
A Conformant Planner Based On Approximation: CPA(H)

Dang-Vien Tran, Hoang-Khoi Nguyen, Tran Cao Son, Enrico Pontelli
Department of Computer Science

New Mexico State University
vtran|knguyen|tson|epontell@cs.nmsu.edu

April 18, 2010

Abstract
In this paper, we descibe the planner CPA(H), the recipient of the Best Non-Observable Non-

Deterministic Planner Award in the “Uncertainty Part” of the 6th International Planning Competition
(IPC) 2008. In particular, we present the various techniques that help CPA(H) to achieve the level of
performance and scalability exhibiting in the competition. We also present experimental results indi-
cating that the proposed techniques could be useful in other implementations. Furthermore, we provide
possible explanations for the performance of CPA(H) in various domains and in comparison with t0
the winner of the 2006 IPC.

1 Introduction and Motivation

Conformant planning is the problem of finding a sequence of actions that achieves the goal from every
possible initial state of the world [18]. One of the main difficulties encountered in the process of determining
a conformant plan is the high degree of uncertainty, due to the potentially large number of possible initial
states of the problems.

The Planning Domain Definition Language (PDDL) introduces two constructs to express incomplete
knowledge about the initial state of the world: mutual-exclusion statements (expressed using one-of clauses)
and disjunctive statements (expressed using or clauses). Frequently, one-of clauses are used to specify the
possible initial states and or clauses are used to eliminate infeasible states. Because of this, the number of
possible initial states depends mainly on the number and the size of the one-of clauses—and these are often
exponential in the number of constants present in the problem instances. For example, several domains in
the 2006 and 2008 planning competition have this property (Table 1).

Effective methodologies and data structures are required to deal with the large number of possible initial
states. Some conformant planners, such as POND [6] and KACMBP [8], employ an OBDD representation
[5] of belief states, while others, such as CFF [4], adopt a CNF representation. These types of encodings
avoid dealing directly with the exponential number of states, but they require extra work in determining the
truth value of certain propositions after the execution of a sequence of actions in the initial belief state. For
instance, CFF needs to make a call to a SAT-solver with the initial state and the sequence of actions; other
planners need to recompute the OBDD representation, which could also be an expensive operation. Observe
that the problem of determining the truth value of a proposition after the execution of a single action in a
belief state is co-NP complete [1].

An alternative approach to deal with the large number of possible initial states is used by the planners
cf2cs(ff) and CPA [13, 22], and further investigated in their successors t0 and CPA+ [15, 20]. This

1

Instance #Constants # Initial States Instance # Constants # Initial States
comm-10 25 211 coins-15 16 4× 86

comm-15 35 216 coins-20 17 9× 86

comm-20 85 221 coins-25 39 1020

comm-25 140 226 coins-30 45 1025

sortnet-10 11 212 sortnet-15 16 216

UTS-cycle-03 5 3× 23 forest-02 20 22

UTS-cycle-04 6 4× 24 forest-03 22 32

UTS-cycle-05 7 5× 25 forest-04 24 42

UTS-cycle-10 12 10× 210 forest-05 26 52

Raos-key-02 7 29 dispose-4-1 17 16
Raos-key-03 9 213 dispose-4-2 18 162

Raos-key-04 11 217 dispose-4-3 19 163

Raos-key-05 13 221 dispose-8-1 65 64
Raos-key-10 23 241 dispose-8-2 66 642

Raos-key-15 35 261 dispose-8-3 67 643

push-4-1 17 16 1-dispose-4-1 17 16
push-4-2 18 162 1-dispose-4-2 18 162

push-4-3 19 163 1-dispose-4-3 19 163

push-8-1 65 64 1-dispose-8-1 65 64
push-8-2 66 642 1-dispose-8-2 66 642

push-8-3 67 643 1-dispose-8-3 67 643

Table 1: Number of Constants/Possible Initial States

approach relies on an approximation semantics in reasoning with incomplete information [19]. The planners
cf2cs(ff) and t0 reduce the number of possible initial states to one by introducing additional proposi-
tions, transforming the original problem to a classical planning problem, and using FF, a classical planner
[9], to find solutions. On the other hand, CPA and CPA+ reduce this number by dividing them into groups
and using the intersection of each group as its representative during planning.

CPA+ and t0 implement the idea of approximations differently. While CPA+ could be seen as a stan-
dard heuristic search forward planner, t0 follows a translational approach. The performance of CPA+
depends on its heuristic function and its ability to approximate the initial belief state to a manageable set of
partial states. On the other hand, the performance of t0 largely depends on the performance of FF. t0 was
the winner of the 2006 planning competition.

In this paper, we describe the design and implementation of CPA(H), our entry1 in the “Uncertainty
Part” of the 6th International Planning Competition 2008 (IPPC), International Conference on Automated
Planning and Scheduling (ICAPS), 2008, Sydney, Australia. We describe the basic reasoning mechanism of
CPA(H) and present the various techniques novel techniques for improving efficiency and scalability. We
begin with a short overview of the problem representation and the basic reasoning mechanism of the planner
in Section 2.

2 Problem Representation

Following the notation in [13], we describe a problem specification as a tuple P = ⟨F,O, I,G⟩, where

• F is a set of propositions,

• O is a set of actions,
1Named CPA(H) to recognize its roots in the CPA+ system.

2

• I describes the initial state of the world and

• G describes the goal.

A literal is either a proposition p ∈ F or its negation ¬p. ℓ̄ denotes the complement of a literal ℓ and is
defined by ℓ̄ = ¬ℓ where ¬¬p = p for p ∈ F . We say that ℓ and ℓ̄ are complementary literals. For a set of
literals L, L = {ℓ̄ | ℓ ∈ L}. In this paper, we will often represent a conjunction of literals by a set.

A set of literals X is consistent if there exists no p ∈ F such that {p,¬p} ⊆ X . A state s is a consistent
and complete set of literals, i.e., s is consistent, and for each p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is
a set of states. A set of literals X satisfies a literal ℓ (resp. a set of literals Y) iff ℓ ∈ X (resp. Y ⊆ X).

Each action a in O is associated with a precondition ϕ (denoted by pre(a)) and a set of conditional
effects of the form ψ → ℓ (also denoted by a : ψ → ℓ), where ϕ and ψ are sets of literals and ℓ is a literal.
We will often write a : ψ → ℓ1, . . . , ℓn as a shorthand for the set {a : ψ → ℓ1, . . . , a : ψ → ℓn}.

The initial state of the world I is the union of three types of formulas and can be written as I =
Id ∪ Io ∪ Ir where

• Id is a set of literals;

• Io is a set of one-of clauses, each one-of clause is of the form one-of(ϕ1, . . . , ϕn);

• Ir is a set of or clauses, each is of the form or(ϕ1, . . . , ϕn)

where each ϕi is a set of literals.
An one-of clause indicates that the ϕi’s are mutually exclusive, while an or clause is a disjunctive nor-

mal form (DNF) representation of a formula. A set of literalsX satisfies the one-of clause one-of(ϕ1, . . . , ϕn)
if there exists some 1 ≤ i ≤ n such that ϕi ⊆ X and for every j ̸= i, 1 ≤ j ≤ n, ϕj ∩X ̸= ∅. X satisfies
the or clause or(ϕ1, . . . , ϕn) if there exists some 1 ≤ i ≤ n such that ϕi ⊆ X . Given a one-of-clause or
an or-clause o, we write L ∈ o to denote that L is an element of o and lit(o) =

∪
L∈o(L ∪ L̄).

By ext(I) we denote the set of all states satisfying Id, every one-of clause in Io, and every or clause
in Ir. For example, if F={g, f} and I={g, one-of(f,¬f)} then ext(I) = {{g, f}, {g,¬f}}.

The goal of the prboblem, G, is a collection of literals and or clauses.

Example 1. Let us consider the 2 × 2 dispose problem with one object o1 from [13]. The object is on
the grid. The agent can move, one step at a time, within the grid. It can pick up an object, move along
with the object, and drop it where the trashcan is. Different representations can be used for this domain.
In this paper, we use the encoding in the IPC-08. In this setting, the grid is encoded by a set of locations
Loc = {l11, l12, l21, l22} with a predicate adjacent(l, l′) to denote the fact that the two locations l and l′ are
adjacent, indicating that one can move between l and l′. The goal is to collect all the objects on the grid and
dispose them into the trashcan at the location l11. Initially, the location of the objects are unknown.

Let us denote the problem by D[2, 2, 1]. The encoding of D[2, 2, 1] = ⟨P,O, I,G⟩ is given next. In this
domain, the set of propositions is 2

F =
{
obj at(o1, l), trash at(l), at(l), holding(o1), disposed(o1) l ∈ Loc

}
where obj at(o1, l) says that object o1 is at the location l (on the grid), trash at(l) indicates that the trashcan
is at the location l, holding(o1) states that the agent holds the object o1, disposed(o1) states that the object
o1 has been disposed, and at(l) means that the agent is at the location l.

2For simplicity, we omit the predicate adjacent(l, l′).

3

The set of actions with their conditional effects can be represented as follows:

O =

move(l1, l2) : true→ at(l2),¬at(l1)
pickup(o1, l) : obj at(o1, l) → holding(o1),¬obj at(o1, l)
drop(o1, l) : holding(o1) → disposed(o1),¬holding(o1)

where l1, l2, l ∈ Loc, l1 ̸= l2. In addition, we have that

pre(move(l1, l2)) = {at(l1)}
pre(pickup(o1, l)) = {at(l)}
pre(drop(o1, l)) = {at(l), trash at(l)}

The initial state of the problem can be given by I = Id ∪ Io where

Id = {trash at(l11), at(l11),¬holding(o1)} ∪ {¬trash at(l),¬at(l) | l ∈ Loc \ {l11}}

and
Io = {one-of(obj at(o1, l11), obj at(o1, l12), obj at(o1, l21), obj at(o1, l22))}.

Finally, the goal of the problem is given by

G = {disposed(o1)}.

2.1 Conformant Planning

Given a state s and an action a, a is executable in s if pre(a) ⊆ s. The set of effects of a in s, denoted by
ea(s), is defined by:

ea(s) = {l | ψ → l is an effect of a, ψ ⊆ s}.

The execution of a in a state s results in a successor state succ(a, s) which is defined by:

succ(a, s) =

 s ∪ ea(s) \ ea(s) if a is executable in s

failed otherwise

succ is extended to define succ∗, which computes the result of the execution of an action in a belief state,
as follows:

succ∗(a, S) =

{succ(a, s) | s ∈ S} if a is executable in every s ∈ S

failed otherwise
(1)

Finally, we can define the function ŝucc to compute the final belief state resulting from the execution of a
plan:

ŝucc([a1, . . . , an], S) =

{
S if n = 0
succ∗(an, ŝucc([a1, . . . , an−1], S)) if n > 0

An action sequence α is a solution of P iff ŝucc(α, S0) ̸= failed and G is satisfied in every state belonging
to ŝucc(α, S0).

