
CPP: A Constraint Logic Programming Based
Planner with Preferences

Phan Huy Tu, Tran Cao Son, and Enrico Pontelli

Computer Science Department,
New Mexico State University, Las Cruces, New Mexico, USA

{tphan|tson|epontell}@cs.nmsu.edu

Abstract. We describe the development of a constraint logic program-
ming based system, called CPP, which is capable of generating most
preferred plans with respect to a user’s preference and evaluate its per-
formance.

1 Introduction

The problem of finding a plan satisfying the preferences of a user has been
discussed in [13] and recently attracted the attention of researchers in planning
[2,3,5]. Indeed, PDDL, the de-facto language of the planning community, has
been recently extended [9] to include constructs for the specification of users’
preferences.

The original proposal described in [13] describes a model to integrate the
users’ preferences into a planning system based on Answer Set Programming
(ASP). Due to the lack of a list operator and the inflexibility in dealing with
function symbols, the encoding of preferences in this system is somewhat un-
natural, and it requires the introduction of artificial constant and predicates
symbols. Furthermore, the encoding proposed in [13] inherits the requirement
of answer set solvers that all variables have to be instantiated before computing
the answer sets, possibly leading to extremely large encodings. For these reasons,
the encoding in [13] is not expected to scale well to handle complex preferences.

This paper describes a Constraint Logic Programming (CLP) [11] based sys-
tem, called CPP, for computing most preferred plans of planning problems.
The detailed implementation of CPP is presented in [14]. The choice of CLP
is suggested by a number of factors. First, CLP is a logic programming based
paradigm, very declarative, and it is expected to allow us to maintain the under-
lying model proposed in [13]. Second, CLP does not require program grounding,
and it allows the use of lists and other function symbols, leading to a more com-
pact encoding of problems. CLP (and, in particular, CLP over Finite Domains
(CLP(FD)) [15]) provides the ability to express and efficiently handle arith-
metic constraints, and the paradigm offers methodologies for describing search
and optimization strategies. These two features appear to be vital in the context
of dealing with preferences. Finally, recent studies [7] have suggested that CLP
can provide an effective alternative, in terms of performance, to ASP for many
classes of problems.

C. Baral, G. Brewka, and J. Schlipf (Eds.): LPNMR 2007, LNAI 4483, pp. 290–296, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

CPP: A Constraint Logic Programming Based Planner with Preferences 291

The CPP system is implemented in GNU Prolog [6]—a Prolog compiler with
constraint solving over finite domains capabilities. CPP accepts planning prob-
lems described in the action language AL [1] in terms of logic programs. Users’
preferences are described in terms of logic programs as well, using the preference
language PP from [13].

2 Background

Action Language AL and Planning Problems: An action theory of AL is a
pair 〈D, I〉, where D is a set of propositions expressing the conditional effects of
actions, the causal relationships between fluents and the executability conditions
for the actions, and I is the set of propositions describing the initial state of the
world. Semantically, an action theory 〈D, I〉 describes a transition diagram, whose
nodes correspond to possible configurations of the world, and whose arcs are la-
beled with actions. A path in the transition diagram corresponds to a trajectory
of a sequence of actions. We assume that domains are deterministic, i.e., there is
at most one trajectory for a sequence of actions. A planning problem P in AL is a
triple 〈D, I, G〉 where 〈D, I〉 is an action theory and G is a set of literals describing
goal states. A plan of P is a sequence of actions that leads to a state satisfying G
from the initial state, according to the transition diagram of 〈D, I〉.
Preference Language PP: The language PP [13] supports three types of
preferences: basic desires, atomic preferences, and general preferences. A basic
desire is a temporal formula expressing desired constraints on trajectories of
plans. E.g., in the transportation domain, to express the fact that a user prefers
to stop by a post office, we can write

eventually(
∨

post office(X) at(X))
or, if the user’s preference is not to go by bus, we can use the formula

always(
∧

bus line(X,Y) ¬occ(bus(X, Y))).
In the above formulae, occ(A) means that action A must occur at the current
state; eventually(ϕ) (resp. always(ϕ)) means that the formula ϕ must some-
times (resp. always) hold during the execution of the plan. An atomic preference
provides users with a way to rank their basic desires, e.g., the fact that going by
bus is preferred to going by subway can be expressed as

