
An Agent-based Domain Specific Framework for Rapid
Prototyping of Applications in Evolutionary Biology

T.C. Son1, E. Pontelli1, D. Ranjan1, B. Milligan2, and G. Gupta3

1 Department of Computer Science
New Mexico State University

{tson,epontell,dranjan }@cs.nmsu.edu
2 Department of Biology

New Mexico State University
brook@biology.nmsu.edu

3 Department of Computer Science
University of Texas at Dallas
gupta@utdallas.edu

Abstract. In this paper we present a brief overview of theΦLOG project, aimed
at the development of a domain specific framework for the rapid prototyping of
applications in evolutionary biology. This includes the development of a domain
specific language, calledΦLOG, and an agent-based implementation for the mon-
itoring and execution ofΦLOG’s programs. AΦLOG program—representing an
intended application from an evolutionary biologist—is a specification ofwhat
to do to achieve her/his goal. The execution and monitoring component of our
system will automatically figure outhow to doit. We achieve that by viewing the
available bioinformatic tools and data repositories asweb servicesand casting
the problem of execution of a sequence of bioinformatic services (possibly with
loops, branches, and conditionals, specified by biologists) as the web services
composition problem.

1 Introduction and Motivation

In many fields of science, data is accumulating much faster than our ability to convert
it into meaningful knowledge. This is perhaps nowhere more true than in thebiologi-
cal scienceswhere the Human Genome Project and related activities have flooded our
databases with molecular data. The size of the DNA sequence database (e.g., at NCBI),
for example, has surpassed 15 million sequences and 17 billion nucleotides, and is
growing rapidly. Our modeling tools are woefully inadequate for the task of integrating
all that information into the rest of biology, preventing scientists to effectively take ad-
vantage of these data in drawing meaningful biological inferences. Thus, one of the ma-
jor challenges faced by computer scientists and biologiststogetheris the enhancement
of information technology suitable for modeling a diversity of biological relationships
and processes, leading to a greaterunderstandingfrom the influx of data. Instead of
allowing the direct expression of high-level concepts natural to a scientific discipline,
current software development techniques require mastery of computer science and ac-
cess to very low level aspects of software development in order to construct significantly

complex applications. Even in places where attempts to introduce domain-specific con-
cepts have been made—e.g., design of database formats—scientists are hampered in
their efforts by complex issues of interoperation. As a result, currently only biologists
with strong quantitative skills and high computer literacy can realistically be expected
to undertake the task of transforming the massive amounts of available data into real
knowledge. Very few scientists (domain experts) have such computing skills; even if
they do, their skills are better utilized in dealing with high-level scientific models than
low-level programming issues. To enable scientists to effectively use computers, we
need a well-developed methodology, that allows a domain expert (e.g., a biologist) to
solve a problem on a computer by developing and programming solutions at the same
level of abstraction they are used to think and reason, thus moving the task of program-
ming from software professionals to the domain experts, the end-users of information
technology. This approach to software engineering is commonly referred to asDomain
Specific Languagesand it has been advocated by many researchers over the years [29].
The relevance of domain-specific approaches to bioinformatics has been underlined by
many recent proposals (both in computer science as well as in biology) [14, 8, 3, 15, 2].
Domain-specific languages likeΦLOG offer biologists with work-benches for the rapid
exploration of ideas and experiments, without the burden of low-level coding of data
and processes and interoperation between existing software tools.

In this project we investigate thedesign, development, andapplicationof a Domain
Specific Language (DSL), calledΦLOG, for rapid prototyping of bioinformatic appli-
cations in the area of phylogenetic inference and evolutionary biology. Phylogenetic
inference involves study of evolutionary change of traits (genomic sequences, morphol-
ogy, physiology, behavior, etc.) in the context of biological entities (genes, individuals,
species, higher taxa, etc.) related to each other by a phylogenetic tree or genealogy de-
picting the set of common ancestors. It finds important applications in areas such as
study of ecology and dynamics of viruses. To be attractive to biologists, an effective
DSL should provide:

(1) descriptions of the concepts and operations naturally associated with biology (e.g.,
data sources, types of data, transformations of the data),

(2) mechanisms allowing users to manipulate those concepts in a compact, intuitive
manner at a high level of abstraction,

(3) models specialized enough to reflect the real biological processes of interest, and
(4) efficient execution mechanisms that do not require extensive intervention and pro-

gramming by the end user.

Furthermore, a large class of biological models integrates information on relationships
among organisms, homology of traits, and specifications of evolutionary change in
traits; this commonality can be used to advantage in designing the structure of domain-
specific representations and transformations of biological data. Information technology
based on the major commonality evident in problems explicitly involving relationships,
homology, and trait evolution can readily be expanded to incorporate a much broader
range of biological models. To date no software development environment or method-
ology available to biologists has identified all of these elements and explicitly designed
uniform solutions incorporating them. Instead, there exist a large array of mostly ad hoc

technologies. Existing tools provide monolithic interfaces (rather than libraries encap-
sulating the basic computational elements from which larger constructions can be built)
and a black box structure, that does not provide access to the underline mechanisms and
heuristics [28] used to solve biological problems.

