
Reasoning about Actions and Planning with Preferences
Using Prioritized Default Theory

Tran Cao Son and Enrico Pontelli
Knowledge Representation, Logic, and Advanced Programming Laboratory

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA

{tson,epontell }@cs.nmsu.edu

October 14, 2003

Abstract

This paper shows how action theories, expressed in an extended version of the language
B, can be naturally encoded usingPrioritized Default Theory. We also show how prioritized
default theory can be extended to express preferences betweenrules. This extension provides
a natural framework to introduce different types of preferences in action theories—preferences
between actionsandpreferences between final states. In particular, we demonstrate how these
preferences can be expressed within extended prioritized default theory. We also discuss how
this framework can be implemented in terms of answer set programming.

1 Introduction

One of the central aspects in formalizing commonsense reasoning is represented by reasoning
aboutactionsand theireffects(Reasoning about Action and Change (RAC)). Research in RAC
has mostly focused on developingformalismsfor representing and reasoning about actions and
their effects. Dynamic domains can be conveniently described using specialized languages—e.g.,
situation calculus [22], event calculus [14], STRIPS [7], and action description languages [26, 10].
In these languages, a dynamic domain is represented as anaction theory, where effects of actions
are encoded as sets of propositions. The semantics of an action theory is defined by an entailment
relation that determines what will be true/false after an action sequence is executed starting from a
given initial state.

For several years, theframe problem[22], the ramification problem[12], and thequalification
problem [21] have been at the center of RAC’s research. Intuitively, the frame problem is the
problem of concisely describing thenon-effectsof actions, i.e., to express whatdoes not change
after an action is executed. The ramification problem is concerned with the representation ofstatic
domain constraints(or the relationship between fluents). The qualification problem is concerned

1

with actions that may not be executable in a certain situation. To date, solutions to these problems
have been discussed in several RAC’s approaches, such as the situation calculus [30], high-level
action description languages [10, 20], and event calculus [31].

The strong connection between RAC and default reasoning has been discussed in [16], where it is
shown that the law of inertia can be viewed as a default. As such, it is natural to think that any
logical framework for default reasoning could be a suitable framework to support RAC as well.
Indeed, this is the approach explored in [36] where Reiter’s default logic [29] is used.

Despite the strong connection between RAC and default reasoning, it is interesting to observe that
several important problems in default reasoning—such as the problem of preferring a conclusion
over others in presence of conflicts—do not seem to arise in RAC. Can we attribute it to the fact
that action theories are often assumed to be consistent and there is only one default (the law of
inertia) which will be overridden whenever conflicts arise? To a certain extent, this is true in the
context of RAC, where the focus has been limited to predicting the effects of actions or action
sequences. On the other hand, this is not the case inplanning with preferences(or constraints),
where the goal is find a trajectory that achieves a predefined goal and at the same time satisfies
certain preferences.

Current approaches to RAC provide the ability to construct trajectories achieving a predefined goal.
Nevertheless, in many situations, it is desirable to find one among several possible trajectories that
satisfies certain constraints. For example, when developing strategies to obtain a loan to purchase
a house, a user may have preferences towards local lenders, at parity of conditions. These prefer-
ences can be viewed assoft constraintson a trajectory or a plan, that may or may not be satisfied
depending on the particular situation. In the context of planning, this could be also viewed as an
indication of the plan quality [23] or plan with optimal utility [13].

In this paper we show thatPrioritized Default Theory[11] provides a natural framework for repre-
senting and reasoning about actions and their effects. We show that by viewing dynamic and static
causal laws asrules and the inertial law asdefaults, action theories can be elegantly translated
into semantically equivalent prioritized default theories.1 The novel encoding proposed in this pa-
per provides an elegant and concise way to describe actions and their effects, along with effective
solutions to the frame, ramification, and qualification problems.

We also explore ways to allow the action language to encode different types ofuser’s preferences,
and use them to guide the development ofpreferredplans. The preferences allow the user to ex-
press a bias towards certain types of trajectories to achieve the given goal—i.e., certain trajectories
will be preferredto others. In this work we explore alternative forms of preferences at the level of
the action language:

1. Preferences betweenactions—i.e., the ability to define an order of preference between ac-
tions to be used in developing a plan; e.g.,

prefertake a limo to drive the car

2. Preferences betweenfinal states—although all final states reached by valid trajectories are
guaranteed to satisfy the required goal, the user may be interested in suggesting additional
criteria to choose final states; e.g.,

1In this work we concentrate on the action languageB [10].

2

prefer to have more than$10,000 left at the end of the trip.

We demonstrate how these different forms of preferences can be elegantly encoded within a gen-
eralized prioritized default theory framework, where preferences between rules and formulae can
be enforced in the process of proving consequences. The advantage of this new formalism is that
it provides a convenient way to incorporate different forms of preferences in the process of repre-
senting and reasoning about trajectories (or plans in deterministic action theories).

Finding a preferred trajectory that achieves a certain goal is not new in planning. Approaches
to planning have tried to address this issue by using a utility function [13] or developing specific
algorithms for planning in the presence of preferences [23]. The key idea in using a utility function
is that it will allow us to find the trajectories with minimal (maximal) cost. This approach is very
general. The main disadvantage of this approach is that coming up with a good utility function is
not easy in many cases.

To the best of our knowledge, the only work addressing this issue in the context of logic program-
ming based approaches to planning is from [6] and in an early version of this work [35]. In [6],
each action is assigned a cost and the minimal cost plan is searched. In contrary, we emphasize
the use of prioritized default theory in expressing the preferences between actions and formulae.
Since domain-dependent knowledge could be viewed as preferences on trajectories, an early work
by one of the authors [34] could also be viewed as an attempt to add different forms of preferences
to answer set planning. In this paper, we emphasize on allowing users to specify their preferences.

The paper is organized as follows. Section 2 describes the syntax and semantics of the action
languageBd used in this work—the language is a novel extension of the languageB with non-
inertial fluents. Section 3 provides a brief overview of prioritized default theories. Section 4
describes our proposed translation from the action languageBd to prioritized default theories.
Section 5 describes how preferences can be expressed, encoded, and used to guide the process of
computing trajectories. Section 6 demonstrates how trajectories can be effectively computed using
an answer set solver, such asSMODELS. Finally, Section 7 provides some concluding remarks.

2 The Action LanguageBd

In this section, we present the basic action language that we will employ to encode action theories.
The language, calledBd, is an extension of the the languageB [10], with the addition of default
knowledge aboutnon-inertial fluents.

2.1 Syntax

Bd is a language schema that allows the development of specific action description languages; each
specific action description language includes

• a non-empty set of symbolsF, calledfluent names;

• a non-empty set of symbolsA, calledaction names.

3

Fluents are used to describeproperties, whose value depends on the current state of the world.
The set of fluent namesF is partitioned in two subsets,F = FI ∪ FN, with FI ∩ FN = ∅. The
fluents inFI are calledinertial fluents, while those inFN are callednon-inertial fluents. Intuitively,
non-inertial fluents encode properties that are exempt from the commonsense laws of inertia.

2.2 Formulae and Action Descriptions

A fluent literal is a fluent name, possibly preceded by¬. A fluent formulais a propositional
combination of fluent literals.

There are four type of propositions inBd:

• Dynamic Causal Law:
a causes f if p1, . . . , pn (1)

wherea is an action name (a ∈ A), f is a fluent literal, andp1, . . . , pn are fluent literals.

• Static Causal Law:
f if p1, . . . , pm (2)

wheref is an inertial fluent literal andp1, . . . , pm are fluent literals.

• Executability Conditions:

a executableif p1, . . . , pn (3)

wherea is an action name andp1, . . . , pn are fluent literals.

• Default Knowledge:
g by default (4)

whereg is a non-inertial fluent literal—i.e., a fluent literal constructed using a fluentf ∈ FN.

The dynamic law (1) represents the (conditional) effect of actiona on the fluent literalf , while
the causal law (2) states a causal relationship between the fluent literalsf andp1, . . . , pm. The
proposition (3) represents the conditions under which the actiona can be executed.2 Propositions
of the form (4) represent our default knowledge about non-inertial fluents—by asserting what is
the default value for the fluentg.

A domain description(or domain) is a set of propositions of the forms (1)-(4), with the additional
restrictions:

• for eachf ∈ FN, exactly one of the following propositions is present in the domain descrip-
tion:

f by default ¬f by default

2Observe that theif part of rule (1) is used to condition the outcome of the action, not to determine the executability
of the action, as in rule (3).

4

• non-inertial fluents are changed only by direct effects of actions, i.e., non-inertial fluents
cannot occur on the left hand side of static causal laws.

Axiomsin Bd are propositions of the form

initially f (5)

wheref is a fluent literal. This axiom states that the fluent literalf is true in the initial state of the
world. Finally, aqueryin Bd is of the form

ϕ after α (6)

whereϕ is a fluent formula andα is a sequence of actions. Intuitively, the query asks whether the
fluent formulaϕ is true in all the states resulting from the execution of the action sequenceα from
the initial state.3

An action theoryis a pair(D, Γ), whereD is a domain description andΓ is a collection of propo-
sitions of type (5) (theinitial state).

2.3 An Example

The next example illustrates the use of the languageBd to describe a simple dynamic domain.
Consider the problem of finding ways to exit a building. The building has two exits, a front door
and a back door. Both doors require a key to open them; the key for the front door is available
only from the janitor, while all employees have a key to the back door. Opening the back door will
cause an alarm to go off (as long as the door is open) and the police will be automatically notified.
Furthermore, the back door has a spring system that will automatically close it when released.

2.3.1 Fluents and Actions

The domain description makes use of the fluents:

at(X) the person is at location X
opendoor(Y) the doorY is open
haveKey(Y) the person has the key to the doorY
inside the person is inside the building
alarm the alarm is sounding
police alerted the police has been notified

In the fluent schemas above,X represents a possible location (i.e.,office, frontdoor, backdoor)
while Y indicates one of the doors (i.e., eitherfrontdooror backdoor). In particular, all the fluents,
except for theopendoor(backdoor), belong toFI, while the fluentopendoor(backdoor) is non-
inertial.

3We could also generalize the discussion and allow this query to be posed w.r.t. an arbitrary state.

5

The set of action namesA includes the following elements:

goto(X) the person moves to locationX
open(Y) the person opens the doorY
cross(Y) the person crosses the doorY
getKey(backdoor) get key for the back door from the janitor

In this context,X represents a possible location (i.e.,frontdoor, backdoor, or office), while Y
represents one of the doors (frontdoor or backdoor).

2.3.2 Domain Description

The domain description includes the following set of dynamic causal laws, describing the effect of
the actions:

goto(X) causes at(X)
open(Y) causes opendoor(Y) if at(Y)
cross(Y) causes ¬inside if inside, at(Y)
cross(Y) causes inside if ¬inside, at(Y)
getKey(backdoor) causes haveKey(backdoor)

The actions have some preconditions that have to be met in order to allow their execution:

goto(office) executableif inside
open(Y) executableif haveKey(Y)
cross(Y) executableif at(Y), opendoor(Y)
getKey(backdoor) executableif true

As mentioned earlier, the backdoor has a spring system that will force it to close immediately after
it has been opened. This is modeled as a non-inertial fluent with a default value expressing the fact
that the door is closed:

¬opendoor(backdoor) by default

The causal relationship between fluents is described through a set of static causal laws4:

¬at(X) if at(Y), X 6= Y
alarm if open(backdoor)
police notified if open(backdoor)
¬alarm if ¬open(backdoor)
¬at(office) if ¬inside
inside if at(office)

4Notice that the effects of some static causal laws can also be described using dynamic laws. For example,
goto(X) causesat(X) andgoto(X) causesat(Y) for Y 6= X. Deciding whether to use dynamic law or static
law to represent certain knowledge of the domain is a challenging task that deserves a careful investigation and is
outside the scope of this paper.

6

2.4 Semantics

The semantics of a domain descriptionD in Bd is defined by a correspondingtransition function
ΦD. For the sake of readability, we will omitD from ΦD whenever the domain description is clear
from the context. The transition function is aimed at describing the possible states of the world
(ΦD(a, s)) an agent might be in after she/he executes the actiona in the states. WhenΦD(a, s) is
the empty set, then this means that the actiona is not executable ins.

2.4.1 States

Let D be a domain description inBd. An interpretationI of the fluents inD is a maximal con-
sistent set of fluent literals fromF. A fluent f is said to be true (respectively false) inI iff f ∈ I
(respectively¬f ∈ I). The truth value of a fluent formula inI is defined recursively over the
propositional connectives in the usual way. For example, give two fluent formulaeϕ andψ, the
fluent formulaϕ ∧ ψ is true inI iff ϕ is true inI andψ is true inI. We say that a formulaϕ holds
in I (or I satisfiesϕ), denoted byI |= ϕ, if ϕ is true inI.

Let U be a consistent set of fluent literals and letK be a set of static causal laws. We say thatU is
closed underK if, for every static causal law

f if p1, . . . , pn

in K, whenever{p1, . . . , pn} ⊆ U we have thatf ∈ U . By ClK(U) we denote the least consistent
set of fluent literals fromF that containsU and is closed underK.

A states of D is an interpretation of the fluents inF that is closed under the set of static causal
laws belonging toD. An actiona is executablein a states if there exists a proposition

a executableif f1, . . . , fn

in D such thats |= f1 ∧ . . . ∧ fn. If the executability condition

a executableif true

belongs toD, thena is executable in every state ofD.

2.4.2 The Transition Function

The immediate effect of an action ain states is the set

E(a, s) = {f | [a causesf if f1, . . . , fn] ∈ D, s |= f1 ∧ . . . ∧ fn}
Additionally, given a domain descriptionD, let us introduce the set

Def(D) = {f | [f by default] ∈ D }
For a domain descriptionD, ΦD(a, s) identifies the set of states that may be reached by executing
a in s; this is defined as follows: ifa is executable ins, then

ΦD(a, s) = {s′ | s′ is a state ands′ = ClDC
(E(a, s)∪(s∩s′∩(FI∪FI))∪(Def(D)\E(a, s)))}

7

whereDC is the set of static causal laws inD andFI = {¬f | f ∈ FI}. If a is not executable in
s, thenΦD(a, s) = ∅. For each domain descriptionD in Bd, the transition functionΦD is unique.
SinceClDC

(X) could be empty, it is possible thatΦ(a, s) = ∅ even whena is executable ins.
When this happens, we say thatD is inconsistent. This situation is not particularly realistic, as the
execution of an actiona in the states should result in another state whenevera is executable in
s. In other words, this anomaly is an indication of a possible mistake in the domain description.
As out interest in this paper is to use action theories in planning and not the study of RAC per se,
we limit ourselves on domains without this problem. In other words, we will assume that domain
descriptions in this paper areconsistent, i.e., domain descriptions in whichΦD(a, s) 6= ∅ for every
actiona and states, if a is executable ins.

With a slight abuse of notation, we will also extend the transition function to operate onsequences
of actions. Given a sequence of actionsa1 · · · an (n ≥ 0)

ΦD(a1 · · · an, s) =

{ {s} if n = 0⋃
s′∈ΦD(a1···an−1,s) ΦD(an, s′) otherwise

Given a domainD with transitionΦD, a sequences0a1s1 . . . ansn, wheresi’s are states andai’s
are actions, is called atrajectory in D if

si+1 ∈ ΦD(ai+1, si) for everyi, 0 ≤ i ≤ n− 1.

A trajectorys0a1s1 . . . ansn is a trajectory of a fluent formula∆ if sn |= ∆.

An action theory(D, Γ) is consistent ifD is consistent and

s0 = {f | [initially f] ∈ Γ}

is a state ofD. s0 is called theinitial stateof (D, Γ).

An action theory(D, Γ) is completeif, for each fluentf , we have that either[initially f] or
[initially ¬f] belongs toΓ. In this paper we opt to focus on complete action theories; the
issues arising from incompleteness (e.g., sensing actions [33] and conformant planning [32]) are
orthogonal to the scope of this work.

Finally, given an action theory(D, Γ) whose initial state iss0, a fluent formulaϕ, and an action
sequenceα = a1, . . . , an, we say that the queryϕ after α is entailed by(D, Γ), denoted by

(D, Γ) |= ϕ after α

if for every possible trajectorys0a1s1 . . . ansn, ϕ holds insn (sn |= ϕ). In what follows, we will
consider only consistent and complete action theories.

