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Abstract. In this paper we generalize the notion of approximation of action the-
ories introduced in [13,26]. We introduce a logic programming based method for
constructing approximation of action theories of AL and prove its soundness.
We describe an approximation based conformant planner and compare its perfor-
mance with other state-of-the-art conformant planners.

1 Introduction and Motivation

Static causal laws (a.k.a. state constraints or axioms) constitute an important part of
every dynamic domain. Unlike an effect of an action, a static causal law represents a
relationship between fluents. For example,
(a) In the travel domain, the static causal law “one person cannot be at A if he is at B”

states that at(B) is false if at(A) is true;
(b) In the block world domain, the static causal law “block A is above block B if A is

on B” says that above(A,B) is true if on(A,B) is true;
Static causal laws can cause actions to have indirect effects. For example, the action of
putting the block A atop the block B, denoted by put(A,B), causes on(A,B) to be true.
The static causal law (b) implies that above(A,B) is also true, i.e., above(A,B) is an
indirect effect of put(A,B). The problem of determining such indirect effects is known
as the ramification problem in the area of reasoning about action and change (RAC).

In the last decade, several solutions to the ramification problem have been pro-
posed. Each of these solutions extends a framework for RAC to allow static causal laws
[2,18,22,23,20,15,17]. While being intensively studied by the RAC’s research commu-
nity, static causal laws have rarely been directly considered by the planning commu-
nity. Although the original specification of the Planning Domain Description Language
(PDDL) – a language frequently used for the specification of planning problems by the
planning community – includes axioms (or static causal laws in our notation) [14], most
of the planning domains used in the recent planning competitions [1,19,11] do not in-
clude axioms. The main reason for this practice is that it is widely believed that axioms
can be compiled into actions’ effect propositions; thus, making the representation of
and reasoning about axioms become unnecessary in planning. This is partly true due to
the fact that PDDL only allows non-recursive axioms. In a recent paper [29], it is proved
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that adding axioms to the planning language not only improves the readability and el-
egance of the representation but also increases the expressiveness of the language. It is
also shown that the addition of a component to handle axioms in a planner can indeed
improve the performance of the planner.

The main difficulty in planning in domains with static causal laws lies directly in
defining and computing the successor states. In general, domains with static causal laws
are nondeterministic; for example, in a theory with a single action a and three fluents
f , g, and h with the property that execution of a causes f to become true and the two
static causal laws

(i) if f is true and g is false then h must be true; and,
(ii) if f is true and h is false then g must be true.

Intuitively, the execution of a in a state where f , h, and g are false will yield two
possible states. In one state, f and g are true and h is false. In the other one, f and h
are true and g is false. This nondeterminism leads to the fact that the execution of an
action sequence can generate different trajectories. Thus, exact planning1 is similar to
conformant planning, an approach to dealing with incomplete information in planning.
It is also worth noticing that the complexity of conformant planning (ΣP

2 ) is much
higher than planning in deterministic domains (NP-complete) [3,30]. It is also pointed
out in [3] that approximations of the transition function between states can help reduce
the complexity of the planning problem.

In this paper, we further investigate the notion of approximations of action theories
introduced in [26,13]. We define an approximation for action theories of AL. The key
difference between the newly developed approximation and those proposed in [26,13]
is that it is applicable for action descriptions with arbitrary static causal laws: while
the approximation proposed in [13] is only for specific type of state constraints, the ap-
proximations in [26] are defined for action descriptions with sensing actions but without
state constraints. We use a logic program in defining the approximation.

The paper is organized as follows. In the next section, we review the basics of the
language AL. Afterward, we define an approximation of AL action theories. We then
proceed with the description of a logic programming based conformant planner which
makes use of the approximation. We then compare the performance of our planner with
some conformant planners which are closely related to our planner.

2 Syntax and Semantics of AL
We consider domains which can be represented by a transition diagram whose nodes
are possible states of the domain and whose arcs are actions that take the domain from
one state to another. Paths of the diagram correspond to possible trajectories of the
system. We limit our attention to transition diagrams which can be defined by action
descriptions of the action language AL from [4]. The signature Σ of an action descrip-
tion of AL consists of two disjoint, non-empty sets of symbols: the set F of fluents, and