4

Example 2. Consider the planning problem in Example 1, assuming that adjacent(l11, l12), adjacent(l11, l21),
adjacent(l21, l22), and adjacent(l22, l12) are true and the relation adjacent is symmetric. We can easily
check that the sequence of action

α =

pick(o1, l11), drop(o1, l11),
move(l11, l12), pick(o1, l12),move(l12, l11), drop(o1, l11),
move(l11, l12),move(l12, l22), pick(o1, l22),move(l22, l12),move(l12, l11), drop(o1, l11),
move(l11, l21), pick(o1, l21),move(l21, l11), drop(o1, l11)

would achieve the goal disposed(o1) from ext(I), i.e., α is a solution for the planning problem D[2, 2, 1].

2.2 Conformant Planning Using Approximation

As we have mentioned earlier, the size of the initial belief state, i.e., the number of states in ext(I) provides
a challenge for conformant planners. In [22], a new approach to conformant planning is proposed. This
approach extends on the notion of approximation proposed in [19] to languages with state constraints. The
original approximation proposes to approximate a belief state by a set of literals that are true in all the states
belonging to it and develops a transition function to reason about the effects of actions on approximation
states. The advantage of this approach lies in that conformant planning using approximation is NP-complete
while it is Σ2

P with respect to the complete semantics [1]. The trade-off is its incompleteness. This issue has
been addressed in [20].

Formally, we refer to a consistent set of literals as a partial state. A set of partial states is called a
cs-state. For a partial state δ, by ext(δ) we denote the belief state {s | δ ⊆ s}. Intuitively, a partial state δ
approximates the belief state ext(δ) and a cs-states {δ1, . . . , δn} approximates the belief state

∪n
i=1 ext(δi).

The reasoning with respect to partial states is characterized by a function (succA) that maps an action
and a partial state to a partial state. The possible effects of a in a partial state δ are given by

pca(δ) = {l | ψ → l is an effect of a, ψ ∩ δ = ∅}. (2)

The successor partial state from the execution of a in δ is defined by

succA(a, δ) =

 (δ ∪ ea(δ)) \ pca(δ) if a is executable in δ

succA(a, δ) = failed otherwise

Similarly to succ∗ and ŝucc, succA can be extended to define succ∗A (mapping cs-states to cs-states) and
ŝuccA for computing the result of the execution of an action sequence starting from a cs-state as follows.

succ∗A(a,∆) =

{succ(a, δ) | δ ∈ ∆} if a is executable in every δ ∈ ∆

succ∗A(a,∆) = failed otherwise

and

ŝuccA([a1, . . . , an],∆) =

∆ if n = 0

succ∗A(an, ŝuccA([a1, . . . , an−1],∆)) if n > 0

The soundness of the approximation states that for every partial state δ, an action sequence α, and a formula
φ, if φ is satisfied by ŝuccA(α, δ) then φ is satisfied in ŝucc(α, ext(δ)) [19]. This allows us to establish the
following property:

5

Proposition 1. LetP be a planning problem and {∆1, . . . ,∆k} be a set of cs-states such that
∪k

i=1 ext(∆i) =
ext(I). Then, a sequence of actionsα = [a1, . . . , an] is a solution of a problemP ifG holds in ŝuccA(α,∆i)
for every i.

Proof. Trivially follows from the result in [19] and the fact
∪k

i=1 ext(∆i) = ext(I). 2

The above proposition shows that succA (or ŝuccA) can be employed in the implementation of a conformant
planner, provided that we can select an appropriate set Ω = {∆1, . . . ,∆k}. Because S ⊆ ext(

∩
u∈S u) for

every belief state S, we could use Ω = {{δ0}} where δ0 = ∩s∈ext(I)s. This choice was used in early
implementations of conformant planners using approximation [21, 22, 26]. The advantage of this choice is
that the size of the cs-state is small (one), a significant reduction from 2|F |, the number of possible states
of a domain. This choice, however, does not guarantee completeness due to the incompleteness of the
approximation when actions have conditional effects. This can be seen in the following example.

Example 3. Given the problem P = ⟨{f, h}, {a : f → h, a : ¬f → h}, ∅, {h}⟩, we can easily check that

succ∗(a, ext(I)) = {{f, h}, {¬f, h}}

and
succ∗A(a, {∅}) = {∅}

The first equation indicates that a is a solution of P . On the other hand, the second one states that if the
initial belief state is approximated to ∅ then a is not a plan with respect to the approximation.

To guarantee the completeness of approximation based planners and still exploit the advantages of the ap-
proximaiton, whenever it is possible, we need to identify an appropriate partitions Ω = {∆1, . . . ,∆k} of
ext(I) such that

•
∪k

i=1∆i = ext(I),

• ∆i ∩∆j = ∅ for each i ̸= j, and

• for each formula φ and sequence of actions α, ŝuccA(α, {δ1, . . . , δk}) |= φ iff ŝucc(α, ext(I)) |= φ,
where δi is the intersection of the states in ∆i.

Observe that the partition Ω = {{s} | s ∈ ext(I)} satisfies the aforementioned conditions. This guarantees
the existence of such a partition. On the other hand, it is not always necessary to consider such an extreme
situation. For example, the partition {{{f, h}, {f,¬h}}, {{¬f, h}, {¬f,¬h}}} satisfies these conditions
for the problem in Example 3. Observe that this means that the approximation planner will start with the
cs-states {{f}, {¬f}}.

Research has been conducted to provide sufficient syntactical conditions to identify valid partitions—based
on the identification of fluents that should be explicitly distinguished in different partitions (see, e.g., [20,
25]). The planner CPA(H) employs this technique.

3 A Competitive Conformant Planner: Design

The internal organization of the proposed planner, called CPA(H), is illustrated in Fig. 1. The planner is
composed of two modules.

6

P P’

PDDL PDDL

Problem

specification

Plan

CPA(H) Planner

Preprocessor

Planning Engine

Simplified

problem

specification

G
ro

u
n
d

e
r

O
n
e

o
f

c
o

m
b

in
e

G
o

a
l

sp
lit

Figure 1: Internal organization of CPA(H)

The first module (Preprocessor) is a static analyzer that performs a number of transformations of the
problem specification. Along with a grounder (which also applies standard simplifications, such as forward
reachability), the preprocessor applies some novel transformations (one-of clause combination and goal
splitting) aimed at drastically reducing the size of the search space. The second module (Planning engine) is
a heuristic search engine implementing forward planning. The next subsections present the design of these
modules.

3.1 The Planning Engine

CPA(H) employs the succ∗A function in the context of a planning algorithm which implements forward
planning using a traditional best-first heuristic search. For the completeness of the paper, the algorithm is
included (Algorithm 1).

Algorithm 1 FWDPLAN(P)

Require: a planning problem P = ⟨P,O, I,G⟩
Ensure: a solution of P if P is solvable or FAILURE otherwise

S := Make Initial(O, I, G) {Algorithm on Page 47 [25]}
if G is true in S then

return []
end if
Enqueue(PriorityQueue, (S, []))
VisitedStates := {S}
while PriorityQueue is not empty do

(S′,path) := Extract(PriorityQueue) {element with best heuristic value}
for each action a executable in S′ do
S′′ := succ∗A(a, S

′)
if S′′ satisfies G then

return [path, a]
else

if S′′ ̸∈ VisitedStates then
compute heuristic for S′′

Enqueue(PriorityQueue, (S′′, [path, a]))
VisitedStates := VisitedStates ∪ {S′′}

end if
end if

end for
end while
return FAILURE

7

CPA(H) computes the following basic heuristics:

• The cardinality heuristic: Since the initial cs-state could potentially be the same as the initial belief
state ext(I), its cardinality can be used to guide the search. We prefer cs-states that have a smaller
cardinality. In other words, hcard(S) = |S| where S is a cs-state. Note that we use this heuristic
in a forward fashion, and this is different from its use in [2, 7]. The intuition behind this is that
planning with complete information is “easier” than planning with incomplete information and a
lower cardinality implies a lower degree of uncertainty.

• The relaxed graphplan heuristic: For a cs-state S, we define hrgp(S) =
∑

δ∈S d(δ), where d(δ) is the
well-known sum heuristic value given that the initial state is δ ∪ {¬p | p ∈ F, p ̸∈ δ, ¬p ̸∈ δ} [12].

• The number of satisfied subgoals: This heuristic counts the number of satisfied subgoals and is de-
noted by hgc(S). Formally, hgc(S) =

∑
δ∈S sat(δ) where sat(δ) is the number of subgoals satisfied

by δ.

CPA(H) implements a combination of these heuristics:

hcss(Σ) = (hcard(Σ), hgc(Σ), hrgp(Σ)).

The measures are compared according to their lexicographic order.

3.2 Design of the Preprocessor

The main goal of the preprocessor is to simplify the planning problem using a variety of techniques. This
section presents the basic definitions underlying these techniques. Among them, some are standard (e.g.,
reachability analysis); others are specific to CPA(H). The key to the analysis in the preprocessor is the no-
tion of dependence between actions and propositions—similar to the notion of dependence between actions
and literals explored in [20]. In what follows, we denote with P an arbitrary but fixed planning problem.

Definition 1. An action a depends on a literal ℓ if

1. ℓ ∈ pre(a), or

2. there exists an effect a : ϕ→ h in P and ℓ ∈ ϕ, or

3. there exits an action b that depends on ℓ and a depends on some of the effects of b, i.e., b depends on
ℓ and there exists b : ϕ→ h such that a depends on h.

By preact(ℓ) we denote the set of actions depending on ℓ. For a set of literals L, we define preact(L) =∪
ℓ∈L preact(ℓ). Intuitively, the fact that a depends on ℓ indicates that the truth value of ℓ could influence the

result of the execution of a. For example, the action drop(o1, l) (Example 1) depends on holding(o1), at(l),
and trash at(l); preact(at(l)) = {move(l1, l2) | l1 ̸= l2 ∈ Loc} ∪ {pickup(o1, l), drop(o1, l) | l ∈ Loc};
preact(obj at(l)) = {pickup(o1, l), drop(o1, l)}; and preact(¬obj at(l)) = ∅; and the action a (Example
3) depends on f and ¬f .

Definition 2. Two literals ℓ and ℓ′ are distinguishable if ℓ ̸= ℓ′ and there is no action that depends on both
ℓ and ℓ′, i.e., preact(ℓ) ∩ preact(ℓ′) = ∅.

8

Obviously, the distinguishable relation is symmetric and irreflexive. Two sets of literals L1 and L2 are
distinguishable if preact(L1) ∩ preact(L2) = ∅.

The dependence between a literal and an action, often used in reachability analysis, is defined next.

Definition 3. A literal ℓ depends on an action a if

1. a : ψ → ℓ is in P , or

2. there exist an action b with b : ψ → ℓ in P and some ℓ′ ∈ ψ ∪ pre(b) such that ℓ′ or ℓ̄′ depends on a.

Intuitively, ℓ depends on a implies that the truth value of ℓmay be affected by the execution of the action
a. In other words, to change the truth value of ℓ, we might need to execute the action a. By deps(a) we
denote the set of literals that depend on a. postact(ℓ) = {a | ℓ ∈ deps(a)} is the set of actions which ℓ
depends on. For a set of actions A and a set of literals L, deps(A) =

∪
a∈A deps(a) and postact(L) =∪

ℓ∈L postact(ℓ). It is easy to see that the following holds.

Observation 1. Let a be an action with a : φ→ ℓ′ in P and b be an action with ℓ ∈ deps(b) and ℓ′ ∈ pre(b)
or ℓ′ ∈ φ′ for some b : φ′ → h in P . Then ℓ ∈ deps(a).