ΦLOG is part of a comprehensive computational framework, based on agent tech-
nology, capable of harnessing local, national, and international data repositories and
computational resources to make the required modeling activities feasible. Solving a
typical problem in phylogenetic inference requires the use of a number of different
bioinformatic tools, the execution of a number of manual steps (e.g., judging which
sequence alignment for two genes is the “best”), and extra low-level coding to glue ev-
erything together (e.g., low-level scripting). An important characteristic of theΦLOG
framework is its ability tointeroperatewith the existing biological databases and bioin-
formatic tools commonly used in phylogenetic processing, e.g., CLUSTAL W, BLAST,
PHYLIP, PAUP. These existing tools and data repositories are treated assemantic Web
services, automatically accessed byΦLOG to develop the solution requested by the do-
main expert. From a semantic point of view, these existing components are regarded as
semantic algebras [23], used for defining the valuation predicates in the denotational
specification of the DSL. Thus,ΦLOG provides a uniform language through which bi-
ologists can perform complex computations (involving one or more of these software
systems) without much effort. In absence of such a DSL, biologists are required to per-
form significant manual efforts (e.g., locating and accessing tools, determine adequate
input/output data formats) and to write considerable amount of glue code.

The execution model ofΦLOG is built on an agent infrastructure, capable of trans-
parently determining the bioinformatic services needed to solve the problem and the
data transformations that are required to seamlessly stream the data between such com-
ponents during the execution of aΦLOG program. Bioinformatic services are viewed as
actions in situation calculus, and the problem of deriving a correct sequence of service
invocations is reduced to the problem of deriving a successful plan. The agent infras-
tructure relies on aservice brokerfor the discovery of bioinformatic services, and each
agent makes use of logic-based planner for composition and monitoring of services.
The framework implements typical agents’ behaviors, including planning, interaction,
and interoperation.

2 TheΦLOG System

ΦLOG is based on a comprehensive agent-based platform, illustrated in Figure 1.
The higher level is represented by theΦLOG language, a DSL specifically designed

for evolutionary biologists—described in Section 3.
The execution of eachΦLOG program is supported by aDSL compiler—described

in Section 4—and anExecution Agent—described in Section 5. The execution agent
is, in turn, composed of aconfiguration componentand anexecution/monitoring com-
ponent. In this framework, bioinformatic services are viewed asactions, and execution
of ΦLOG programs as an instance of the planning problem. The compiler translates
eachΦLOG program into apartial plan—specifically a GOLOG program [13]; this de-

Service
Discovery

ΦLOG Program Partial Plan
(GOLOG Program)

...

High-level Actions

DSL
Compiler

Configuration
Component

Utility Actions

Bioinformatic Service
Requests

... Concrete
Plan

Service Providers
(Servers)

Service
Description
(DAML-S)

Bioinformatics
Service Broker

CLUSTAL W

BLASTX

GenBank

Eigenvalue
Computation

.
.
.

Execution &
Monitoring
Component

.
.
.

Service
Requests

R
e
p
l
a
n
n
i
n
g

Fig. 1. System Organization

scribes the steps required to execute theΦLOG program in terms of high-level actions
and their sequencing. The plan is considered partial for various reasons:

(i) each high-level action has to be resolved into invocation of actual bioinformatic
software tools and data sources;

(ii) interaction between successive steps in the plan may require the introduction of
intermediate low-level actions (e.g., interoperation between existing tools).

The actual execution requires transformation of the partial plan into aconcrete plan—
whose (low-level) actions are actual accesses to the data repositories and execution of
bioinformatic tools. This transformation is accomplished by the configuration compo-
nent of the agent, via a planning process. This planning process is performed in coop-
eration with aservice broker, which supplies description and location of the existing
data sources and software tools. The configuration agent makes use of these services
descriptions to develop the action theory needed to generate the concrete plan.

The execution of the concrete plan is carried out by the execution/monitoring com-
ponent of the agent. Execution involves contacting data sources and software tools and
requesting the appropriate execution steps. Monitoring is required to validate progress
of the execution and re-enter the planning phase to repair eventual execution failures.
In the successive sections we highlight the relevant aspects of the various components
and the research challenges to be tackled.

3 The Design of theΦLOG Language

In this section we propose a preliminary design of theΦLOG language. More details
regarding this initial design can be found in [20]. We use problems from biology as
motivating examples. These examples relate to one of the most challenging problems in
biology: that of determining the evolution of species. The evolution of a set of species
can naturally be represented by anevolutionary treewith leaf nodes representing sam-
pled species, interior nodes representing ancestors, and edges representing the ancestor-
descendant relationship in the usual fashion. Given a set of related species there is a

multitude of possibilities as to how they evolved. The goal is to use the biological data
to determine the most likely evolutionary history. One way to determine how a set of
related species evolved is based on modeling DNA sequence data using a stochastic
model of evolutionary change [28]. The evolutionary tree that “best” fits this model and
data is adopted as the most likely evolutionary history. The starting point of this process
is represented by the collection of similar DNA sequences for the set of species of inter-
est from the huge set of DNA sequence data that is stored in databases like GSDB and
GenBank. In its simplest form, both the set of taxa and the set of genes are completely
specified, and the task is simply to determine occurrences (i.e., sequences) of the genes
in the taxa. Matching sequences are determined by comparing the given genes with the
sequences belonging to each taxon, and applying a set of filtering criteria. This result
is typically constructed by iterating (manually or using ad-hoc scripts) the application
of similarity search programs—e.g., theBasic Local Alignment Search Tool (BLAST)—
using the provided genes as input and (manually) filtering the output with respect to
the taxa of interest. During each iteration one of the genes is used to detect reason-
able matches against a sequence database. The resulting matches have to be filtered to
extract only matches relative to the taxa of interest and to remove false matches.

The successive step is to find the most likely evolutionary tree for a given set of
species from the given DNA sequence data and a model of evolution [28]. The current
methodology to solve this problem is to:

(i) align the input sequences—sequence alignment can be performed using a standard
tool for multiple sequence alignment, such as CLUSTAL W—and

(ii) use the aligned sequences and the given model(s) to generate and rank possible
phylogenetic trees for the sequences, using tools such as PHYLIP and PAUP.

