
Reasoning and Planning with Cooperative Actions for
Multiagents Using Answer Set Programming

Tran Cao Son1 and Chiaki Sakama2

1 Dept. of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

2 Computer and Communication Sciences, Wakayama University, Wakayama 640-8510, Japan
sakama@sys.wakayama-u.ac.jp

Abstract. In this paper, we investigate the multiagent planning problem in the
presence of cooperative actions and agents, which have their own goals and are
willing to cooperate. To this end, we extend the action language A in [12] to
represent and reason about plans with cooperative actions of an individual agent
operating in a multiagent environment. We then use the proposed language to for-
malize the multiagent planning problem and the notion of a joint plan for multia-
gents in this setting. We discuss a method for computing joint plans using answer
set programming and provide arguments for the soundness and completeness of
the implementation.

1 Introduction
Cooperative actions are actions of an agent which can be executed only if the agent
is operating in a multiagent environment. They can be actions for soliciting something
from other agents or actions for setting up some conditions for other agents. They differ
from individual actions in that they might affect other agents. Cooperative actions are
important not only in situations where multiple agents have to work together to accom-
plish a common goal but also in situations where each agent has its own goal. This can
be seen in the following story, a modified version of the story in [21]:

Example 1. Three new students A, B, and C are moving in a shared apartment and
planning to decorate their rooms. Each would like to hang one of their objects on the
wall, e.g., A would like to hang a mirror, B a diploma, and C a painting. A and B know
how to use either a nail or a screw to complete their job but C knows to use the screw
only. A has neither a nail or a screw. B has both. C has only a nail. To use a nail, one
will need a hammer. Among three, only B has a hammer.

Do the students have a joint-plan that allows each of them to achieve his/her goal?
Intuitively, we can see that only B can accomplish her job independent of A and

C. The three can achieve their goals if B uses the hammer and the nail to hang her
diploma then gives A the hammer and C the screw, respectively. C, on the other hand,
gives A the nail and uses the screw to hang her painting. A uses the nail (from C) and
the hammer (from B) to hang her mirror. Of course, to avoid unpleasant moments, A
should ask for the nail (from C) and the hammer (from B) and C should ask for the
screw (from B).

However, it is easy to see that if either B or C does not want to give out anything,
then only B can achieve her goal. Furthermore, if B decides to use the screw instead of
using the nail in hanging her diploma, then C has no way of achieving her goal. 2

In the above example, the action of giving a nail, a hammer, or a screw between the
students can be considered as cooperative actions. The action of requesting something
from others can also be considered as cooperative actions. It is obvious that without
some cooperative actions, not all students can achieve their own goals. Even with the
cooperative actions at their disposal, the students might still need to coordinate in cre-
ating their corresponding plans.

In Example 1, agents (the students) maintain their own local worlds and their actions
do generally not affect others’ worlds. It should be emphasized that the fact that agents
have their own world representation does not exclude the situations in which the worlds
of different agents overlap and the execution of one agent’s individual actions might
affect others as well or the execution of their joint-action.

Example 2. Let us consider A and B who are in one room and studying at their tables.
Each of them sits next to a switch which can control the lamp in the room. Flipping
either switch will change the status of the light.

Assume that A and B maintain their world representation separately. (They might
use the same theory for this purpose but we will not impose this.) Obviously, if A flips
the switch next to her, the world in which B is in will also change.

Similarly, if A and B lift a table and place it at different location, their joint-action
change the world of both as well. 2

In this paper, we will consider multiagent planning problems in which each agent main-
tains its own representation about the world and its capabilities, which includes individ-
ual actions and cooperative actions; and has its own goal. We are mainly interested in
the process of creating a joint plan prior to its execution. We will begin by extending the
languageA in [12] to allow cooperative actions for a single agent. The semantics of the
new language is defined by a transition function which maps pairs of actions and states
to states. We then define the multiagent planning problems and the notion of a joint
plan for multiagents in presence of cooperative actions. Finally, we discuss a method
for computing joint plans using answer set programming [18, 19].