1 By exact planning we mean the problem of finding a polynomial-bounded length sequence of
actions that can achieve the goal at the end of every possible trajectory generated by the action
sequence.
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the set A of elementary actions. By an action we mean a non-empty set a of elemen-
tary actions. Informally we interpret an execution of a as a simultaneous execution of
its components. For simplicity we identify an elementary action e with {e}. By fluent
literals we mean fluents and their negations. By l we denote the fluent literal comple-
mentary to l. A set S of fluent literals is called complete if, for any f ∈ F, f ∈ S or
¬f ∈ S. An action description D of AL is a collection of statements of the form:

e causes l if p (1)

l if p (2)

impossible a if p (3)

where e is an elementary action, a is an action, l is a fluent literal, and p is a set of fluent
literals from the signature Σ of D. The set p is often referred to as the precondition
of the corresponding statement. When it is empty, the “if” part of the statement can be
omitted. Statement (1), called a dynamic causal law, says that, if e is executed in a state
satisfying p then l will hold in any resulting state. Statement (2), called a static causal
law, says that any state satisfying p must satisfy l. Statement (3) is an impossibility
condition. It says that action a cannot be performed in a state satisfying p. We next
define the transition diagram, T (D) specified by an action description D of AL.

A set of literals S is closed under a static causal law (2) if l ∈ S whenever p ⊆ S.
By Cn(S), we denote the smallest set of literals that contains S and is closed under the
static causal laws of D. A state σ of T (D) is a complete, consistent set of literals closed
under the static causal laws of D. An action b is said to be prohibited in σ if D contains
an impossibility condition (3) such that p ⊆ σ and a ⊆ b. E(a, σ) stands for the set of
all fluent literals l for which there is a causal law (1) in D such that p ⊆ σ and e ∈ a.
Elements of E(a, σ) are called direct effects of the execution of a in σ.

Definition 1 ([21]). For an action a and two states σ1 and σ2, a transition 〈σ1, a, σ2〉 ∈
T (D) iff a is not prohibited in σ1 and σ2 = Cn(E(a, σ1) ∪ (σ1 ∩ σ2)).

An alternate sequence of states and actions, M = 〈σ0, a0, σ1, . . . , an−1, σn〉, is a path
in a transition diagram T (D) if 〈σi, ai, σi+1〉 ∈ T (D) for 0 ≤ i < n. M is called
a model of the chain of events α = 〈a0, . . . , an−1〉; σ0 (resp. σn) is referred to as
the initial state (resp. final state) of M ; M entails a set of fluent literals s, written as
M |= s, if s ⊆ σn. We sometime write 〈σ0, α, σn〉 ∈ T (D) to denote that there exists
a model of α whose initial state and final state is σ0 and σn, respectively. An action
description D is called deterministic if for any state σ1 and action a there is at most one
successor state σ2 such that 〈σ1, a, σ2〉 ∈ T (D). Note that if D is deterministic there
can be at most one model for α given the initial state σ0 and final state σn. We denote
this model by σn = α(σ0). Notice that in the presence of static causal laws, action
theories can be nondeterministic. As an example, the second theory in the introduction
can be described by the action description D0 consisting of the following statements:

D0 =
{

a causes f g if f,¬h h if f,¬g
}

Observe that T (D0) includes the transitions 〈{¬f,¬h,¬g}, a, {f, h,¬g}〉 and
〈{¬f,¬h,¬g}, a, {f, g,¬h}〉. Hence, D0 is non-deterministic.

An action a is executable in state σ1 if there is a state σ2 such that 〈σ1, a, σ2〉 ∈
T (D); a chain of events α = 〈a1, . . . , an−1〉 is executable in a state σ if there exists a
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path 〈σ, α, σ′〉 in T (D) for some σ′; D is called consistent if for any state σ1 and action
a which is not prohibited in σ1 there exists at least one successor state σ2 such that
〈σ1, a, σ2〉 ∈ T (D).

3 Approximating Action Theories of AL
Normally an agent does not have complete information about its current state. Instead its
knowledge is limited to the current partial state – a consistent collection of fluent literals
closed under the static causal laws of the agent’s action description D. In what follows
partial states and states are denoted by (possibly indexed) letters s and σ respectively.

A state σ that includes a partial state s is called a completion of s. By comp(s) we
denote the set of all completions of s. An action a is safe in s if it is executable in every
completion of s. A chain of events α = 〈a0, . . . , an−1〉 is safe in s if (i) a0 is safe
in s; and (ii) for every state σ′ such that 〈σ, a0, σ

′〉 ∈ T (D) for some σ ∈ comp(s),
〈a1, . . . , an−1〉 is safe in σ′.

For many of its reasoning tasks the agent may need to know the effects of its actions
which are determined by the fluents from s (as opposed to the actual completion of s).
In [26] the authors suggest to model such knowledge by a transition function which
approximates the transition diagram T (D) for deterministic action theories with sens-
ing actions. We will next generalize this notion to action theories in AL. Even though
approximations can be non-deterministic, in this paper we will be interested only in
deterministic approximations.