∧
bus line(X,Y)∧subway(X,Y)

occ(bus(X, Y))�occ(subway(X, Y)). A general preference is composed of atomic
preferences using the connectives & (and), | (or), ! (not), and � (preferable).
Given a preference ψ, PP defines an ordering relation ≺ψ between trajectories
of plans: α ≺ψ β means that the trajectory α is preferred to the trajectory β
w.r.t. ψ. In this regard, a plan π is most preferred w.r.t. ψ if there is no plan π′

s.t. the trajectory of π′ is preferred to the trajectory of π.

3 System Description

We developed a system, called CPP1, in GNU Prolog for finding most preferred
plans. CPP takes as input a planning problem P and a set of preferences and
1 CPP’s source code is available at http://www.cs.nmsu.edu/∼tphan/software.htm

http://www.cs.nmsu.edu/~tphan/software.htm

292 P.H. Tu, T.C. Son, and E. Pontelli

returns as output most preferred plans of P w.r.t. a preference. It works by
translating a planning problem into a constraint satisfaction problem, whose
satisfying truth assignments correspond to plans of P2. To handle preferences,
CPP defines a weight function that maps plans to (integer) numbers in such
a way that any plan with a maximal value of the weight function is a most
preferred plan of P . However, the other direction does not hold in general: some
of the most preferred plans do not correspond to any optimal solution of the
constraint satisfaction problem. If we wish to find them, we might have to use
another weight function.

In our framework, a planning problem P is described in AL in terms of a
Prolog program. Since GNU Prolog does not allow the symbol ¬, a literal ¬F
where F is a fluent is written as neg(F). Listed below is an example of an input
file for the transportation domain with three actions walk, bus, and subway,
with obvious meaning. Initially the user is at home and his goal is to be at his
office.

% locations, facilities & transportation media ---------------------------
loc(home). loc(office). loc(stA). loc(stB). loc(stC). loc(stD).
post_office(stA). post_office(stB). phone(stB). phone(stC). phone(stD).
bus_line(stA,stB). bus_line(stC,stD). sub_line(stA,stD). sub_line(stC,stB).
pedestrian(home,stA). pedestrian(stB,office). pedestrian(home,stC).
pedestrian(stD,office).
% actions & fluents --
action(bus(L1,L2)):- bus_line(L1,L2).action(subway(L1,L2)):- sub_line(L1,L2).
action(walk(L1,L2)) :- pedestrian(L1,L2). fluent(at(L)) :- loc(L).
% executable condition ---
executable(bus(L1,L2), [at(L1)]) :- action(bus(L1,L2)).
executable(subway(L1,L2), [at(L1)]) :- action(subway(L1,L2)).
executable(walk(L1,L2), [at(L1)]) :- action(walk(L1,L2)).
% dynamic causal laws --
causes(bus(L1,L2), at(L2), []) :- action(bus(L1,L2)).
causes(subway(L1,L2), at(L2), []) :- action(subway(L1,L2)).
causes(walk(L1,L2), at(L2), []) :- action(walk(L1,L2)).
% static causal laws: cannot be at L1 if at L2 ---------------------------
caused([at(L2)],neg(at(L1))) : loc(L1), loc(L2), L1 \== L2.
% initial state & goal ---
initially(at(home)). goal(at(office)).

The set of preferences is also described in terms of Prolog clauses. A basic desire
is expressed as a fact of the form basic desire(Name,Formula), where Name is the
name of the basic desire and Formula is a temporal formula representing the basic
desire. An atomic preference is expressed as atomic preference(Name,Desires),
where Name is the name of the atomic preference and Desires is a list of basic
desire names. Intuitively, Desires = [D1,..,Dk] corresponds to the atomic pref-
erence D1 � .. � Dk. A general preference is general preference(Name,Formula),
where Name is the name of the preference and Formula is the formula representing
the preference.