Example 1 Let Db be the domain description in Example 2.3 andΓ be the initial state containing
the following propositions:

8

initially at(office)
initially ¬at(frontdoor)
initially ¬at(backdoor)
initially ¬open(frontdoor)
initially ¬open(backdoor)
initially ¬police notified
initially ¬alarm
initially haveKey(backdoor)
initially ¬haveKey(frontdoor)
initially inside

The initial states0 in this action theory is

s0 =

at(office),¬at(frontdoor),¬at(backdoor),
haveKey(backdoor),¬haveKey(frontdoor), inside,
¬police notified,¬alarm,¬open(frontdoor),
¬open(backdoor)

The actiongoto(backdoor) is executable ins0. We can easily check that

s ∈ Φ(goto(backdoor), s0) ⇒ s |= at(backdoor)

This implies that(Db, Γ) |= at(backdoor) after goto(backdoor). If we consider also the actions
opendoor(backdoor) andcross(backdoor) then we can obtain

(Db, Γ) |= ¬inside after goto(backdoor), opendoor(backdoor), cross(backdoor).

3 Prioritized Default Theory

Prioritized default theory has been discussed in [11]. In this paper we decided to rely on prioritized
default theory because of two major reasons. First of all, its syntax is simple and intuitive. Further-
more, the semantics of prioritized default theory is defined in terms of logic programs and answer
set semantics [8]. Not only this avoids the creation of an ad-hoc semantics, but this also allows
us to reuse existing inference systems developed for answer set semantics (e.g.,SMODELSanddlv
[25, 4]) to compute the entailment relation of prioritized default theory. In this paper we begin
with the theory proposed by Gelfond and Son in [11]. We then extend it to deal with preferences
between rules.

A prioritized default theory consists of facts, defaults, rules, and preferences between defaults.
Rules and defaults are used to derive new conclusions. Nevertheless, the use of rules and defaults
is different. A rule is used to derive a conclusion whenever all its premises are satisfied. On
the other hand, a default can be used to derive a conclusion as long as such conclusion does not

9

introduce inconsistencies into the theory—even if all its premises are satisfied. Formally, a default
theory over a multi-sorted logic languageL (or adomain) is a set of literals of the form

rule(r, l0, [l1, . . . , lm]) (7)

default(d, l0, [l1, . . . , lm]) (8)

prefer(d1, d2) (9)

wherer is a rule name,d, d1, d2 are default names,l0, . . . , lm are literals of the languageL, and
[] is the list operator. For convenience, we will refer to the atoms of the form (7), (8), and (9) as
rules, defaults, and preferences, respectively. For a ruler, let body(r) denote the list[l1, . . . , lm]
and lethead(r) denote the literall0. Similar notation will be used for defaults. We assume that
default names and rule names belong to two disjoint sets. The semantics of a default theoryT is
defined by the answer set semantics of a logic program [8], consisting ofT and the following set
of domain independent axioms:

• Rules for Inference:

holds(L) ← rule(R,L, Body), hold(Body). (10)

holds(L) ← default(D, L,Body), hold(Body), (11)

not defeated(D).

hold([]) ← (12)

hold([H|T]) ← holds(H), hold(T). (13)

• Rules for Defeating Defaults:

defeated(D) ← default(D, L,Body), (14)

holds(L1), contrary(L,L1).

defeated(D) ← default(D, L,Body), (15)

default(D1, L1, Body1),

prefer(D1, D),

hold(Body1),

not defeated(D1).

wherecontrary determines the opposite of a literal (e.g.,contrary(A,¬A) holds for any
atomA).

This collection of axioms, denoted byP, is different from the original one presented in [11]:

1. we do not distinguish betweenholds andholds by default, since our goal is to use priori-
tized default theories in reasoning about actions; in this context it is not interesting to know
whether a fluent is made true by an action or by inertia5.

2. in rule (15) we do not requireD andD1 to be conflicting defaults.

5There are other approaches in reasoning about actions that do emphasize this point but we are not interested in
this distinction at this point in time.

10

4 Action Theories as Prioritized Default Theories

We will show now that each action theory can be elegantly represented by a prioritized default
theory. The language for representing an action theory(D, Γ) in prioritized default theory consists
of atoms of the formf(α) andpossible(a, α), wheref is a fluent literal,a is an action, andα is a
sequence of actions. For convenience, we often use|α| to denote the length ofα andαi to denote
the prefix of lengthi of α. α v β denotes the fact thatα is a prefix ofβ. ◦ is the concatenation
operator between action sequences. The translation of an action theory(D, Γ) into a prioritized
theoryΠ(D, Γ) is performed as follows.

• For each dynamic law
a causesf if p1, . . . , pn

in D, Π(D, Γ) contains the set of rules

rule(dynamic(f, a, β), f(β ◦ a), [p1(β), . . . , pn(β), possible(a, β)]) (16)

whereβ is an arbitrary action sequence.

• For each executability condition

a executableif q1, . . . , qm

in D, Π(D, Γ) contains the set of rules

rule(executable(a, β), possible(a, β)), [q1(β), . . . , qm(β)]) (17)

whereβ is an arbitrary action sequence.

• For each static causal law
f if p1, . . . , pm

in D, Π(D, I) contains the set of rules

rule(causal(f, a, β), f(β ◦ a), [p1(β ◦ a), . . . , pn(β ◦ a), possible(a, β)]) (18)

whereβ is an arbitrary action sequence anda is an action.

• For each default law
g by default

in D, Π(D, I) contains the set of defaults

default(def(g, a, β), g(β ◦ a), [possible(a, β)]) (19)

whereβ is an arbitrary action sequence anda is an arbitrary action.

• The inertial axiom is represented by the set of defaults

default(inertial(f, a, β), f(β ◦ a), [f(β), possible(a, β)]) (20)

wheref is an inertial fluent literal,a is an action, andβ is an arbitrary sequence of actions.

11

• Finally, the set of axioms of the form (5) is represented by the set of facts

holds(f([])). (21)

Notation: Let Rα denote the set of rules of the form (16)-(20) whereβ ◦ a v α. Let Rk denote

Rk =
⋃

|α|≤k

Rα

Let Πα(D, Γ) denote the program consisting of the rulesRα, the set of rules (10)-(15), and the set
of facts (21). For each integerk and for each action theory(D, Γ), let

Πk(D, Γ) =
⋃

|α|≤k

Πα(D, Γ).

Example 2 Let us consider the following simple action theory with actionsa andb and fluentsf
andg whereg is non-inertial:

b causes f if true
a causes ¬f if g

a executableif f
b executableif true

g by default
initially ¬f
initially g

For every action sequenceβ, Rβ◦a consists of the following rules:

rule(executable(a, β), possible(a, β), [f(β)])
rule(dynamic(¬f, a, β),¬f(β ◦ a), [g(β), possible(a, β)])
default(def(g, a, β), g(β ◦ a), [possible(a, β)])
default(inertial(f, a, β), f(β ◦ a), [f(β), possible(a, β)])
default(inertial(¬f, a, β),¬f(β ◦ a), [¬f(β), possible(a, β)]).

The set of rulesRβ◦b is similar toRβ◦a and consists of the following rules and defaults:

rule(executable(b, β), possible(b, β), [])
rule(dynamic(f, b, β), f(β ◦ b), [possible(b, β)])
default(def(g, b, β), g(β ◦ b), [possible(b, β)])
default(inertial(f, b, β), f(β ◦ b), [f(β), possible(b, β)])
default(inertial(¬f, b, β),¬f(β ◦ b), [¬f(β), possible(b, β)])

and the set of rules of the form (21) consists of the following facts:

holds(¬f([]))
holds(g([])).

12

We next discuss the properties of the programΠk(D, Γ). We will show that the action theories in
Bd and their prioritized default theories are semantically equivalent.

Theorem 1 For every consistent and complete action theory(D, Γ), the programΠk(D, Γ) is
consistent.

Proof. See Appendix A.

Given a programΠ, let us denote withlit(Π) the set of literals ofΠ. The following result holds:

Theorem 2 Let (D, Γ) be a consistent and complete action theory andα be a sequence of actions
with |α| < k. Then,

• If M is an answer set ofΠk(D, Γ) then Mα = M ∩ lit(Πα(D, Γ)) is an answer set of
Πα(D, Γ).

• If Mα is an answer set ofΠα(D, Γ) then there exists an answer setM of Πk(D, Γ) such that
Mα = M ∩ lit(Πα(D, Γ)).

Proof. See Appendix A.

In the next two theorems, we prove the correctness ofΠk(D, Γ). In particular, we prove that the
semantics provided by the prioritized default theory coincides with the semantics of the action
theory. LetM be an answer set ofΠk(D, Γ) andα be a sequence of actions with|α| ≤ k. Let us
define

s(α, M) = {f | holds(f(α)) ∈ M}.
We begin with the soundness ofΠk(D, Γ).

Theorem 3 Let(D, Γ) be a consistent and complete action theory,M be an answer set ofΠk(D, Γ),
α be a sequence of actions with|α| ≤ k, and a be an action such thats(α, M) 6= ∅ and
s(α ◦ a,M) 6= ∅. Then,

s(α ◦ a, M) ∈ Φ(a, s(α, M)).

Proof. See Appendix A.

The next theorem proves the completeness ofΠk(D, Γ).

Theorem 4 Let (D, Γ) be a consistent and complete action theory ands0a1s1 . . . aksk be a trajec-
tory of (D, Γ). Then, there exists an answer setM of Πk(D, Γ) such thatsi = s(αi,M), i > 0.

Proof. See Appendix A.

It is easy to see that each answer set of the programΠ(D, Γ) corresponds to an evolution tree
whose paths are possible trajectories of the domain specified by the action theory(D, Γ). The
multiplicity of answer sets is due to the fact that an action theory with static causal laws may be
non-deterministic. The size of the evolution tree encoded is exponential in the maximal length of
the trajectories encoded in the tree (for a set ofk actions and for a maximal trajectory lengthm,
the size isO(km)). In practice, we are typically interested in generating only one of such branches
that meet some desired requirements (e.g., satisfy a given set of preferences). When the action
theory is deterministic, there is only one possible evolution tree of the domain. As such, we have
the following corollary.

Corollary 1 For a consistent, complete, anddeterministicaction theory(D, Γ)—i.e.,Φ(a, s) has
at most one element for each actiona and states—the programΠ(D, Γ) has a unique answer set.

13

5 Planning with Preferences usingΠ(D, Γ)

It follows from Theorems 3 and 4 that trajectories achieving a formula∆ can be computed using
Π(D, Γ). Given an answer setM of Π(D, Γ), if s(α, M) satisfies∆, thenα is a trajectory achieving
∆. Since an answer set ofΠ(D, Γ) can contain other trajectories that do not achieve∆, we propose
to introduce additional rules inΠ(D, Γ), with the purpose of extracting the trajectories achieving
∆ from an answer set. For simplicity6, let us assume that∆ is a conjunction of fluent literals, i.e.,
∆ = f1 ∧ . . . ∧ fn. In this case, the set of rules

rule(goal, goal(β), [f1(β), . . . , fn(β)]), (22)

is added toΠ(D, Γ), whereβ is a sequence of actions. We call the new programΠ(D, Γ, ∆). For
an answer setM of Π(D, Γ, ∆) and a sequence of actionsβ = a1, . . . , ak, let

tr(β, M) = s0a1s(β1,M)a2 . . . s(βk−1,M)aks(β, M)

whereβi is the prefix of lengthi of β. The next corollary follows immediately from Theorems 3
and 4.

Corollary 2 Let (D, Γ) be a consistent and complete action theory,∆ be a conjunction of fluent
literals, andM be an answer set ofΠ(D, Γ, ∆). Then, for every action sequenceβ, if goal(β) ∈
M , thentr(β, M) is a trajectory achieving∆.

The significance of this corollary is that it allows us to single out trajectories for∆ from other tra-
jectories in an answer set. Each trajectory for∆ is a possible plan to achieve it. In many situations,
it is desirable to find one, among several possible trajectories, that satisfies certain constraints. For
example,ride a busandtake a taxiare two alternatives to go to the airport. An agent might choose
to take the bus because he does not like taxi drivers. But he is willing to take the taxi if the bus
does not run. Here, the agent has a preference between the actions he can execute and he would
like to choose the trajectory that suits him best.

We will refer to these user-defined biases towards certain trajectories aspreferences between tra-
jectories. We will show next howΠ(D, Γ, ∆) can be modified to deal with two different types of
preferences between trajectories—i.e., preferences between actions and preferences between final
states. In the process, we extend the prioritized default theory for representing the preferences
between rules.

5.1 Preferences Between Rules

Whenever we express the fact that we do not prefer a ruler, we mean that we do not want to use
r. This does not necessarily mean thatr cannot be applied, but it simply means that ifr can be
replaced, then we prefer to do so. For this reason, we use literals of the form

block(r, [l1, . . . , lm]) (23)
6Similar encoding can be provided for an arbitrary fluent formula.

14

in the prioritized default theory to describe conditions under which a ruler should not be used. In
particular, literals of this type can be used to represent preferences between the rules. For example,

block(r1, body(r2))

can be used to express the fact that we prefer to user2 instead ofr1—i.e., if the body of the ruler2

is satisfied, we block the use of the ruler1.

To implement the new type of rules in prioritized default theory, we replace rule (10) with the
following rule:

holds(L) ← rule(R, L,Body), hold(Body), not blocked(R). (24)

and add the next rule to the set of independent rulesP (recall thatP consists of the rules (10)-(15)):

blocked(R) ← block(R,Body), hold(Body). (25)

This is used to block the application of the ruleR. By Pb we denote the set of rules (10)-(15) and
(24)-(25). Observe that blocking a rule is different than defeating a default; a rule can be blocked
only at the explicit will of the domain specifier, while a default can be defeated if its application
introduces inconsistencies. Next, we show how this extension to prioritized default theories can be
used to express preferences between actions and preferences between final states.

For a prioritized default theoryT , let bl(T) denote the set of literals of the formblock(.) in T .
The next theorem shows that if there is no preference between rules, the new set of rules behaves
exactly as the old one.

Theorem 5 For a prioritized default theoryT with bl(T) = ∅, T ∪ P andT ∪ Pb are equivalent.

Proof. Let Q be the set of rules of type (25). It is easy to see that ifbl(T) = ∅ thenT ∪ Pb is
equivalent toT ∪ Pb \Q. Splitting the program (see Appendix B) with the set of literalsX of the
form blocked(.) yields the empty program as the top andT ∪P as the evaluation ofT ∪Pb\Q with
respect to〈∅, X〉. The splitting theorem implies that each answer set ofT ∪Pb \Q (and hence, of
T ∪ Pb) is an answer set ofT ∪ P and vice versa. 2.

The next lemma, useful in proving properties of programs with preferences between actions and
formulae, relates the applicability of a rule in an answer set with the set of preferences over the
rules.

Lemma 1 LetT be a prioritized default theory. Letrule(r, l, body) be a rule inT such thatl does
not occur in the head of any other rule or default inT . Then, for every answer setM of T ∪Pb, if
blocked(r) ∈ M thenholds(l) 6∈ M .

Proof. SinceM is an answer set ofT ∪ Pb andblocked(r) ∈ M , there exists no rule inT ∪ Pb

whose head isholds(l) and whose body is satisfied byM . This implies thatholds(l) 6∈ M . 2

15

5.2 Preferences between Actions

As we have discussed earlier, an agent might prefer an action over some others for several reasons.
We assume that we have an irreflexive partial order between actions,prefer(a, b), to represent the
preferences between actions. Intuitively, this means that actiona is preferred to actionb and we
would like to consider all the trajectories containinga in the place ofb before considering those
containingb. More precisely:

Definition 1 (Preferred Trajectory) A trajectoryα = s0a1s1 . . . , ansn is said to bepreferredto
a trajectoryβ = s0b1s

′
1 . . . , bms′m with respect to a set of action preferencesPref , denoted by

α ≺Pref β, if

1. there exists an integeri, 1 ≤ i ≤ min(n,m), such thatprefer(ai, bi) ∈ Pref , and

2. for every integerj, 1 ≤ j < i, prefer(bj, aj) 6∈ Pref .

Definition 2 (Most Preferred Trajectory) A trajectoryα = s0a1s1 . . . ansn is said to be amost
preferredtrajectory with respect to a set of preferencesPref if there exists no trajectoryβ such
thatβ ≺Pref α.