2 An action language with cooperative actions
In this section, we present a language for representing and reasoning about plans for
an agent in the multiagent environment with cooperative actions. To this end, we ex-
tend the language A in [12] to allow cooperative actions1. In this paper, we consider
cooperative actions as actions that an agent would not have if she were in a single
agent environment. Specifically, we consider two types of cooperative actions, one that
requests the establishment of a condition in an agent’s world and another establishes
some conditions in the world of another agent. We will assume an arbitrary but fixed
set of agent identifiers AG. A planning problem of an agent in AG is defined over a set
of fluents (or state variables) F, a set of individual actions A, and a set of cooperative

1 The choice of A will be discussed in Section 5.

actions C. We will assume that A always contains a special action wait which does not
have any effect on the agent’s world2. Furthermore, we will require that actions in C do
not appear in A. This highlights the fact that the cooperative actions are presented due
to the presence of other agents.

A fluent literal (or literal) is either a fluent or its negation. Fluent formulas are
propositional formulas constructed from literals and propositional connectives.

2.1 Specifying Individual Actions
A domain specification DI over F and A describes the individual actions of an agent
and consists of laws of the following form:

a causes l if φ (1)
a executable φ (2)

where a is an individual action (in A), l is a fluent literal and φ is a set of fluent literals.
A law of the form (1), called a dynamic law, states that if a is executed when φ

is true then l becomes true. (2) is an executability condition and says that a can be
executed only if φ is true. The semantics of a domain specification is defined by the
notion of state and by a transition function Φ, that specifies the result of the execution
of an action a in a state s.

A set of literals S satisfies a literal l (l holds/is true in S), denoted by S |= l, if
l ∈ S. For a set of literals φ, S |= φ if S |= l for every l ∈ φ. A state s is a set of fluent
literals that is consistent and complete, i.e., for every f ∈ F, either f ∈ s or ¬f ∈ s but
{f,¬f} 6⊆ s. In the following, l denotes the negation of l, i.e., if l = f and f ∈ F, then
l = ¬f ; if l = ¬f for some f ∈ F, then l = f . For a set of literals S, S = {l | l ∈ S}.

An action a is executable in a state s if there exists an executability condition
(a executable φ) in DI such that s |= φ.

Let ea(s) = {l | ∃(a causes l if φ) ∈ DI.[s |= φ]}. The result of the execution of
a in s is defined by
• Φ(a, s) = fails if a is not executable in s; and
• Φ(a, s) = (s \ ea(s)) ∪ ea(s) if a is executable in s.

A domain specification DI is consistent if Φ(a, s) 6= fails holds for every pair of action
a and state s such that a is executable in s.

Φ is extended to reason about effect of a sequence of actions as follows.

Definition 1 (Transition function). Let DI be a domain specification, s be a state,
and α = [a1; . . . ; an] be a sequence of actions.
• Φ̂(α, s) = s if n = 0;
• Φ̂(α, s) = Φ(an, Φ̂([a1; . . . ; an−1], s)), otherwise

where Φ(a, fails) = fails .

An agent can use the transition function to reason about effects of its actions and to
planning. An action sequence α is a plan achieving a set of literals O from a state I iff
O is true in Φ̂(α, I).

2 We envision a multiagent environment where agents may have to wait for other agents to finish
some actions before they can go on with their course of actions.

Example 3. The domain specification DIA for A in Example 1 is defined over FA =
{h nail, h screw,mirror on, h ham} and AA = {hw nail, hw screw} with the set
of laws3:

hw nail causes mirror on hw screw causes mirror on
hw nail causes ¬h nail hw screw causes ¬h screw
hw nail executable h nail, h ham hw screw executable h screw

In all of the above, the prefix “hw” stands for “hang with” and “h” stans for “has.” 2

2.2 Specifying Cooperative Actions
The specification of the set of cooperative actions of an agent, denoted byDC, is defined
over C and F and consists of laws of the following form:

r requests γ from Ai may cause φ if ψ and (3)
p provides γ for Ai causes φ if ψ (4)

r and p are action names in C, γ, φ, and ψ are sets of literals and γ ⊆ φ, and Ai is a set
of agent identifiers in AG. r is called a request for γ and p an offer for γ. Since these
actions are intended to address other agents, we require that the identifier of the agent
having r and/or p does not belong to Ai. Furthermore, for a request-action, we require
that φ̄∩ψ 6= ∅ which indicates that an agent will only request for something that he/she
does not have.