Definition 2 (Approximation). T ′(D) is an approximation of T (D) if

1. States of T ′(D) are partial states of T (D).
2. If 〈s, a, s′〉 ∈ T ′(D) then for every σ ∈ comp(s),

(a) a is executable in σ and,
(b) s′ ⊆ σ′ for every σ′ such that 〈σ, a, σ′〉 ∈ T (D).

An approximation T ′(D) is deterministic if for each partial state s and action a, there
exists at most one s′ such that 〈s, a, s′〉 ∈ T ′(D). The next observation shows that an
approximation must be sound.

Observation 1. Let T ′(D) be an approximation of T (D). Then, for every chain of
events α if 〈s, α, s′〉 ∈ T ′(D) then for every σ ∈ comp(s), (a) α is executable in
σ; and (b) s′ ⊆ σ′ for every σ′ such that 〈σ, α, σ′〉 ∈ T (D).

In what follows we describe a method for constructing approximations of action theo-
ries of AL. In our approach, the transitions in T ′(D) will be defined by a logic program
π(D) called the cautious encoding of D. The signature of π(D) includes terms corre-
sponding to fluent literals and actions of D, as well as non-negative integers used to
represent time steps. For convenience, we often write π(D, n) to denote the program
π(D) where the time constants take values between 0 and n. Atoms of π(D) are formed
by the following (sorted) predicate symbols:

– h(l, T ) is true if literal l holds at time-step T ;
– o(e, T ) is true if action e occurs at time-step T ;
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– dc(l, T ) is true if literal l is a direct effect of an action that occurs at time T−1; and
– ph(l, T ) is true if literal l possibly holds at time T .

The program also contains a set of auxiliary predicates, including time, fluent, and
action, for enumerating constants of sorts time, fluent, and action respectively; literal
and contrary for defining literals and complementary literals, respectively2.

In our representation, letters T , F , L, and A (possibly indexed) are used to represent
variables of sorts time, fluent, literal, and action correspondingly. Morever, we also use
some shorthands: if a is an action then o(a, T ) = {o(e, T ) : e ∈ a}. For a set of fluent
literals p, and a predicate symbol ρ ∈ {h, dc, ph}, ρ(p, T ) = {ρ(l, T ) : l ∈ p} and
not ρ(p, T ) = {not ρ(l, T ) : l ∈ p}. For a fluent f , by l we mean ¬f if l = f and f if
l = ¬f . Literals l and l are called contrary literals. For a set of literals p, p = {l : l ∈ p}.
The set of rules of π(D) consists of those encoding the laws in D, those encoding the
inertial axioms, and some auxiliary rules. We next describe these subsets of rules:

1. For each dynamic causal law (1) in D, the rules

h(l, T+1) ← o(e, T ), h(p, T ) (4)

dc(l, T + 1) ← o(e, T ), h(p, T ) (5)

belong to π(D). The first rule states that l holds at T + 1 if e occurs at T and
the condition p holds at T . The second rule indicates that l is a direct effect of the
execution of e. Since the state at the time moment T might be incomplete, we add
to π(D) the rule

ph(l, T + 1) ← o(e, T ), not h(p, T ) (6)

which says that l might hold at T +1 if e occurs at T and the precondition p possibly
holds at T .

2. For each static causal law (2) in D, π(D) contains the two rules:

h(l, T ) ← h(p, T ) (7)

ph(l, T ) ← ph(p, T ) (8)

These rules basically state that if p holds (or possibly holds) at T then so does l.
3. For each impossibility condition (3) in D, we add to π(D) the following rule:

← o(a, T ), not h(p, T ) (9)

This rule states that a cannot occur if the condition p possibly holds.
4. The inertial law is encoded as follows:

ph(L, T + 1) ← not h(L, T ), not dc(L, T + 1) (10)

h(L, T ) ← not ph(L, T ), T 	= 0 (11)

which says that L holds at the time moment T > 0 if its negation cannot possibly
hold at T .

2 Some adjustment to this syntax is needed if one wants to use some of the existing answer
set solvers. For instance, since Cmodels does not allow h(¬f, T ) we may replace it with, say,
h(neg(f), T ). Besides, to simplify our representation, we make use of choice rules introduced
in [24].
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5. Auxiliary rules: π(D) also contains the following rules:

← h(F, T ), h(¬F, T ) (12)

literal(F ) ← fluent(F ) (13)

literal(¬F ) ← fluent(F ) (14)

contrary(F,¬F ) ← fluent(F ) (15)

contrary(¬F, F ) ← fluent(F ) (16)

The first constraint guarantees that two contrary literals cannot hold at the same
time. The last four rules are used to define fluent literals and complementary literals.