In this approach, users are responsible for proper pipelined execution of all the com-
ponents (including data format translation, if needed). Furthermore, most tree building
software uses a very limited set of evolutionary models, and existing software considers
only limited parameter optimizations for parametric models [28].

3.1 Preliminary DSL

In this section we provide a brief overview of theΦLOG language. Rather than pro-
viding a comprehensive definition of the language, we will introduce the concepts and
elements of the language through examples. We appeal to the users for the intuitive
meaning of the keywords used in this section. For a more complete description, the in-
terested reader is referred to [20]. In what follows, sample codes ofΦLOG are written
in verbatim font.

Overall Program Structure. ΦLOG programs consist of modules. Each module con-
tains a collection of global declarations and a collection of procedures. In turn, each
procedure contains a sequence of declarations and a sequence of instructions. The dec-
laration part of each procedure is used to

(i) describe the data items used by the procedure,

(ii) allow user selection of the computational components to be used during execution;
and

(iii) provide parameters affecting the behavior of the different components.

Data items used in the program must be declared. Declarations are used to explicitly
describe data items, by providing a name (<item name>), a description of the nature
of the values that are going to be stored in it (<item type>) and eventual properties
of the item. Formally, a declaration is written as

<item name> : <item type>

For example, the expression
gene1 : Gene (gi | 557882)

declares an entity calledgene1 , of typeGene, and identifies the initial value for this
object—the gene which has GI number557882 in the GenBank database.

Declarations are also used to identify computational components to be used during
the execution—which allows the user to customize some of the operations performed.
For example, the declaration

similar: operation (BLASTX -- alignment=ungapped
database=drosophila matrix=BLOSUM45)

allows the user to explicitly configure the behavior of the language operationsimilar —
by associating this operation with the BLAST similarity search program.

Data Types. The design of the collection of data types ofΦLOG has been driven
by observing the commonalities present between various languages for biological data
description proposed in the literature (e.g., BSML and NEXUS [14]).ΦLOG provides
two classes of data types that can be used to create data items. The first class includes
generic (non-domain specific) data types, while the second class provides a number of
Domain Specific Data Types, which are relevant for the specific domain. E.g.,

• Sequence, Gene, and Taxon: These data types are used to describe molec-
ular sequence data (e.g., DNA, RNA), Genes, and Taxons (e.g., species along with
their traits). The sequence data type allows users to describe the sequence in dif-
ferent ways, e.g., by providing its description in the standard formats. Using the
FASTA format one could describe a sequence as follows:

g : Sequence (protein)
g is FOSB HUMAN P53539 homo sapiens (HUMAN).

MFQAFPGDYDSGSRCSSSSPSAESQYLSSVDSFGPPT...

Transformation between the different formats is transparent. Each object of type
Gene andTaxon is characterized by a number of (optional and mandatory) at-
tributes, including name, accession number, GI number, and sequence data [14].
The actual set of attributes depends on the detail of the description provided by
the user and/or on the existing attributes present in the gene database used. For
example:

g1 : Gene is (gi | 557882)
se is sequence(g1)

assigns to the itemg1 the gene having GI numbergi|557882 and extracts its
sequence data, which is stored in the itemse . TheTaxon data type is polymorphic
in the sense that items of typeTaxon can be used to represent higher-order taxa
as well, which are interpreted in the language as (hierarchically organized) sets of
taxa.

• Model: A model data type is used to describe models of evolution, used to per-
form inference of phylogenies [28]. In the simple case, a model is a matrix contain-
ing the individual evolutionary rates:

t : Model is ({A → (0.1)C, A → (0.04)T, · · · }).
ΦLOG allows symbolic description of models [20] and access to standard models
[28], e.g.,t1 is K80(kappa).

ΦLOG also provides a number of polymorphic data types which are used to aggregate in
different ways collection of entities.ΦLOG allows operations onTrees (described us-
ing Newick format) andSets . In particular, various externally accessible sources of in-
formation are mapped in the DSL as sets of elements. For example, external databases,
e.g., GenBank, can be accessed in the language using traditional set operations, e.g.,

{name(x) | x: Gene, x in GenBank }
In ΦLOG aMap represents a function which maps elements of a domain into elements
of another domain. The mapping can be specified either as an enumeration of pairs
or using an intensional definition—i.e., the mapping is described via properties. For
example,

match (tax : Taxon, x : Gene) : Map

(S is

{
y : Sequence | y in genes(tax),

score(similar(x,y)) > threshold

}

if S is empty
then match is undefined
else match is (any y in S))

defines aMap, namedmatch , which is a function. In this example, we have a function
which maps a taxon and a gene to a sequence. More precisely, given a taxontax and
a genex , match returns a sequence of a gene which is sufficiently similar tox . In
the above code, the first line declares thatmatch is a function (i.e., of the typeMap)
with two input parameters; the rest specifies how the function is computed. First, a set
S of sequences which are sufficiently similar tox is computed. If this set is empty then
match is undefined (the ‘then’ clause); otherwise, it is defined as an arbitrary sequence
in S (the ‘else’ clause). In computingS, thesimilar operation is expected to return a
data item measuring the similarity of the two sequences; in this example we expect an
attribute calledscore to be present.

Maps can be used in various ways—in the previous example, ifTa is a set of taxa,
thenmatch(Ta,seq) is a set of sequences (constructed according to the map def-
inition), while an expression such asselect X (seq1 is match(X,seq2))
searches for a taxonX containing the sequenceseq1 which is similar to sequence
seq2 . Other polymorphic types include the ability to describe probability distributions
and homologies [20].