Remark 1 ≺Pref is an antisymmetric, transitive, and irreflexive relation.

Example 3 Let us revisit the example of Section 2.3. If an employee wants to leave the building
he will typically prefer to approach the front entrance (to avoid triggering the alarm):

Pref = {prefer(goto(frontdoor), goto(backdoor))}

Similarly, if a thief is in the building and he knows that the backdoor has an alarm, he will clearly
want to avoid opening it:

Pref = {prefer(X, open(backdoor)) : X ∈ A ∧X 6= open(backdoor)}.

We will now show how the preferences over actions can be enforced in the extended framework of
prioritized default theories. Given an action theory(D, Γ), a goal∆, and a set of preferences over
actionsPref , we add toΠ(D, Γ, ∆) the rules that block the execution ofb whenevera (an action
preferred tob) can be used. More precisely,

• For each preferenceprefer(a, b) in Pref , and for each pair of sequences of actionsα and
β such thata occurs inα andα|β| ◦ a v α: the set of rules of the form

block(executable(b, β), [goal(α)]) (26)

belongs toΠ(D, Γ, ∆).

The next theorem shows that adding (26) toΠ(D, Γ, ∆) will eliminate non-preferred trajectories
from its conclusions.

16

Theorem 6 Let (D, Γ) be a consistent and complete action theory,∆ be a conjunction of fluent
literals, andPref be a set of action preferences. For every action sequenceγ, if Π(D, Γ, ∆) |=
goal(γ), then for every answer setM of Π(D, Γ, ∆) we have thattr(γ, M) is a most preferred
trajectory achieving∆.

Proof. Π(D, Γ, ∆) |= goal(γ) implies thatgoal(γ) belongs to every answer set ofΠ(D, Γ, ∆).
SinceM is an answer set ofΠ(D, Γ, ∆), by Corollary 2 we have thatγ′ = tr(γ, M) is a trajectory
achieving∆. It remains to be shown thatγ′ is indeed a most preferred trajectory. Let us assume
that there exists a trajectoryα such thatα ≺Pref γ′, i.e., there exists an actiona in α and and action
b in γ′ such thatprefer(a, b) ∈ Pref .

From Theorem 3, we know that there exists an answer setM ′ of Π(D, Γ, ∆) such thatgoal(α) ∈
M ′. This means thatM ′ satisfies the body of rules of the form (26). Hence, every rule or default,
whose body containpossible(b, δ), whereδ ◦ b v γ, is not applicable inM ′. It follows from
Lemma 1 thatgoal(γ) 6∈ M ′; this contradicts the fact thatgoal(γ) ∈ M ′. 2

The following corollary follows from the above theorem and Corollary 1.

Corollary 3 Let (D, Γ) be a consistent, complete, and deterministic action theory,∆ be a con-
junction of fluent literals, andM be the answer set ofΠ(D, Γ, ∆) with a set of preferencesPref .
For every action sequenceβ, if goal(γ) ∈ M thentr(γ,M) is a most preferred trajectory achiev-
ing ∆.

Example 4 Consider an action theory(D, Γ), whereD consists of the propositions

join causes f if g, h
b causes g if true
c causes h if true
dir causes f if ¬g

join executableif true
b executableif true
c executableif true
dir executableif true

¬g by default

while the initial stateΓ contains:
initially ¬g
initially ¬f
initially ¬h

Let us assume that the goal we desire to achieve isf . Different trajectories lead to the desired
goal, e.g.,

α =

s0︷ ︸︸ ︷
{¬f,¬g,¬h} c

s1︷ ︸︸ ︷
{¬f, h,¬g} b

s2︷ ︸︸ ︷
{¬f, h, g} join

s3︷ ︸︸ ︷
{f, h,¬g}

β = {¬f,¬g,¬h}︸ ︷︷ ︸
s0

dir {f,¬g,¬h}︸ ︷︷ ︸
s4

17

Let us introduce the preferences

Pref = {prefer(dir, b), prefer(dir, c)}

which leads to
β = s0 dir s4 ≺Pref s0 c s1 b s2 join s3 = α.

This preference will lead to the introduction of the facts

block(executable(b, β), [f(α)])
block(executable(c, β), [f(α)])

for each sequence of actionsβ and for eachα such thatα|β| ◦ dir v α. For example, the facts

block(executable(b, []), [f(dir)])
block(executable(c, []), [f(dir)])

will prevent the execution ofb andc when the goal is reachable bydir from the initial situation.

The next example presents a situation in which a preferred trajectory is not a conclusion of the
programΠ(D, Γ, ∆).

Example 5 Let (D, Γ) be an action theory, where the set of fluents contains{g, f, h, l} and the
set of actions is equal to{a, b, c}. The action theoryD contains the dynamic causal law and
executability condition:

a causes f if ¬f
b causes l if f, g
c causes l if f, h
a executableif ¬f,¬g,¬h
b executableif f, g
c executableif f, h

and the static causal laws:
g if f,¬h
h if f,¬g

The initial stateΓ is defined by the propositions:

initially ¬f
initially ¬g
initially ¬h
initially ¬l

We would like to have∆ = l. It is easy to see that

α = {¬f,¬g,¬h,¬l}︸ ︷︷ ︸
s0

a {f, g,¬h,¬l}︸ ︷︷ ︸
s1

b {f, g,¬h, l}︸ ︷︷ ︸
s2

18

and
β = {¬f,¬g,¬h,¬l}︸ ︷︷ ︸

s0

a {f, h,¬g,¬l}︸ ︷︷ ︸
s′1

c {f, h,¬g, l}︸ ︷︷ ︸
s′2

are two possible trajectories that achieve the goal∆. Assume that we preferb to c, i.e.,Pref =
{prefer(b, c)}. Obviously,α ≺Pref β.

It is easy to see that for every answer set ofΠ(D, Γ, ∆), if it containsgoal(γ) thena must be the
first action ofγ. Thus, there exists one answer set ofΠ(D, Γ, ∆), sayM0, in whichs′1 = s(a,M0).
Obviously, the only action that is executable in this state isc and thereforegoal(β) ∈ M0 and
goal(α) 6∈ M0, i.e.,Π(D, Γ, ∆) 6|= goal(α).

Observe that the encoding of action preferences in prioritized default theory offers scope for a
number of generalizations. For example, the same scheme allows us to encodeconditional action
preferences, where the preference between actions is considered only if a given set of conditions is
satisfied. We can extend the syntax of action preferences as follows:

prefer(a, b) if q1, . . . , qm

whereq1, . . . , qm is a conjunction of fluent literals. The encoding in prioritized default theory is
straightforward: for each

prefer(a, b) if q1, . . . , qm

we add the set of block rules of the form

block(executable(b, β), [goal(α), q1(β), . . . , qm(β)])

wherea occurs inα andα|β| ◦ a v α.

5.3 Preferences between Formulae

The second type of preferences that we consider consists of preferences between formulae. Unlike
preferences between actions, this type of preference is often a soft constraint or a secondary goal
that an agent has in mind when selecting a trajectory for his goal. Consider for example the agent
that is trying to exit the building, described in Section 2.3. He might prefer to exit through the
front door since this will avoid alerting the police (¬police alerted). Here, the primary goal of the
agent is to leave the building (¬ inside), and his soft constraint is to avoid alerting the police. The
trivial choice would be to go to the front door. Going to the back door should be used as the last
resource. This type of preference can be added to an action theory by introducing preferences of
the form

ϕ1 ≺ ϕ2. (27)

whereϕ1 andϕ2 are fluent formulae. Given a set of fluent formulaePref expressing final state
preferences, we assume that(Pref,≺) is a total order—i.e., the set of preference formulae can be
written as

ϕ1 ≺ ϕ2 ≺ · · · ≺ ϕk

19

This condition is acceptable in a variety of situations—indeed, many proposals in the literature
dealing with preferences in logic programming, e.g., [3, 5], extend partial orders to total orders,
and use such total orders in computing the preferred answers. We will explore in future works
how to deal directly with partial orders. In addition, we require that for each1 ≤ i ≤ k − 1 the
following holds:

ϕi ⇒ ¬ϕi+1 ∧ . . . ∧ ¬ϕk.

The Definitions 1 and 2—preferred trajectories and most preferred trajectories—can be extended
to the case of preferences between formulae as follows.

Definition 3 (Final State Preferred Trajectory) A trajectoryα = s0a1s1 . . . , ansn is said to be
preferredto a trajectoryβ = s0b1s

′
1 . . . , bms′m with respect to a set of preferences between formu-

laePref if

1. there existsϕ1 ≺ ϕ2 ∈ Pref such thatsn |= ϕ1 ands′m |= ϕ2 (denoted byα ≺ϕ1≺ϕ2 β),
and

2. for everyϕ1 ≺ ϕ2 ∈ Pref , β 6≺ϕ1≺ϕ2 α.

We will denote the fact thatα is preferred toβ w.r.t. Pref with the notationα ≺Pref β.

Definition 4 (Final State Most Preferred Trajectory) A trajectoryα = s0a1s1 . . . ansn is said
to be amost preferredtrajectory with respect to a set of preferences between formulaePref if
there exists no trajectoryβ such thatβ ≺Pref α.

Remark 2 The relation≺Pref between trajectories is a partial order.

To encode this type of preferences, we add toΠ(D, Γ) a set of rules to block the execution of an
action leading toϕ2 as long asϕ1 is satisfied by other trajectories. We assume that, for each action
a, for each goal formula∆, and for each formulaϕ2, we can compute a formulaφa,ϕ2 such that if
a is executed in a state satisfyingφa,ϕ2 then∆ ∧ ϕ2 holds in the successor state. There are well-
known regression techniques that have been proposed in the literature to determine such formulae
(see e.g. [30]). In that case, we will block the execution ofa if there exists another trajectory
satisfyingϕ1. For each preferenceϕ1 ≺ ϕ2 in P , we will add toΠ(D, Γ, ∆) the following set of
rules

block(executable(a, γ), [goal(β), ϕ1(β), φa,ϕ2(γ)]) (28)

whereγ andβ are sequences of actions. Additionally, we add toΠ(D, Γ, ∆) rules for reasoning
aboutφa,ϕ2 which are similar to (22). With a slight abuse of notation, we useΠ(D, Γ, ∆) to denote
the program with rules of the form (26) and (28) when formulae preferences are present.

Example 6 Consider the action theory(D, Γ) whereD contains the propositions

a causes f if g
b causes g if ¬g
c causes f if ¬h
a executableif true
b executableif true
c executableif true
h if g

20

andΓ contains
initially ¬f
initially ¬g
initially ¬h

The goal isf and we are assuming the presence of a preference

Pref = {¬h ≺ h}.

It is easy to see thatα = s0cs1 wheres1 = {f,¬h,¬g} is a most preferred trajectory.β =
s0bs

′
1as2 is another trajectory achievingf but we have thatα ≺Pref β.

One of the facts generated to handle this preference is

block(executable(a, γ), [f(β),¬h(β), φa,h(γ)])

for sequences of actionsγ, β. For example, for

γ = b
β = c

we will obtain
block(executable(a, b), [f(c),¬h(c), g(b)])

since executing actiona in a state satisfyingg will lead to a state that satisfies both the goal (f) as
well as the right-hand side of the preference (h). This prevents the execution ofa after b, i.e., this
will eliminate the trajectoryβ from answer sets ofΠ(D, Γ, ∆).

It is instructive to see that the action sequencec, i.e., the trajectoryα is not removed from any
answer sets ofΠ(D, Γ, ∆). Assume the contrary, i.e., we have an answer setM with goal(c) 6∈ M .
This can happen only if the rule of the form (28) (for the actionc)

block(executable(c, []), [f(δ),¬h(δ), φc,h([])])

has its body satisfied byM . Since the execution ofc in any state will not change the value ofh, we
have thatφc,h = h. This implies thath([]) ∈ M , i.e.,h is true in the initial state — a contradiction,
which implies thatgoal(c) belongs to every answer set ofΠ(D, Γ, ∆).

The following theorem is similar to Theorem 6.

Theorem 7 Let (D, Γ) be a consistent and complete action theory,∆ be a conjunction of fluent
literals, andPref be a set of preference between formulae. For each non-empty action sequence
β, if Π(D, Γ, ∆) |= goal(β) then for every answer setM of Π(D, Γ, ∆) we have thattr(β, M) is
a most preferred trajectory achieving∆.

Proof. Π(D, β, ∆) |= goal(β) implies thatgoal(β) belongs to every answer set ofΠ(D, β, ∆).
SinceM is an answer set ofΠ(D, Γ, ∆), by Corollary 2 we have thattr(β, M) is a trajectory
achieving∆. It remains to be shown thatβ′ = tr(β,M) is indeed a most preferred trajectory.
Assume the contrary,α ≺ϕ1≺ϕ2 β for some preferenceϕ1 ≺ ϕ2. From Theorem 3, we know
that there exists an answer setM ′ of Π(D, Γ, ∆) such thatgoal(α) ∈ M ′. Let α′ = tr(α,M).

21

Becauseα′ ≺ϕ1<ϕ2 β′, we have thatϕ1(α) ∈ M ′. Sinceβ is a non-empty action sequence, there
exists an actiona and an action sequenceγ such thatβ = γ ◦ a. It follows from the construction
of M ′, φa,ϕ2(γ) ∈ M ′. This means that the body of the rule (28) is satisfied byM ′. Thus,
holds(possible(a, γ)) 6∈ M ′ (Lemma 1); this contradicts the fact thatgoal(β) ∈ M ′. 2

The above theorem shows that ifgoal(β) is contained in every answer set ofΠ(D, Γ, ∆) thenβ
is a most preferred trajectory with respect toPref . Due to the presence of distinct answer sets,
it is possible to find a trajectoryγ such thatgoal(γ) belongs to some but not all answer sets of
Π(D, Γ, ∆). In this case, we cannot guarantee thatγ is a most preferred trajectory. This is shown
in the next example.

Example 7 Consider again the planning problem(D, Γ, ∆) in Example 5. Recall that the two
trajectories

α = {¬f,¬g,¬h,¬l}︸ ︷︷ ︸
s0

a {f, g,¬h,¬l}︸ ︷︷ ︸
s1

b {f, g,¬h, l}︸ ︷︷ ︸
s2

and
β = {¬f,¬g,¬h,¬l}︸ ︷︷ ︸

s0

a {f, h,¬g,¬l}︸ ︷︷ ︸
s′1

c {f, h,¬g, l}︸ ︷︷ ︸
s′2

both achieve the goall. Consider the set of preferencesPref = {¬h ≺ ¬g ∧ h}. Again, we have
thatα ≺Pref β. Similar argument as in Example 5 shows thatΠ(D, Γ, ∆) has an answer set which
containsgoal(β) and does not containgoal(α).

The following corollary is similar to Corollary 3.

Corollary 4 Let (D, Γ) be a consistent, complete, and deterministic action theory,∆ be a con-
junction of fluent literals, andM be an answer set ofΠ(D, Γ, ∆) with a set of preferences between
formulaePref where≺ is a total order. For every action sequenceβ, if goal(γ) ∈ M then
tr(γ,M) is a most preferred trajectory achieving∆.

Example 8 Let us consider the example of section 2.3. The person trying to exit the building may
prefer to use the key for the backdoor than asking the janitor for another key:

haveKey(backdoor) ≺ haveKey(frontdoor)

As another example, it may be likely that the person wants to leave the building without alerting
the police

¬police alerted ≺ police alerted

Similarly to what discussed in the case of action preferences, we can extend the notation used for
formulae preferences to encode conditional preferences. The notation we suggest is:

ϕ1 ≺ ϕ2 if p1, . . . , pn

whereϕ1, ϕ2 are preferences between fluent formulae andp1, . . . , pn are fluent literals. Intuitively,
the preference states that we are interested in considering this particular preference only if the final
state satisfies the literalsp1, . . . , pn. The modification to the encoding in prioritized default theory
is the following:

block(executable(a, γ), [goal(β), ϕ1(β), φa,ϕ2(γ), p1(β), . . . , pn(β)]).

22

6 Computing the Entailment Relation |= Using SMODELS

The programΠk(D, Γ) can be implemented using a solver for answer set programming; in particu-
lar, in this work we experimented our ideas using theSMODELS[25] system. To make this possible,
we need to introduce a collection of predicates to overcome the limitations of the input language;
in particular,SMODELSdoes not support the list operator and requires finite domains and domain
predicates to perform grounding. An automated translator to convertΠk(D, Γ) to a SMODELS

program has been devised and can be found atwww.cs.nmsu.edu/lldap/Preferences .
Below, we describe the translation and prove its correctness. Appendix C presents an example of
a translation using the scheme described in this section.

