
be seen in the problems of the ‘Bomb’ domain. In this problems, there are several
alternatives of the sensing action that detects metal in a package. SGP consistently
returns the same solution whereg$) returns different solutions in different runs.

Domains/ SGP w(P)
Problem 1577 27 37 Avg. 15¢ 2nd 3 Avg.

+[ S +[ S +[ S +[ S
Cassandrg
al-prob 140 170 140 150 387 190 358 210 390 190 378 197
a2-prob 40 40 40 40 811 500 810 510 809 460 810 490
a3-prob 50 50 40 47| 282 110 284 110 282 130 283 117
ad-prob 300 300 300 300 704 470 705 480 705 490 705 480
a5-prob 50 30 40 40, 185 80 219 70 185 80 196 77

a6-prob NA3 NA| NA| NA|7,9906,86(7,9776,8507,9716,9307,9796,88(
a7-prob 120 120 120 120 238 80| 239 90 239 80 239 83

Bomb
bt-1sa 1,790 1,630 1,660 1,6934,4913,6604,4203,5104,7023,6404,5383,603
bt-2sa 1,76Q 1,76Q 1,719 1,7435,3864,2205,3494,0705,2854,0805,3404,123
bt-3sa 1,94Q 1,910 1,900 1,9175,4043,9505,3494,1405,3694,0705,3744,053
bt-4sa 2,130 2,150 2,080 2,12Q7,3875,6507,2865,5307,3355,5307,3365,570
Sick
sick-3-1 20 20 10 17| 437 70 459 50 449 60/ 448 60
sick-3-2 130 130 160 140 810 320 812 320 791 300 804 313
sick-3-3 500 480 550 5102,74Q01,6402,7351,7902,7051,7602,7271,730
sick-3-4 2,630 2,610 2,650 2,6303,6322,3903,6522,4003,6332,46(03,6392,417
sick-3-5 |17,07017,37017,69017,3773,7492,5103,8102,6203,6132,7503,7242,627

Table 1. Comparison with SGP (Time in milliseconds)

Final Remarks. We present a sound and complete logic programming encoding of the
planning problem with sensing actions in the presence of incomplete information. Our
encoding shows that model-based approach to planning can be extended to planning
with sensing actions and incomplete information. This distinguishes our planner from
other model-based planners that do not deal with sensing actions [2, 3,6, 7,23] . We
compare our planner with the system SGP and obtain encouraging results. In the future,
we would also like to investigate methods such as use of domain knowledge to speed

3 LispWorks stops with the error “Memory limit exceeded”.



up the planning process. Furthermore, due to the fact that our planner can be viewed
as a conformant planer, we would like to test our planner against other model-based
conformant planners as well.
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