Control Structures. The language provides two levels of control constructs. At the
higher level, control of the execution is expressed using declarative constructs, such as
function applications and quantifications. Existential quantification (select) is used
to express search tasks, while universal quantification (forall) can be used to express
iterations and global properties. In this respect, the structure of the language closely
resembles the structure of many functional languages. For example, the code

select a in Trees
forall b in Trees

likelihood(a,model) ≥ likelihood(b,model)

selects a treea from the collection of treesTrees that has the maximum likelihood.
At the lower level, the language provides control constructs which are closer to those

in traditional programming languages, such asif-then-else conditional statements
and repeat iterative constructs. These are mostly used by users who want to cus-
tomize the basic operations of the language (as described in the following example).
The previous example can be rewritten as (best, t are of typeTree)

best in Trees
repeat (t in Trees)

if (likelihood(t,model)>likelihood(best,model))
then best is t

The first statement selects as initial value forbest an arbitrary element ofTrees ,
and the loop performs an iteration for each element inTrees . The language provides
also the capability of asserting constraints on the computation. These constraints are
assertions that have to be satisfied at any point during the computation. Constraints
are asserted using theconstraint statement. E.g., if we want the computation to
generate a treet whose root has only two children, with branch lengths10 and20, then
we can use the statement

constraint : t is (X : label1 , Y : label2)Z and
label1 is 10 and label2 is 20

The execution model adopted by the language provides the user with both batch and
interactive execution. Under batch mode, programs are compiled and completely ex-
ecuted. Under interactive mode, programs are executed incrementally under user su-
pervision. The user is allowed to select breakpoints in the execution, run the program
statement by statement, and modifyboth the data and the programon the fly. For ex-
ample, the user is allowed to introduce new constraintsduring the execution, thus mod-
ifying on the fly the behavior of the computation. Another feature thatΦLOG provides
is the ability to make data itemspersistent, allowing users to create with no extra effort
databases containing the results of the computations, and to share partial results.

3.2 Some Examples Coded inΦLOG

Let us start by looking at how we can express the problem of, given a collection of taxa
and a collection of genes, determining in which taxa those genes occur. Both the set of
taxa and the set of genes can be either explicitly provided by the user or the result of

some computation. Regarding the selection of taxa, we need to determine a set of taxa
of interest, eventually involving higher-order taxa. This set could be the result of some
computation, e.g., to select 40 taxa out of a given higher-order taxon:

Tax is {y : Taxon | y in murinae } and |Tax|=40
or, given a collection of higher-order taxa (InputSet), select a taxon from each of
them:

Tax is union (x in InputSet , t is (any in x)).
Regarding the selection of the genes of interest, this can be either a user defined col-
lection of genes or it could be itself the result of some computation. E.g., to select all
genes from a given set of taxa (T) which contain a certain name:

Gen is {x : Gene | taxa in T, x in genes(taxa),
name(x) contains "Adh" }

Once a set of taxa (Tax) and a set of genes (Gen) have been identified, then we would
like to determine occurrences of the identified genes in the taxa of interest—this can be
accomplished using thematch map defined earlier. The selection of the components of
the map requires a filtering of the result of the similarity search. E.g., if we are interested
in defining the map in order to produce the sequence with the longest aligned region,
then we simply replace theany statement with

w in S and forall z in S
length alignment(similar(y,w)) ≥

length alignment(similar(y,z))

As part of the definition of theSequence data type, the language provides an oper-
ation,align , which provides the sequence alignment capabilities. Thealign opera-
tion accepts a single argument which represents the set of sequences to be aligned. The
result of the operation is a set of sequences, containing the original sequences properly
expanded to represent the desired alignment. The behavior ofalign can be customized
by the user similarly to what is described in the case ofsimilar . E.g., the declaration:

align : operation (CLUSTAL W -- model=PAM)
asserts that thealign operation should be performed by accessing the CLUSTAL
W software with the appropriate parameters. We envision generalizing the behavior
of align to produce as result not just a set of aligned sequences but a more general
object—a data item of typeHomology . The next step requires the definition of the
model which is going to be used to describe evolutionary rates—i.e., a data item of
the typeModel . At the highest level, we can assume the presence of abuild tree
operation which directly interfaces to dedicated tools for inference of phylogenies:

build tree : Operation (DNAML --)
t : Tree is build tree(Seqs,model1)

This reflects the current standard approach, based on the development of a tree us-
ing a single model across the entire sequence and the entire tree [28]. The operation
build tree can be redesigned by the user whenever a different behavior is required.
A simple declarative way of achieving this is as follows: given a listlist

constraint : forall [X,Y] in list
(likelihood(X,model) ≥likelihood(Y,model))

list is [t : Tree | t in Tree(Seqs)]

which expresses the fact thatlist contains all the trees over the sequences in the set
Seqs , sorted according to the likelihood of each tree under the modelmodel . The best
tree is the first in the list. A finer degree of control can be obtained by switching to the
imperative constructs of the language and writing explicit code for the search. E.g., the
following ΦLOG code picks the best of the first1000 trees generated:

t is initialTree(Seqs)
best is t

repeat (i from 1 to 1000)
t is nextTree(t,Seqs,model)
if likelihood(t,model)>likelihood(best,model)

then best is t

By providing different definitions of the operationsinitialTree andnextTree it
is possible to customize the search for the desired tree. The same mechanisms can be
used to select a set of trees instead of just one.

Given a set of treesTrees computed from a set of sequences and given a model
model , we can construct a relative likelihood for the given set of trees:

prob : Probability(Trees)
total is summation(x in Trees,likelihood(x,model))

forall x in dom(prob)

prob(x) is likelihood(x,model)
total

This model can be easily extended to accommodate a distribution of models instead
of an individual model. This allows us to use expected likelihood for the evaluation and
selection of the trees. Assuming a finite collection of modelsModels and an associated
probability distributionprob , we can replace thelikelihood function by thefit
function defined below:

fit (t : Tree) : map
(fit is sum(m in Models,prob(m)*likelihood(t,m)))

4 Compilation of ΦLOG Programs

The goal of theΦLOG compiler is to translateΦLOG programs—manually developed
by a biologist or developed via high-level graphical interfaces [20]—into partial plans.
The components of the partial plan are high-level actions, extracted from an ontology
of bioinformatic operations; each high-level operation will be successively concretized
into one or more invocations of bioinformatic services (by the execution agent).