Intuitively, (3) represents a set of requests that can be made by the agent; if the agent
makes the request for γ (which is the action r) directed to an agent in Ai then φ might
become true. The condition γ ⊆ φ guarantees that requested literals (γ) are true if the
request is satisfied (φ). Furthermore, the action can only be executed if ψ is true. For
this reason, we call r(γ, i), i ∈ Ai, an instance of a request (3). Similarly, (4) represents
the set of offers p(γ, i), i ∈ Ai. This offer addresses a request made to the agent by
establishing γ (for the requestor). This action is similar to the individual actions in A of
an agent. The main difference is that they also change the worlds of other agents. It can
only be executed if ψ is true and its effects is φ.

For simplicity of the presentation, we will assume that each action in C occurs in
at most one law of the form (3) or (4). We use cooperative action to refer to either a
request- or an offer-action. WhenAi is the set of all other agents, we often omit the part
’from Ai’ from (3) and ’for Ai’ from (4).

Example 4. In Example 1, it is reasonable for A to request and/or offer other agents
on the literal h nail. An action for requesting for (offering of) h nail for A can be
specified by

give me nail requests h nail from {B, C} may cause h nail if ¬h nail
get this nail provides h nail for {B, C} causes ¬h nail if h nail

where give me nail is a request-action and get this nail is an offer-action. If the
agent A wants to ask for help, then her set of cooperative actions needs to include the

3 To simplify the representation, we often write l1, . . . , ln instead of {l1, . . . , ln} in describing
the domain.

action give me nail. On the other hand, if she wants to help others, then it should
include the action get this nail. 2

Definition 2 (Planning problem with cooperative actions). A planning problem with
cooperative actions4 P is a tuple 〈DI, I,O, DC〉 where DI is a domain specification,
I is a state representing the initial state, O is a set of literals representing the goal, and
DC is a set of laws of the form (3) and (4).

Given a planning problem P = 〈DI, I, O, DC〉, we need to specify what is a “plan”
achieving O in the presence of the cooperative actions. Intuitively, we could consider
these actions as the actions of the agent and use the notion of a plan mentioned in
the previous subsection. This is, however, not enough since an agent, when executes
a request, might or might not receive an offer satisfying his/her request. For example,
a request for a nail from A to C might not result in A having the nail because C has
already given the nail to B.

We will therefore extend the transition function Φ of the domain specification DI
to consider cooperative actions. We will use ΦD to denote the transition function of
DI∪DC. By assuming that cooperative actions are different from the individual actions
(i.e., A∩C = ∅), it suffices to specify what is the result of the execution of a request/offer-
action in a given state.

For simplicity of the presentation, we assume that each individual agent executes
only one action at a time. The method presents in this paper can be easily extended to
the case where individual agents can execute parallel actions.

Let s be a state. We say that an instance r(γ, i) of a request-action specified by the
law

r requests γ from Ai may cause φ if ψ

in DC is executable in s if ψ is true in s. Executing the action r(γ, i) in s does not
guarantee that the agent will obtain φ in the resulting state. This is because the agent,
whom the request was made to, might not have the capability to establish φ for the
requestor. We say that the execution of r(γ, i) in s might or might not succeed. As
such, the result of executing r(γ, i) in s is either s, representing the case when the
request is not satisfied (by the agent whom the request was made to); or (s \ φ) ∪ φ,
representing the case when the request is satisfied.

Remark 1. Observe that under the assumption that an agent will execute a request-
action only when it is necessary (i.e., φ̄∩ψ 6= ∅), we have that s 6= (s\φ)∪φ for every
instance r(γ, i). This allows us to recognize when a request is satisfied.

An instance p(γ, i) of an offer-action specified by the law

p provides γ for Ai causes φ if ψ

in DC is executable in s if ψ is true in s. The state resulting from executing p(γ, i) in s
is given by (s \ φ) ∪ φ.

4 For simplicity of presentation, we will use planning problem instead of planning problem with
cooperative actions whenever no confusion is possible.