We now define the notion of independence between literals and actions.

Definition 4. Two literals ℓ1 and ℓ2 are independent if ℓ1 ̸= ℓ2 and there exists no action on which both ℓ1
and ℓ2 depend, i.e., postact(ℓ1) ∩ postact(ℓ2) = ∅.

Two actions a and b are independent if there exists no literal ℓ which depends on both a and b, i.e.,
deps(a) ∩ deps(b) = ∅.

We say that two sets of literals L1 and L2 are independent if postact(L1) ∩ postact(L2) = ∅. Two set
of actions A1 and A2 are independent if deps(A1) ∩ deps(A2) = ∅. The following lemma discusses the
relationship between deps and preact.

Lemma 1. Let A be a set of actions and a is an action with a conditional effect a : φ, ℓ′ → ℓ such that
ℓ′ ∈ deps(A). Then, ℓ ∈ deps(A).

Proof. ℓ′ ∈ deps(A) implies that there exists some b ∈ A such that ℓ′ depends on b. By Definition 3, ℓ
depends on b. Thus, ℓ ∈ deps(A). 2

3.2.1 Standard Transformations

The preprocessor starts its operations with a number of basic normalization steps, aimed at reducing the
number of propositions and the number of actions present in the problem specification. These steps have
been implemented by several other planners. More precisely, the preprocessor implements the traditional
forward reachability simplification aimed at detecting

1. propositions whose truth value cannot be affected by the actions in the problem specification (with
respect to the extended initial state, see below); and

2. actions whose execution cannot be triggered with respect to the extended initial state.

9

This process can be modeled as a fixpoint computation and easily be implemented using Prolog. As the
forward reachability analysis was developed originally for domains with complete information, the prepro-
cessor of CPA(H) starts the computation with an extended intitial state, defined by:

I0 = Id∪
∪
o∈Io

lit(o)∪
∪
o∈Ir

lit(o).

The set of forward applicable actions, fwa, and relevant propositions, fwp, are defined by

fw0
p = I0

fw0
a = {a | a ∈ preact(ℓ), ℓ∈fw0

p}
fwk+1

p = fwk
p ∪ {ℓ | a ∈ fwk

a , a : ψ → ℓ ∈ O}
fwk+1

a = {a | a ∈ preact(ℓ), ℓ ∈ fwk+1
p }

and

fwa =
∞∪
i=0

fwi
a fwp =

∞∪
i=0

fwi
p

The preprocessor computes fwa and fwp. It then removes the actions and propositions not belonging to
fwa and fwp, respectively, from the problem.

3.2.2 Combination of one-of Clauses

The idea of this technique is based on the non-interaction between actions and propositions in different sub-
problems of a conformant planning problem. As the proposed technique can be applied in any conformant
planners, the discussion in this subsection will be based on the reasoning method using the function succ
(Subsection 2.1). The results are valid for CPA(H) due to its completeness. We will begin with an example
illustrating this idea.

Example 4. Let consider a modified version of the 2× 2 dispose problem from Example 1 with two objects
o1 and o2, D[2, 2, 2], with D[2, 2, 2] = ⟨P,O, I,G⟩. The set of propositions and actions are similar to their
counterparts in D[2, 2, 1] and are omitted for brevity. Assume that the initial state of the problem is given
by I = Id ∪ Io where

Id = {trash at(l11), at(l11)} ∪ {¬trash at(l),¬at(l) | l ∈ Loc \ {l11}} ∪ {¬holding(oi) | i ∈ {1, 2}}

and
Io = {one-of(obj at(o1, l11), obj at(o1, l12)), one-of(obj at(o2, l11), obj at(o1, l12))}.

The goal of the problem is given by

G = {disposed(o1), disposed(o2)}.

We can check that that the sequence

α =

[
pickup(o1, l11), drop(o1, l11),move(l11, l12), pickup(o1, l12),move(l12, l11), drop(o1, l11),
pickup(o2, l11), drop(o2, l11),move(l11, l12), pickup(o2, l12),move(l12, l11), drop(o2, l11)

]
is a solution of D[2, 2, 2]. Furthermore, the search should start from the initial belief state S0 = {δi ∪ Id |
i = 1, . . . , 4} where

10

δ1 = {obj at(o1, l11),¬obj at(o1, l12), obj at(o2, l11),¬obj at(o2, l12)}
δ2 = {obj at(o1, l11),¬obj at(o1, l12),¬obj at(o2, l11), obj at(o2, l12)}
δ3 = {¬obj at(o1, l11), obj at(o1, l12),¬obj at(o2, l11), obj at(o2, l12)}
δ4 = {¬obj at(o1, l11), obj at(o1, l12), obj at(o2, l11),¬obj at(o2, l12)}

Let D[2, 2, 2]′ be the problem obtained from D[2, 2, 2] by replacing Io with Io
′
, where

Io
′
= {one-of(obj at(o1, l11) ∧ obj at(o2, l11), obj at(o1, l12) ∧ obj at(o2, l12))}.

We can easily check that α is also a solution of D[2, 2, 2]′. Furthermore, each solution of D[2, 2, 2]′ is
also a solution of D[2, 2, 2]. This transformation in interesting since the initial belief state of D[2, 2, 2]′ is
S′
0 = {δ1 ∪ Id, δ3 ∪ Id}. In other words, the number of states in the initial belief state that a conformant

planner has to consider in D[2, 2, 2]′ is 2, while it is 4 in D[2, 2, 2]. This transformation is possible because
the set of actions that are “activated” by obj at(o1, l11) and obj at(o1, l12) is disjoint from the set of actions
that are “activated” by obj at(o2, l11) and obj at(o2, l12), i.e., preact({obj at(o1, l11), obj at(o1, l12)}) ∩
preact({obj at(o2, l11), obj at(o2, l12)}) = ∅.

The above example shows that different one-of clauses can be combined into a single one-of clause,
which effectively reduces the size of the initial belief state that the planner needs to consider in its search
for a solution. Theoretically, if the size of the two one-of clauses in consideration is m and n, then it is
possible to achieve a reduction in the number of possible states from m × n to max(m,n). Since in many
problems the size of the one-of clauses increases with the number of objects, being able to combine the
one-of clauses could provide a significant advantage for the planner. We will present the precise definition
of this transformation. We need some extra notations.

Definition 5. Two disjoint sets of literals L1 and L2 are combinable if

• preact(lit(L1)) ∩ preact(lit(L2)) = ∅; and

• deps(preact(lit(Li))) ∩ (deps(preact(lit(Lj))) ∪ Lj) = ∅ for i ̸= j.

Let Ω1 and Ω2 be two combinable sets of literals. For a state s, the (Ω1,Ω2)-representation of s is a
tuple (s1, . . . , s5) of sets of literals, denoted by s = (s1, s2, s3, s4, s5), where

• s1 = s ∩ lit(Ω1),

• s2 = s ∩ lit(Ω2),

• s3 = [s ∩ deps(preact(Ω1))] \ lit(Ω1),

• s4 = [s ∩ deps(preact(Ω2))] \ lit(Ω2), and

• s5 = s \ (
∪4

i=1 s
i).

It is easy to see that the (Ω1,Ω2)-representation of s is unique and is a partition of s.

Lemma 2. Let Ω1 and Ω2 be two combinable sets of literals. Let s be a state with the (Ω1,Ω2)-representation
(s1, . . . , s5). Then, for every action a ∈ preact(Ω1) and conditional effect a : φ → ℓ in O, it holds that
φ ∩ (s2 ∪ s4) = ∅ and ℓ ̸∈ (s2 ∪ s4 ∪ s5).

11

Proof. We have that φ ∩ s2 = ∅ because preact(Ω1) ∩ preact(Ω2) = ∅. φ ∩ s4 = ∅ because of Lemma 1
and the combinability of Ω1 and Ω2. ℓ ̸∈ (s2 ∪ s4) since ℓ ∈ deps(preact(Ω1)). ℓ ̸∈ s5 by definition of the
(Ω1,Ω2)-representation. 2

Lemma 3. Let Ω1 and Ω2 be two combinable sets of literals. Let s be a state with the (Ω1,Ω2)-representation
(s1, . . . , s5). Then, for every action a ̸∈ (preact(Ω1) ∪ preact(Ω2)) and conditional effect a : φ → ℓ, the
following hold:

• φ ∩ (s1 ∪ s2) = ∅

• Either φ ∩ s3 = ∅ or φ ∩ s4 = ∅.

• If φ ⊆ s5 then ℓ ∈ lit(s5 ∪ Ω1 ∪ Ω2)

• If φ ⊆ (s5 ∪ s3) and φ \ s3 ̸= ∅ then ℓ ∈ deps(preact(Ω1)).

• If φ ⊆ (s5 ∪ s4) and φ \ s4 ̸= ∅ then ℓ ∈ deps(preact(Ω2)).

Proof. The first item holds because a ̸∈ preact(Ω1) and a ̸∈ preact(Ω2). The second item holds because
of the combinability of Ω1 and Ω2. The third item and fourth item follow from Lemma 1. 2

Definition 6. Let S be a set of states and s be a state. We say that S covers s with respect to two combinable
set of literals, Ω1 and Ω2, if S contains two states u and v such that u = (s1, u2, s3, u4, v5) and v =
(v1, s2, v3, s4, s5).

In the next lemma, we show that the coverage property between belief states and states is an invariant
over the execution of actions.

Lemma 4. Let S be a set of states and s be a state such that S covers s with respect to be two combinable
set of literals Ω1 and Ω2. Let a be an executable action in S. Then, a is also executable in S and succ∗(a, S)
covers succ(a, s) with respect to Ω1 and Ω2.

Proof. Since S covers s with respect to Ω1 and Ω2, there exist u and v in S such that u = (s1, u2, s3, u4, v5)
and v = (v1, s2, v3, s4, s5). This shows that u ∩ v ⊆ s. Thus, a is executable in s since a is executable in u
and v.

We consider the following cases:

• a ∈ preact(Ω1). Lemma 2 implies that ea(s) = ea(u) and ea(s) ∩ (s2 ∪ s4 ∪ s5) = ∅. Thus,
succ(a, s) = (s11, s

2, s31, s
4, s5) where s11 = (s1 \ ea(s) ∪ ea(s)) ∩ lit(Ω1) and s31 = (s3 \ ea(s) ∪

ea(s)) \ lit(Ω1). Using the same arguments and the (Ω1,Ω2)-representations of u and v, we can
show that succ(a, u) = (s11, u

2, s31, u
4, s5), and succ(a, v) = (v11, s

2, v31, s
4, s5). Since succ(a, u) ∈

succ∗(a, S) and succ(a, v) ∈ succ∗(a, S), we have that succ∗(a, S) covers succ(a, s).

• a ∈ preact(Ω2). This is similar to the previous case due to the symmetry of u and v with respect to
Ω1 and Ω2.