4.1 Bioinformatic Services

Data sources and software tools employed to accomplish phylogenetic inference tasks
are uniformly viewed byΦLOG asbioinformatic services. Each service provides a uni-
form interface to the data repository or software tool along with a description of the
functionalities of the service (e.g., inputs, outputs, capabilities). Service descriptions
are represented using a standard notation for service description in the semantic web
(specifically DAML-S [5]). Service providers register their services with theservices
broker. The task of the broker is to maintain a directory of active services (including
the location of the service and its description) and to provide matchmaking services
between service descriptions and service requests.

The creation and management of service descriptions require the presence of a very
refinedontology, describing all entities involved in service executions. Ontologies pro-
vide an objective specification of domain information, representing a community-wide
consensus on entities and relations characterizing knowledge within a domain. The bro-
ker employs the ontology to instantiate high-level requests incoming from configuration
agents into actual service requests. Considerable work has been done in the develop-
ment of formal ontologies for biological concepts and entities [26, 1]. Our project will
build on these efforts, taking advantage of the integrated description of biological en-
tities provided in these existing proposals. Nevertheless, this project aims at covering
aspects that most of these ontologies currently do not provide:

(i) Description of an actual hierarchy ofbioinformatic operations, their relationships,
and their links to biological entities; each operation is described in terms of input
and output types as well as its effect.

(ii) Description of an actual hierarchy forbioinformatic typesandbioinformatic data
representation formats, their relationships, and the links to biological entities and
to the bioinformatic applications.

Thus, our objective is to concretize biological ontologies by introducing an ontology
level describing the data formats and transformations that are commonly employed in
phylogenetic inference, and linking them to the existing biology ontologies. This ad-
ditional level (i.e., an ontology for bioinformatic tools) is fundamental to effectively
accomplish the instantiation of a partial plan into a concrete plan—e.g., automatically
selecting appropriate data format conversion services for interoperation.

Standard semantic web services description languages—i.e., DAML-S—have been
employed for the development of these ontologies.

Service descriptions as well as the bioinformatic ontologies are maintained and man-
aged by a service broker. In this project, the service broker is developed using theOpen
Agent Architecture (OAA)[16]. This will allow us to apply previously developed tech-
niques in web services composition and GOLOG programs’s execution and monitoring
in [17] in our application. The advantages of this approach have been discussed in [18].
Currently, we have developed a minimal set of service descriptions that will allow us
to develop simpleΦLOG programs that will be used as testbeds for the development of
other components of the systems. We use OAA in this initial phase as it provides us the
basic features that we need for the development of other components. In the later phases

of the project, we will evaluate alternative architectures with similar capabilities (e.g.
InfoSleuth [7]) or multi-agent architectures (e.g. RETSINA [27] or MINERVA [12]).

4.2 ΦLOG Compiler

The derivation of theΦLOG compiler has been obtained using a semantic-based frame-
work calledHorn-Logic Denotations (HLD)[9]. In this framework, the syntax and se-
mantics of the DSL is expressed using a form of denotational semantics and encoded
using an expressive and tractable subset of first-order logic (Horn clauses). Follow-
ing traditional denotational semantic specifications, in HLD a DSLL is described by
three components:(i) syntax specification—realized by encoding a context free gram-
mars as Horn clauses (using the Declarative Clause Grammars commonly used in logic
programming);(ii) interpretation domains—described as logic theories;(iii) valuation
functions—mappings from syntax structures to interpretation domains (encoded as first-
order relations). In our specific application, the interpretation domains are composed
of formulae in an action theory [21], describing properties and relationships between
bioinformatic services. The action theories are encoded using situation calculus [21]—
see also Section 5—and they are extracted by the compiler from the services ontologies
described in the previous section. The semantic specification also allows for rapid and
correct implementations of the DSL. This is possible thanks to the use of an encoding
in formal logic and the employment of logic-based inference systems—i.e., the speci-
fications areexecutable, automatically yielding an interpreter for the DSL. Moreover,
the Second Futamura Projection [10] proves that compiled code can be obtained by
partially evaluatingan interpreter w.r.t. a source program. Thus, our DSL interpreter
can be partially evaluated (using a partial evaluator for logic programming [22]) w.r.t. a
program expressed in the DSL to obtain compiled code [9]. In our context, the final out-
come of the process is the automatic transformation of specifications written inΦLOG
to programs written in GOLOG.

The semantic specification can also be extended to support verification and debug-
ging: the denotational specifications provide explicit representation of the state [23, 9],
and manipulation of such information can be expressed as an alternative semantics of
the DSL—i.e., as anabstract semanticsof the DSL [9]. This verification process is also
possible thanks to the existence ofsound and completeinference systems for mean-
ingful fragments of Horn clause logic [19]. Given that the interpreter, compiler, and
verifiers are obtained directly from the DSL specification, the process of developing
and maintaining the development infrastructure for the DSL is very rapid. Furthermore,
syntax and semantic specifications are expressed in auniformnotation, backed by ef-
fective inference models.