Definition 3 (Transition function). The transition function ΦD over DI∪DC, a map-
ping from pairs of actions and states to sets of states, is defined as follows. Let s be a
state.
• For a ∈ A, ΦD(a, s) = {Φ(a, s)} if Φ(a, s) 6= fails; otherwise, ΦD(a, s) = ∅.
• For an instance of an offer-action p(γ, i), ΦD(p(γ, i), s) = {(s \ φ) ∪ φ} if p is

executable in s; otherwise, ΦD(p, s)=∅.
• For an instance of a request-action r(γ, i), ΦD(r(γ, i), s) = {s, (s \ φ) ∪ φ} if
r(γ, i) is executable in s; otherwise, ΦD(r(γ, i), s) = ∅.

Remark 2. The definition of ΦD assumes that each cooperative action occurs in only
one law of the form (3) or (4). The definition can be extended to remove this restriction
by (i) defining a set ecr(γ,i)(s) (resp. ecp(γ,i)(s)), similar to the definition of the set of
effects of an action ea(s) and (ii) changing the definition accordingly.

The transition function is extended to reason about plans as follows.

Definition 4 (Plan with cooperative actions). LetP be a planning problem 〈DI, I,O, DC〉.
We define
• A sequence s0, a0, s1, . . . , an−1, sn, where si’s are states and aj’s are actions, is

a trajectory if si+1 ∈ ΦD(ai, si) for 0 ≤ i < n.
• A trajectory s0, a0, s1, . . . , an−1, sn is a possible plan achieving O (or a solution

of P) if s0 = I and sn |= O.
• An occurrence of a request r(γ, i) = aj in a trajectory s0, a0, s1, . . . , an−1, sn is

satisfied if sj+1 6= sj; otherwise, the request is said to be unsatisfied.

Notice that the third item in the above definition is sensible due to Remark 1. A tra-
jectory satisfying the goal O of the planning problem is a solution of P if all satisfied
requests assumed in the trajectory indeed materialized, i.e., for each satisfied r(γ, i) in
the trajectory, the agent i executes the action p(γ, j) (j is the identifier of the agent
issuing the request). The topic of coordination between agents will be discussed in the
next section.

Example 5. Let PA = 〈DIA, IA, OA, DCA〉 be the planning problem for A with DIA

(Example 3), IA = {¬h nail,¬h screw,¬h ham,¬mirror on} and OA = {mirror on},
and DCA is the set of actions give me nail and get this nail whose specifications are
given (Example 4) and the two actions

give me ham requests h ham from {B, C} may cause h ham if ¬h ham,
get this ham provides h ham for {B,C} causes ¬h ham if h ham.

We can easily check the following:
• for n ≤ 2, the problem has no possible plan.
• for n = 3, PA has a possible plan which is the following trajectory:
sA
0 , give me nail(h nail, C), sA

1 , give me ham(h ham,B), sA
2 , hw nail, sA

3

where sA
0 = {¬h nail,¬h ham,¬h screw,¬mirror on},

sA
1 = {h nail,¬h ham,¬h screw,¬mirror on},

sA
2 = {h nail, h ham,¬h screw,¬mirror on},

sA
3 = {¬h nail, h ham,¬h screw, mirror on}. 2

3 Planning for Multiagents
In a multiagent environment, each agent needs to know her capabilities. She also needs
to know from whom she can ask for some favors or to whom she could offer helps.
Furthermore, it is also common that groups of agents need to know about their joint
capabilities. It is also possible that agents might talk the same language. This can be
summarized as follows.
• Each agent has its own planning problem, which is described in the previous section.
• The agent might or might not share the same world representation. By default, the

world representation of the agent is local. For example, the three agents in Exam-
ple 1 can use the same set of fluents and actions; and A has ¬h nail in her initial
state whereas B has h nail in hers, yet this is not a contradictory statement about
the world since the fluents are local. On the other hand, the two agents in Exam-
ple 2 share certain features (e.g. the light) and therefore the fluents encoding these
features should have the same value in their representations.

• An agent might request another agent to establish certain conditions in her own
world. For example, A might request B to establish h nail to be true for her.

• An agent might execute some actions that change the local world of another agent.
For example, B can give A the nail, thus establishing h nail in the world of A.

• There might be actions that a set of agents should not execute in parallel. For ex-
ample, two cars– one goes north-south and another east-west– cannot cross an in-
tersection at the same time.

• There might be actions that a set of agents need to execute in parallel. For example,
the action of lifting a table by two agents need to be done in parallel.

It turns out that the language developed in the previous section can be extended to
represent and reason about plans/actions of agents in a multiagent environment. With
the help of the notion of a planning problem with cooperative actions, a multiagent
planning problem can be defined as follows.