6.1 EncodingΠk(D, Γ) as aSMODELSProgram

In this section, we will present the encoding ofΠk(D, Γ) as aSMODELS program, denoted by
SMk(D, Γ). In the next section, we will show howSMk(D, Γ) can be used in finding trajectories
and preferred trajectories usingSMODELS. SinceΠk(D, Γ) consists of two parts, the set of rules
Rk =

⋃
|α|≤k Rα and the set of rules (10)-(15), we divide the translation in two parts. The first part

deals with the default theory (Rk) while the second part deals with the rules (10)-(15) (Πk(D, Γ) \
Rk).

6.1.1 SMODELSEncoding For Rk

Observe that we can divide literals in the language underlyingRk, denoted byL, into three types:

(A.i) f(γ) wheref is a fluent andγ is a sequence of actions;

(A.ii) possible(a, γ) wherea is an action andγ is a sequence of actions;

(A.iii) dynamic(f, a, γ), causal(f, a, γ), executable(a, γ), def(f, a, γ), and inertial(f, a, γ) –
which are names for rules and defaults in the prioritized default theories.

Similarly, every list occurring inΠ(D, Γ) contains only literals of the types (A.i)-(A.ii) and is of
the following form:

(L.i) [p1(γ), . . . , pm(γ)] wherepi’s are fluent literals andγ is a sequence of actions;

(L.ii) [p1(γ), . . . , pm(γ), possible(a, γ)] wherepi’s are fluent literals,a is an action, andγ is a
sequence of actions; or

(L.iii) [p1(γ ◦ a), . . . , pm(γ ◦ a), possible(a, γ)] wherepi’s are fluent literals,a is an action, andγ
is a sequence of actions.

It is worth noticing that each list inRk can be divided into two parts. The first part consists of
literals of the form (A.i) and the second part is either empty (for (L.i)) or consists of a single
element of the form (A.ii). Furthermore, ifx = [l1, . . . , lm] is a list of literals of the form (A.i)
obtained through this splitting thenli’s have the same sequence of actions as their last parameter.
The language underlying the prioritized default theory of the programSMk(D, Γ), denoted by
LSM , is defined as follows.

23

• For eachl ∈ L of the types (A.i)-(A.iii),LSM containsl+, which is obtained froml by replac-
ing γ with |γ|; for instance,f(a ◦ b) becomesf(2), possible(a, []) becomespossible(a, 0),
etc.

• For each listy in L, LSM contains a new and distinguished atomn|y|(m) where (i)|y| is the
list of fluent literals occurring iny; and (ii) m is the length of the sequence of actions that
appears as the last parameter in literals of the form (A.i) belonging toy; for example:

– the list [f(a), g(a)] is associated with the atomn[f,g](1), wheren[f,g] is a new and dis-
tinguished predicate name that does not appear in the languageL,

– the list[f(a◦ c),¬g(a◦ c), possible(b, a◦ c)] is associated with the atomn[f,¬g](2), and

– the list [f(a ◦ c), g(a ◦ c), possible(c, a)] is associated with the atomn[f,g](2).

Intuitively, the integer associated to each literal ofLSM denotes a time stamp on a linear time line.
For example,f(2) represents the fact thatf is true at the time moment 2.possible(a, 3) says that
it is possible to execute the actiona at the time moment3. As such, whileRk that represents a tree
of possible trajectories whose length is at mostk, Rk

sm — the SMODELS encoding ofRk — only
represents a possible trajectory. Given a trajectorys0a1s1 . . . ansn, the definition of a trajectory
says thataj must be executable insj−1. For this reason, we will drop literals of the form (A.ii)
from the lists occurring in rules ofRk and give them a special treatment. We will introduce literals
of the fromocc(a, i) wherea is an action andi is an integer to indicate thata occurs at the time
momenti and introduce a constraint stating that an action can occur only if it is executable. The
translation is done as follows.

• For each atom of the form (16), the following rule belongs toRk
sm:

rule(dynamic(f, a, m), f(m + 1), n(m)) ← occ(a,m) (29)

wherem = |β| and n(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (16).

• For each atom of the form (17), the following atom belongs toRk
sm:

rule(executable(a,m), possible(a,m), n(m)) (30)

wherem = |β| andn(m) is the atom associated to the list occurring in (17).

• For each atom of the form (18), the following atom belongs toRk
sm:

rule(causal(f, a,m), f(m + 1), n(m + 1)) ← occ(a,m) (31)

wherem = |β| and n(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (18).

• For each atom of the form (19), the following atom belongs toRk
sm:

default(def(f, a,m), f(m + 1), true) ← occ(a,m) (32)

wherem = |β| and n(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (19).

24

• For each atom of the form (20), the following atom belongs toRk
sm:

default(inertial(f, a, m), f(m + 1), n(m)) ← occ(a,m) (33)

wherem = |β| and n(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (20).

• For each atom of the form (21), the atom

holds(f(0)) (34)

belongs toRk
sm.

Finally, for every actiona, we add the constraint

← occ(a, T), not holds(possible(a, T)) (35)

to Rk
sm and for each atomn[l1,...,ln] representing the list[l1, . . . , ln], we add rules of the following

form
hold(n[l1,...,ln](T)) ← holds(l1(T)), . . . , holds(ln(T)). (36)

to Rk
sm, whereT is the time variable.

Notice the difference betweenRk andRk
sm. For an action theory(D, Γ), Rk

sm represents a possible
history whileRk represents an evolution tree. As such, the size ofRk

sm is rather small comparing
to that ofRk.

Example 9 The dynamic causal law

opendoor(backdoor) causesopen(backdoor) if at(backdoor)

is encoded as the logic programming rule:

rule(dynamic(open(backdoor), opendoor(backdoor), T), open(backdoor, T + 1), n[at(backdoor)](T))
← occ(opendoor(backdoor), T), time(T).

for values ofT which are legal plan lengths (the predicatetime is used to limitT to acceptable
values). In addition, the rule forhold will be specialized:

hold(n[at(backdoor)](T)) ← time(T), holds(at(backdoor, T))

and the constraint

← occ(opendoor(backdoor), T), not holds(possible(opendoor(backdoor), T))

is added to theSMODELSencoding.

6.1.2 SMODELSEncoding For Πk(D, Γ) \Rk

SinceSMODELSdoes not allow the list operator and the rule (36) effectively replaces the two rules
(12)-(13), the only thing we need to do in encodingΠk(D, Γ) \ Rk is to remove the two rules
(12)-(13) fromP. Other rules do not change. Thus, the programSMk(D, Γ) consists ofRk

sm and
the rules (10)-(11) and (14)-(15).

25

6.1.3 Property ofSMk(D, Γ)

We now discuss a property ofSMk(D, Γ). As we have pointed out earlier, in encodingΠk(D, Γ),
we replace a sequence of actions with its length. As such each answer set ofSMk(D, Γ) cor-
responds to only one trajectory of the action theory while each answer set ofΠk corresponds to
a possible evolution tree. We will now show that this difference will be eliminated when we fix
the trajectory in both programs. Let(D, Γ) be a complete and consistent action theory, and let
α = a1, . . . , ak be a sequence of actions. LetPα(D, Γ) be the program consisting of

• the rules (10)-(15), and

• the set of rulesRα.

The next theorem relates the programPα(D, Γ) andSMk(D, Γ).

Theorem 8 Let (D, Γ) be a consistent and complete action theory andα = a1, . . . , ak be a se-
quence of actions. Then,

1. if M is an answer set ofPα(D, Γ), thenSMk(D, Γ)∪{occ(ai, i− 1) | i = 1, . . . , k} has an
answer setM ′ with the property that

M |= holds(f(a1 ◦ · · · ◦ ai)) if and only if M ′ |= holds(f(i))

2. if M is an answer set ofSMk(D, Γ) ∪ {occ(ai, i − 1) | i = 1, . . . , k} then there exists an
answer setM ′ of Pα(D, Γ) such that

M |= holds(f(i)) if and only if M ′ |= holds(f(a1 ◦ · · · ◦ ai)).

Proof. See Appendix A. 2

6.2 Finding a Trajectory Using SMk(D, Γ)

The discussion in the previous section shows thatSMk(D, Γ) can be used to compute the entail-
ment relation of(D, Γ). In this section, we discuss the use ofSMk(D, Γ) in finding a trajectory
s0a1 . . . aksk that satisfies the following properties:

1. sk |= ∆ for some given fluent formula∆—this means that the trajectory is a possible plan
to accomplish the goal∆;

2. the trajectorys0a1 . . . aksk satisfies some soft constraints that are expressed as preferences
between actions or between fluent formulae.

6.2.1 Finding A Trajectory for ∆

Let ∆ be a conjunction of fluent literalsf1 ∧ . . . ∧ fk
7. We are interested in finding a trajectory

s0a1 . . . aksk for ∆. As it is customary in answer set planning, we add toSMk(D, Γ) the set of
7Fluent formula can be dealt with as in [34].

26

rules to generate action occurrences and to represent the goal. This set of rules consists of:

← not goal(k). (37)

goal(T) ← time(T), holds(f1(T)), . . . , holds(fk(T)). (38)

1{occ(A, T) : action(A)}1 ← time(T), T < k. (39)

In addition, we add the set of facts{action(a) | a ∈ A} to SMk(D, Γ) which specifies the domain
of actions needed for the grounding of rules (39). Intuitively, rule (38) is used to express under
what conditions the goal can be considered to be satisfied at timeT . Rule (37) is an answer set
constraint [25] used to reject answer sets that do not satisfy the goal at timen. Rule (39) makes
use of anSMODELSchoice ruleto ensure that, at each timeT , the answer set includes exactly one
fact of the formocc(A, T), whereA is an action name. LetSMPlan,k(D, Γ, ∆) be the program
consisting of the rules ofSMk(D, Γ) and the set of rules (37)-(39), in which the time variable
takes values from0 to k. The next theorem relates trajectories satisfying the goal∆ to answer sets
of SMPlan,k(D, Γ, ∆).

Theorem 9 For a consistent and complete action theory(D, Γ),

1. if s0a1 . . . aksk is a trajectory for∆ thenSMPlan,k(D, Γ, ∆) has an answer setM such that

(a) occ(ai, i− 1) ∈ M for every integeri, 1 ≤ i ≤ k, and

(b) si = {f | holds(f(i)) ∈ M};
2. if SMPlan,k(D, Γ, ∆) has an answer setM such that

(a) occ(ai, i− 1) ∈ M for every integeri, 1 ≤ i ≤ k, and

(b) si = {f | holds(f(i)) ∈ M}
thens0a1 . . . aksk is a trajectory for∆.

Proof. See Appendix A. 2

6.2.2 Finding a Preferred A Trajectory: Action Preferences

Let us now encode the preferences between actions as rules ofSMPlan,k(D, Γ, ∆). For simplicity,
instead of translating the set of preferences between actions into literals of the form (23) we will
encode it directly asSMODELSrules. For each action preferenceprefer(a, b), we define a rule

block(executable(b, T), nil) ← goal(length) (40)

wherenil is the name assigned to the list[] which is true at every moment of time. Intuitively, this
rule prevents the actionb to be used in achieving the goal. Let(D, Γ) be an action theory andP be
a set of preferences on actions inD. Let SMPref,k(D, Γ, ∆) be the program consisting of

• the programSMPlan,k(D, Γ, ∆), and

• the set of rules (40) with the time variable ranging between0 andk.

27

It is easy to see that, whenprefer(a, b) is present and both actions are executable and lead to the
goal, thena will be used to construct the trajectory. This encoding provides the following form of
soundness:

Theorem 10 Let (D, Γ) be a consistent and complete action theory andM be an answer set of
the programSMPref,k(D, Γ, ∆) encoding the planning problem(D, Γ, ∆) with a set of preference
P . Then,s0a1s1 · · · ansn is a most preferred trajectory satisfying∆ where

• occ(ai, i− 1) ∈ M

• si = {f | holds(f(i)) ∈ M}
Proof. See Appendix A. 2

Notice that the rules of the form (40) do not warrant completeness, i.e., they do not guarantee that
a most preferred trajectory is found, even if one exists. For instance, when two actionsa andb are
possible and we have the preferenceprefer(a, b), but the actiona fails to lead to the final goal,
then the program may fail to produce a trajectory. At this time it is unclear whether completeness
can be achieved using this encoding of prioritized default theories with action preferences.

An alternative approach to encode preferences between actions can be developed using theSMOD-
ELS constructmaximize. The maximize construct allows the programmer to associate static
weights (non-negative integers,wi) to a selected set of ground atoms (ai):

maximize[a1 : w1, · · · , ak : wk].

Intuitively, this rule instructsSMODELS to find answer set in which the sum

Σk
i=0|ai| ∗ wi

is maximal where|ai| = 1 if ai is in the answer set and|ai| = 0 otherwise.SMODELSmakes use
of branch-and-bound techniques to return an answer set with maximal weight—i.e., it maximizes
the sum of the weights of the atoms satisfied by the answer set.

We can ensure that the most preferred trajectory can always be found, by adding the following
optimization rule to the programSMPref,n(D, Γ, ∆): for eachprefer(a, b) and for each time
point t

maximize[occ(a, t) = 1, occ(b, t) = 0].

6.2.3 Finding a Preferred Trajectory: Formulae Preferences

To implement (27), for a totally ordered collection of fluent formulaeϕ1 ≺ . . . ≺ ϕk, we add the
optimal rule [24]

maximize[ϕ1 = k, . . . , ϕk = 0] (41)

to SMPlan,n(D, Γ). We are assuming that the computation of the answer sets maximizes each rule
of type (41).8 If we want to use the current version ofSMODELS, then we need to additionally

8Observe that the current implementation ofSMODELS does not guarantee this behavior—SMODELS maximizes
only the last optimal rule in the program.

28

require that the preference relation≺ is total order over the set of fluent formulae. The correct
behavior ofmaximize is guaranteed in the current implementation of theJsmodelssystem [15].
The use of the implementation ofmaximize in Jsmodelsallows us to make use of both types of
preferences concurrently within the same domain specification.

7 Discussion and Conclusions

The advantages of making use of high level languages for the description of action theories have
been highlighted by many researchers (e.g., [9, 36]). Our interest in this line of research is to enrich
action theories with more complex forms of reasoning—including reasoning with preferences over
trajectories and handling default and exogenous actions. In this paper we presented a formalism for
reasoning about actions in the context of prioritized default theory. In the process, we developed
an encoding of action theories in prioritized default theories, whose semantics coincides with the
entailment relation of the action theory. It is worth noticing that prioritized default theory is very
expressive, and can be used to model dynamic domains that cannot be expressed using, e.g., the
languageB; for example

• domains with user-defined preferences between trajectories;

• domains with non-inertial fluents (e.g., a spring-loaded door is open immediately after the
push action is performed, but it will automatically revert to close at the next moment of
time).

• domains with exogenous actions—e.g., a domain where a driver agent stops at the traffic
light, and expects the light to change color; i.e., the driver agent expects the change color
action to occur (exogenously).

We illustrate these last two types of actions in the following simple example.

Example 10 Consider a mail delivering robot who drives around the city to deliver mails. The
robot knows that it can pass an intersection when the traffic light is green and that it needs to stop
when the traffic light is red. In this domain, the action of changing the traffic light color could be
viewed as a default action which changes the color of the traffic light fromgreento yellow, from
yellow to red, and fromred to green, and so on. This action is not an action that the robot can do.
It is also not an action that happens arbitrarily. Rather, its behavior can be predicted given the
current situation, i.e., the light will be green in the next situation if it is currently red.

The robot also knows that the traffic light could also be changed by an ambulance in an emergency
situation. This action is an example of an exogenous action. Like a default action, exogenous
actions are actions that the robot can not perform but their occurrence is rather unpredictable.

Observe that exogenous actions can be added to any of the current RAC’s approaches without
the need of redefining their semantics. Exogenous actions can be used to explain discrepancies
between the real state of the world (represented by observations) and the predicted model of the
world (represented by the effects of actions); for example, in [2], exogenous actions are used in
formalizing dynamic diagnoses. For default actions, certain modifications need to be done to take

29

into consideration their occurrences. In approaches using high-level action description languages,
this would mean that the definition of the transition function needs to be revised because in a
domain with default actions, the real state of the world changes even when the agent does nothing.