• a ̸∈ preact(Ω1) and a ̸∈ preact(Ω2). Let

C1 = {a : φ→ ℓ | φ ⊆ s5}
C2 = {a : φ→ ℓ | φ ⊆ s5 ∪ s3 ∧ φ ∩ s3 ̸= ∅}
C3 = {a : φ→ ℓ | φ ⊆ s5 ∪ s4 ∧ φ ∩ s4 ̸= ∅}
C4 = {a : φ→ ℓ | φ ⊆ s5 ∪ u4 ∧ φ ∩ u4 ̸= ∅}
C5 = {a : φ→ ℓ | φ ⊆ s5 ∪ v3 ∧ φ ∩ v3 ̸= ∅}

12

From the construction of si, ui, and vi we have that C1∩C2 = C1∩C3 = C2∩C3 = ∅. Furthermore,
C1 ∩C4 = C1 ∩C2 = C2 ∩C4 = ∅ and C1 ∩C5 = C1 ∩C3 = C3 ∩C5 = ∅. Let ei = {ℓ | a : φ→
ℓ ∈ Ci}. From Lemma 3, we can conclude ea(s) = e1 ∪ e2 ∪ e3, ea(u) = e1 ∪ e2 ∪ e4, and ea(v) =
e1 ∪ e3 ∪ e5. Lemma 3 also implies that e2 ⊆ deps(preact(Ω1)) and thus e2 ∩ (deps(preact(Ω2))∪
lit(Ω2)) = ∅. Similarly, e3 ⊆ deps(preact(Ω2)) and thus e3 ∩ (deps(preact(Ω1)) ∪ lit(Ω1)) = ∅.
This allows us to derive the following

succ(a, s) =

(s1 \ (e1 ∪ e2) ∪ (e1 ∪ e2)) ∩ lit(Ω1),

(s2 \ (e1 ∪ e3) ∪ (e1 ∪ e3)) ∩ lit(Ω2),

(s3 \ (e1 ∪ e2) ∪ (e1 ∪ e2)) ∩ deps(preact(Ω1)) \ lit(Ω1),

(s4 \ (e1 ∪ e3) ∪ (e1 ∪ e3)) ∩ deps(preact(Ω2)) \ lit(Ω2),
(s5 \ e1 ∪ e1 \ lit(Ω1 ∪ Ω2))

Similarly, we have that

succ(a, u) =

(s1 \ (e1 ∪ e2) ∪ (e1 ∪ e2)) ∩ lit(Ω1),

(u2 \ (e1 ∪ e4) ∪ (e1 ∪ e4)) ∩ lit(Ω2),

(s3 \ (e1 ∪ e2) ∪ (e1 ∪ e2)) ∩ deps(preact(Ω1)) \ lit(Ω1),

(u4 \ (e1 ∪ e4) ∪ (e1 ∪ e4)) ∩ deps(preact(Ω2)) \ lit(Ω2),
(s5 \ e1 ∪ e1 \ lit(Ω1 ∪ Ω2))

and

succ(a, v) =

(v1 \ (e1 ∪ e5) ∪ (e1 ∪ e5)) ∩ lit(Ω1),

(s2 \ (e1 ∪ e3) ∪ (e1 ∪ e3)) ∩ lit(Ω2),

(v3 \ (e1 ∪ e5) ∪ (e1 ∪ e5)) ∩ deps(preact(Ω1)) \ lit(Ω1),

(s4 \ (e1 ∪ e3) ∪ (e1 ∪ e3)) ∩ deps(preact(Ω2)) \ lit(Ω2),
(s5 \ e1 ∪ e1 \ lit(Ω1 ∪ Ω2))

This shows that succ∗(a, S) covers succ(a, s).

2

Definition 7. Let P = ⟨F,O, I,G⟩ be a planning problem. Two one-of clauses o1 and o2 are combinable
if lit(o1) and lit(o2) are combinable.

As noted, the one-of clauses in Example 4 are combinable. Let o1 = one-of(L1, . . . , Ln) and o2 =
one-of(S1, . . . , Sm). Assume that n ≥ m. A combination of o1 and o2, denoted by o1 ⊕ o2 (or o2 ⊕ o1) is
the clause

one-of(L1 ∧ S1, . . . , Lm ∧ Sm, Lm+1 ∧ S1, . . . , Ln ∧ S1)

Intuitively, a combination of o1 and o2 is a one-of clause whose elements are pairs obtained by com-
posing one element of o1 with exactly one element of o2.

Proposition 2. Let P = ⟨F,O, I,G⟩ be a planning problem, where G is a conjunction of literals and o1
and o2 are two combinable one-of clauses in P . Let P ′ = ⟨F,O, I ′, G⟩, where I ′ is obtained from I by
replacing o1 and o2 by o1 ⊕ o2. Every solution of P ′ is also a solution of P and vice versa.

Proof. We consider two cases:

13

• α is a solution of P . The conclusion of the proposition follows from the following facts:

– ext(I ′) ⊆ ext(I),

– if ŝucc(α, ext(I ′)) = failed then ŝucc(α, ext(I)) = failed, and

– ŝucc(α, ext(I ′)) ⊆ ŝucc(α, ext(I)).

• Let Ω1 = lit(o1) and Ω2 = lit(o2). We observe that ext(I ′) covers every s ∈ ext(I) \ ext(I ′). We
prove by induction that if α is a solution of P ′ then α is a solution of P . This follows immediately
from Lemma 4 since the coverage of ext(I ′) over states belonging to ext(I) \ ext(I ′) is maintained
through the execution of executable actions.

2

Observe that the above proposition may not hold if P contains disjunctive goals, as shown next.

Example 5. Let P = ⟨{q, g, h, p, i, j}, O, I,G⟩ where

I = {one-of(h, g), one-of(p, q),¬i,¬j} and G = or(i, j)

and O consists of a : p,¬q → i, c : p, q → i, b : g,¬h→ j, and d : ¬g, h→ j.
It is easy to check that one-of(h, g) and one-of(q, p) are combinable. Let P ′ be the problem obtained

from P by replacing I with I ′ = {one-of(g ∧ q, h ∧ p),¬i,¬j}. Then, [a, b] is a solution of P ′ but not a
solution of P .

The combinable notion can be generalized as follows.

Definition 8. A set of one-of-clauses {o1, . . . , ok} is combinable if oi and oj are combinable for each
1 ≤ i ̸= j ≤ k.

Let ⊕(o1, . . . , ok) be the shorthand for (((o1 ⊕ o2) ⊕ . . .) ⊕ ok). Proposition 2 can be generalized as
follows.

Proposition 3. Let P = ⟨F,O, I,G⟩ be a planning problem, where G is a conjunction of literals. Let
{o1, . . . , ok} be a combinable set of one-of-clauses in P . Let P ′ = ⟨F,O, I ′, G⟩, where I ′ is obtained from
I by replacing {o1, . . . , ok} with ⊕(o1, . . . , ok). We have that each solution of P ′ is a solution of P and vice
versa.

Proof. By induction. Straightforwards due to Definition 5, the definition of deps and preact, and combin-
ability between the one-of clauses 2

We developed an algorithm for reducing the size of the initial cs-state by composing combinable sets
of one-of clauses in a planning problem P . We implemented a greedy algorithm, whose running time is
polynomial in the size of P , for detecting sets of combinable one-of clauses and replacing them with their
corresponding combination. This is possible since testing if two set of literals are combinable can be done
in polynomial time in the size of P , and the number of pairs that need this test is quadratic in the number of
propositions. Algorithms 2 shows the procedure to detect combinable groups of one-of clauses.

We then implemented Algorithm 3 to combine the combinable one-of clauses.

14

Algorithm 2 : COMBINABLE(P : planning problem)
Require: {o1, . . . , on}: one-of clauses in P

1: S = {o1, . . . , on}
2: Q = ∅
3: while (S ̸= ∅) do
4: pick o ∈ S and set s={o}
5: for all (o′ ∈ S ∧ o′ ̸∈ s) do
6: if (o′ is combinable with every r ∈ s) then
7: s = s ∪ {o′}
8: end if
9: end for

10: S = S \ s
11: if |s| > 1 then
12: Q = Q ∪ {s}
13: end if
14: end while
15: return Q

Algorithm 3 Composition of one-of clauses
Require: {o(Li

1, . . . , L
i
ni
)}ki=1 combinable one-of clauses

1: o = ∅
2: d[1, . . . , k] = [1, . . . , 1]
3: for (i=1 TO max(n1, . . . , nk)) do
4: c = true
5: for (j=1 TO k) do
6: c = c ∧ Lj

d[j]
7: if (j < nj) then
8: j = j + 1
9: end if

10: end for
11: o = o ∪ {c}
12: end for
13: return o

15

3.2.3 Goal Splitting

Reducing the size of the initial state only helps the planner to start the search. It does not necessarily
imply that the planner can find a solution. Furthermore, the technique is not always applicable as shown in
Tables 4 and 8. In this section, we present another technique, called goal-splitting, which can be used in
conjunction with the combination of one-of to deal with large planning problems. This technique can be
seen as a variation of the goal ordering technique in [10] and it relies on the notion of dependence proposed
in Definition 4. The key idea is that if a problem P contains a subgoal whose truth value cannot be negated
by the actions used to reach the other goals, then the problem can be decomposed into smaller problems
with different goals, whose solutions can be combined to create a solution of the original problem. This is
illustrated in the following example.

Example 6. Consider the problem P = D[2, 2, 2] of Example 4. It is easy to see that the two goals
disposed(o1) and disposed(o2) are independent in that we can solve the problem by computing the plan
to achieve each subgoal independently, one after another. More formally, P can be decomposed into two
sub-problems

P1 = ⟨F,O0 ∪O1, I, disposed(o1)⟩

and
P2 = ⟨F,O0 ∪O2, I2, disposed(o2)⟩

where O0 = {move(l1, l2) | l1, l2 ∈ Loc}, O1 = {pickup(o1, l), drop(o1, l) | l ∈ Loc}, and O2 =
{pickup(o2, l), drop(o2, l) | l ∈ Loc} with the following property: if α is a solution of P1 and β is a
solution of P2 where I2 = ŝuccA(α, I1), then α;β is a solution of P .3 2

Let us start with a definition capturing the condition that allows the splitting of goals.

Definition 9. Let P = ⟨F,O, I,G⟩ be a planning problem and let ℓ ∈ G. We say that ℓ is G-separable if,
for each ℓ′ ∈ G \ {ℓ} we have that ℓ̄ and ℓ′ are independent.

For a planning problem P and a literal ℓ ∈ G, a splitting of P with respect to ℓ is a pair (Pℓ, PG\{ℓ})
of planning problems where Pℓ = ⟨F, postact(ℓ), I, ℓ⟩ and PG\{ℓ} = ⟨F, postact(G \ {ℓ}), ∗, G \ {ℓ}⟩ and
the ‘*’ in PG\{ℓ} denotes an unspecified initial state.

According to this definition, the subgoals in Example 4 are G-seperatable since postact(¬disposed(oi))∩
postact(disposed(oj)) = ∅ for i ̸= j and i, j ∈ {1, 2}, i.e., once disposed(oi) is achieved, it cannot be
made false by the actions which may be necessary to achieve disposed(oj). We prove that G-separable is
sufficient for goal spliiting in the next proposition.

Proposition 4. Let P = ⟨F,O, I,G⟩ be a planning problem. Assume that ℓ ∈ G is G-separable. Let
Pℓ = ⟨F, postact(ℓ), I, ℓ⟩ and α be a solution of Pℓ. Let PG\{ℓ} = ⟨F, postact(G\{ℓ}), I ′, G\{ℓ}⟩, where
I ′ = ŝucc(α, I), and β be a solution of PG\{ℓ}. Then, α;β is a solution of P .