Definition 5 (Multiagent planning problem). A multiagent planning problem M is a
tuple 〈AG, {Pi}i∈AG ,F , IC, C〉 where
• AG is a set of agents,
• Pi is a planning problem with cooperative actions for each agent i ∈ AG,
• F is the set of tuples of the form (i, j, fi, fj) where i, j ∈ AG and fi ∈ Fi and
fj ∈ Fj , and
• IC and C are sets of sets of agent action pairs of the form (i, ai) where i is an

agent and ai is an action in Ai.

Intuitively, each tuple (i, j, fi, fj) indicates that fi and fj represent the same state vari-
able in the worlds of two agents i and j and can be changed by either i or j. This mean
that they should have the same value in every state of i and j. A set of agent-action
pairs {(i1, ai1), . . . , (ik, aik

)} ∈ IC indicates that the agents i1, . . . , ik cannot execute
the actions ai1 , . . . , aik

at the same time. On the other hand, a set of agent-action pairs
{(i1, ai1), . . . , (ik, aik

)} ∈ C indicates that the agents i1, . . . , ik must execute the ac-
tions ai1 , . . . , aik

concurrently for their effects to be materialized. The sets F , IC, and
C are called constraints of M.

Example 6. The planning problem in Example 1 can be represented by
M1 = 〈{A,B, C}, {PA,PB ,PC}, ∅, ∅, ∅〉 where
• A, B, and C are the students from Example 1;
• PA is defined as in Example 5;
• PB = 〈DIB , IB , OB , DCB〉 where DIB is defined over
FB = {h nail, h screw, diploma on, h ham} and AB = {hw nail, hw screw}
with the set of laws:
hw nail causes diploma on hw nail causes ¬h nail
hw nail executable h ham, h nail hw screw causes diploma on
hw screw causes ¬h screw hw screw executable h screw

IB = {h nail, h screw, h ham,¬diploma on} and OB = {diploma on}, and
DCB contains cooperative actions similar to that in DCA and DCC (below).
• PC = 〈DIC , IC , OC , DCC〉 where DIC is defined over

FC = {h nail, h screw, painting on}
AC = {hw screw}

with the set of laws: hw screw causes painting on
hw screw causes ¬h screw hw screw executable h screw
IC = {h nail,¬h screw,¬painting on}, OC = {painting on}, and DCC con-
tains the following laws:

give me screw requests h screw from {A,B} may cause h screw if ¬h screw
get this screw provides h screw for {A, B} causes ¬h screw if h screw 2

We now define the notion of a solution for a planning problem.

Definition 6 (Joint plan for multiagents). Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be
a multiagent planning problem. For each i ∈ AG, let Si = [si

0a
i
0, . . . , a

i
n−1s

i
n] be a

possible plan of Pi. We say that {Si}i∈AG is a joint plan (or solution) of length n for
M if for every 0 ≤ k ≤ n:
• for each instance of a request ai

k = r(γ, j) that is satisfied in Si, we have that
aj

k = p(γ, i);

• for each (i, j, fi, fj) ∈ F , fi ∈ si
k iff fj ∈ sj

k;
• for each S ∈ IC, there exists some (i, a) ∈ S such that ai

k 6= a; and
• for each S ∈ C, either {a | (i, a) ∈ S and a = ai

k} = {a | (i, a) ∈ S} or
{a | (i, a) ∈ S and a = ai

k} = ∅.

Intuitively, a joint plan is composed of individual plans which allow the agents to
achieve their own goals and satisfy the various constraints of the problem. In the pro-
cess, agents can help each other in establishing certain conditions. However, if a request
of an agent is assumed (by the requestor) to be satisfied within a joint plan then the joint
plan must also contain an agent who actually executes an offer action satisfying the re-
quest (first item). The second item states that the individual plans must agree with each
other on their effects of shared fluents, i.e., it enforces the constraints in F . The third
and fourth items make sure that non-parallel and parallel constraints in IC and C are
maintained by the joint plan.