At this point, it is worthwhile to provide the intuition behind the of atoms dc(l, T ),
h(l, T ), and ph(l, T ). Let a be an action and s be a partial state. Consider an “one-step”
program Π = π(D, 1) ∪ {h(l, 0) | l ∈ s} ∪ {o(a, 0)}.

Observe that Definition 1 implies that a literal l belongs to a possible next state if

1. it is an direct effect of a, i.e., l ∈ E(a, σ1);
2. it holds by inertial, i.e., l ∈ (σ1 ∩ σ2); or,
3. it is an indirect effects of a, i.e., l ∈ σ2 \ (E(a, σ1) ∪ (σ1 ∩ σ2)). In other words, it

is caused by a static causal law.

Let S1, S2, and S3 denote the three sets of literals corresponding to the above three cases
with respect to the partial state s. Since s might be incomplete, these three sets cannot
be computed in full. Our approach is to conservatively estimate the next partial state by

(i) underestimate S1 by considering only what definitely will hold given s. This set is
encoded by the set of atoms of the form dc(l, 1) and is computed by the rule (5);

(ii) overestimate the negation of S2 by considering what can possibly hold in the next
state. This set is encoded by the set of atoms of the form ph(l, 1) and is computed
by the rules (6) and (8); and

(iii) underestimate S3 by considering only what definitely will hold and what cannot
possibly change in the construction of the next state. This is encoded by the rules
(10)-(11) and (7).

Definition 3. Let T lp(D) be a transition diagram such that 〈s, a, s′〉 ∈ T lp(D) iff s
is a partial state and s′ = {l | h(l, 1) ∈ A} where A is the answer set of π(D, 1) ∪
h(s, 0) ∪ {o(a, 0)}.

The following theorem3 show that T lp(D) is sound with respect to T (D).

Theorem 1 (Soundness). If D is consistent then T lp(D) is a deterministic approxima-
tion of T (D).

4 Approximation Based Conformant Planners

We will now turn our attention to the conformant planning problem in action theories
of AL. We begin with the definition of a planning problem.

3 Proofs of theorems are omitted to save space.
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Definition 4. A planning problem is a tuple 〈D, s0, sf 〉 where s0 and sf are partial
states of D.

Partial states s0 and sf characterize possible initial situations and the goal respectively.

Definition 5. A chain of events α = 〈a0, . . . , an−1〉 is a solution to a planning problem
P = 〈D, s0, sf 〉 if α is safe in s0, and for every model M of α with a possible initial
state σ0 ∈ comp(s0), M |= sf .

We often refer to α as a plan for sf . If s0 is a state and action description D is determin-
istic then α is a “classical” plan, otherwise it is a conformant plan. We next illustrate
these definitions using the well-known bomb-in-the-toilet example.

Example 1 (Bomb in the toilet). There is a finite set of toilets and a finite set of pack-
ages. One of the packages contains a bomb. The bomb can be disarmed by dunking the
package that contains it in a toilet. Dunking a package clogs the toilet. Flushing a toilet
unclogs it. Packages can only be dunked in unclogged toilets, one package per toilet.
The objective is to find a plan to disarm the bomb. This domain can be modeled by the
action description D1 which consists of the following laws:

dunk(P,E) causes ¬armed(P ) impossible dunk(P,E) if clogged(E)
dunk(P,E) causes clogged(E) impossible {dunk(P,E), f lush(E)}
flush(E) causes ¬clogged(E) impossible {dunk(P1, E), dunk(P2, E)}

impossible {dunk(P,E1), dunk(P,E2)}
E and P are variables for toilets and packages respectively; E1 and E2 stand for dif-
ferent toilets and P1 and P2 stand for different packages. Note that the last three state-
ments specify physical impossibilities of some concurrent actions and the domain does
not have a static causal law.

Let n and m denote the number of packages and toilets respectively. A planning
problem in this domain, denoted by BMTC(n,m), is often given by 〈D1, s

0, sf 〉
where s0 is a (possibly empty) collection of literals of the form ¬armed(P ), where
P denotes some package. The goal sf contains {¬armed(1), . . . ,¬armed(n)}.