2 Our translation is similar to SAT-based approaches to planning such as [4,12,10].

CPP: A Constraint Logic Programming Based Planner with Preferences 293

In addition to basic desires, atomic preferences and general preferences, which
are supported by PP, CPP allows another type of preferences, called metric
preferences, which are declared as metric preference([(D1,W1),..,(Dk,Wk)])
where Di’s are basic desires and Wi’s are weights associated with them. The
weight of a plan π w.r.t. a metric preference ψ is the sum of the weights of the
basic desires in ψ that are satisfied by π. A plan is most preferred if it has a
maximal weight value. The following is a simple example of an input file for
preferences.

basic_desire(ds1,eventually(or(L))) :- findall(at(X),post_office(X),L).
basic_desire(ds2,eventually(or(L))) :- findall(at(X),phone(X),L).
basic_desire(ds3,always(and(L))) :-

findall(neg(occ(bus(X,Y))), action(bus(X,Y)), L).
atomic_preference(ap1,[ds1,ds2]). atomic_preference(ap2,[ds1,ds3]).
general_preference(gp1,and(ap1,ap2)). general_preference(gp2,or(ap1,ap2)).
metric_preference(mp1,[(ds1,2),(ds2,3),(ds4,5)]).

In this example, the first three lines define three different basic desires. The first
basic desire ds1 describes that the user wants to be at a post office during his
plan (just because he wants to send a package). The second basic desire ds2 says
that he wants to be at a phone box (to make a call, for example). The last basic
desire, ds3, states that he does not want to go by bus.

The fourth line defines two atomic preferences: ap1 corresponds to the atomic
preference ds1� ds2, and ap2 corresponds to the atomic preference ds1� ds3,
which means that ds1 is preferred to ds2, and ds1 is preferred to ds3, respec-
tively. The next line describes two general preferences: gp1 stands for ap1 &
ap2, and gp2 stands for ap1 | ap2. The last line describes a metric preference
consisting of basic desires ds1, ds2, and ds3 with weights 2, 3, and 5 respectively.

The input planning problem and the preference file are compiled to CLP,
and execution is initiated by issuing the predicate main/2 to compute the most
preferred plans. The first argument of main is the name of the preference and
the second argument is the length of the plan we wish to find. For example, to
find a most preferred plan of length 3 w.r.t. the basic desire ds1 (resp. gp1) we
can submit the query main(ds1,3) (resp. main(gp1,3)). The following is the
output of the queries main(ds1,3) and main(gp1,3):

| ?- main(ds1,3). | ?- main(gp1,3).
A most preferred trajectory is: A most preferred trajectory is:

+ walk(home,stA) + walk(home,stC)
+ bus(stA,stB) + subway(stC,stB)
+ walk(stB,office) + walk(stB,office)

4 Experiments

We compared CPP with the ASP planner in [13] on the blocks world domain
(Block). In this domain, there are m × n blocks, numbered from 1 . . .m × n.
Initially, the blocks are organized in m piles, each having n blocks. The i-th pile
consists of n blocks that are numbered (1+(i−1)×n) . . . (i×n), where the blocks

294 P.H. Tu, T.C. Son, and E. Pontelli

with smaller numbers are on top of the blocks with larger numbers. The goal is
to have a pile of blocks from 1 to m × n − 1 where blocks with larger numbers
are on top of ones with smaller numbers. The location of the remaining block
(block number m×n), can be anywhere (i.e., on the table, on block m×n−1, or
below block 1). For this domain, we tested with preferences ψ1, . . . , ψ8 defined
as follows. The first four preferences are basic desires. ψ1 is a goal preference of
having the last block (block number m × n) on the top of block m × n − 1 in
the final state. ψ2 is also a goal preference but it prefers to have the last block
under block 1. ψ3 and ψ4 are state desires. ψ3 prefers to never place any block
except block 1 on the table; ψ4 states that eventually block 1 is on block m × n.
ψ5 is the atomic preference ψ1 � ψ2, and ψ6 is the atomic preference ψ3 � ψ4.
ψ7 and ψ8 are the general preferences ψ4&ψ5 and ψ8 = ψ4|ψ5.