The previous work conducted by the authors [11] and the related work conducted by other re-
searchers (e.g., [36]) have demonstrated the advantages of making use of more specialized forms
of logic, such as prioritized default theories, for commonsense reasoning, causal reasoning, and
other advanced forms of reasoning. In this work we propose to lay the foundations for using pri-
oritized default theory for reasoning about actions and planning. Our claim is that advanced forms
of reasoning about actions (including preferences, exogenous actions, and default actions) can be
naturally addressed in the context of prioritized default theory—some preliminary steps in this di-
rection can be found in [11]. In this paper we lay the foundations for this research. We accomplish
this by illustrating a sound and complete translation of a high-level action language (a variation of
the languageB) into prioritized default theory, along with a simple extension of prioritized default
theory that allows an elegant encoding of powerful types of preferences between trajectories and
management of non-inertial fluents. Our extension of prioritized default theory allows preferences
between rules and formulae to be expressed. We also show how these features can be ultimately
translated from prioritized default theory to answer set programming, thus allowing us to use in-
ference engines for answer set programming (e.g.,SMODELS) for planning. Further extensions to
handle exogenous and default actions will be considered in our future work.

The considerations provided in this work represent also a starting point towards the treatment of
more general forms of preferences. In general, an agent can have several preferences on trajecto-
ries. For example, he might prefer to use an actiona over an actionb, he might also prefer that
whenever he has to execute an actionc thend should be the next action, etc. It has been discussed
in [1] that many preferences or constraint of this type can be conveniently expressed as a temporal
logic formula. Since the truth value of a temporal logic formula can be easily checked given a
trajectory, this feature can be added to our framework by

• adding rules for checking the truth value of temporal logic formulae, that associate each
temporal logic formula, sayϕ, to a new boolean variableϕT , whose truth value in the final
state corresponds to the satisfiability ofϕ w.r.t. the chosen trajectory (as illustrated in [34]),

• adding an optimization rule
maximize[ϕT = 1, not ϕT = 0]

to the programSMPlan,n(D, Γ), that allows us to find trajectories satisfyingϕ before con-
sidering those not satisfying it.

A more complete treatment of these preferences is beyond the scope of this work and will be dealt
with as future work.

The preliminary experiments performed have provided encouraging results, and work is in progress
to establish the full range of capabilities of this approach. In particular, we intend to use the
proposed framework in the design of bioinformatics applications—i.e., software agents in charge of
mapping high-level biological process descriptions into a predefined collection of software services
[27]—and in the development of Web accessibility agents for visually impaired individuals [28].

Several other approaches to dealing with preferences between logic programming rules have been
proposed [3, 5, 37]. In our future work we plan to investigate the use of these methods in repre-
senting and reasoning with preferences among actions.

30

Acknowledgments: The authors wish to thank M. Gelfond and M. Balduccini for the comments
on various drafts of this work, and the anonymous referees for their helpful comments. Research
has been supported by NSF grants EIA-0130887, CCR-9875279, HRD-9906130, EIA-0220590,
and EIA-9810732.

References

[1] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning.Artificial Intelligence, 116(1,2):123–191, 2000.

[2] C. Baral, S. McIlraith, and T.C. Son. Formulating Diagnostic Problem Solving using an
Action Language with Narratives and Sensing.Proceedings of the Knowledge Representation
and Reasoning Conference, 2000.

[3] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs.Artificial Intelli-
gence, 109:297–356, 1999.

[4] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and application frontends. In F. Bry, B. Freitag,
and Seipel D., editors,Proceedings of the 12th Workshop on Logic Programming WLP, pages
128–137, Sep 1997.

[5] J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic
programs.Theory and Practice of Logic Programming, 3(2):129–187, March 2003.

[6] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Answer set planning under action
costs. In S. Flesca and S. Greco, N. Leone, and G. Ianni, editors,Proceedings of the Eighth
European Conference on Logics in Artificial Intelligence, JELIA’02, pages 186–197. Springer
Verlag, LNAI 2424, 2002.

[7] R. Fikes and N. Nilson. STRIPS: A new approach to the application of theorem proving to
problem solving.Artificial Intelligence, 2(3–4):189–208, 1971.

[8] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren and Peter
Szeredi, editors,Logic Programming: Proceedings of the Seventh International Conf., pages
579–597, 1990.

[9] M. Gelfond and V. Lifschitz. Representing Action and Change by Logic Programs.Journal
of Logic Programming, 17:301–322, 1993.

[10] M. Gelfond and V. Lifschitz. Action languages.ETAI, 3(6), 1998.

[11] M. Gelfond and T.C. Son. Prioritized default theory. InSelected Papers from the Workshop on
Logic Programming and Knowledge Representation 1997, pages 164–223. Springer Verlag,
LNAI 1471, 1998.

[12] M. Ginsberg and D. Smith. Reasoning about actions I: a possible worlds approach.Artificial
Intelligence, 35:165–195, 1988.

31

[13] P. Haddawy. A logic of time, chance, and action for representing plans.Artificial Intelligence,
80(1-2):243–308, 1996.

[14] R. Kowalski and M. Sergot. A logic-based calculus of events.New Generation Computing,
4:67–95, 1986.

[15] H. Le, E. Pontelli, T.C. Son. An Java Based Solver for Answer Set Programming,www.cs.
nmsu.edu/˜hle , 2003.

[16] V. Lifschitz. The logic of common sense.ACM Computing Surveys, 27:343–345, 1995.

[17] V. Lifschitz. Answer set planning. InInternational Conference on Logic Programming, pages
23–37, 1999.

[18] V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck, editor,
Proceedings of the Eleventh International Conf. on Logic Programming, pages 23–38, 1994.

[19] V. Lifschitz and H. Turner. Representing transition systems by logic programs. InProceed-
ings of the 5th International Conference on Logic Programming and Nonmonotonic Reason-
ing, pages 92–106, 1999.

[20] N. McCain and M. Turner. Causal theories of action and change. InProceedings of the 14th
National Conference on Artificial Intelligence, pages 460–467. AAAI Press, 1997.

[21] J. McCarthy. Epistemological problems of artificial intelligence. InProceedings of the 5th In-
ternational Joint Conference on Artificial Intelligence, pages 1038–1044. Morgan Kaufmann
Publishers, San Mateo, CA, 1977.

[22] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,Machine Intelligence, volume 4, pages
463–502. Edinburgh University Press, Edinburgh, 1969.

[23] K. Myers. Generating qualitatively different plans through metatheoretic biases. InProceed-
ings of the Sixteenth National Conference on Artificial Intelligence. AAAI Press, 1999.

[24] I. Niemel̈a. Logic programming with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273, 1999.

[25] I. Niemel̈a and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs. InProceedings ICLP & LPNMR, pages 420–429, 1997.

[26] E. Pednault. ADL and the state-transition model of actions.Journal of Logic and Computa-
tion, 4(5):467–513, October 1994.

[27] E. Pontelli, G. Gupta, D. Ranjan, and B. Milligan. A Domain Specific Language for Solving
Philogenetic Inference Problems. Technical Report TR-CS-001/2002, New Mexico State
University, 2002.

[28] E. Pontelli and T. Son. Navigating HTML Tables: Planning, Reasoning, and Agents. InInt.
Conference on Assistive Technologies. ACM Press, 2002.

32

[29] R. Reiter. A logic for default reasoning.Artificial Intelligence, 13(1,2):81–132, 1980.

[30] R. Reiter.KNOWLEDGE IN ACTION: Logical Foundations for Describing and Implement-
ing Dynamical Systems. MIT Press, 2001.

[31] M. Shanahan.Solving the frame problem: A mathematical investigation of the commonsense
law of inertia. MIT press, 1997.

[32] D.E. Smith and D. Weld. Conformant GraphPlan. InAAAI, AAAI/MIT Press, pp. 889-896,
1998.

[33] T.C. Son and C. Baral. Formalizing Sensing Actions—A Transition Function Based Ap-
proach. InArtificial Intelligence, 125(1–2):19–91, 2001.

[34] T.C. Son, C. Baral, and S. McIlraith. Domain dependent knowledge in planning - an an-
swer set planning approach. InProceedings of the 6th International Conference on Logic
Programming and NonMonotonic Reasoning, pages 226–239, Vienna, 2001.

[35] T.C. Son and E. Pontelli. Reasoning about actions in prioritized default theory. In S. Flesca,
S. Greco, N. Leone, and G. Ianni, editors,Proceedings of the Eighth European Conference
on Logics in Artificial Intelligence, JELIA’02, pages 369–381. Springer Verlag, LNAI 2424,
2002.

[36] H. Turner. Representing actions in logic programs and default theories.Journal of Logic
Programming, 31(1-3):245–298, May 1997.

[37] Y. Zhang and N. Foo. Answer sets for prioritized logic programs. InProceedings of ILPS 97,
pages 69–84, 1997.

Appendix A – Proofs

We apply the Splitting Theorem and Splitting Sequence Theorem [18] several times in our proof.
To make the presentation more self-contained, the splitting theorems are included in Appendix B.
Let r be a rule

a0←a1, . . . , am, not am+1, . . . , not an. (42)

By head(r), body(r), and lit(r) we denotea0, {a1, . . . , an}, and{a0, a1, . . . , an}, respectively.
pos(r) andneg(r) denote the set{a1, . . . , am} and{am+1, . . . , an}, respectively. For a program
π, by lit(π) we denote the set of literals of the programπ. The following lemma is also useful.

Lemma 2 LetM be an answer set ofΠk(D, Γ) andα = a1, . . . , al, l ≤ k, be an action sequence.
If for everyj ≤ l, aj is executable ins(αj−1,M), thens(α, M) 6= ∅.
Proof. Follows immediately from the construction ofΠk(D, Γ) sincepossible(aj, αj−1) belongs
to the body of every rule/default that generates fluent of the formholds(f(αj)) in M . As such,
s(α, M) 6= ∅ means thatpossible(aj, αj−1) ∈ M for everyj ≤ l. This implies the conclusion of
the lemma. 2

33

Before we prove the theorems, we simplify the programΠk(D, Γ) andΠα(D, Γ) and introduce
some notation that will be used subsequently. For an action theory(D, Γ), let s0 be its initial state.
Define,

Sα = Rα ∪ {holds(f, []) | f ∈ s0}
and

Sk =
⋃

|α|≤k

Rα ∪ {holds(f, []) | f ∈ s0}.

First, we simplifyΠk(D, Γ) andΠα(D, Γ) by

1. removing rules of the form (12)-(13); and

2. replacinghold([L1, . . . , Ln]) with the sequenceholds(L1), . . . , holds(Ln) in every rule of
the remaining program whose body containshold([L1, . . . , Ln]).

Let us denote the new programs byπk andπα, respectively. It follows from Lemma 3 of [11] that
each answer set ofπk (resp.πα) corresponds to an answer set ofΠk(D, Γ) (resp.Πα(D, Γ)) which
contains the same set of literals of the formholds(L), defeated(D), andSk (resp.Sα) and vice
versa.

Theorem 1 For every consistent and complete action theory(D, Γ), the programΠk(D, Γ) is
consistent.

Proof. Our discussion shows that to prove the theorem, it is enough to prove thatπk has a consistent
answer set. LetLi be the set of literals of the programπi. It is easy to see thatLi is a splitting
set ofπk if i ≤ k. Thus, the sequence〈Li〉i≤k, is a splitting sequence ofπk. By the splitting
sequence theorem [18] (included in Appendix B as Theorem 12),Mk is an answer set ofπk iff
Mk =

⋃
i≤k Ai where〈Ai〉i≤k is a solution toπk with respect to〈Lj〉i≤k. Hence, to prove the

theorem, we will construct a solution〈Ai〉i≤k. We prove this by induction overk.

• Base:The theorem is trivial fork = 0 sinceπ0 = π[] and this program has only facts that is
consistent because of the consistency of(D, Γ).

• Step: Assume that we have proved the theorem fork. We need to prove it fork+1. It is easy
to see thatπk+1 can be splitted bylit(πk), the set of literals ofπk, andπk = blit(πk)(π

k+1).
This implies thatM is an answer set ofπk+1 iff M = Mk∪M ′ where(Mk,M ′) is a solution
of πk+1 with respect tolit(πk). That is,Mk is an answer set ofπk andM ′ is an answer set
of π′ = elit(πk)(π

k+1 \ blit(πk)(π
k+1),Mk).

By inductive hypothesis,Mk =
⋃

i≤k Ai for some solution toπk with respect to〈Lj〉i≤k. We
construct an answer setAk+1 of π′ as follows.

– Ak+1 contains the setSk+1 \ Sk,

– For each action sequenceα and actiona such that|α| = k and a is executable in
s(α,Mk), we select an arbitrary but unique states′ ∈ Φ(a, s(α,Mk)) and add toAk+1

the following literals:

34

∗ holds(possible(a, α)),

∗ holds(f(α ◦ a)) wheref ∈ s′,
∗ defeated(inertial(f, a, α)) if f ∈ s(α,Mk) and f̄ ∈ s′ where f̄ denotes the

negation off , and

∗ defeated(def(f, a, α)) if f ∈ s(α, Mk) andf̄ ∈ s′.

By construction and the assumption that(D, Γ) is consistent, we can easily check thatAk+1

is indeed an answer set ofπ′. This concludes the proof of the inductive step, and hence, the
theorem.

2

Theorem 2 Let (D, Γ) be a consistent and complete action theory andα be a sequence of actions
with |α| ≤ k. The following results hold:

• If M is an answer set ofΠk(D, Γ) then Mα = M ∩ lit(Πα(D, Γ)) is an answer set of
Πα(D, Γ).

• If Mα is an answer set ofΠα(D, Γ) then there exists an answer setM of Πk(D, Γ) such that
Mα = M ∩ lit(Πα(D, Γ)).

Proof. It is easy to see thatSk is a splitting set ofπk and bRk
(πk) = Sk. Furthermore, let

π1 = eSk
(πk \ Sk, Sk). Applying the splitting set theorem, we have thatπ1 consists of rules of the

form

holds(L) ← holds(L1), . . . , holds(Ln). (43)

holds(L) ← holds(L1), . . . , holds(Ln), not defeated(D). (44)

defeated(D) ← holds(¬L). (45)

where

• for each rule of the form (43), there exists a rulerule(R,L, [L1, . . . , Ln]) ∈ Sk;

• for each rule of the form (44), there exists a defaultdefault(D,L, [L1, . . . , Ln]) ∈ Sk; and

• for each rule of the form (45), there exists a defaultdefault(D,L, [L1, . . . , Ln]) ∈ Sk.

Similar arguments hold forπα andSα. Letπ2 = eSα(πα\Sα, Sα). We have thatπ2 also consists
of rules of the form (43)-(45) in which the conditions following the definition ofπ1 is applied to
Sα. It follows from the splitting theorem and the fact thatSα ⊆ Sk that it suffices to prove the
following:

• If M1 is an answer set ofπ1 thenM2 = M1 ∩ lit(π2) is an answer set ofπ2.

• For each answer setM2 of π2 there exists an answer setM1 of π1 such thatM2 = M1 ∩
lit(π2).

35

We will now prove these claims.

• Let M1 be an answer set ofπ1. We will show thatM2 = M1 ∩ lit(π2) is an answer set ofπ2.
Let π = (π2)

M2. Becauseπ2 ⊆ π1, we have thatπ ⊆ (π1)
M1 and thereforeM2 satisfiesπ.

To complete the proof, we need to show the minimality ofM2. Assume the contrary, there
exists a setX ⊂ M2 andX satisfiesπ. We will show thatY = X ∪ (M1 \ M2) satisfies
(π1)

M1. Consider a ruler ∈ (π1)
M1 whose body is satisfied byY . Clearly, if the head of

r does not belong tolit(π2) then it belongs toM2 \ M1 and therefore,r is satisfied byY .
Because of the construction ofπ1 andπ2, it is easy to see that if the head ofr belongs to
lit(π2) then so is the body ofr. As such,r is satisfied byX. In both cases,r is satisfied by
Y . This implies thatY is a proper subset ofM1 and satisfies all the rules in(π1)

M1. This
contradicts the fact thatM1 is an answer set ofπ1. In other words, we have thatM2 is an
answer set ofπ2.