Consider the problem BMTC(2, 1). We can easily check that if σ is a state con-
taining ¬clogged(1) then 〈σ, dunk(1, 1), σ′〉 is a transition in T (D1) where σ′=(σ\
{armed(1),¬clogged(1)})∪{¬armed(1), clogged(1)}. Furthermore,

α = 〈flush(1), dunk(1, 1), f lush(1), dunk(2, 1)〉
is safe in the partial state ∅ and α is a solution to the problem BMTC(2, 1). �

It is not difficult to show that there is a close relationship between conformant plans
and paths of an approximation T ′(D) of T (D). Because of the soundness of an approx-
imation, it follows from Observation 1 that if 〈s, α, s′〉 ∈ T ′(D), s ⊆ s0, and sf ⊆ s′

then α is a safe solution in s0 of the planning problem 〈D, s0, sf 〉.
Since T lp(D) is an approximation of T (D), we can use the program π(D) to com-

pute safe solutions of the planning problem P = 〈D, s0, sf 〉. Furthermore, because
T lp(D) is deterministic and computing the next state can be done in polynomial time,
we can show that the complexity of the conformant planning problem with respect to
T lp(D) is reduced to NP-complete (comparing to ΣP

2 , see [30]).
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We will next describe the program π(P) for this purpose. Like π(D), the signature
of π(P) includes terms corresponding to fluent literals and actions of D. We add to
π(P) a constant, length, which represents the plan length, i.e., time steps can take
value in the interval [0, length]. We also write π(P, n) to denote the program π(P)
with length equal to n. π(P) consists of π(D) and the following rules:

1. Rules encoding the initial state: for each l ∈ s0, we add to π(P) the rule:

h(l, 0) ← (17)

2. Goal encoding: for each l ∈ sf , π(P) contains the constraint:

← not h(l, length)

This set of constraints makes sure that every literal in sf holds in the final state.
3. Action generation rule: as in other ASP-planners, π(P) contains the rule for gen-

erating action occurrences:

1{o(A, T ) : action(A)} ← T < length (18)

which says that at each moment of time T , some action must occur4.

With the help of Theorem 1, we can prove the correctness of the planner π(P).

Theorem 2. Let A be an answer set of π(P, n). It holds that

– for every 0 ≤ i < n, if ai = {e | o(e, i) ∈ A} then ai is an action which is not
prohibited in {l | h(l, i) ∈ A}; and

– α = 〈a0, . . . , an−1〉 is a solution to P .

This theorem allows us to use π(P) for computing minimal plans of P . This is done
by sequentially computing the answer sets of π(P, 0), π(P, 1), . . .. In the next section,
we will describe our experiments with π(P). From now on, we will refer to π(P) as
CPASP5. Before going on, we would like to mention that π(P) is not complete. One
of the main reasons for the incompleteness of π(P) lies in its limited capability in
reasoning-by-cases. The next example demonstrates this issue.

Example 2. Consider the action description D2 consisting of two dynamic causal laws
a causes f if g a causes f if ¬g

Intuitively, we have that a is a conformant plan achieving f from ∅ because either g or
¬g is true in any state belonging to comp(∅). Yet, it is easy to verify that a cannot be
generated by CPASP due to the fact that π(D2, 1) ∪ h(∅, 0) ∪ {o(a, 0)} has a unique
answer set containing no atom of the form h(l, 1). �

The next example shows that it is not only conditional effects but also static causal laws
can cause T lp to be incomplete.

4 If we wish to find a sequential plan, the only thing needed to do is to change the left side of
the rule to 1{o(A, T ) : action(A)}1.

5 CPASP stands for Conformant Planning using Answer Set Programming.
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Example 3. Consider the action description D3 consisting of the following laws
a causes f g if f, h g if f,¬h

We can check that a is a solution to the problem P3 = 〈D3, {¬f,¬g}, {g}〉 since a
causes f to hold and the two static causal laws guarantee that if f holds then so does g.
Yet, neither h(h, 1) nor h(¬h, 1) will belong to any answer set of π(P3, 1) due to the
rules (10) and (11). As such, π(P3, 1) does not return an answer set, i.e., a cannot be
found using T lp(D3). �

5 Experiments

We ran CPASP on both SMODELS and Cmodels [16]. In general, Cmodels yields better
performance. The results reported in this paper are the times obtained using Cmod-
els. Since most answer set solvers do not scale up well to programs that require large
grounded representation, we also implemented the approximation in a C++ planner,
called CPAph([28]). CPAph employs a best-first search strategy with the number of
fulfilled subgoals as its heuristic function. Unlike CPASP, the current version of CPAph

does not compute concurrent plans. However, CPAph allows disjunctions to be speci-
fied in the initial state description, while CPASP does not. Thus, CPASP cannot solve
conformant planning benchmarks in the literature where the initial state specification
contains disjunctions. We consider this as one of the weaknesses of CPASP.