Proof. Trivial since postact(G \ {ℓ}) does not contain any action that can make ℓ̄ true. 2

Proposition 4 guarantees the soundness of the splitting technique. On the other hand, it is easy to see
that not every plan of P can be splitted into two parts α and β such that α is a solution of Pℓ and β is a
solution of PG\{ℓ}. It is also possible that not every decomposition of P can be used to search for a solution
of P even if the goals are separable . This can be seen in the following example.

3α;β denotes the concatenation of two sequences of actions.

16

Example 7. Consider the problem P = ⟨{f, g, h, k}, {a : ⊤ → ¬g, h, b : g, f → k}, {f, g,¬h,¬k}, h∧k⟩.
Clearly, h and ¬k are independent because postact(¬k) = ∅. Similarly, ¬h and k are independent

because postact(¬h) = ∅. Therefore both h and g are G-separable with respect to h∧ g. Furthermore, the
problem has a solution [b, a].

Splitting the problem into two problems Pk = ⟨⟨{f, g, h, k}, {b : g, f → k}, {f, g,¬h,¬k}, k⟩ and
Ph = ⟨{f, g, h, k}, {a : ⊤ → ¬g, h}, {f, g,¬h, k}, h⟩ does indeed allow us to find the plan [b, a].

On the other hand, the splitting of P into P ′
h = ⟨⟨{f, g, h, k}, {a : ⊤ → ¬g, h}, {f, g,¬h,¬k}, h⟩ and

P ′
k = ⟨{f, g, h, k}, {b : g, f → k}, I ′, k⟩ will yield no solution.

The above example shows that the goal splitting technique is only sound. To guarantee its completeness,
we need to be able to identify an appropriate order among the goals. However, this problem is a well-known
hard problem. On the other hand, checking for G-separable according to Definition 9 is only polynomial
in the size of P . We note that the splitting proposed in Definition 9 can be improved by also splitting
the propositions and initial states into different theories. We have implemented a generalized version of
Definition 9 to split a problem into a sequence of problems. This implementation runs in polynomial time in
the size of P . In our experiments, whenver a solvable problem can be splitted, the sequence of sub-problem
does yield a solution.

4 Implementation of CPA(H)

CPA(H) is built from the C++ source code of CPA+ [20]. The main differences between CPA+ and
CPA(H) lie in the use of a more complex heuristic and the application of the one-of combination technique
and the goal splitting technique by CPA(H). Since both techniques are characterized by syntactical condi-
tions, they can be processed by a static analyzer. We will now elaborate on the implementations of the two
components of CPA(H): preprocessor and the planning engine.

4.1 Implementation of the Preprocessor

The preprocessor is implemented in Prolog (specifically, SICStus Prolog). The choice of Prolog was natural,
as it provides several features needed by the problem at hand:

• The components of a problem specification have an obvious representation as Prolog terms and
clauses; PDDL actions and fluents have parameters and they can be encoded as complex terms,
e.g., the action go up with parameters elevator, floor, floor, is naturally represented by the term
go up(Elev,Floor1,Floor2).

• PDDL statements can be readily mapped to a collection of Prolog rules; in particular, it allows us to
keep a non-ground representation, and offers a quick access to the various components of the domain
specification. For example, the PDDL action specification of the action go up is translated to the Pro-
log rules in Fig. 2. Grounding can be obtained for free by simply collecting all valid instances of an ac-
tion (e.g., using setof). Unification allows us to easily select components of the problem specifica-
tion that meet desired requirements—e.g., a simple goal like executable(go up(e0,X,Y),L)
gives us access to the executability conditions of any instance of the action go up targeting elevator
e0.

17

(:action go-up
:parameters (?e - elevator

?f ?nf - floor)
:precondition (dec_f ?nf ?f)
:effect (when (in ?e ?f)

(and (in ?e ?nf)
(not (in ?e ?f)))))

action(go_up(E,F,NF)):-
elevator(E), floor(F),
floor(NF).

executable(go_up(E,F,NF),
[dec_f(NF,F)]):-

elevator(E),
floor(F), floor(NF).

causes(go_up(E,F,NF),
[in(E,NF),neg(in(E,F))],

[in(E,F)]) :-
elevator(E), floor(F), floor(NF).

Figure 2: PDDL action and Prolog representation
• Most of the proposed transformations described are fixpoint computations, and these can be elegantly

encoded in Prolog.

• Viewing action specifications as Prolog clauses, allows us to write elegant meta-interpreters to per-
form abstract executions; for example, if we represent an approximate state as an ordered list L
of terms (representing the fluent literals that hold in that partial state), then determining the exe-
cutable actions and the derived consequences from applying such actions can be reduced to simple
Prolog statements, a findall applied to the goal executable(A,C), ord subset(C,L),
causes(A,Cons,). Meta-interpreters allow us to simulate both progression (i.e., if action is ap-
plicable, applied it and repeat) and regression (i.e., from the goal find actions that produce the goal
and replace goal with their preconditions). Note that abstractions of progressions and regression are
needed to compute forward reachability and goal relevance.

The preprocessor maps the input PDDL theory to a collection of Prolog clauses. This mapping nicely
avoids the need of explicitly grounding the problem specification a priori. The transformations are imple-
mented as fixpoint computations on the Prolog clauses representing the problem specification.

4.2 Implementation of the Planning Engine

As we have mentioned earlier, the planning engine is built from the source code of CPA+ [20] and is
implemented as a C++ program, running on a Linux, gcc 4.2.1 version, with STL library. A partial state is
implemented as a set (a basic data structure in STL) of literals. The engine implements the best first search
over the search space of cs-states (Algorithm 1). Each cs-state is a data structure consisting of a set of partial
states, a plan to reach that cs-state, and the heuristic values: hcard, hgc, and hrpg. A modified version of the
algorithm presented in [11] is implemented to compute hrpg.

succ∗A is used to compute the next cs-state. A hash table (resp. priority queue) is used to store the
visited (resp. unvisited) cs-states. A special module is developed to compute the initial cs-state, which
consists of the set of initial partial states and guarantees the completeness of CPA(H). Each initial partial
state δ satisfies the following conditions:

1. {p,¬p} ∩ δ ̸= ∅ for each proposition p appears in I;

2. Id ⊆ δ;

3. for each one-of(ϕ1, . . . , ϕn) ∈ Io, there exists an i such that ϕi ⊆ δ and for all j ̸= i, ϕj ∩ δ ̸= ∅;

4. for each or(ϕ1, . . . , ϕn) ∈ Ir, there exists an i such that ϕi ⊆ δ; and

18

5. δ is consistent.

Choosing to implement the initial cs-state as a set (of the set of initial partial states) makes the computation
of the successor cs-state (the result of succ∗A) easier. The main disadvantage of this choice is that the size of
the initial cs-state can be exponential in the size of the number of object constants in the problem. This is
also the main reason why reducing the size of the initial cs-state is critical to our planner.

5 Experimental Evaluation

We compare CPA(H) with several other conformant planners: Conformant-FF (CFF) [4], KACMBP[8],
POND [6], t0 [15], and DNF [23]. These are some of the fastest conformant planners on most of the
benchmark domains in the literature. 4 We would like to mention that, in this paper, we only compare
CPA(H) with other conformant planners with the same capabilities. Among other things, the representa-
tion language employed in the discussed planners is, in one way or another, a propositional language with
limited expressive power. Furthermore, all these planners are complete. For this reason, we do not compare
CPA(H) with the PKS system [16] (improved in [17]) which employs a richer representation language and
the knowledge-based approach to reason about effects of actions in the presence of incomplete information
and is incomplete.

To make the comparison between the different planning systems as fair as possible, we try our best in
not altering the problem specifications obtained from the different repositories. Nevertheless, this is almost
impossible since the collected planners do generally disagree on input format. For example, KACMBP
requires the input in a different format, all other systems receive the same PDDL input in all domains and
t0 does not support negative preconditions. The experiments have been conducted on a Linux platform,
based on an Intel Pentium 4 3.06GHz chipset and 1GB of RAM. We tested the performance of CPA(H)
using four collections of benchmarks in our experimentation. 5

5.1 IPC-05 Domains

The IPC-05 domains [3] consists of six domains used in the 2006 planning competition. The adder domain
is the synthesis of an adder Boolean circuit. The coins domain is similar to the well-known transportation
domain where the goal is to collect coins from different, initially unknown, positions. The sortnet
domain is a synthesis of sorting networks which has disjunctive goals and a large number of possible initial
states. The comm domain encodes a communication protocol whose difficulty lies in the huge size of the
initial state. The uts domain is the computation of universal transversal sequence for graphs whose number
of actions and uncertainty are more manageable comparing to other domains. The test suite also contains
some problems in the block-world domain. Table 2 describes a few parameters of these problems—the
table describes the number of actions, propositions, goals and oneof statements; the table also indicates
the reduction in these numbers achieved by the previously mentioned simplifications. For example, in the
comm-10 instance, the theoretical numbers of actions and propositions are 529 and 419, respectively. The
simplification reduces these number to 203 and 69, respectively. The most significant reduction obtained is,
however, the number of partial states in the initial state, a reduction from 211 to 2. Observe, however, that
the reduction of number of initial partial states is achieved only in three out of six domains.

4The authors of [23] recently developed two other conformant planners whose performance is comparable to DNF. For this
reason, it only present the results of comparing to DNF.

5The encodings of the instances are available at www.cs.nmsu.edu/˜tson/CpA.

19

Instance # Actions # Propositions # Goal oneof
Theoretical After Theoretical After Theoretical After

Number Simplification Number Simplification Number Simplification
comm-10 529 203 419 69 11 211 2
comm-15 1004 373 764 99 16 216 2
comm-20 5710 1968 4070 189 40 221 2
comm-25 15515 5153 10900 214 65 226 2
coins-10 144 56 78 34 4 210 16
coins-15 432 136 208 76 6 220 32
coins-20 660 206 271 86 6 218×9 72
coins-25 5500 1870 1920 320 15 1020 105

coins-30 6000 2370 2425 376 20 1025 105

uts-20 420 420 441 41 20 20 20
uts-25 110 110 121 21 10 10 10
uts-30 420 420 441 41 20 20 20
sortnet-5 36 15 42 42 5 26 26

sortnet-10 121 55 132 11 10 211 211

sortnet-15 256 12 272 16 15 216 216

adder-1 3100 1800 30 20 17 4 4
adder-2 8428 4810 42 28 31 16 16
adder-3 17820 9996 54 36 45 64 64
blw-1 12 12 11 11 2 5 5
blw-2 24 24 19 19 3 18 18
blw-3 40 40 29 29 4 125 125

Table 2: Characteristics of the IPC-05 Domains

Table 3 contains some representative results 6 of our experiments with the IPC-05 domains. Our planner
compete well with the other planners on most domains. There is only one domain adder where our planner
fails to find a solution (time-out) while some other planners succeed. Our planners can find solutions in
several instances where others fail (e.g., in sortnet, where t0 and CFF cannot be used, in comm where
KACMBP times out).

t0 is more consistent and has better performance in most of the domains that are applicable to it.
CPA(H) is comparable to CFF in most instances, except for comm-25. In genral, DNF performs better
than CPA(H). One of the main reason for this is the compact belief state representation used by DNF.
POND tends to be faster in smaller instances but it does not seem to scale up well in larger instances,
compared to CPA(H). It should be mentioned that the combined heuristics hc is not an admissible heuristic
and this is reflected in the length of the solutions found by CPA(H)—they are often longer than those found
by other planners. This can also be seen from the results of DNF, which employs similar heuristic to CPA.
It is also interesting to note that only KACMBP can solve the adder-01 and adder-02 instance. This
domain has a very large number of actions whose preconditions are empty, and the cardinality heuristic does
not help—since the number of states is constant in every step of the computation. Furthermore, the goal is
a huge formula with disjunction, which might indicate that the treatment of formulas in KACMBP is better
than other planners.