All the experiments have been conducted on a 2.4 GHz CPU, 768MB RAM
machine. Time out is set to 10 minutes. The test results are shown in Table 1.
In the table, N is the length of plans that we wish to find. In each cell of the

Table 1. Performance of CPP vs ASPlan

Domain N ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8
Block(1,4) 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.72 1.68 1.85 1.73 1.72 1.73 1.72 1.77
5 0.02 0.00 0.00 0.00 0.02 0.02 0.02 0.02

1.79 1.75 1.78 1.78 1.81 1.83 1.85 1.81
6 0.00 0.00 0.02 0.02 0.00 0.03 0.02 0.02

1.91 1.87 2 1.98 1.97 1.99 1.98 2.02
7 0.02 0.00 0.02 0.03 0.00 0.03 0.03 0.03

2.11 2.07 2.29 2.36 2.91 2.16 2.1 2.18
Block(1,5) 5 0.00 0.02 0.02 0.02 0.00 0.02 0.02 0.02

5.65 5.51 5.63 5.73 5.53 5.65 5.73 5.74
6 0.02 0.03 0.03 0.02 0.02 0.05 0.05 0.03

6.85 5.72 5.76 5.97 5.99 5.89 6.11 6.18
7 0.03 0.03 0.05 0.06 0.03 0.09 0.05 0.06

6.15 6.27 6.19 6.13 6.18 6.32 6.53 6.45
8 0.08 0.03 0.08 0.08 0.06 0.14 0.06 0.08

6.53 6.51 6.69 6.56 6.56 6.71 7.14 7.28
Block(1,6) 6 0.02 0.02 0.31 0.02 0.02 0.03 0.03 0.03

17.14 17.19 17.21 16.82 16.83 16.99 16.75 20.43
7 0.06 0.08 0.16 0.09 0.09 0.17 0.14 0.14

17.6 17.64 17.7 17.56 17.72 17.59 17.62 17.51
8 0.11 0.14 0.19 0.28 0.14 0.31 0.22 0.24

18.2 18.42 18.44 18.35 18.41 18.38 18.45 18.46
9 0.42 0.39 0.28 0.56 0.47 0.52 0.66 0.67

19.26 19.87 19.17 19.3 19.37 19.28 19.56 19.48
10 2.00 0.28 0.53 0.66 2.33 0.94 2.02 2.08

20.98 20.4 20.02 20.09 20.3 20.45 20.22 20.24
Block(1,7) 9 0.48 0.47 0.67 0.78 0.5 0.97 0.52 0.52

32.66 32.33 33.13 32.53 32.59 32.86 32.82 32.52
10 1.94 1.5 0.86 1.81 2.28 1.55 1.72 1.72

34.84 34.82 34.72 34.97 34.5 34.4 38.86 35.18
11 10.78 6.00 1.97 7.27 11.02 2.81 7.64 7.5

38.7 38.65 38.58 38.27 38.1 38.91 38.18 38.23
12 66.28 3.34 2.61 5.3 76.24 5.08 40.67 41.31

42.47 42.12 42.66 42.36 42.66 45.64 42.71 43.62
Block(2,3) 5 0.2 0.23 0.36 0.38 0.24 0.55 0.56 0.66

16.45 16.84 16.85 16.74 16.73 17.19 16.69 17.85
6 0.12 0.18 0.2 0.47 0.11 0.44 0.22 0.2

17.57 17.27 17.3 17.62 17.3 17.42 18.13 22.98
7 0.25 0.31 0.23 0.75 0.27 0.38 0.34 0.33

19.51 19.24 19.24 19.01 19.19 19.25 19.02 19.37
8 0.82 1.15 0.28 1.92 0.81 0.89 1.05 1.05

20.41 20.71 20.73 20.54 20.45 20.53 20.28 20.54
Block(2,4) 7 3.95 4.28 3.06 5.69 7.84 5.12 5.86 5.82

78.97 77.21 79.95 78.77 78.76 77.63 77.75 79.04
8 1.26 1.72 1.08 5.51 2.15 2.65 1.4 1.4

82.53 80.87 138.38 86.54 80.8 81.05 82.08 82.56
9 7.2 7.75 1.34 27.56 8.75 4.97 4.93 4.98

89.53 88.68 91.09 89.17 90.09 90.68 90.26 89.21
10 44.58 33.75 1.58 43.42 38.79 8.95 27.15 27.12

99.02 96.81 98.24 96.64 96.08 98.7 98.46 98.34

CPP: A Constraint Logic Programming Based Planner with Preferences 295

table, the first row and the second row shows the solving times (in seconds) for
CPP and ASPlan, respectively, to return a most preferred plan; TO indicates a
timeout.