• Let M2 be an answer set ofπ2. Let π be the program obtained fromπ1 \ π2 by

– Removing all the rules whose body contains some literals inlit(π2) \M2.

– Removing all the literals inM2 from the remaining rules.

It is easy to see thatlit(π) ∩ lit(π2) = ∅ and if X is an answer set ofπ thenX ∪M2 is an
answer set ofπ1. Obviously,M1 = X ∪M2 is an answer set ofπ1 satisfying the condition
thatM2 = M1 ∩ lit(π2).

The theorem is proved. 2

Theorem 3 Let(D, Γ) be a consistent and complete action theory,M be an answer set ofΠk(D, Γ),
α be a sequence of actions with|α| ≤ k, and a be an action such thats(α, M) 6= ∅ and
s(α ◦ a,M) 6= ∅. Then,s(α ◦ a,M) ∈ Φ(a, s(α,M)).

Proof. Let us assume thatα = a1, . . . , al for somel ≤ k. By Theorem 2, we know that there exists
an answer setMα of πα such thatMα ⊆ M . It is easy to see thats(αj,M) = s(αj,M

α) for every
j. We prove by induction overi the following conclusions:

(a) s(αi, M
α) is a state ofD if s(αi,M

α) 6= ∅; and

(b) s(αi+1,M
α) ∈ Φ(a, s(αi,M

α)) if s(αi+1,M
α) 6= ∅.

• Base:i = 0. We have thats([],M) = {f | “ initially f ” ∈ Γ}. Because of the completeness
and consistency of(D, Γ), (a) holds. The proof that (b) holds is similar to the proof of (b) in
the inductive step and is omitted here for brevity. The base case is proved.

• Step: Assume that we have proved (a)-(b) fort < i. We prove them fort = i. We
begin with (a). Clearly, by induction hypothesis, ifs(αi,M

α) 6= ∅ then s(αi,M
α) ∈

Φ(ai, s(αi−1,M
α)) and hences(αi,M

α) is a state ofD. Letu = s(αi,M
α). Consider a flu-

ent literalf ∈ u. First, we prove thats(αi+1,M
α) is complete. It follows from Lemma 2 that

possible(ai+1, αi) ∈ M . We then prove that it is a state belonging toΦ(ai+1, s(αi,M
α)).

We have two cases:

36

1. f is a non-inertial fluent literal. Then, the default

default(def(f, αi+1), f(αi+1), [possible(ai+1, αi)])

is applicable. Thus, if¬f 6∈ s(αi+1,M
α) thenf ∈ s(αi+1,M

α).

2. f is an inertial fluent literal. Clearly, the default

default(inertial(ai+1, f, αi), f(αi+1), [f(αi), possible(ai+1, αi)])

is applicable with respect toMα. Thus, if it is not defeated, thenf(αi+1) would belong
to Mα. Otherwise, the default is defeated, and hence, we have thatholds(¬f(αi+1)) ∈
Mα. Thusf ∈ s(αi+1,M

α) or¬f ∈ s(αi+1,M
α).

The above two cases, together with the completeness ofu, conclude the completeness of
s(αi+1,M

α).

We now show thats(αi+1,M
α) is a state belonging toΦ(ai+1, s(αi,M

α)). Consider an atom
h = holds(f(αi+1)). We know thath ∈ Mα iff one of the following cases happens:

1. A rule of the form (16) is used in conjunction with a rule of the form (10) in deriving
h. This implies thatf ∈ E(ai+1, s(αi,M

α)).

2. A rule of the form (20) is used in conjunction with rule (11) in derivingh. This implies
thatf ∈ s(αi,M) ∩ s(αi+1,M

α) ∩ (FI ∪ FI).

3. A rule of the form (19) is used in conjunction with a rule of the form (11) in de-
riving h. This implies thatf is a non-inertial fluent andf ∈ Def(D) and¬f 6∈
E(ai+1, s(αi,M

α)). In other words,f ∈ Def(D) \ E(ai+1, s(αi,M
α)).

4. A rule of the form (18) is used in conjunction with a rule of the form (10) in deriving
h. This implies that
f ∈ Cl(E(ai+1, s(αi,M

α)) ∪ (s(αi,M
α) ∩ s(αi+1,M

α) ∩ (FI ∪ FI)) ∪ (Def(D) \
E(ai+1, s(αi,M

α))).

The above four cases show thats(αi+1,M
α) is complete and is a state ofD and also belongs

to Φ(ai+1, s(αi,M
α)). The theorem is proved.

2

Theorem 4 Let (D, Γ) be a consistent and complete action theory. Then, for every sequence of
actionsα = [a1, . . . , ak] and a trajectorys0a1s1 . . . aksk of (D, Γ), there exists an answer setM
of Πk(D, Γ) such thatsi = s(αi,M).

Proof. It follows from Theorem 2 that it is enough to show that there exists an answer setMα of
πα such thatsi = s(αi,M

α). We prove by induction overk.

• Base: It is easy to see thatπ[] has only one answer set consisting of the set

X = {holds(f([])) | f ∈ s0}.
The conclusion follows immediately from the construction ofX.

37

• Step: Assume that we have proved the theorem for|α| < k. We prove it for|α| = k. Let
L = lit(παk−1). SinceL is a splitting set ofπα, A is an answer set ofπα iff A = A1 ∪ A2

andA1 is an answer set ofbL(πα) andA2 is an answer set ofπ′ = eL(πα \ bL(πα), A1).

By inductive hypothesis, we can findA1 such thatsi = s(αi, A1). It remains to be shown
that we can find an answer setA2 of π′ such thatsk = s(α, A1 ∪ A2). Observe that due to
the fact thatπ′ does not contain any rule with atom of the formprefer(D,D1) in the head,
we can remove the rule (15) fromπ′ without affecting its answer sets. Thus, in what follows
we will omit (15) fromπ′. We have thatπ′ = Y ∪ π1 where

– Y is the union of the set of facts of the form (16)-(20), which belong toπα. In other
words,Y consists of rules of the form (16)-(20) in whichβ ◦ a = α.

– π1 is defined as follows.

∗ For each atom of the form (16) inY , the rule

holds(f(α)) ← rule(dynamic(ak, f, αk−1), f(α), Body). (46)

belongs toπ1, if Body is satisfied byA1, i.e., , holds(a) ∈ A1 for every literal
a ∈ Body.

∗ For each atom of the form (17) inY , the rule

holds(L) ← rule(R, L, Body). (47)

belongs toπ1, if Body is satisfied byA1

∗ For each atom of the form (18) inY , the rule

holds(L) ← rule(D,L, [B1, . . . , Bn]), (48)

holds(B1), . . . , holds(Bn).

belongs toπ1.

∗ For each atom of the form (20) inY , the rule

defeated(D) ← default(D, L, Body), holds(¬L). (49)

belongs toπ1 and ifBody is satisfied byA1, the rule

holds(L) ← default(D,L, Body), not defeated(D). (50)

belongs toπ1.

∗ For each atom of the form (19) inY , the rule

defeated(D) ← default(D, L, Body), holds(¬L). (51)

and the rule

holds(L) ← default(D,L, Body), not defeated(D). (52)

belongs toπ1.

38

We constructA2 = Y ∪X ∪ Z as follows:

– X = {holds(f(α)) | f ∈ sk} ∪ {holds(possible(ak, αk−1))} if there exists an exe-
cutable condition

ak executableif q1, . . . , qm

andqi ∈ sk−1.

– Z consists of

∗ defeated(inertial(f, ak, αk−1)) if f is an inertial fluent,holds(f(αk−1)) ∈ X,
andf ∈ sk−1 wheref denotes the contrary of the fluent literalf , i.e., for a fluent
f , f = ¬f , and¬f = f ; and

∗ defeated(def(f, ak, αk−1)) if f is a non-inertial fluent andholds(f(α)) ∈ X and
f ∈ sk−1.

We will show thatA2 is an answer set ofπ′ by proving that it is a minimal set that is closed
under the rule ofπ′′ = (π′)A2. First, we begin with the closeness.

It is easy to see thatA2 is closed under the rules (16)-(20) because of the construction ofY
which contains all of the rules in this form which belong toπ′. A2 is closed under the rules
of the form (49) and (51) (because of the construction ofZ). This shows thatA2 is closed
under the rules (16)-(20), (49), and (51). Letr be a rule ofπ′. Consider the remaining cases:

– r is of the form (46) whose body is satisfied byA2. Then, we have thatY contains

rule(dynamic(f, ak, αk−1), f(α), [p1(αk−1), . . . , pn(αk−1), possible(ak, αk−1)])

and holds(pj(αk−1)) ∈ X for 1 ≤ j ≤ m and possible(ak, αk−1) ∈ A2. This
means thatak is executable insk−1 andf ∈ sk. By construction ofX, we have that
holds(f(α)) ∈ A2. Thus,A2 is closed under rules of the form (46) ofπ′′.

– r is of the form (47). Then,Y contains

rule(executable(ak, αk−1), possible(ak, αk−1), [p1(αk−1), . . . , pn(αk−1)])

andholds(pj(αk−1)) ∈ X for 1 ≤ j ≤ m. Obviously, the construction ofX makes
sure thatholds(possible(ak, αk−1)) ∈ A2, i.e., A2 is closed under rules of the form
(47) ofπ′′.

– r is of the form (48). Then,Y contains

rule(causal(f, ak, αk−1), f(α), [p1(α), . . . , pn(α), possible(ak, αk−1)])

and holds(pj(α)) ∈ X for 1 ≤ j ≤ n. Thus, f ∈ sk and hence we have that
holds(f(α)) ∈ X. This implies thatA2 is closed under rules of the form (48) of
π′′.

39

– r is of the form (50). Then,A2 contains

default(inertial(f, ak, αk−1), f(α), [f(αk−1), possible(ak, αk−1)])

andholds(f(αk−1)), does not containdefeated(inertial(f, ak, αk−1)), andholds(¬f(α)).
This implies thatf is an inertial fluent literal andf ∈ sk−1 and¬f 6∈ sk. Hence,f ∈ sk.
So,holds(f(α)) ∈ X and thereforeA2 is closed under rules of the form (50) ofπ′′.

– r is of the from (52). That means thatA2 contains

default(def(f, ak, αk−1), f(α), [possible(ak, αk−1)])

andholds(f(α)), and does not containdefeated(def(f, ak, αk−1)) andholds(¬f(α)).
This implies thatf is a non-inertial fluent and¬f 6∈ sk. Thus,A2 is closed under the
rules of the form (50) ofπ′′.

The above discussion shows thatA2 is closed under the rules ofπ′′. To complete the proof,
we need to show that no proper subset ofA2 is closed under the rules ofπ′′. Assume the
contrary, there existsB ⊂ A2 andB is closed under the rules ofπ′′. Consider some literal
h ∈ A2 \ B. Obviously,h cannot be a fact ofπ′′ which is either a literal of the form
rule(R,L, B) or default(D,L, B). Consider the two cases:

– h is of the formholds(f(α)) for some fluent literalf ∈ sk. There are four cases:
h ∈ E(ak, sk−1), h ∈ sk ∩ sk−1 ∩ (FI ∪ FI), h ∈ Def(D) \ E(ak, sk−1), or h 6∈
E(ak, sk) ∪ (sk ∩ sk−1 ∩ (FI) ∪ FI) ∪ (Def(D) \ E(ak, sk−1)). The first case cannot
happen becauseπ′′ contains a rule of the form (46) whose body is satisfied byA2 and
whose head ish. The second and third case cannot happen becauseπ′′ contains a
rule of the form (50) and (52), respectively, whose body is satisfied byA2 and whose
head ish. Finally, the fourth case cannot happen becauseπ′′ contains a sequence of
rules of the form (48), sayr1, . . . , rt, wherebody(r1) ⊆ A2 ∩ B andbody(rj+1) ⊆
(A2 ∩B) ∪ {head(rl) | 1 ≤ l ≤ j}.

– h is of the formdefeated(inertial(f, ak, αk−1)). This can happen only if there exists
some literalholds(¬f(α)) in A2 \B. The first case shows that this cannot happen.

– h is of the formdefeated(def(f, ak, αk−1)). This can happen only if there exists some
literal holds(¬f(α)) in A2 \B. The first case shows that this cannot happen.

– h is of the formholds(possible(ak, αk−1)). This cannot happen sinceak is executable
in sk−1.

The above cases show thatA2 is minimal set closed underπ′′. Together with the closeness
of A2 under the rules ofπ′′ we have thatA2 is an answer set ofπ′. This proves the inductive
step sincesk = s(α, X) = s(α, A2).

2

Before we prove the other theorems, we prove some lemmas that will be used in the proof of
Theorem 8.

40

Lemma 3 Let Q be a logic program. LetQ+ be the program obtained fromQ by replacing each
literal l in Q by a new and distinguished literall+ that does not belong to the language ofQ. Then,
M is an answer set ofQ iff M+ is an answer set ofQ+ whereM+ = {l+ | l ∈ M}.

Proof. The conclusion of the lemma follows from the equation(Q+)(M+) = (QM)+. (QM denotes
the reduct of a programP with respect to the set of literalsM .) 2

Lemma 4 Let Q be a logic program. LetQ1 = {l1, . . . , ln} be a set of facts inQ and Q2 =
{q1, . . . , qm} be a set of new atoms that do not occur inQ. LetR be the set of rules{li ← qj | i =
1, . . . , n} andQ+ = R ∪ (Q \ Q1). Then,M is an answer set ofQ iff M+ = M ∪ {q | q ∈ Q2,
andR contains a rule whose body isq} is an answer set ofQ+.

Proof. Because ofQ2 ∩ lit(Q) = ∅, Q2 is a splitting set ofQ+. Furthermore,bQ2(Q
+) = Q2 that

has a unique answer setQ2. Thus,M+ is an answer set ofQ+ iff M+ = M ∪ Q2 whereM is an
answer set ofeQ2(Q

+ \ bQ2(Q
+), Q2) = Q. 2

In the next lemma we prove the correctness of anSMODELSencoding of prioritized default theory.
Let T be a prioritized default theory with the underlying propositional and finite languageL, i.e.,T
is a finite set of ground literals of the form (7)-(9). By definition,P (T) is the program consisting of
T and the set of rules (10)-(15). For each list[l1, . . . , ln], we associate to its a new and distinguished
namen[l1,...,ln]. TheSMODELS-encoding ofT , denoted bysm(T), consists of the following:

• The prioritized default theoryT+ that consists of the following literals:

– Each atomrule(r, l0, [l1, . . . , lm]) in T is translated into an atom

rule(r, l0, n[l1,...,lm])

of T+;

– Each atomdefault(d, l0, [l1, . . . , lm]) in T is translated into a rule

default(d, l0, n[l1,...,lm])

of T+;

– Each atomprefer(d1, d2) in T is translated into a rule

prefer(d1, d2)

of T+;

• The rules (10)-(11) and (14)-(15) fromP (T); and

• For each new namen[l1, . . . , ln] in sm(T), the rule

hold(n[l1,...,ln]) ← holds(l1), . . . , holds(ln) (53)

belongs tosm(T).

41

Lemma 5 For a prioritized default theoryT ,

• if M is an answer set ofP (T) then there exists an answer setM ′ of sm(T) such that
holds(l) ∈ M iff holds(l) ∈ M ′; and

• if M is an answer set ofsm(T) then there exists an answer setM ′ of P (T) such that
holds(l) ∈ M iff holds(l) ∈ M ′.

Proof.

• Let M be an answer set ofP (T) andlit(hold) be the set of literals of the formhold(L) in
lit(P (T)). By name(P (T)) we denote the set of names introduced in creatingsm(T). Let
Q be the set of literals of the formhold(n[l1,...,ln]) ∈ M such thatn[l1,...,ln] ∈ name(P (T))
and{holds(li) | i = 1, . . . , n} ⊆ M . We define

M ′ = M \ (lit(hold) ∪ T) ∪ T+ ∪Q

and prove thatM ′ is an answer set ofsm(T). We prove this by showing thatM ′ is a minimal
set of literals inlit(sm(T)) that satisfies the rules in(sm(T))M ′

.