We compare CPASP (and CPAph) with three other conformant planners CMBP[9],
DLVk[12], and C-PLAN[8] because these planners do allow static causal laws and are
similar in spirit of CPASP (that is, a planning problem is translated into an equivalent
problem in a more general setting which can be solved by an off-the-shelf software
system). While the latter two allow concurrent planning, the former does not. A com-
parison between DLVK and other planners like SGP [25] and GPT [5] can be found in
[12]. For a comparison between CPAph and other state-of-the-art conformant planners
like Conformant-FF [6], KACMBP [10], and POND [7], we refer the reader to [28].

We prepared two test suites: one contains sequential, conformant planning bench-
marks and the other contains concurrent, conformant planning benchmarks.

The first test suite includes two typical planning domains, the well-known Bomb-in-
the-toilet and the Ring domains [10]. In the former, we consider two variants,
BMT (n, p) and BMTC(n, p), where n and p are the numbers of packages and toi-
lets respectively. The first one is without clogging and the second one is with clogging.
The uncertainty in the initial state is that we do not know whether or not packages
are disarmed. In the Ring domain, one can move in a cyclic fashion (either forward or
backward) around a n-room building to lock windows. Each room has a window and
the window can be locked only if it is closed. Initially, the robot is in the first room and
it does not know the state (open/closed) of the windows. The goal is to have all windows
locked. A possible conformant plan is to perform a sequence of actions forward, close,
lock repeatedly. In this domain, we tested with n∈{2, 4, 6, 8, 10}.

These domains, however, do not contain many static causal laws. Therefore, we
introduce two new domains, called Domino and Gaspipe. The former is very simple.
We have n dominos standing on a line in such a way that if one of them falls then the
domino on its right also falls. There is a ball hanging close to the leftmost one. Touching
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the ball causes the first domino to fall. Initially, the states of dominos are unknown. The
goal is to have the rightmost one to fall. The solution is obviously to touch the ball. In
this domain, we tested with n∈{100, 200, 500, 100, 2000, 5000, 10000}.

The Gaspipe domain is a little more complicated. We need to start a flame in a
burner, which is connected to a gas tank through a pipe line. The gas tank is on the
left-most of the pipeline and the burner is on the right-most. The pipe line contains
sections that connect with each other by valves. The state of pipe sections can be either
pressured or unpressured. Opening a valve causes the section on its right side to be
pressured if the section on its left is pressured. Moreover, to be safe, a valve can be
opened only if the next valve on the line is closed. Closing a valve causes the pipe
section on its right side to be unpressured. There are two kinds of static causal laws.
The first one is that if a valve is open and the section on its left is pressured then the
section on its right will pressured. Otherwise (either the valve is closed or the section
on the left is unpressured), the pipe on the right side is unpressured. The burner will
start a flame if the pipe connecting to it is pressured. The gas tank is always pressured.
The uncertainty we introduce with the initial situation is that the states of valves are
unknown. A possible conformant plan will be closing all valves but the first one (that is,
the one that connects to the gas tank), in the right-to-left order and then opening them
in the reverse order. We tested with n∈{3, 5, 7, 9, 11}.

The last domain in the first test suite is the Cleaner domain. It is a modified version
of the Ring domain. The difference is that instead of locking the window, the robot has
to clean objects. Each room has p objects to be cleaned. Initially, the robot is at the first
room and does not know whether or not objects are cleaned. The goal is to have all ob-
jects cleaned. While the Domino and Gaspipe domains expose a richness in static causal
laws, the Cleaner domain provides a high degree of uncertainty in the initial state. We
tested the domain with 6 problems where n∈{2, 5} and p∈{10, 50, 100} respectively.

The second test suite includes benchmarks for concurrent, conformant planning. It
contains four domains. The BMT p and BMTCp domains are variants of BMT and
BMTC in the first test suite in which dunking different packages into different toilets at
the same time is allowed. The Gaspipep is a modification of Gaspipe in which closing
multiple valves at the time are allowed. In addition, one can open a valve while closing
other valves. However, it is not allowed to open and close the same valve or open two dif-
ferent valves at the same time. The Cleaner domain is relaxed to allow cleaning multiple
objects in the same room at the same time. The relaxed version is denoted by Cleanerp.
The testing problems in the second test suite are the same as those in the first test suite.