Example 7. For the multiagent planning problem M1 from Example 6, We can easily
check the following:
• for n ≤ 2, M1 has no solution.
• for n = 3, it has a solution consisting of the following plans
• SA = [sA

0 , give me nail(h nail, C), sA
1 , give me ham(h ham,B),

sA
2 , hw nail, sA

3 , wait, sA
4]

• SB = [sB
0 , hw nail, sB

1 , get this ham(h ham,A),
sB
2 , get this screw(h screw,C), sB

3 , wait, sB
4 ,]

• SC = [sC
0 , get this nail(h nail, A), sC

1 , wait, sC
2 , give me screw(h screw,B),

sC
3 , hw screw, sC

4]
where all requests are satisfied and the states are uniquely determined by the initial
states and the executed actions. 2

The joint plan for the agents in Example 7 requires that each agent executes some
cooperative actions. It is easy to see that any joint plan for the two agents in the problem
M2 requires that only one agent to flip the switch next to her and other agent to wait.

4 Computing Joint Plans
In this section, we will present different approaches to computing joint plans. Our ap-
proaches utilize answer set programming [18, 19], a declarative programming paradigm
that has recently emerged from the study of logic programming under the answer set
semantics [11].

4.1 Answer Set Semantics of Logic Programs
A logic program Π is a set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an (5)

where 0 ≤ m ≤ n, each ai is an atom of a propositional language5 and not represents
negation-as-failure. A negation as failure literal (or naf-literal) is of the form not a
where a is an atom. For a rule of the form (5), the left (right) hand sides of the rule are
called the head (body), respectively. The head and the body can be empty (but not at the
same time). A rule is a constraint if its head is empty; it is a fact if its body is empty.

Consider a set of ground atoms X . The body of a rule of the form (5) is satisfied
by X if {am+1, . . . , an} ∩X = ∅ and {a1, . . . , am} ⊆ X . A rule of the form (5) with
nonempty head is satisfied by X if either its body is not satisfied by X or a0 ∈ X . In
other words, X satisfies a rule of the form (5) if its head belongs to X whenever X
satisfies its body. A constraint is satisfied by X if its body is not satisfied by X .

For a set of ground atoms S and a program Π , the reduct of Π w.r.t. S, denoted by
ΠS , is the program obtained from the set of all ground instances of Π by deleting
1. each rule that has a naf-literal not a in its body with a∈S, and
2. all naf-literals in the bodies of the remaining rules.
S is an answer set of Π if it satisfies the following conditions.

5 Rules with variables are viewed as a shorthand for the set of its ground instances.

1. If Π does not contain any naf-literal (i.e. m = n in every rule of Π) then S is the
smallest set of atoms that satisfies all the rules in Π .

2. If the program Π does contain some naf-literal (m < n in some rule of Π), then S
is an answer set of Π if S is the answer set of ΠS . (Note that ΠS does not contain
naf-literals, its answer set is defined in the first item.)

A program Π is said to be consistent if it has an answer set. Otherwise, it is inconsistent.
To make answer set style programming easier, Niemelä et al. [20] introduce a new type
of rules, called cardinality constraint rule (a special form of the weight constraint rule)
of the following form: A0 ← A1, . . . , Am,not Am+1, . . . ,not An

where each Ai is a choice atom of the form l{b1, . . . , bk}u with bj are atoms and l and
u are two integers, l ≤ u; and A0 can be empty. An atom l{b1, . . . , bk}u is said to be
true wrt. a set of literals S iff l ≤ |S ∩{b1, . . . , bk}| ≤ u. The satisfaction of a rule wrt.
a set of atoms is extended in the usual way. Using rules of this type, one can greatly
reduce the number of rules of programs in answer set programming. The semantics of
logic programs with such rules is given in [20].

4.2 Finding a Possible Plan for One Agent
We will represent each individual problem of each agent Pi by a logic program. The
program will consist of rules describing the effects of actions, the initial knowledge of
the agent, and the goal of the agent. Answer set planning [16] refers to the use of answer
set programming in planning. This method has been applied to a variety of problems
[10, 25]. Let P = 〈DI, I, O,DC〉 be a planning problem. We will now describe the
program Π(P) that encodes P . We adapt the conventional style in logic programming:
terms starting with lower-case letter are constant and others are variables. It also has a
parameter denoting the maximal length of the plan that the agent considers permissible.
The key predicates of Π(P) are:
• h(l, t) – fluent literal l holds at the time step t; and
• o(a, t) – action a is executed (by the agent) at the time step t;
• poss(a, t) – action a can be executed at the time step t.