5 Execution Agent

5.1 ΦLOG’s Program Execution as Planning and Plan Execution Monitoring

A ΦLOG program specifies the general steps that need to be performed in a phyloge-
netic inference application. Some steps can be achieved using built-in operations—this

is the case for the primitive operations associated to the various data types provided
by ΦLOG—e.g., compose two sets using a union operation or selecting the members
of a set that satisfy a certain condition. Other steps might involve the use of a bioinfor-
matic service, e.g., CLUSTAL W for sequence alignment, BLAST for similarity search,
PAUP for phylogeny construction, etc. In several cases, intermediate steps, not speci-
fied by the compiler, are required; this may occur whenever theΦLOG program does
not explicitly lay out all the high-level steps required, or whenever additional steps are
required to accomplish interoperability between the bioinformatic services. For exam-
ple, the sequence alignment formats provided by CLUSTAL W cannot be used directly
as inputs to the phylogenetic tree inference tool PAUP (which expects a Nexus file as
input). As such, aΦLOG program could be viewed as a skeleton of an application rather
than its detailed step-by-step execution. Under this view,execution ofΦLOG programs
could be viewed as an instance of the planning and plan execution monitoring problem.
This will allow us to apply the techniques which have been developed in that area to
implement theΦLOG engine. We employ the approach introduced in [17] in developing
theΦLOG system. In this approach, each bioinformatic service is viewed as anaction
and a phylogenetic inference application as a GOLOG program [13].

We will now review the basics of GOLOG and the agent architecture that will be
used in the development of theΦLOG system. Since GOLOG is built on top of the
situation calculus (e.g.,[21]), we begin with a short review of situation calculus.

Situation Calculus. The basic components of the situation calculus language, follow-
ing the notation of [21], include a special constantS0, denoting the initial situation, a
binary function symboldo wheredo(a, s) denotes the successor situation tos resulting
from executing the actiona, fluent relations of the formf(s), denoting the fact that the
fluentf is true in the situations, and a special predicatePoss(a, s) denoting the fact
that the actiona is executable in the situations.

A dynamic domain can be represented by a theory containing:(i) axioms describing
the initial situationS0; (ii) action precondition axioms (one for each actiona, charac-
terizingPoss(a, s)); (iii) successor state axioms (one for each fluentF , stating under
what conditionF (x, do(a, s)) holds, as a function of what holds ins); (iv) unique name
axioms for the primitive actions; and some foundational, domain independent axioms.

GOLOG. The constructs of GOLOG [13] are:

α primitive action
φ? wait for a condition

(σ1;σ2) sequence
(σ1|σ2) choice between actions

πx.σ choice of arguments
σ∗ nondeterministic iteration

if φ then σ1 else σ2 synchronized conditional
while φ do σ synchronized loop
proc β(x)σ procedure definition

The semantics of GOLOG is described by a formulaDo(δ, s, s′), whereδ is a program,
ands ands′ are situations. Intuitively,Do(δ, s, s′) holds whenever the situations′ is
a terminating situation of an execution ofδ starting from the situations. For example,
if δ = a; b | c; f?, andf(do(b, do(a, s))) holds, then the GOLOG interpreter will
determine thata; b is a successful execution ofδ in the situations.

The language GOLOG has been extended with various concurrency constructs, lead-
ing to the languageConGolog[6]. The precise semantic definitions of GOLOG and
ConGolog can be found in [13, 6]. Various extensions and implementations of GOLOG
and ConGolog can be found athttp://www.cs.toronto.edu/˜cogrobo web
site. Ananswer set programminginterpreter for GOLOG has been implemented [24].

Bioinformatic Services as Actions andΦLOG’s Programs as GOLOG Programs.
A bioinformatic service is a web service—i.e., a computational service accessible via
the Web. Adopting the view of considering web services as actions for Web service
composition application [17], we view each bioinformatic service as an action in situa-
tion calculus. Roughly speaking, an action description of a web service consists of the
service name, its invocation’s description, and its input and output parameters with their
respective formats. LetD be the set of actions representing the bioinformatic services.
Under this framework, the problem of combining bioinformatic services to develop a
phylogenetic inference application is a planning problem inD. SinceD contains all
the external operations that a user ofΦLOG can use, eachΦLOG programP can be
compiled into a GOLOG program in theD language by:

• Introducing variables and fluents representing the variables of theΦLOG program.

• Replacing each instructionV is operation(x) in the ΦLOG program with
the actionτ(operation)(x, V), whereτ is a mapping that associatesΦLOG op-
erations to invocations of bioinformatic services. TheΦLOG compiler implements
theτ operation through the following steps:

− terms in theΦLOG program are used to identify the set ofhigh-level actions
requested by theΦLOG programmer. The process is accomplished by identi-
fying relevant entries in the hierarchy of bioinformatic operations (see Section
4.1).

− high-level operations are used to query the services broker and retrieve the de-
scription of relevant registered services that implement the required operations.

• Replacing the control constructs such asif-then, for-all , etc. in theΦLOG program
with their corresponding constructs in GOLOG.

In turn, the description of the various services retrieved from the services broker (DAML-
S descriptions) are converted [17] into action precondition axioms and successor state
axioms. This translation will be achieved by the compiler of theΦLOG system. The
GOLOG program obtained through this translation may contain theorder construct
(denoted byσ1 : σ2), an extended feature of GOLOG suggested in [17], and used to de-
scribe a partial order between parts of the program. This feature is essential in our con-
text; theΦLOG program determines the ordering between the main steps of the compu-
tation (expressed using the order construct), while the configuration agent may need to
insert additional intermediate steps to ensure interoperation between services and exe-

cutability of the plan. E.g., if aΦLOG program indicates the need to perform a sequence
alignment (mapped to theclustalw service) followed by a tree construction (mapped
to thepaup service), then the GOLOG program will containclustalw : paup; the
agent may transform this into the planclustalw; parse nexus; paup, by inserting a
data format convertion action (parse nexus). Using a GOLOG interpreter we can
find different sequences of services which can be executed to achieve the goal of the
ΦLOG program, provided thatD is given. Precise details in the translation and execu-
tion monitoring under development.