All experiments were made on a 2.4 GHz CPU, 768MB RAM machine, running
Slackware 10.0 operating system. Time limit is set to half an hour. The testing results
for two test suites are shown in Tables 1a) and 1b) respectively. We did not test C-
PLAN in the sequential planning benchmarks since it is supposed to use for concurrent
planning6. Times are shown in seconds; “PL”, “TO”, “MEM”, “NA” indicate the length
of the plan found by the planner, that the planner ran out of time, that the planner ran out
of memory, and that the planner returns a message indicating that no plan can be found7,
respectively. Since both DLVK and CPASP require as an input parameter the length of

6 The authors told us that C-PLAN was not intended for searching sequential plans.
7 We did contact the authors’ of the planner for help and are waiting for a response.
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Table 1. Comparison between CPASP, CPAph, CMBP DLVK, and C-PLAN in sequential DLVK,
and C-PLAN in sequential a) Sequential Benchmarks b) Concurrent Benchmarks

Domains CMBP DLVK CPASP CPAph Domains C-PLAN DLVK CPASP

Problems PL Time PL Time PL Time PL Time Problems PL Time PL Time PL Time
BMT (2, 2) 2 0.03 2 0.046 2 0.209 2 0.000 BMT p(2, 2) 1 0.078 1 0.074 1 0.116
BMT (4, 2) 4 0.167 4 0.555 4 0.418 4 0.002 BMT p(4, 2) 2 0.052 2 0.094 2 0.268
BMT (6, 2) 6 0.206 6 216.557 6 0.775 6 0.005 BMT p(6, 2) 3 1.812 3 3.065 3 0.346
BMT (8, 4) 8 0.633 TO 8 6.734 8 0.021 BMT p(8, 4) 2 4.32 2 10.529 2 0.248
BMT (10, 4) 10 1.5 TO 10 890.064 10 0.038 BMT p(10, 4) TO TO 3 1.911
BMT C(2, 2) 2 0.166 2 0.121 2 0.222 2 0.001 BMT Cp(2, 2) 1 0.057 1 0.059 1 0.13
BMT C(4, 2) 6 0.269 6 72.442 6 0.712 6 0.004 BMT Cp(4, 2) 3 0.076 3 0.908 3 0.3
BMT C(6, 2) 10 0.749 TO 8 2.728 10 0.010 BMT Cp(6, 2) 5 7.519 5 333.278 5 0.672
BMT C(8, 4) TO TO TO 12 0.031 BMT Cp(8, 4) TO TO 3 0.508
BMT C(10, 4) TO TO TO 16 0.054 BMT Cp(10, 4) TO TO 5 1192.458
Gaspipe(3) NA 5 0.132 5 1.349 7 0.026 Gaspipep(3) TO 4 0.088 4 0.402
Gaspipe(5) NA 9 0.425 9 2.226 22 0.481 Gaspipep(5) TO 6 0.173 6 0.759
Gaspipe(7) NA 13 42.625 13 6.186 86 8.464 Gaspipep(7) TO 8 0.441 8 1.221
Gaspipe(9) NA TO 17 39.323 261 45.910 Gaspipep(9) TO 10 17.449 10 3.175
Gaspipe(11) NA TO 21 868.102 1327 529.469 Gaspipep(11) TO TO 12 8.832
Cleaner(2, 2) 5 0.1 5 0.104 5 0.496 5 0.002 Cleanerp(2, 2) 3 0.052 3 0.076 3 0.265
Cleaner(2, 5) 11 0.617 11 214.696 11 3.88 11 0.012 Cleanerp(2, 5) 3 0.121 3 0.066 3 0.3
Cleaner(2, 10) TO TO TO 21 0.060 Cleanerp(2, 10) 3 0.06 3 0.076 3 0.309
Cleaner(4, 2) 11 0.13 11 14.82 11 2.094 11 0.014 Cleanerp(4, 2) 7 0.068 7 0.196 7 0.773
Cleaner(4, 5) TO TO TO 23 0.082 Cleanerp(4, 5) 7 0.09 7 0.809 7 0.931
Cleaner(4, 10) TO TO TO 43 0.434 Cleanerp(4, 10) 7 0.131 7 237.637 7 1.164
Cleaner(6, 2) 17 4.1 TO 17 224.391 17 0.054 Cleanerp(6, 2) 11 0.116 11 4.475 11 1.982
Cleaner(6, 5) TO TO TO 35 0.311 Cleanerp(6, 5) 11 0.195 11 986.731 11 2.947
Cleaner(6, 10) TO TO TO 65 1.623 Cleanerp(6, 10) 11 0.357 TO 11 3.737
Ring(2) 5 0.01 0.201 5 0.911 5 0.003
Ring(4) 11 0.116 0.638 11 2.738 12 0.025 b)
Ring(6) 17 0.5 TO 17 18.852 18 0.088
Ring(8) TO TO 23 669.321 24 0.242
Ring(10) TO TO TO 30 0.542
Domino(100) 1 0.26 1 0.1 1 0.216 1 0.026
Domino(200) 1 1.79 1 0.352 1 0.285 1 0.099
Domino(500) 1 7.92 1 2.401 1 0.747 1 0.568
Domino(1000) 1 13.2 1 13.104 1 1.236 1 2.313
Domino(2000) 1 66.6 1 62.421 1 2.414 1 9.209
Domino(5000) 1 559.467 MEM 1 6.076 1 67.619
Domino(10000) TO MEM 1 12.584 1 350.129

a)

a plan to search for, we ran them by incrementally increasing the plan length, starting
from 18, until a plan is found.