h(l, t) can be extended to define h(φ, t) for an arbitrary fluent formula φ, which states
that φ holds at the time moment t. In writing the program, we use h({l1, . . . , lk}, T) as
a shorthand for h(l1, T), . . . , h(lk, T). In addition, we write h(ok(r(γ, i)), t) to denote
that the request-action r(γ, i) is satisfied at the time step t. The rules of the program is
divided into groups:

• Group 1: The program contains the following facts:
{fluent(f) | f ∈ F} ∪ {action(a) | a ∈ A}∪
{action(r(γ), i) | r occurring in a law of form (3), i ∈ Ai}∪
{action(p(γ), i) | p occurring in a law of form (4), i ∈ Ai}

These facts declare the fluents and the actions of the problem.
• Group 2: rules for reasoning about effects of actions. For each action a ∈ A,

- if DI contains the law (a executable φ) then Π(P) contains the rules

poss(a, T) ← h(φ, T) (6)
← o(a, T),not poss(a, T) (7)

- if DI contains the law (a causes l if φ) then Π(P) contains the rule

h(l, T + 1) ← o(a, T), h(φ, T) (8)

• Group 3: rules for reasoning about request-actions. For each statement of the form

r requests γ from Ai may cause φ if ψ

and each i ∈ Ai, Π(P) contains the rules

poss(r(γ, i), T) ← h(ψ, T) (9)
← o(r(γ, i), T),not poss(r(γ, i), T) (10)
0 {h(ok(r(γ, i)), T + 1)} 1 ← o(r(γ, i), T). (11)
h(φ, T) ← h(ok(r(γ, i)), T) (12)

where (12) is a shorthand for the collection of rules {h(l, T) ← h(ok(r(γ, i)), T) |
l ∈ φ}. Observe that atoms of the form h(ok(γ, i), T) are used to record the sat-
isfaction of the request r(γ, i) and there might be different ways for a condition γ
to be satisfied. Hence, (11) and (12) need to be separated even though it looks like
they could have been merged into one.

• Group 4: rules for reasoning about offer-actions. For each statement of the form

p provides γ for Ai causes φ if ψ

and i ∈ Ai, Π(P) contains the rules

poss(p(γ, i), T) ← h(ψ, T) (13)
← o(p(γ, i), T),not poss(p(γ, i), T) (14)
h(φ, T + 1) ← o(p(γ, i), T). (15)

These rules are similar to the rules encoding the effect of individual actions of the
agent. The difference between the encoding of a request-action and the encoding
of an offer-action lies in that we do not need to introduce an atom of the form
h(ok(p(γ, i)), T) to record the execution of p(γ, i), i.e., effects of offer-actions are
deterministic.

• Group 5: rules describing the initial state. For each literal l ∈ I , Π(P) contains the
fact h(l, 0).

• Group 6: rules encoding the goal state. For each literal l ∈ O, Π(P) contains

← not h(l, n). (16)

where n is the desired length of the plan.
• Group 7: rules for reasoning by inertial. For each fluent F ∈ F, Π(P) contains

h(F, T + 1) ← h(F, T),not h(¬F, T + 1). (17)
h(¬F, T + 1) ← h(¬F, T),not h(F, T + 1). (18)
← h(F, T), h(¬F, T). (19)

• Group 8: rules for generating action occurrences. Π(P) contains the rule

1 {o(A, T) : action(A)} 1 ← T < n. (20)

which states that at any time step, the action must execute one of its actions6.

Let P = 〈DI, I, O, DC〉 be a planning problem and Π(P, n) denote the set of
ground rules of Π(P) in which the variable T is instantiated with integers between 0
to n. Let M be an answer set of Π(P, n). Let st[M] = {l | l is a fluent literal and
h(l, t) ∈ M}. By α[M] we denote the sequence s0[M], a0, s1[M], . . . , an−1, sn[M]
where o(ai, i) ∈ M . We can show the following:

Theorem 1. Let P be a planning problem. Then,
• for each possible plan α of P there exists an n and an answer set M of Π(P, n)

such that α = α[M];
• for each n, if Π(P, n) is inconsistent then P does not have a solution of length

less than or equal to n; and
• for each n, if Π(P, n) has an answer set M then α[M] is a solution of P .