5.2 Challenging Domains

This test suite consists of the domains that seem to be challenging for conformant planners, as detailed in
[14]. These are variations of the grid problems. dispose is about retrieving objects whose initial location

6Some of the numbers have been rounded up. The complete experimental results are included in the Appendix.

20

Instance CPA(H) t0 CFF POND KACMBP DNF
Time Len Time Len Time Len Time Len Time Len Time Len

adder-01 - TO - NA - NA - TO 65.62 3 6.343 3
adder-02 - TO - NA - NA - TO 1650.87 59 TO
blw-01 0.199 4 0.056 - NA 0.01 6 0.052 5 0.196 7
blw-02 0.424 33 0.22 - NA 0.12 34 - AB 0.93 40
blw-03 20.475 205 48.51 - NA 7.69 80 - AB 307.441 325
coins-01 0.02 11 0.008 9 0 12 0.02 11 1.476 15 0.21 10
coins-05 0.006 11 0.012 11 0.01 13 0.04 13 1.592 16 0.22 11
coins-10 0.031 48 0.036 26 1.02 38 1.07 46 TO 0.205 27
coins-15 0.396 191 0.1 81 7.35 79 21.1 124 TO 0.537 67
coins-20 0.737 195 0.152 108 38.19 143 211.19 153 TO 0.970 99
comm-02 0.087 17 0.024 19 0 17 0.04 17 - TO 0.21 19
comm-05 0.178 35 0.028 40 0.01 35 0.21 35 - TO 0.309 45
comm-10 0.662 65 0.56 75 0.06 65 1.46 65 - TO 1.104 80
comm-15 2.290 95 0.092 110 0.22 95 23.34 98 - TO 3.426 125
comm-20 56.878 239 0.484 278 13.33 239 TO - TO 145.065 296
comm-25 1222.63 389 1.552 453 109.49 389 TO - TO 1797.777 501
sortnet-01 0.061 1 - NA - NA 0.01 1 0.012 1 0.064 1
sortnet-05 0.068 13 - NA - NA 0.01 12 0.160 13 0.082 11
sortnet-10 2.373 39 - NA - NA 0.05 38 1.708 41 1.447 54
sortnet-15 740.00 74 - NA - NA 0.28 65 13.900 46 35.303 118
uts-01 0.002 4 0.012 4 0 4 0 4 0.024 4 0.082 4
uts-05 0.330 34 0.132 29 0.34 28 0.74 33 - TO 0.473 31
uts-10 14.33 89 0.88 59 55.49 58 26.16 68 - TO 2.656 66
uts-15 0.204 53 0.072 47 0.04 29 1.19 46 - TO 0.25 59
uts-20 8.936 156 0.56 85 1.64 59 111.54 88 - TO 1.651 109
uts-25 0.185 33 0.092 34 1.51 33 0.72 32 - TO 0.245 39
uts-30 4.905 74 0.792 67 25.65 66 39.88 68 - TO 1.39 73

Table 3: IPC-05 domains (Time in seconds, TO-Time out (30 min), NA-Not Applicable, AB-Out of Mem-
ory)

is unknown and placing them in a trash can at a given location. push-to is a variation where objects
can be picked up only at two designated positions in the grid to which all objects have to be pushed to.
1-dispose is a variation of dispose where the robot hand being empty is a condition necessary for
the pick-up action. look-n-grab is about picking up the objects that are sufficiently close, if there are
any, and each object picked has to be dropped in the trash can before continuing. Table 4 summarizes the
characteristics of these benchmarks.

Table 5 contains the results of our experiments with the challenging domains from [14]. We obtained
the scripts for generating these domains from the authors of t0. As described in [14], other planners cannot
handle these domains. For these reasons, we did not compare CPA(H) with other planners on these domains.

As it can be seen, CPA(H) is faster than t0 in most of the challenge domains. It can also solve more
problems compared to t0. In these domains, the cardinality heuristic does very well. Yet, CPA(H) tends to
produce longer plan than t0.

As in other domains, DNF performs better than CPA(H) and can solve more problems than t0. It
is interesting to observe that the solutions produced by DNF are shorter than those produced by t0 and
CPA(H). DNF also displays better scalability as it is the only one that can solve l-dispose-8-2 or
look-n-grab-8-1-2.

The main reason for the better performance of CPA(H) vs. t0 has been discussed in detail by the
authors of t0 in [15].

21

Instance # Actions # Propositions # Goal oneof
Theoretical After Theoretical After Theoretical After

Number Simplification Number Simplification Number Simplification
dispose-4-1 288 65 646 83 1 16 16
dispose-4-2 320 82 720 101 2 162 16
dispose-4-3 352 99 798 119 3 163 16
dispose-8-1 4224 289 8710 355 1 64 64
dispose-8-2 4352 354 8976 421 2 642 64
dispose-8-3 4480 419 9246 487 3 643 64
dispose-12-1 21024 673 42630 819 1 144 144
push-4-1 528 98 305 83 1 16 16
push-4-2 800 148 322 100 2 162 16
push-4-3 1072 198 339 117 3 163 16
push-8-1 8256 450 4289 355 1 64 64
push-8-2 12416 676 4354 420 2 642 64
push-8-3 16576 902 4419 485 3 643 64
push-12-1 41616 1058 21169 819 1 144 144
1-dispose-4-1 288 80 613 82 1 16 16
1-dispose-4-2 288 80 685 99 2 162 162

1-dispose-4-3 288 80 761 116 3 163 163

1-dispose-8-1 4224 352 8581 354 1 64 64
1-dispose-8-2 4224 352 8845 419 2 642 642

look-n-grab-4-1-1 288 80 613 83 1 16 16
look-n-grab-4-2-1 288 80 613 82 1 16 16
look-n-grab-4-3-1 288 80 613 82 1 16 16
look-n-grab-8-1-1 4224 352 8581 354 1 64 64
look-n-grab-8-1-2 4224 352 8845 419 2 642 642

look-n-grab-8-2-1 4224 352 8581 354 1 64 64

Table 4: Characteristics of the Challenging Domains

5.3 IPC-06 domains

This test suite consists of six domains used in the 2008 planning competition. The blockworld and
adder from the previous competition are reused without any change. A modified version of the uts,
which were also used in the 2006 competition, is used in the 2008 competition. In particular, the topology
of the mobile ad-hoc network is fully known in the IPC-05 domain while in this version, the topology is
partially known. The raos-keys domain is to find keys behind locked gates under different lights. It
is not known which key opens which gate and which key is located under which light. The difficulty in
this domain is the size of the initial state, which increases exponential in the number of lights and keys.
The forest domain is a hierachical structure domain. The top level is an unobservable grid navigation
problem with classical sub-problem at each grid point. The classical sub-problem for each grid node is
randomly generated from the set: a two city logistics problem, the Sussman anomaly blockworld, or a small
grid navigation problem. In this domain, the size of the grid influences the size of the initial belief state. The
characteristics of these domains are detailed in Table 6.

Table 7 contains the results of our experiments with the domains from IPC-06. We report here only the
results on the domains that were not used in the IPC-05 or the challenging domains.

The result of CPA(H)’s uts-cycle is different from the report in the IPC-06 final result. The reason
is that there was a bug in the preprocessor that generates incorrect initial state for the planner. With the bug
fixed, CPA(H) can solve 9 instances instead of 2.

It is noted that t0 performed much better than other planners in forest. We suspect that the cardinality

22

Instance CPA(H) t0 DNF
Time Len Time Len Time Len

dispose-4-1 0.266 84 0.05 59 0.476 45
dispose-4-2 0.605 198 0.100 110 0.617 78
dispose-4-3 0.406 314 0.212 122 0.931 185
dispose-8-1 15.004 741 1.668 426 47.118 150
dispose-8-2 96.377 1480 12.724 639 54.426 302
dispose-8-3 224.676 2227 133.92 761 34.417 629
push-4-1 .0.328 66 0.116 78 0.525 41
push-4-2 0.621 146 0.316 136 0.821 118
push-4-3 1.669 224 1.706 208 1.576 194
push-8-1 17.765 465 61.85 464 51.212 163
push-8-2 212.9 1099 - AB 68.030 903
push-8-3 - AB - AB 103.820 1477
1-dispose-4-1 0.764 112 12.908 148 0.507 68
1-dispose-4-2 4.473 108 - AB 1.45 256
1-dispose-4-3 61.63 108 - AB 17.307 64
1-dispose-8-1 613.653 1456 - AB 60.218 246
1-dispose-8-2 - AB - AB 85.807 256
look-n-grab-4-1-1 1.058 44 0.260 14 0.530 16
look-n-grab-4-2-1 1.350 4 0.428 4 0.681 4
look-n-grab-4-3-1 1.567 4 0.512 4 0.794 4
look-n-grab-8-1-1 182.36 554 109.17 145 51.276 99
look-n-grab-8-1-2 - AB - AB 396.164 144
look-n-grab-8-2-1 104.253 314 28.84 48 48.412 73

Table 5: Challenging Domains (time in seconds, AB-Out of Memory)

heuristic is not of use here since the initial belief state is small (in size). On the other hand, this implies that
the size of the problem obtained by the transtaiton of t0 is small, i.e., the input to FF by t0 is small. This
could be the reason that t0 performs much better in this domain.

5.4 Mixed Domains

The fourth test suite contains some domains from the distribution of CFF and t0, such as the ring, safe,
and logistics domains, and were used in previous IPCs. In the ring domain, one can move in a cyclic
fashion (either forward or backward) around a n-room building to lock windows. Each room has a window
and the window can be locked only if it is closed. The uncertainty lies in the lack of knowledge about the

Instance # Actions # Propositions # Goal oneof
Theoretical After Theoretical After Theoretical After

Number Simplification Number Simplification Number Simplification
uts-cycle-03 2 2 24 24 3 3× 23 3× 23

uts-cycle-04 2 2 40 40 4 4× 24 4× 24

uts-cycle-05 2 2 60 60 5 5× 25 5× 25

uts-cycle-10 2 2 60 60 10 10× 210 10× 210

forest-02 1612 1276 296 296 1 22 2
forest-03 2416 1912 454 454 1 32 3
forest-04 3220 2548 628 628 1 42 4

raos-keys-02 15 13 27 27 2 29 29

raos-keys-03 27 24 47 47 3 213 213

Table 6: Characteristics of the IPC-06 Domains

23

Instance CPA(H) t0 DNF
Time Len Time Len Time Len

uts-cycle-03 0.005 3 0.136 3 0.009 3
uts-cycle-04 0.027 6 0.448 7 0.043 6
uts-cycle-05 0.123 10 1.844 10 0.160 10
uts-cycle-10 34.609 71 - AB 85.194 89
uts-cycle-12 - AB - AB 895.534 134
forest-02 25.947 84 0.124 3.055 55
forest-03 - AB 0.624 - TO
forest-08 - AB 64.488 - TO
raos-keys-02 0.26 32 0.016 0.095 39
raos-keys-03 4.207 152 0.216 0.801 153

Table 7: IPC-06 Domains (time in seconds, AB-Out of Memory)

initial state of the windows. The goal is to have all windows locked. In the safe domain, a safe has one out
of n possible combinations, and one must try all combinations in order to open the safe. The logistics
domain is the ‘incomplete version’ of the well-known logistics domain. The uncertainty is in the initial
position of each package within its origin city. We add the cleaner domain to this test suite. It is a
modified version of the ring domain. The difference is that instead of locking the window, the robot has
to clean objects. Each room has p objects to be cleaned. Initially, the robot is at the first room and does not
know whether or not objects are cleaned. The goal is to have all objects cleaned. The properties of these
benchmarks are summarized in Table 8.