– Satisfiability: It is easy to see that each ruler+, except the rule of the form (53), in
(sm(T))M ′

corresponds to a ruler in (P (T))M and if body(r+) ⊆ M ′ thenbody(r) ⊆
M . Thus,head(r) ∈ M sinceM is an answer set ofP (T). The construction of
M ′ implies thathead(r+) ∈ M ′. Furthermore, because of the construction ofQ, M ′

satisfies all the rules of the form (53) of(sm(T))M ′
. So,M ′ satisfies(sm(T))M ′

.

– Minimality: Assume the contrary,M ′ is not minimal, i.e., there existsM ′′ ⊂ M ′,
M ′ \ M ′′ 6= ∅, andM ′′ satisfies all the rules of(sm(T))M ′

. Considerl ∈ M ′′ \ M ′.
From the construction ofM ′ andsm(T), we conclude thatl is of the formholds(l′). It
follows that there exists some ruler in (P (T))M such thathead(r) = l andbody(r) ⊆
M . Consider the ruler+ of sm(T) that corresponds tor. Clearly,body(r+) ⊆ M ′.
This implies thatM ′′ does not satisfyr+, i.e.,M ′′ does not satisfy(sm(T))M ′

, which
contradicts our assumption. This contradiction implies thatM ′ is a minimal set of
literals that is satisfies(sm(T))M ′

.

The above two properties show thatM ′ is an answer set ofsm(T). The construction ofM ′

ensures thatholds(l) ∈ M iff holds(l) ∈ M ′.

• Let M be an answer set ofsm(T). By name(P (T)) we denote the set of names introduced
in creatingsm(T). Let Q1 be the set of literals of the formholds(n[l1,...,ln]) ∈ M . Let
Q2 be the set of all literals of the formhold([l1, . . . , ln]) such thatli 6∈ name(P (T)) and
{holds(li) | i = 1, . . . , n} ⊆ M . We define

M ′ = M \ (Q1 ∪ T+) ∪ T ∪Q2

and prove thatM ′ is an answer set ofP (T). We prove this by showing thatM ′ is a minimal
set of literals inP (T) that is closed under(P (T))M ′

.

42

– Closeness: Consider a ruler in (P (T))M ′
. From the construction ofsm(T), we can

conclude that ifr is of the form (10)-(11) or (14)-(15) then there exists a ruler+ in
(sm(T))M such that ifbody(r) ⊆ M thenbody(r+) ⊆ M ′. Thus,head(r) ∈ M . The
construction ofM ′ implies thathead(r+) ∈ M ′. This implies thatM ′ is satisfies all the
rules of the form (10)-(11) or (14)-(15) in(P (T))M ′

. The construction ofQ2 ensures
that M ′ satisfies all the rules of the form (12)-(13) of(P (T))M ′

. So, M ′ satisfies
(P (T))M ′

.

– Minimality: Assume the contrary,M ′ is not minimal, i.e., there existsM ′′ ⊆ M ′ and
M ′′ satisfies all the rules of(P (T))M ′

. Considerl ∈ M ′′ \M ′. From the construction
of M ′ and the definition ofP (T), we conclude thatl is of the formholds(l′). It follows
that there exists some ruler+ in (sm(T))M such thathead(r) = l andbody(r) ⊆ M .
Let r be the rule from whichr+ is constructed. We have thatbody(r) ⊆ M ′ and
head(r) 6∈ M ′′, which implies thatM ′′ does not satisfyr, i.e., M ′′ does not satisfy
(P (T))M ′

, which contradicts our assumption. This contradiction implies thatM ′ is a
minimal set of literals satisfying(P (T))M ′

.

The above two properties show thatM ′ is an answer set ofP (T). The construction ofM ′

ensures thatholds(l) ∈ M iff holds(l) ∈ M ′.

The proof of the lemma follows from the above two cases. 2

We will use the above three lemmas to prove Theorem 8. First, for each literall ∈ lit(Pα) we
definel+ as follows.

1. if l = rule(dynamic(f, a, β), f(β ◦ a), [p1(β), . . . , pn(β), possible(a, β)])
thenl+ = rule(dynamic(f, a, k), f(k + 1), [p1(k), . . . , pn(k), possible(a, k)])
where|β| = k;

2. if l = rule(causal(f, a, β), f(β ◦ a), [p1(β ◦ a), . . . , pn(β ◦ a), possible(a, β)])
thenl+ = rule(dynamic(f, a, k), f(k + 1), [p1(k + 1), . . . , pn(k + 1), possible(a, k)])
where|β| = k;

3. if l = default(def(f, a, β), f(β ◦ a), [possible(a, β)])
thenl+ = default(def(f, a, k), f(k + 1), [possible(a, k)]) where|β| = k;

4. if l = default(inertial(f, a, β), f(β ◦ a), [f(β), possible(a, β)])
thenl+ = default(inertial(f, a, k), f(k + 1), [f(k), possible(a, k)]) where|β| = k;

5. if l = rule(executable(a, β), possible(a, β), [p1(β), . . . , pn(β)])
thenl+ = rule(dynamic(a, k), f(k), [p1(k), . . . , pn(k)]) where|β| = k;

6. if l = holds(f(β)) thenl+ = holds(f(k)) where|β| = k;

7. if l = holds(possible(a, β)) thenl+ = holds(possible(a, k)) where|β| = k;

8. if l = defeated(def(f, a, β)) thenl+ = defeated(def(f, a, k)) where|β| = k; and

9. if l = defeated(inertial(f, a, β)) thenl+ = defeated(inertial(f, a, k)) where|β| = k.

43

Let α be a sequence of actionsa1, . . . , ak. Let Qα = (Pα)+ wherel+ is defined for each literal
l in lit(Pα) as above. LetQ1 be the set of facts{l1, . . . , lk} of Q wherelj is of the form (1)-(4)
as described above (i.e.,lj is a rule or default constructed from(D, Γ) except those correspond to
executability conditions of(D, Γ)). Furthermore, letQ2 is the set of facts{occ(ai, i − 1) | i =
1, . . . , k}. It follows from the Lemmas 3-4 thatM is an answer set ofPα iff M+∪Q2 is an answer
set of(Qα)+ = Qα ∪Q2. Let Q3 be the program obtained from(Qα)+ by:

• replacing each occurrence of a list[l1, . . . , lk] in the atoms of the formrule(., ., .), default(., ., .)
with the atom associated to the list as in the translation fromPα to Qα in each rule or default
in (Qα)+;

• removing the rules (12)-(13); and

• adding a rule
hold(n[l1,...,ln]) ← holds(l1), . . . , holds(lk)

for each new namen[l1,...,ln].

We can prove the following lemma.

Lemma 6 Let (D, Γ) be a consistent and complete an action theory andα = a1, . . . , an be a
sequence of actions. Then,

1. if M is an answer set ofPα(D, Γ), thenQ3 has an answer setM ′ with the property that

M |= holds(f(a1 ◦ · · · ◦ ai)) if and only if M ′ |= holds(f(i))

2. if M is an answer set ofQ3 then there exists an answer setM ′ of Pα(D, Γ) such that

M |= holds(f(i)) if and only if M ′ |= holds(f(a1 ◦ · · · ◦ ai])).

Proof. The proof is based on Lemmas 3–5. First,Pα is translated into a programQα in which
every occurrence of an action sequenceβ is replaced by|β|. Second, to create(Qα)+ from Qα, the
set of action occurrencesQ2 = {occ(ai, i− 1) | i = 1, . . . , k} is introduced toQα with respect to
the set of rulesQ1, which consist of all the rules and defaults, whose body does not contain literals
of the from (A.ii), of the prioritized default theory corresponding to(D, Γ). Third, the list notation
is dropped by introducing the names for lists and adding the rules (53) to createQ3.

• Let M be an answer set ofPα. Lemma 3 implies that there exists an answer setM1 of Qα

such thatholds(f(a1 ◦ · · · ◦ ai)) ∈ M iff holds(f(i)) ∈ M1. It follows from Lemma 4 that
there exists an answer setM2 of (Qα)+ such thatholds(f(i)) ∈ M1 iff holds(f(i)) ∈ M2.
Lemma 5 implies that there exists an answer setM ′ of Q3 such thatholds(f(i)) ∈ M2 iff
holds(f(i)) ∈ M ′. This proves the first item of the theorem.

• The proof of the second item of the theorem is similar to the proof of the first item—based
on the second item of the Lemmas 3-5.

44

2

We now give the proof of Theorem 8.

Theorem 8 Let (D, Γ) be a consistent and complete action theory andα = a1, . . . , ak be a se-
quence of actions. Then,

1. if M is an answer set ofPα(D, Γ), thenSMk(D, Γ)∪{occ(ai, i− 1) | i = 1, . . . , k} has an
answer setM ′ with the property that

M |= holds(f(a1 ◦ · · · ◦ ai)) if and only if M ′ |= holds(f(i))

2. if M is an answer set ofSMk(D, Γ) ∪ {occ(ai, i − 1) | i = 1, . . . , k} then there exists an
answer setM ′ of Pα(D, Γ) such that

M |= holds(f(i)) if and only if M ′ |= holds(f(a1 ◦ · · · ◦ ai)).

Proof. Let P = SMk(D, Γ) ∪ {occ(ai, i − 1) | i = 1, . . . , k}. It follows from Lemma 6 that
it suffices to prove thatQ3 andP are equivalent. ForPred ∈ {rule, default, hold, holds} and
Prog ∈ {P, Q3}, by lit(Prog, Pred) we denote the set of literals whose predicate name isPred
in the programProg. For a set of literalsS in Q3 (respP), M1(S) (resp. N1(S)) we denote
the set of rulesQ3 whose body is empty or contains only the literal of the formocc(a, k). It
is easy to see that ifM is an answer set ofQ3, thenM ∩ (lit(Q3, rule) ∪ lit(Q3, default)) =
M1(S). Similarly, if M is an answer set ofP , thenM ∩ (lit(P, rule)∪ lit(P, default)) = N1(S).
Observe that for each ruler of the form (29)-(33) inP there exists one and only one ruler′ in
Q3 ∩ (lit(Q3, default) ∪ lit(Q3, rule)) of Q3 with the following property: (i)r andr′ have the
same body; and (ii) the heads ofr andr′ refer to the same default or rule of the original prioritized
default theory, i.e., this correspondence is one-to-one. In what follows, we will user′ to refer to
rule inQ3 and user to refer to its correspondence inP .

We now prove the theorem.

• Let S be an answer set ofQ3. We have thatholds(possible(aj, j − 1)) ∈ S for j = 1, . . . , k
(Lemma 6 and Theorem 4). Let

Spdt = {head(r) | r′ ∈ M1(S)}

and

Shold = {hold(n[l1,...,lm](t)) | n[l1,...,lm] is a name inP, holds(li(t)) ∈ S for i = 1, . . . , m}.

Intuitively, Spdt accounts for the difference in the set of rules and defaults whileShold ac-
counts for the difference between the names inP andQ3. We will show that

S ′ = (S \ (M1(S) ∪ lit(Q3, hold))) ∪ Spdt ∪ Shold

is an answer set ofP . It is easy to see thatS ′ satisfies all rules ofP . Suppose that there
existsS ′′ ⊂ S ′ that satisfiesPM . Considerl ∈ S ′′ \ M ′. We know thatl cannot have
the formocc(ai, i − 1) or holds(possible(aj, j − 1)). It can also not be inlit(hold) by the

45

construction ofS ′. Hence,l is of the formholds(f(t)) for some fluent literalf . This implies
thatholds(f(t)) ∈ S. From the construction ofQ3, we conclude that there exists a ruler′

in lit(Q3, default) or lit(Q3, rule) whose head isf(t) and whose body is satisfied byS.
Consider its correspondence inP , the ruler. It is easy to see that the body ofr is satisfied
by S ′, i.e., l ∈ S ′′. This contradicts the fact thatl ∈ S ′ \ S ′′. Therefore,S ′ is an answer set
of P .

• Let S be an answer set ofP . Because of the constraint (35) andocc(ai, i − 1) ∈ P , we
conclude thatholds(possible(ai, i − 1)) ∈ S for i = 1, . . . , k. Similarly, we can show that
S ′ = (S\(N1(S)∪lit(P, hold)))∪{head(r′) | r in N1(S)}∪{hold(n[l1,...,lm]) | holds(li) ∈ S
for i = 1, . . . , m} is an answer set ofQ3.

The above two cases show thatQ3 andP are equivalent. In other words, we prove the theorem.2

Theorem 8, together with Theorem 4, yields the proof of Theorem 9.

Theorem 9 For a consistent and complete action theory(D, Γ).

1. If s0a1 . . . aksk is a trajectory for∆ thenSMPlan,k(D, Γ, ∆) has an answer setM such that

(a) occ(ai, i− 1) ∈ M for every integeri, 1 ≤ i ≤ k, and

(b) si = {f | holds(f(i)) ∈ M}.
2. If SMPlan,k(D, Γ, ∆) has an answer setM such that

(a) occ(ai, i− 1) ∈ M for every integeri, 1 ≤ i ≤ k, and

(b) si = {f | holds(f(i)) ∈ M}
thens0a1 . . . aksk is a trajectory for∆.

Proof.

• Let α = a1, . . . , ak. Sinces0a1 . . . aksk is a trajectory for∆, by Theorem 4 there exists
an answer setM ′ of Pα such thats(αi,M

′) = si. Theorem 8 implies thatSMk(D, Γ) ∪
{occ(ai, i − 1) | i = 1, . . . , k} has an answer setM such thatholds(f(αi)) ∈ M ′ iff
holds(f(i)) ∈ M . In other words, we have thatsi = s(αi,M

′) = {holds(f(i)) | holds(f(i)) ∈
M}. It is easy to verify thatM is indeed also an answer set ofSMPlan,k(D, Γ, ∆).

• Let α = a1, . . . , ak. It is easy to see thatM ′ = (M ∩ lit(SMk(D, Γ)))∪{occ(ai, i−1) | i =
1, . . . , k} is an answer set ofSMk(D, Γ) ∪ {occ(ai, i − 1) | i = 1, . . . , k}. Thus, Theorem
8 implies that there exists an answer set setM ′′ of Pα such thatholds(f(αi)) ∈ M ′′ iff
holds(f(i)) ∈ M . Because of the rule (37) we have thatsk satisfies the goal. This, together
with Theorem 4, implies thats0a1 . . . aksk is indeed a trajectory achieving∆.

The above two cases prove the theorem. 2.

We now prove Theorem 10.

46

Theorem 10 Let(D, Γ) be a consistent and complete action theory andM be an answer set of the
programSMPref,k(D, Γ, ∆) encoding the planning problem(D, Γ, ∆) with a set of preferences
P . Then,s0a1s1 · · · ansn is a most preferred trajectory satisfying∆ where

• occ(ai, i− 1) ∈ M

• si = {f | holds(f(i)) ∈ M}

Proof. Let tr(M) = s0a1s1 · · · aksk. Assume thattr(M) is not a most preferred trajectory. By
definition, there exists a trajectorys0b1s

′
1 · · · bms′m such thatprefer(bi, ai) ∈ Pref for some

i ≤ min{m, k} and for every integerj, 1 ≤ j < i, prefer(aj, bj) 6∈ Pref . Because of
prefer(bi, ai) ∈ Pref we have that

block(executable(ai, i− 1), true) ← goal(k)

is applicable inM . Thus, rule (24) implies thatocc(ai, i−1) 6∈ M . This contradicts the assumption
thatocc(ai, i− 1) ∈ M . 2

Appendix B – Answer Sets and Splitting Theorem

Consider a set of ground atomsA. The body of a ruler of the form (42) is satisfied byA if
{am+1, . . . , an} ∩ A = ∅ and{a1, . . . , am} ⊆ A.

For a set of ground atomsA and a programΠ, thereductof Π with respect toA, denoted byΠA,
is the program obtained from the set of all ground instances ofΠ by deleting

1. each rule that has a naf-literalnot a in its body witha ∈ S, and

2. all naf-literals in the bodies of the remaining clauses.

S is ananswer setof Π if it satisfies the following conditions.

1. If Π does not contain any naf-literal (i.e.m = n in every rule ofΠ) thenS is the smallest
set of atoms that satisfies all the rules inΠ.

2. If the programΠ does contain some naf-literal (m < n in some rule ofΠ), thenS is an
answer set ofΠ if S is the answer set ofΠS. (Note thatΠS does not contain naf-literals, its
answer set is defined in the first item.)

For a programΠ over the languageLP, a set of literals ofLP, A, is a splitting set ofΠ if for every
rule r ∈ Π, r is of the form ifhead(r) ∈ A thenlit(r) ⊆ A.