5.2 Configuration Component

The configuration component is in charge of transforming a partial plan (expressed as
a GOLOG program with extended features, as described in [17]) into a concrete plan
(instantiation). This process is aplanning problem[24], where the goal is to develop a
concrete plan which meets the following requirements:

(i) each high-level action in the partial plan is instantiated into one or more low-level
actions in the concrete plan, whose global effect correspond to the effect of the
high-level action (i.e., theτ operation mentioned earlier);

(ii) successive steps in the concrete plan correctly interoperate.

This process is intuitively illustrated in Example 1. The configuration component makes
use of the high-level actions in the partial plan to query the services broker and obtain
lists of concrete bioinformatic services that can satisfy the requested actions. The query-
ing is realized through the use of the bioinformatic tools ontology mentioned earlier.

The configuration component attempts to combine these services into an effective
concrete plan—i.e., an executable GOLOG program. The process requires fairly com-
plex planning methodologies, since:

• the agent may need to repeatedly backtrack and choose alternative services and/or
add intermediate additional services (e.g., filtering and data format transformation
services) to create a coherent concrete plan;

• planning may fail if some of the requested actions do not correspond to any ser-
vice or services cannot be properly assembled (e.g., lack of proper interoperation
between data formats); sensing actions may be employed to repair the failure, e.g.,
by cooperating with the user in locating the missing service;

• planning requires the management ofresources—e.g., management of a budget
when using bioinformatic services with access charges;

• planning requiresuser preferences—e.g., choice of preferred final data formats.

Most of these features are either readily available in GOLOG or they have been added
by the investigators [17, 24, 25] to fit the needs of similar planning domains.

Example 1.Consider the original simpleΦLog program (g is of typeGenes, s of type
Alignment(dna) andt of typeTree(dna)):

g is { x : Gene | name(x) contains ‘‘martensii’’ }
s is align(g)
t is phylogenetic tree(s)

The high-level plan detected by the compiler:

database search(gene,[(GeneName,‘‘martensii’’)], o1) ;
sequence alignment(dna, o1, o2) ;

phylogenetic tree(dna, o2, o3) ;
display output(o3)

The action theory derived from the agent broker will include:

genebank(′′GeneName = martensii′′, o1) causes genes(o1, G) if . . .
clustalw(o1, o2) causes alignment(dna, o2, A) if sequences(dna, o1, S), . . .
dnaml(o2, o3) causes tree(dna, o3, T) if alignment(dna, o2, A), . . .

Additional actions are automatically derived from the type system of the language; for
example,Gene is seen as a subclass ofDNASequence , which provides an operation
of the type:

gene to dnasequence(o) causes sequence(dna, o) if gene(o)

The operation will be associated to built-in type conversion actions. Finally, the high
level plan will have to be replaced by a GOLOG program, where each high-level action
should be replaced by a choice of actions construct (a choice from the set of the services
implementing such high-level action), e.g.,

genebank(‘‘Gene Name = martensii’’,o1) | · · · :
clustalw(o1, o2) | · · · :

dnaml(o2,o3) | · · · :
display output(o3) ;

? tree(dna,o3).

5.3 Execution and Monitoring Agent

Once a concrete plan has been developed, the execution/monitoring component of the
agent proceeds with its execution. Executing the concrete plan corresponds to the cre-
ation and execution of the proper service invocations corresponding to each low-level
action. Each service request involves contacting the appropriate service provider—
which can be either local or remote—and supply the provider with the appropriate
parameters to execute the desired service. The monitoring element supervises the suc-
cessful completion of each service request. In case of failure (e.g., a timeout or a loss of
connection to the remote provider), the monitor takes appropriate repair actions. Repair
may involve either repeating the execution of the service or re-entering the configura-
tion component. The latter case may lead to exploring alternative ways of instantiating
the partial plan, to avoid the failing service. The replanning process is developed in such
a way to attempt to reuse as much as possible of the part of the concrete plan executed
before the failure.

6 Discussion and Conclusions

6.1 Technology

The development of this framework employs a combination of novel and existing soft-
ware technology. DAML-S is used as representation format for the description of ser-
vices. In the preliminary prototype, the ontologies for bioinformatic services and for
bioinformatic data formats have been encoded using logic-based descriptions—specifically,
using the OO extensions provided by SICStus Prolog.

The reasoning part of the agent (configuration, execution, and monitoring) is based
on situation calculus. This is in agreement with the view adopted by the semantic web
community—Web Services, encoded in DAML-S, can be viewed as actions. GOLOG
is employed as language for expressing the partial plans derived fromΦLOG programs,
as well as describing the complete plans to be executed. In this work we make use
of a GOLOG interpreter encoded in answer set programming [11]. The advantage of
this approach is that it allows us to easily extend GOLOG to encompass the advanced
reasoning features required by the problem at hand—i.e., user preferences [25] and
planning with domain specific knowledge [24].

6.2 Related Work

An extensive literature exists in the field of DSL [29]. Design, implementation, and
maintenance of DSLs have been identified as key issues in DSL-based software de-
velopment and various methodologies have been proposed (e.g., [4, 29]. HLD is the
first approach based on logic programming and denotational semantics, and capable of
completely specifying a DSL in a uniform executable language.

Various languages have been proposed to deal with the issue of describing bio-
logical data for bioinformatic applications. Existing languages tend to be application-
specific and limited in scope, they offer limited modeling options, are mostly static, and
are poorly interconnected. Various efforts are undergoing to unify different languages,
through markup languages (e.g., GEML and BSML) and/or ontologies [26]. Some pro-
posals have recently emerged to address the issues of interoperability, e.g., [3, 2].