Table 9 reports the results of our experiment with well-known domains from previous IPCs, available
from CFF’s test suite. In these domains, CFF provides the best results. However, it times out in safe-50,
while both t0 and CPA(H) can solve this instance. CPA(H) and POND provide comparable performance,
though CPA(H) can solve a larger number of instances.

6 Conclusions and Future Work

In this paper, we presented the complete design and implementation of an efficient conformant planner,
called CPA(H). In particular, we discussed the theoretical basis of two main techniques that help CPA(H)
achieves the level of performance exhibited in the 2008 planning competition.

We would like to note that we have conducted a preliminary investigation on the usefulness of the
proposed techniques in other planners and the results are promising. In particular, applying the one-of
combination technique could improve the performance of POND and employing the goal-splitting technique
allows CFF to scale up [24]. This suggests that these two techniques could be useful in the development of
conformant planners.

The future developments of this project include exploring whether alternative methods for the inter-
nal implementation of cs-states (e.g., OBDD) can further enhance performance and whether the proposed
techniques could be strengthened to deal with domains where the current techniques are inapplicable. For
example, the current simplification techniques do not take into consideration about the initial states. This
could be a source for improvement. Another interesting question would be the applicability of other heuris-
tics.

Finally, let us observe that we did not focus on the efficiency of the preprocessor in this version of
CPA(H). More precisely, the current implementation of the preprocessor is composed of fairly unoptimized
fixpoint computations—and as such it is not particularly fast (especially for certain large instances, as in the

24

comm domain). An optimized code for this module could improve the overall performance of CPA(H).

References

[1] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning and approximate plan-
ning in the presence of incompleteness. Artificial Intelligence, 122:241–267, 2000.

[2] Piergiorgio Bertoli, Alessandro Cimatti, and Marco Roveri. Heuristic search + symbolic model check-
ing = efficient conformant planning. In Bernhard Nebel, editor, IJCAI, pages 467–472. Morgan Kauf-
mann, 2001.

[3] B. Bonet and B. Givan. Results of the conformant track of the 5th planning competition, 2006. http:
//www.ldc.usb.ve/˜bonet/.

[4] Ronen Brafman and Jörg Hoffmann. Conformant planning via heuristic forward search: A new ap-
proach. In Sven Koenig, Shlomo Zilberstein, and Jana Koehler, editors, Proceedings of the 14th Inter-
national Conference on Automated Planning and Scheduling (ICAPS-04), pages 355–364, Whistler,
Canada, 2004. Morgan Kaufmann.

[5] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing
Surveys, 24(3):293–318, September 1992.

[6] D. Bryce, S. Kambhampati, and D. Smith. Planning Graph Heuristics for Belief Space Search. Journal
of Artificial Intelligence Research, 26:35–99, 2006.

[7] Daniel Bryce and Subbarao Kambhampati. Heuristic Guidance Measures for Conformant Planning.
In Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling
(ICAPS 2004), June 3-7 2004, Whistler, British Columbia, Canada, pages 365–375. AAAI, 2004.

[8] A. Cimatti, M. Roveri, and P. Bertoli. Conformant Planning via Symbolic Model Checking and Heuris-
tic Search. Artificial Intelligence Journal, 159:127–206, 2004.

[9] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[10] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. J. Artif. Intell.
Res. (JAIR), 22:215–278, 2004.

[11] Derek Long and Maria Fox. Efficient implementation of the plan graph in stan. Journal of Artificial
Intelligence Research, 10:87–115, 1999.

[12] X.L Nguyen, S. Kambhampati, and R. Nigenda. Planning graph as the basis for deriving heuristics for
plan synthesis by state space and CSP search. Artificial Intelligence, 135(1-2):73–123, 2002.

[13] H. Palacios and H. Geffner. Compiling Uncertainty Away: Solving Conformant Planning Problems
Using a Classical Planner (Sometimes). In Proceedings of the the Twenty-First National Conference
on Artificial Intelligence, 2006.

[14] H. Palacios and H. Geffner. From Conformant into Classical Planning: Efficient Translations that may
be Complete Too. In Proceedings of the 17th International Conference on Planning and Scheduling,
2007.

25

[15] H. Palacios and H. Geffner. Compiling Uncertainty Away in Conformant Planning Problems with
Bounded Width. Journal of Artificial Intelligence Research, 35:623–675, 2009.

[16] Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-based approach to planning with incomplete
information and sensing. In Proceedings of the Sixth International Conference on Artificial Intelligence
Planning Systems, April 23-27, 2002, Toulouse, France, pages 212–222. AAAI, 2002.

[17] Ronald P. A. Petrick and Fahiem Bacchus. Extending the knowledge-based approach to planning
with incomplete information and sensing. In Proceedings of the Sixth International Conference on
Automated Planning and Scheduling, 2004, pages 2–11, 2004.

[18] D.E. Smith and D.S. Weld. Conformant graphplan. In AAAI, pages 889–896, 1998.

[19] Tran Cao Son and Chitta Baral. Formalizing sensing actions - a transition function based approach.
Artificial Intelligence, 125(1-2):19–91, January 2001.

[20] Tran Cao Son and Phan Huy Tu. On the Completeness of Approximation Based Reasoning and Plan-
ning in Action Theories with Incomplete Information. In Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning, pages 481–491, 2006.

[21] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and Ricardo Morales. An Approximation of Action
Theories of AL and its Application to Conformant Planning. In Proceedings of the the 7th Interna-
tional Conference on Logic Programming and NonMonotonic Reasoning, pages 172–184, 2005.

[22] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and Ricardo Morales. Conformant Planning for Do-
mains with Constraints — A New Approach. In Proceedings of the the Twentieth National Conference
on Artificial Intelligence, pages 1211–1216, 2005.

[23] Son Thanh To, Enrico Pontelli, and Tran Cao Son. A conformant planner with explicit disjunctive rep-
resentation of belief states. In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refani-
dis, editors, Proceedings of the 19th International Conference on Automated Planning and Scheduling,
ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009. AAAI, 2009.

[24] Dang-Vien Tran, Hoang-Khoi Nguyen, Enrico Pontelli, and Tran Cao Son. Improving performance of
conformant planners: Static analysis of declarative planning domain specifications. In Andy Gill and
Terrance Swift, editors, Practical Aspects of Declarative Languages, 11th International Symposium,
PADL 2009, Savannah, GA, USA, January 19-20, 2009. Proceedings, volume 5418 of Lecture Notes
in Computer Science, pages 239–253. Springer, 2009.

[25] Phan Huy Tu. Reasoning AND Planning With Incomplete Information In The Presence OF Static
Causal Laws. PhD thesis, New Mexico State University, 2007.

[26] Phan Huy Tu, Tran Cao Son, and Chitta Baral. Reasoning and Planning with Sensing Actions, Incom-
plete Information, and Static Causal Laws using Logic Programming. Theory and Practice of Logic
Programming, 7:1–74, 2006.

Appendix: Experimental Results

This appendix contains the complete results for the IPC-05 domains. In all the table, time is in seconds, TO
indicates Time out (30 min), AB means Out of Memory, and /NA stands for Not Applicable.

26

Instance # Actions # Propositions # Goal oneof
Theoretical After Theoretical After Theoretical After

Number Simplification Number Simplification Number Simplification
ring-2 3 3 16 8 2 18 18
ring-3 4 4 24 12 3 81 81
ring-4 4 4 32 16 4 324 324
ring-5 4 4 40 20 5 1215 1215
safe-5 5 5 6 6 1 5 5
safe-10 10 10 11 11 1 10 10
safe-30 30 30 31 31 1 30 30
safe-50 50 50 51 51 1 50 50
logistics-2-2-2 21296 30 429 37 2 4 2
logistics-2-3-3 108086 90 969 969 3 8 2
logistics-3-2-2 52136 56 672 672 2 9 3
logistics-3-3-3 200000 120 1320 1320 3 27 3
logistics-4-3-3 340676 156 1725 1725 3 64 4
bomb-5-1 42 6 24 24 5 25 2
bomb-10-1 132 11 44 44 10 210 2
bomb-20-1 462 21 84 84 20 220 2
bomb-50-1 2652 51 204 204 50 250 2
bomb-100-1 10302 101 404 404 100 2100 2

bomb-5-5 110 30 40 40 5 25 2
bomb-10-5 240 55 60 60 10 210 2
bomb-20-5 650 105 100 100 20 220 2
bomb-50-5 3080 255 220 220 50 250 2

bomb-5-10 240 60 60 60 5 25 2
bomb-10-10 420 110 80 80 10 210 2
bomb-20-10 930 210 120 120 20 220 2
bomb-50-10 3660 510 240 240 50 250 2
bomb-100-10 12210 1010 404 404 100 2100 2

cleaner-2-5 51 12 70 70 10 210 2
cleaner-2-10 146 22 180 180 20 220 2
cleaner-2-20 486 42 550 550 40 240 2
cleaner-2-50 2706 102 2860 2860 100 2100 2
cleaner-5-5 102 27 130 130 25 225 2
cleaner-5-10 227 52 270 270 50 250 2
cleaner-5-20 627 102 700 700 100 2100 2
cleaner-5-50 3027 252 3190 3190 250 2250 2