As can be seen from Table 1, CPP on the block world domain outperforms
ASPlan on most of instances. When the number of blocks is less than or equal to
6 (problems Block(1, 4) and Block(1, 5)), the solving time for CPP is negligible
(less than 0.1s), while that for ASPlan is in range from 1.7 to 7.2 seconds. How-
ever, when the number of blocks increases to more than 6 (instances Block(1, 6),
Block(1, 7), Block(2, 3), and Block(2, 4)), the solving time for CPP increases ex-
ponentially but is still much less than the solving time for ASPlan on most of
instances.

5 Conclusion and Future Work

This paper describes a CLP based system, called CPP, for computing most
preferred plans with respect to a user’s preference. The preliminary results are
encouraging and suggest a valid alternative for reasoning with actions and prefer-
ences. Our work is somewhat related to the work in [3] in the sense that planning
problems with preferences are translated into constraint satisfaction problems.
The main difference is that the work in [3] can handle preferences and constraints
over goals only; they cannot handle preferences over trajectories of plans.

The system has been encoded in GNU Prolog. It is worth noting that there
are other constraint programming systems, and the performance of a constraint
program heavily depends on the encoding of the problem and on the underly-
ing solver. Hence, as future work, we would like to try exploring encodings of
CPP on different systems. We would also like to investigate the usefulness of
heuristics and the applicability of Constraint Handling Rules [8] to improve the
performance and extensibility of CPP. In addition, we would like to extend CPP
to deal with non-deterministic and/or incomplete action theories. This involves
extending the preference language PP so as to be able to compare plans in
non-deterministic and/or incomplete action theories.

References

1. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In Minker, J., ed.:
Logic-Based Artificial Intelligence. Kluwer Academic Publishers (2000) 257–279

2. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal prefer-
ences. In KR, Lake District, UK (2006)

3. Brafman, R.I., Chernyavsky, Y.: Planning with goal preferences and constraints.
In ICAPS, (2005) 182–191

4. Castellini, C., Giunchiglia, E., Tacchella, A.: SAT-based Planning in Complex
Domains: Concurrency, Constraints and Nondeterminism. AI 147(1-2) (2003)
85–117

5. Delgrande, J.P., Schaub, T., Tompits, H.: Domain-specific preferences for causal
reasoning and planning. In KR, (2004) 673–682

296 P.H. Tu, T.C. Son, and E. Pontelli

6. Diaz, D., Codognet, P.: Design and implementation of the GNU prolog system.
Journal of Functional and Logic Programming 2001(6) (2001)

7. Dovier, A., Formisano, A., Pontelli, E.: A comparison of CLP(FD) and ASP solu-
tions to NP-complete problems. In ICLP, (2005)

8. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (1998)
95–138

9. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. Technical
Report RT 2005-08-47, Dept. of Electronics for Automation, University of Brescia
(2005)

10. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation:
preliminary report. In: Proceedings of AAAI 98. (98) 623–630

11. Jaffar, J., Maher, M.: Constraint Logic Programming. JLP 19/20 (1994)
12. Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the Tenth

European Conference on Artificial Intelligence (ECAI’92). (1992) 359–363
13. Son, T.C., Pontelli, E.: Planning with Preferences using Logic Programming. The-

ory and Practice of Logic Programming (2006) To Appear.
14. Tu, P.H., Son, T.C, Pontelli, E.: Planning with Preferences Using Constraint

Logic Programming. Technical Report NMSU-CS-TR-2007-001, New Mexico State
University (2007) http://www.cs.nmsu.edu/CSWS/techRpt/tr07-prefs.pdf.

15. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press
(1989)

	Introduction
	Background
	System Description
	Experiments
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