As can be seen in Table 1a), in the BMT and BMTC domains, CMBP outper-
forms both DLVK and CPASP in most problems. However, its performance is not com-
petitive with CPAph which can solve the BMTC(10, 4) with only less than one tenth
of a second (In fact, CPAph can scale up to larger problems, e.g., with 100 packages
and 100 toilets, within the time limit). CPASP in general has better performance than
DLVK in these domains. As an example, DLVK took more than three minutes to solve the
BMT (6, 2), while it took only 0.775 seconds for CPASP to solve the same problem.
Within the time limit, CPASP is able to solve more problems than DLVK.

CPASP seems to work well with domains rich in static causal laws like Domino
and Gaspipe. In the Domino domain, CPASP outperforms all the other planners in
most of instances. It took only 2.414 seconds to solve Domino(2000), while both DLVK

and CMBP took more than one minute. Although CPAph can solve all the instances in
this domain, its performance is in general worse than CPASP’s. In the Gaspipe domain,
CPASP and CPAph are competitive with each other and outperform the other two. The
Cleaner domain turns out to be quite hard for the tested planners except CPAph. We
believe that the high degree of uncertainty in the initial state is the main reason for this
performance gain of CPAphcomparing to others since it does not consider all possible
cases in searching for a solution.

CPASP is outperformed by both CMBP and DLVK in some small instances in the
Ring domain. However, it can solve the Ring(8), while CMBP and DLVK cannot.

8 We did not start from 0 because none of the benchmarks has a plan of length 0.
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Again, CPAph is the best. This shows that CPASP can be competitive with the tested
conformant planners in some sequential planning benchmarks.

Table 1b) shows that CPASP also has a fairly good performance in concurrent plan-
ning problems. It outperforms both DLVK and C-PLAN in most instances in the BMT p,
BMTCp, and Gaspipep domains. DLVK is better than C-PLAN in the Gaspipep do-
main. On the contrary, C-PLAN is very good at the Cleanerp domain. To solve Cleaner
(6, 10), C-PLAN took only 0.357 seconds , whereas DLVK ran out of time and CPASP

needs 3.737 seconds.

6 Conclusion and Future Work

We present a logic programming based approximation for AL action descriptions and
apply it to conformant planning. We describe two conformant planners, CPASP and
CPAph, whose key reasoning part is for computing the approximation. Our initial ex-
periments show that with an appropriate approximation, logic programming based con-
formant planners can be built to deal with problems rich in static causal laws and incom-
plete information about the initial state. In other words, a careful study in approximated
reasoning may pay off well in the development of practical planners.

As an approximation can only guarantee soundness, it will be interesting to charac-
terize situations when an approximation (e.g. T lp(D)) can yield completeness. For ex-
ample, if T lp(D) can generate all conformant plans of length 1 and whenever 〈a1, . . . ,
an〉 is a solution to 〈D, s, sf 〉, 〈a2, . . . , an〉 is a solution to 〈D, s′, sf 〉 where s′ =⋂

∃σ∈comp(s).〈σ,a1,σ′〉∈T (D) σ′, then T lp(D) is complete. It can be shown that the first
condition can be met when D does not contain (i) a static causal law; (ii) a pair of
dynamic causal laws of the form a causes f if p and a causes f if p′ with
p′ ∩ p̄ 	= ∅; and (iii) a pair of impossibility conditions of the form impossible a if p
and impossible a if p′ with p′ ∩ p̄ 	= ∅. Identifying sufficient conditions for the com-
pleteness of T lp(D) will be our main concern in the near future.

At this point, we would like to mention that to verify that our approach can deal
with a broad spectrum of planning problems, we tested CPASP and CPAph with several
benchmarks problems [1] including the instances of the Blocks World domain tested in
[12] and did not encounter a problem that the two planners cannot solve. This shows
that our approach can deal with a large class of practical planning problems. Finally,
we would like to point out that the use of logic programming allows us to easily exploit
control knowledge (e.g., “do not dunk a package unless it is armed”) in improving the
quality of a plan or to specify complex initial (incomplete)-states (see e.g., [13,27]).
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