The work that comes closest toΦLOG includes programming environments which
allows scientists towrite programsto perform computational biology tasks. Examples
of these include TAMBIS [3], Darwin [8] and Mesquite [15]. They combine a standard
language (imperative in Darwin, visual in Mesquite) with a collection of modules to
perform computational biological tasks (e.g., sequence alignments). Both Darwin and
Mesquite provide only a small number of models that a biologist can use to create
bioinformatic applications, and they both rely on a “closed-box” approach. The mod-
ules which perform the basic operations have been explicitly developed as part of the
language and there is little scope for integration of popular bioinformatic tools. TAM-
BIS provides a knowledge base for mapping graphically expressed queries to accesses
of a set of bioinformatic data sources.

6.3 Conclusions and Future Work

In this paper we presented a brief overview of theΦLOG project, aimed at the de-
velopment of a domain specific framework for the rapid prototyping of applications
in evolutionary biology. The framework is based on a DSL, that allows evolutionary
biologists to express complex phylogenetic analysis processes at a very high level of
abstraction. The execution model ofΦLOG relies on an agent infrastructure, capable
of automatically composing and monitoring the execution of bioinformatic services, to
accomplish the goals expressed in the originalΦLOG program. The framework is cur-
rently under development as a collaboration between researchers in Computer Science,
Biology, and Biochemistry at NMSU.

Acknowledgments.The authors wish to thank the anonymous referees for their helpful
comments. Research has been supported by NSF grants EIA-0130887, CCR-9875279,
HRD-9906130, EIA-0220590, and EIA-9810732.

References

1. Bio-Ontologies Consortium.www.bioontology.org .
2. Standardizing Biological Data Interchange Through Web Services.omnigene.

sourceforge.net , 2001.
3. P. Baker et al. Transparent Access to Bioinformatics Information Sources.Intelligent Systems

for Molecular Biology, 1998.
4. J. Bentley. Programming pearls: Little languages.Communications ACM, 29(8), 1986.
5. DAML-S Coalition. DAML-S: Semantic markup for Web services.Int. Semantic Web Work-

ing Symposium, 2001.
6. G. De Giacomo, Y. Lesṕerance, and H. Levesque. ConGolog, a concurrent programming

language based on the situation calculus. Artificial Intelligence, 121:(1-2), 109-169.
7. J. Fowler, B. Perry, M. Nodine, and B. Bargmeyer. Agent-Based Semantic Interoperability

in InfoSleuth. SIGMOD Record 28:1, March, 1999, pp. 60-67.
8. G. Gonnet and M. Hallet.Darwin 2.0. ETH-Zurich, 2000.
9. G. Gupta and E. Pontelli. A Horn denotational framework for specification, implementation,

and verification of DSLs. InLogic Programming and Beyond, Springer Verlag, 2002.
10. N. Jones. Introduction to Partial Evaluation.ACM Computing Surveys, 28(3):480–503, 1996.
11. V. Lifschitz. Answer set planning.ICLP, 23-37, MIT Press, 1999.
12. J. A. Leite, J. J. Alferes and L. M. Pereira. MINERVA - A Dynamic Logic Programming

Agent Architecture. InIntelligent Agents VIII, pages 141-157, Springer-Verlag, 2002.
13. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic programming

language for dynamic domains.Journal of Logic Programming, 31(1-3):59–84, 1997.
14. D. R. Maddison et al. NEXUS: An Extensible File Format for Systematic Information.Syst.

Biol., 464(4), 1997.
15. W. Maddison. Mesquite: A Modular System for Evolutionary Analysis. U. Arizona, 2000.
16. D. L. Martin, A. J. Cheyer, and D. B. Moran. The Open Agent Architecture: a Framework

for Building Distributed Software Systems.Applied Artificial Intelligence, 13:91–128, 1999.
17. S. McIlraith and T.C. Son. Adapting Golog for Composition of Semantic Web Services. In

International Conference on Principles of Knowledge Representation and Reasoning, 482–
493, Morgan Kaufmann Publisher, 2002.

18. S. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems.
Special Issue on the Semantic Web. March/April, 16(2):46-53, 2001.

19. I. Niemel̈a and P. Simons. An Implementation of the Stable Model Semantics. InLPNMR,
420–429, Springer Verlag, 1997.

20. E. Pontelli et al. Design and Implementation of a Domain Specific Language for Phyloge-
netic Inference. InJournal of Bioinformatics and Computational Biology, 1(2):1–29, 2003.

21. R. Reiter.Knowledge in Action.MIT Press, 2001.
22. D. Sahlin.An Automatic Partial Evaluator for Prolog. PhD, Uppsala, 1994.
23. D. Schmidt.Denotational Semantics.W.C. Brown, 1986.
24. T.C. Son, C. Baral, and S. McIlraith. Planning with Different Forms of Domain-Dependent

Control Knowledge. Approach.Int. Conf. on Logic Progr. and Nonmonotonic Reasoning,
226–239, Springer Verlag, 2001.

25. T.C. Son and E. Pontelli. Reasoning about actions in prioritized default theory. InJELIA,
369–381, Springer Verlag, 2002.

26. R. Stevens. Bio-Ontology Reference Collection.cs.man.ac.uk/˜stevens/
onto-publications.html .

27. K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa. The RETSINA MAS Infrastruc-
ture. InAutonomous Agents and MAS, 7(1-2), 2003 (to appear).

28. D. L. Swofford et al. Phylogenetic inference.Molecular Systematics, Sunderland, 1996.
29. A. van Deursen et al. DSLs: an Annotated Bibliography.www.cwi.nl/˜arie , 2000.