Let A be a splitting set ofΠ. Thebottom ofΠ relative to A, denoted bybA(Π), is the program
consisting of all rulesr ∈ Π such that the head ofr belongs toA.

Given a splitting setA for Π, and a setX of literals fromlit(bA(Π)), thepartial evaluation ofΠ
by X with respect to A, denoted byeA(Π, X), is the program obtained fromΠ as follows. For each
rule r ∈ Π \ bA(Π) such that

47

1. pos(r) ∩ A ⊆ X;

2. neg(r) ∩ A is disjoint fromX;

there is a ruler′ in eA(Π, X) such that

1. head(r′) = head(r) , and

2. pos(r′) = pos(r) \ A,

3. neg(r′) = neg(r) \ A.

Let A be a splitting set ofΠ. A solution toΠ with respect to Ais a pair〈X, Y 〉 of set of literals
satisfying the following two properties:

1. X is an answer set ofbA(Π);

2. Y is an answer set ofeA(Π \ bA(Π), X);

3. X ∪ Y is consistent.

The splitting set theorem is as follows.

Theorem 11 (Splitting Set Theorem, [18])Let A be a splitting set for a programΠ. A setA of
literals is a consistent answer set ofΠ iff A = X ∪ Y for some solution〈X, Y 〉 to Π with respect
to A. 2

A sequenceis a family whose index set is an initial segment of ordinals{α | α < µ}. A sequence
〈Aα〉α<µ of sets ismonotone if Aα ⊆ Aβ wheneverα < β, andcontinuousif, for each limit
ordinalα < µ, Aα =

⋃
γ<α Aγ.

A splitting sequencefor a programΠ is a nonempty, monotone, and continuous sequence〈Aα〉α<µ

of splitting sets ofΠ such thatlit(Π) =
⋃

α<µ Aα.

Let 〈Aα〉α<µ be a splitting sequence of the programΠ. A solution toΠ with respect to Ais a
sequence〈Eα〉α<µ of set of literals satisfying the following conditions.

1. E0 is an answer set of the programbA0(Π);

2. for anyα such thatα + 1 < µ, Eα+1 is an answer set foreAα(bAα+1(Π) \ bAα(Π),
⋃

γ≤α Eγ);

3. For any limit ordinalα < µ, Eα = ∅;
4.

⋃
γ≤µ Eγ is consistent.

The splitting set theorem is generalized for splitting sequence next.

Theorem 12 (Splitting Sequence Theorem, [18])Let A = 〈Aα〉α<µ be a splitting sequence of
the programΠ. A set of literalsE is a consistent answer set ofΠ iff E =

⋃
α<µ Eα for some

solution〈Eα〉α<µ to Π with respect toA. 2

48

Appendix C – Sample Translation

In this appendix, we present the details of the translation from action theory into prioritized default
theory as well as itsSMODELSencoding.

Action Theory

The action theory(D, Γ) contains the following propositions:

• D contains:
a causesf if g
b causesg if ¬g
c causesf if ¬h
h if g

• Γ contains:
initially ¬f
initially ¬g
initially ¬h

The formula∆ representing the goal is

∆ = f

The goal isf and we are assuming the presence of a preference

¬h ≺ h

Prioritized Default Theory

Let us focus on sequences of actions of length at most 2. The corresponding prioritized default
theory contains the following rule and default definitions. In all the rules and defaults,ε denotes
the empty sequence of actions.

49

Dynamic Causal Laws

rule(dynamic(f, a, ε), f(a), [g(ε), possible(a, ε)])
rule(dynamic(f, a, a), f(aa), [g(a), possible(a, a)])
rule(dynamic(f, a, b), f(ba), [g(b), possible(a, b)])
rule(dynamic(f, a, c), f(ca), [g(c), possible(a, c)])

rule(dynamic(g, b, ε), g(b), [¬g(ε), possible(b, ε)])
rule(dynamic(g, b, a), g(ab), [¬g(a), possible(b, a)])
rule(dynamic(g, b, b), g(bb), [¬g(b), possible(b, b)])
rule(dynamic(g, b, c), g(cb), [¬g(c), possible(b, c)])

rule(dynamic(f, c, ε), f(c), [¬h(ε), possible(c, ε)])
rule(dynamic(f, c, a), f(c), [¬h(a), possible(c, a)])
rule(dynamic(f, c, b), f(c), [¬h(b), possible(c, b)])
rule(dynamic(f, c, c), f(c), [¬h(c), possible(c, c)])

Executability Conditions

rule(executable(a, ε), possible(a, ε), [])
rule(executable(a, a), possible(a, a), [])
rule(executable(a, b), possible(a, b), [])
rule(executable(a, c), possible(a, c), [])

rule(executable(b, ε), possible(b, ε), [])
rule(executable(b, a), possible(b, a), [])
rule(executable(b, b), possible(b, b), [])
rule(executable(b, c), possible(b, c), [])

rule(executable(c, ε), possible(c, ε), [])
rule(executable(c, a), possible(c, a), [])
rule(executable(c, b), possible(c, b), [])
rule(executable(c, c), possible(c, c), [])

50

Static Causal Laws

rule(causal(h, a, ε), h(a), [g(a), possible(a, ε)])
rule(causal(h, a, a), h(aa), [g(aa), possible(a, a)])
rule(causal(h, a, b), h(ba), [g(ba), possible(a, b)])
rule(causal(h, a, c), h(ca), [g(ca), possible(a, c)])

rule(causal(h, b, ε), h(b), [g(b), possible(b, ε)])
rule(causal(h, b, a), h(ab), [g(ab), possible(b, a)])
rule(causal(h, b, b), h(bb), [g(bb), possible(b, b)])
rule(causal(h, b, c), h(cb), [g(cb), possible(b, c)])

rule(causal(h, c, ε), h(c), [g(c), possible(c, ε)])
rule(causal(h, c, a), h(ac), [g(ac), possible(c, a)])
rule(causal(h, c, b), h(bc), [g(bc), possible(c, b)])
rule(causal(h, c, c), h(cc), [g(cc), possible(c, c)])

Inertial Axioms

The inertial axioms are encoded as follows.

• Inertial defaults for the fluent literal f

default(inert(f, a, ε), f(a), [f(ε), possible(a, ε)])

default(inert(f, a, a), f(aa), [f(a), possible(a, a)])

default(inert(f, a, b), f(ba), [f(b), possible(a, b)])

default(inert(f, a, c), f(ca), [f(c), possible(a, c)])

default(inert(f, b, ε), f(b), [f(ε), possible(b, ε)])

default(inert(f, b, a), f(ab), [f(a), possible(b, a)])

default(inert(f, b, b), f(bb), [f(b), possible(b, b)])

default(inert(f, b, c), f(cb), [f(c), possible(b, c)])

default(inert(f, c, ε), f(c), [f(ε), possible(c, ε)])

default(inert(f, c, a), f(ac), [f(a), possible(c, a)])

default(inert(f, c, b), f(bc), [f(b), possible(c, b)])

default(inert(f, c, c), f(cc), [f(c), possible(c, c)])

• Inertial defaults for the fluent literal g

default(inert(g, a, ε), g(a), [g(ε), possible(a, ε)])

default(inert(g, a, a), g(aa), [g(a), possible(a, a)])

default(inert(g, a, b), g(ba), [g(b), possible(a, b)])

default(inert(g, a, c), g(ca), [g(c), possible(a, c)])

51

default(inert(g, b, ε), g(b), [g(ε), possible(b, ε)])

default(inert(g, b, a), g(ab), [g(a), possible(b, a)])

default(inert(g, b, b), g(bb), [g(b), possible(b, b)])

default(inert(g, b, c), g(cb), [g(c), possible(b, c)])

default(inert(g, c, ε), g(c), [g(ε), possible(c, ε)])

default(inert(g, c, a), g(ac), [g(a), possible(c, a)])

default(inert(g, c, b), g(bc), [g(b), possible(c, b)])

default(inert(g, c, c), g(cc), [g(c), possible(c, c)])

• Inertial defaults for the fluent literal h

default(inert(h, a, ε), h(a), [h(ε), possible(a, ε)])

default(inert(h, a, a), h(aa), [h(a), possible(a, a)])

default(inert(h, a, b), h(ba), [h(b), possible(a, b)])

default(inert(h, a, c), h(ca), [h(c), possible(a, c)])

default(inert(h, b, ε), h(b), [h(ε), possible(b, ε)])

default(inert(h, b, a), h(ab), [h(a), possible(b, a)])

default(inert(h, b, b), h(bb), [h(b), possible(b, b)])

default(inert(h, b, c), h(cb), [h(c), possible(b, c)])

default(inert(h, c, ε), h(c), [h(ε), possible(c, ε)])

default(inert(h, c, a), h(ac), [h(a), possible(c, a)])

default(inert(h, c, b), h(bc), [h(b), possible(c, b)])

default(inert(h, c, c), h(cc), [h(c), possible(c, c)])

• Inertial defaults for the fluent literal ¬f

default(inert(¬f, a, ε),¬f(a), [¬f(ε), possible(a, ε)])

default(inert(¬f, a, a),¬f(aa), [¬f(a), possible(a, a)])

default(inert(¬f, a, b),¬f(ba), [¬f(b), possible(a, b)])

default(inert(¬f, a, c),¬f(ca), [¬f(c), possible(a, c)])

default(inert(¬f, b, ε),¬f(b), [¬f(ε), possible(b, ε)])

default(inert(¬f, b, a),¬f(ab), [¬f(a), possible(b, a)])

default(inert(¬f, b, b),¬f(bb), [¬f(b), possible(b, b)])

default(inert(¬f, b, c),¬f(cb), [¬f(c), possible(b, c)])

default(inert(¬f, c, ε),¬f(c), [¬f(ε), possible(c, ε)])

default(inert(¬f, c, a),¬f(ac), [¬f(a), possible(c, a)])

default(inert(¬f, c, b),¬f(bc), [¬f(b), possible(c, b)])

default(inert(¬f, c, c),¬f(cc), [¬f(c), possible(c, c)])

52

• Inertial defaults for the fluent literal ¬g

default(inert(¬g, a, ε),¬g(a), [¬g(ε), possible(a, ε)])

default(inert(¬g, a, a),¬g(aa), [¬g(a), possible(a, a)])

default(inert(¬g, a, b),¬g(ba), [¬g(b), possible(a, b)])

default(inert(¬g, a, c),¬g(ca), [¬g(c), possible(a, c)])

default(inert(¬g, b, ε),¬g(b), [¬g(ε), possible(b, ε)])

default(inert(¬g, b, a),¬g(ab), [¬g(a), possible(b, a)])

default(inert(¬g, b, b),¬g(bb), [¬g(b), possible(b, b)])

default(inert(¬g, b, c),¬g(cb), [¬g(c), possible(b, c)])

default(inert(¬g, c, ε),¬g(c), [¬g(ε), possible(c, ε)])

default(inert(¬g, c, a),¬g(ac), [¬g(a), possible(c, a)])

default(inert(¬g, c, b),¬g(bc), [¬g(b), possible(c, b)])

default(inert(¬g, c, c),¬g(cc), [¬g(c), possible(c, c)])

• Inertial defaults for the fluent literal ¬h

default(inert(¬h, a, ε),¬h(a), [¬h(ε), possible(a, ε)])

default(inert(¬h, a, a),¬h(aa), [¬h(a), possible(a, a)])

default(inert(¬h, a, b),¬h(ba), [¬h(b), possible(a, b)])

default(inert(¬h, a, c),¬h(ca), [¬h(c), possible(a, c)])

default(inert(¬h, b, ε),¬h(b), [¬h(ε), possible(b, ε)])

default(inert(¬h, b, a),¬h(ab), [¬h(a), possible(b, a)])

default(inert(¬h, b, b),¬h(bb), [¬h(b), possible(b, b)])

default(inert(¬h, b, c),¬h(cb), [¬h(c), possible(b, c)])

default(inert(¬h, c, ε),¬h(c), [¬h(ε), possible(c, ε)])

default(inert(¬h, c, a),¬h(ac), [¬h(a), possible(c, a)])

default(inert(¬h, c, b),¬h(bc), [¬h(b), possible(c, b)])

default(inert(¬h, c, c),¬h(cc), [¬h(c), possible(c, c)])

Initial State

The initial stateΓ leads to the following collection of facts:

holds(¬f(ε))
holds(¬g(ε))
holds(¬h(ε))

SMODELS Encoding

Let us illustrate the structure of theSM2(D, Γ) generated from this program.

53

Translation of D

The axioms inΓ are translated as follows:

holds(neg f(0)).
holds(neg g(0)).
holds(neg g(0)).

The dynamic causal laws are translated as follows:

rule(dynamic(f, a, T), f(T + 1), n1(T)) : − time(T), occ(a, T).
rule(dynamic(g, b, T), g(T + 1), n2(T)) : − time(T), occ(b, T).
rule(dynamic(f, c, T), f(T + 1), n3(T)) : − time(T), occ(c, T).

Table 1 shows the mapping between names and lists of atoms used for the encoding presented here.
(Notice that we simplify the encoding by using numerical indices in the names instead of using the
lists of fluent literals as indices).

List Name List Value

n0(T) []
n1(T) [g(βT)]
n2(T) [neg g(βT)]
n3(T) [neg h(βT)]
n4(T) [g(βT)]
n5(T) [g(βT)]
n6(T) [g(βT)]

n7(T, A) [f(βT)]
n8(T, A) [g(βT)]
n9(T, A) [h(βT)]

n10(T, A) [neg f(βT)]
n11(T, A) [neg g(βT)]
n12(T, A) [neg h(βT)]

Table 1: Encoding of Lists of Literals

The executability conditions are encoded as:

rule(executable(a, T), possible(a, T), n0(T)) : − time(T).
rule(executable(b, T), possible(b, T), n0(T)) : − time(T).
rule(executable(c, T), possible(c, T), n0(T)) : − time(T).

The static causal laws are encoded as:

rule(causal(h, a, T), h(T + 1), n4(T + 1)) : − occ(a, T), time(T).
rule(causal(h, b, T), h(T + 1), n5(T + 1)) : − occ(b, T), time(T).
rule(causal(h, c, T), h(T + 1), n6(T + 1)) : − occ(c, T), time(T).

54

The domain independent part ofholds is unchanged, and it contains the following rules:

holds(L) : − rule(R, L,Body), hold(Body), not blocked(R).
holds(L) : − default(D,L, Body), hold(Body), not defeated(D).
blocked(R) : − block(R, Body), hold(Body).

The unfolding described in Section 6 transforms thehold predicate as illustrated below.

hold(n0(T)) : − time(T).
hold(n1(T)) : − time(T), holds(g(T)).
hold(n2(T)) : − time(T), holds(neg g(T)).
hold(n3(T)) : − time(T), holds(neg g(T)).
hold(n4(T)) : − time(T), holds(g(T)).
hold(n5(T)) : − time(T), holds(g(T)).
hold(n6(T)) : − time(T), holds(g(T)).
hold(n7(T, A)) : − time(T), action(A), holds(f(T)).
hold(n8(T, A)) : − time(T), action(A), holds(g(T)).
hold(n9(T, A)) : − time(T), action(A), holds(h(T)).
hold(n10(T, A)) : − time(T), action(A), holds(neg f(T)).
hold(n11(T, A)) : − time(T), action(A), holds(neg g(T)).
hold(n12(T, A)) : − time(T), action(A), holds(neg h(T)).

The rules used to define the defeat of a default can be expressed as follows:

defated(D) : − default(D,L, Body), contrary(L,L1), holds(L1).

Observe that since we do not have specific preferences between default we can omit the second
case of thedefeatedpredicate.

Goal Encoding

The goal we are trying to achieve isf ; this is encoded as:

: − not goal(2).
goal(T) : − time(T), holds(f(T)).

1{occ(A, T) : action(A)}1 : − time(T).
: − action(A), time(T), occ(A, T), not holds(possible(A, T)).

Preference Encoding

The single preference we require in this example is the formula preference:

¬h ≺ h

This will be encoded as:

maximize [holds(neg h(2)) = 1, holds(h(2)) = 0]

55

Auxiliary

The following auxiliary predicates are employed in the encoding.

contrary(f(T), neg f(T)) : − time(T).
contrary(neg f(T), f(T)) : − time(T).
action(a).
action(b).
action(c).
time(1..2).

56