Table 8: Characteristics of the Mixed Domains

27

Instance CPA(H) t0 CFF POND KACMBP DNF
Time Len Time Len Time Len Time Len Time Len Time Len

ring-2 0.012 7 0.016 5 .0 7 .01 6 0.00 5 0.16 7
ring-3 0.128 8 0.012 8 .11 15 .12 13 0.00 8 0.136 11
ring-4 0.199 17 0.02 13 2.0 25 4.56 16 0.02 11 0.228 15
ring-5 0.585 21 0.02 17 46 45 282 20 0.02 14 0.812 19
safe-05 0.142 5 0.004 5 .0 5 .02 10 .02 5 0.144 5
safe-10 0.160 10 0.02 10 .01 10 TO .02 10 0.13 10
safe-30 2.215 30 0.088 30 4.26 30 TO .01 30 0.228 30
safe-50 19.505.591 50 0.224 50 TO TO .03 50 0.597 100
logistics-2-2-2 0.252 27 0.02 16 .04 16 .13 16 .276 14 0.234 17
logistics-2-3-3 1.074 27 0.048 24 .06 24 1.4 30 164.94 34 1.049 55
logistics-3-2-2 0.575 23 0.024 20 .09 20 .78 22 .112 14 0.59 34
logistics-3-3-3 2.184 51 0.06 34 .11 34 18.48 39 .220 40 2.638 104
logistics-4-3-3 3.298 55 0.072 36 .17 37 29.55 37 .288 39 3.52 193
bomb-5-1 0.07 0.138 1 .0 9 .03 9 .02 10 0.075
bomb-10-1 0.153 19 0.012 20 .01 19 .13 19 .036 20 0.055
bomb-50-1 0.604 99 0.076 100 2.8 99 AB .034 100 0.496
bomb-100-1 1.737 199 0.236 84.03 199 AB 2.48 200 1.372
bomb-20-1 0.181 39 0.024 40 .13 39 1.13 39 .04 40 0.106
bomb-5-5 0.154 5 0.02 10 .0 5 .12 5 .072 10 0.097 5
bomb-10-5 0.194 15 0.02 20 .01 15 .89 15 .148 20 0.11 15
bomb-20-5 0.42 35 0.036 40 .09 35 4.38 35 .188 40 0.293 35
bomb-50-5 2.64 95 0.116 100 2.38 95 AB 1.00 100 1.491 95
bomb-5-10 0.189 5 0.016 10 .0 5 .48 5 .18 10 0.121 5
bomb-10-10 0.284 10 0.028 20 .0 10 1.69 10 .19 20 0.198 10
bomb-20-10 0.717 30 0.052 40 .06 30 11.85 30 .56 40 0.598 30
bomb-50-10 3.184 90 0.0176 100 . 1.89 90 AB 3.04 100 3.937 90
bomb-100-10 17.9 190 0.736 200 71.53 190 AB 20.26 200 4.010 190
bomb-100-100 AB 6.260 200 1.92 100 AB TO TO
cleaner-2-5 0.0 11 0.008 11 .0 11 .09 11 .04 11 0.078 11
cleaner-2-10 0.08 21 0.012 21 .0 21 .83 21 .14 21 0.072 21
cleaner-2-20 0.14 41 0.012 41 .04 41 8.99 41 .4 41 0.012 41
cleaner-2-50 0.937 101 0.032 101 .37 101 AB 7.61 101 0.148 101
cleaner-5-5 0.06 29 0.016 29 .0 29 .86 29 .116 34 0.086 33
cleaner-5-10 0.14 54 0.028 54 .03 54 6.14 54 .59 56 TO
cleaner-5-20 0.115 104 0.052 5 .33 103 113.85 104 4.56 106 TO
cleaner-5-50 2.957 254 0.013 254 9.86 254 AB 128.78 256 TO

Table 9: Mixed Domains

28

Instance CPA(H) t0 CFF POND KACMBP DNF
coins-01 0.02/11 0.08/10 0/12 0.02/11 1.476/15 0.21/10
coins-02 0.006/11 0.016/10 0/12 0.03/11 1.424/9 0.19/10
coins-03 0.0006/14 0.016/10 0/13 0.04/13 1.3/15 0.19/11
coins-04 0.006/11 0.012/10 0/12 0.02/11 1.272/9 0.19/10
coins-05 0.006/11 0.012/10 0.01/13 0.04/13 1.592/16 0.22/11
coins-06 0.030/45 0.04/28 0.04/31 0.38/31 /TO 0.21/31
coins-07 0.031/48 0.024/26 0.12/34 0.7/38 /TO 0.20/27
coins-08 0.045/49 0.032/28 0.03/28 0.26/29 /TO 0.226/27
coins-09 0.029/45 0.028/26 0.02/26 0.42/28 /TO 0.204/26
coins-10 0.031/48 0.036/26 1.02/38 1.07/46 /TO 0.205/27
coins-11 0.035/188 0.080/74 1.58/78 14.91/88 /TO 0.621/74
coins-12 0.326/194 0.092/67 1.39/72 11.04/76 /TO 0.576/68
coins-13 0.359/195 0.096/68 6.13/95 24.86/94 /TO 0.547/75
coins-14 0.383/198 0.096/76 1.07/76 17.62/88 /TO 0.655/75
coins-15 0.396/191 0.100/79 7.35/79 21.1/124 /TO 0.537/67
coins-16 0.857/202 0.216/113 64.67/145 145.96/136 /TO 1.013/101
coins-17 0.925/207 0.144/96 2.21/94 69.08/120 /TO 1.028/110
coins-18 1.292/204 0.116/97 11.37/118 61.76/115 /TO 0.978/100
coins-19 0.736/205 0.172/105 32.14/128 151.56/147 /TO 0.901/93
coins-20 0.737/195 0.152/107 38.19/143 211.19/153 /TO 0.970/99

Table 10: IPC-05 coins domains

Instance CPA(H) t0 CFF POND KACMBP DNF
sortnet-01 0.061/1 /NA /NA 0.01/1 0.012/1 0.064/1
sortnet-02 0.031/3 /NA /NA 0/3 0.02/3 0.034/3
sortnet-03 0.032/5 /NA /NA 0/5 0.056/5 0.036/6
sortnet-04 0.046/9 /NA /NA 0.01/9 0.092/9 0.051/10
sortnet-05 0.068/13 /NA /NA 0.01/12 0.160/13 0.082/11
sortnet-06 0.099/16 /NA /NA 0.02/16 0.328/19 0.108/21
sortnet-07 0.206/21 /NA /NA 0.01/19 0.316/17 0.231/28
sortnet-08 0.405/28 /NA /NA 0.02/26 0.616/27 0.368/36
sortnet-09 0.945/32 /NA /NA /AB 0.956/28 1.006/44
sortnet-10 2.373/39 /NA /NA 0.05/38 1.708/41 1.447/54
sortnet-11 5.989/46 /NA /NA 0.07/43 2.348/36 2.008/65
sortnet-12 15.392/50 /NA /NA 0.13/50 4.00/49 6.058/75
sortnet-13 39.766/56 /NA /NA 0.18/55 5.564/48 8.486/90
sortnet-14 97.778/65 /NA /NA 0.27/61 9.784/30 27.230/103
sortnet-15 740.00/74 /NA /NA 0.28/65 13.900/46 35.303/118

Table 11: IPC-05 sortnet domains

29

Instance CPA(H) t0 CFF POND KACMBP DNF
comm-02 0.087/17 0.03/19 0/17 0.04/17 /TO 0.21/19
comm-03 0.091/23 0.024/26 0/23 0.1/23 /TO 0.181/26
comm-04 0.134/29 0.016/33 0/29 0.12/29 /TO 0.259/36
comm-05 0.178/35 0.028/40 0.01/35 0.21/35 /TO 0.309/45
comm-06 0.201/41 0.032/47 0/41 0.32/41 /TO 0.404/52
comm-07 0.327/47 0.036/54 0.02/47 0.54/47 /TO 0.53/59
comm-08 0.406/53 0.036/61 0.04/53 0.72/53 /TO 0.677/66
comm-09 0.568/59 0.040/68 0.04/59 1.06/59 /TO 0.855/73
comm-10 0.662/65 0.056/75 0.06/65 1.46/65 /TO 1.104/80
comm-11 0.918/71 0.072/82 0.08/71 2.51/72 /TO 1.402/87
comm-12 1.137/77 0.088/89 0.12/77 3.15/77 /TO 1.806/104
comm-13 1.471/83 0.096/96 0.15/83 5.22/83 /TO 2.275/101
comm-14 1.900/89 0.096/103 0.18/89 9.42/89 /TO 2.777/108
comm-15 2.290/95 0.092/110 0.22/95 23.34/98 /TO 3.426/125
comm-16 2.144/119 0.152/138 0.54/119 221.86/119 /TO 6.219/160
comm-17 3.004/149 0.192/173 1.68/149 /TO /TO 16.259/190
comm-18 11.327/179 0.26/208 3.59/179 /TO /TO 41.138/213
comm-19 24.690/209 0.35/243 7.37/209 /TO /TO 78.956/248
comm-20 56.878/239 0.48/278 13.33/239 / TO /TO 149.105/296
comm-21 194.666/269 0.60/313 22.47/269 /TO /TO 278.929/357
comm-22 329.015/299 0.80/348 35.69/299 /TO /TO 452.738/388
comm-23 531.432/329 1.01/418 53.82/329 /TO /TO 775.246/439
comm-24 796.437/359 1.24/453 77.12/359 /TO /TO 1167.18/469
comm-25 1222.63/389 1.55/453 109.49/389 / TO /TO 1797.77/501

Table 12: IPC-05 comm domains

30

Instance CPA(H) t0 CFF POND KACMBP DNF
uts-01 0.002/4 0.012/5 0/4 0/4 0.024/4 0.082/4
uts-02 0.007/81 0.012/11 0/10 0.02/12 0.2/11 0.154/11
uts-03 0.029/92 0.036/17 0.02/16 0.11/19 12.108/25 0.197/17
uts-04 0.082/111 0.064/23 0.09/22 0.25/26 /TO 0.286/24
uts-05 0.330/86 0.132/29 0.34/28 0.74/33 /TO 0.473/31
uts-06 0.714/134 0.192/35 1.21/34 1.76/40 /TO 0.648/38
uts-07 3.296/126 0.288/41 3.73/40 3.88/47 /TO 0.994/45
uts-08 3.891/129 0.424/47 10.86/46 7.8/54 /TO 1.412/52
uts-09 11.76/155 0.636/53 23.72/52 15/61 /TO 1.978/59
uts-10 14.33/194 0.660/59 55.49/58 26.16/68 /TO 2.656/66
uts-11 0.002/4 0.004/5 0/4 0.01/4 /TO 0.073/4
uts-12 0.007/16 0.02/13 0/11 0.03/14 /TO 0.137/13
uts-13 0.042/24 0.036/26 0.01/17 0.09/23 /TO 0.124/26
uts-14 0.083/34 0.006/30 0.01/23 0.34/33 /TO 0.203/43
uts-15 0.204/47 0.07/44 0.04/29 1.19/46 /TO 0.25/59
uts-16 0.316/59 0.14/55 0.1/35 AB /TO 0.363/69
uts-17 0.879/71 0.188/70 0.2/41 7.84/64 /TO 0.558/79
uts-18 2.003/88 0.252/80 0.43/47 18.19/70 /TO 0.794/89
uts-19 4.375/104 0.504/93 0.85/53 45.16/82 /TO 1.131/99
uts-20 8.936/120 0.560/97 1.64/59 111.54/88 /TO 1.651/109
uts-23 0.022/23 0.036/19 0.01/17 0.08/17 /TO 0.123/19
uts-24 0.058/33 0.048/25 0.04/26 0.25/24 /TO 0.185/27
uts-25 0.185/50 0.092/30 1.51/33 0.72/32 /TO 0.245/39
uts-26 0.398/51 0.140/37 9.56/38 AB /TO 0.320/41
uts-27 0.968/57 0.236/47 2.5648 4.45/53 /TO 0.479/48
uts-28 1.949/100 0.320/51 8.17/48 11.25/54 /TO 0.719/59
uts-29 3.302/112 0.408/58 7.76/62 18.73/64 /TO 0.953/66
uts-30 4.905/109 0.792/65 25.65/66 39.88/68 /TO 1.390/73

Table 13: IPC-05 uts domains

31