4.3 Compatible Answer Sets and Joint Plan
Individual possible plans can be computed using the program Π(Pi). We will now
discuss an approach for combining them to create a plan for all the agents. Intuitively,
we need to make sure that if a request is assumed to be satisfied by an agent then
there exists an instance of an offer-action matching this request. This can be easily
characterized by the notion of a compatible answer sets.

Definition 7 (Compatible answer sets). Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a
multiagent planning problem and M = 〈Mi〉i∈AG be a sequence of answer sets of
〈Π(Pi, n)〉i∈AG where the constant n is fixed. M is a set of compatible answer sets if
for each k ≤ n,
• for each i ∈ AG, if h(ok(r(γ, j)), k + 1) ∈ Mi then o(p(γ, i), k) ∈ Mj;
• for each i ∈ AG, if o(p(γ, j), k) ∈ Mi then h(ok(r(γ, i)), k + 1) ∈ Mj;
• for each (i, j, fi, fj) in F , h(fi, k) ∈ Mi iff h(fj , k) ∈ Mj;
• for each S ∈ IC there exists some (i, ai) ∈ S such that o(ai, k) 6∈ Mi; and
• for each S ∈ C, either {ai|(i, ai) ∈ S and o(ai, k) ∈ Mi} = {a|(i, a) ∈ S} or
{ai|(i, ai) ∈ S and o(ai, k) ∈ Mi} = ∅.

Intuitively, a set of compatible answer sets corresponds to a joint plan (as we will prove
in the next theorem) similar to the correspondence between answer sets and plans in
the case of a single agent. Observe also that h(ok(.), T) is present only due to the
successfulness of a request-action, not an offer-action. The conditions imposed on a set
of compatible answer sets make sure that the collection of individual plans extracting
from them satisfies the constraints of the planning problem and the requirement that
satisfying requests must be matched with offers.

6 Since we assume that wait always belongs to the set of actions of an agent, this is not a strict
requirement as it might sound.

Theorem 2. Let M = 〈AG, {Pi}i∈AG ,F , IC〉 be a multiagent planning problem and
n be an integer.
• if 〈Π(Pi, n)〉i∈AG does not have a set of compatible answer sets thenM does not

have a solution with length n.
• a sequence of answer sets M = 〈Mi〉i∈AG is compatible iff there exists a solution
S = 〈αi〉i∈AG such that α[Mi] = αi for every i ∈ AG.

Example 8. Let M1 be the multiagent planning problem from Example 6. We can eas-
ily check the following:
• {Π(Pi, n)}i∈{A,B,C} for n ≤ 2 does not have compatible answer sets,
• for n = 3, the three answer sets MA, MB , and MC of Π(PA, 3), Π(PB , 3), and
Π(PC , 3), where
• MA contains o(give me nail(h nail, c), 0), h(ok(give me nail(h nail, c)), 1),

o(give me ham(h ham, b), 1), h(ok(give me ham(h ham, b)), 2),
o(hw nail, 2), and o(wait, 3).

• MB contains o(hw nail, 0), o(get this ham(h ham, a), 1),
o(get this screw(h screw, c), 2), o(wait, 3); and

• MC contains o(get this nail(h nail, a), 0), o(wait, 1), o(give me screw(h screw, b), 2),
h(ok(give me screw(h screw, b)), 2), and o(hw screw, 3).

These answer sets are compatible and correspond to the solution in Example 5. 2

The notion of joint plan can be specialized as follows.

Definition 8 (Optimal Joint Plan). Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a multia-
gent planning problem and {Si}i∈AG be a plan forM. We say that {Si}i∈AG is optimal
if there exists no unsatisfied request actions in {Si}i∈AG .

Remark 3. The program Π(Pi) can be easily adapted to generate only optimal plans.
Indeed, the only modification that needs to be done is to replace the rule (11) with

h(ok(r(γ, i)), T + 1) ← o(r(γ, i), T).

Intuitively, this rule states that the request r(γ, i) is satisfied. Thus, if a joint plan is
found it will not contain any unsatisfied requests, i.e., it must be optimal.

Definitions 6 and 7 provide us with a way for computing joint plans of length n for a
planning problem M. The process involves (i) computing a set {Mi}i∈AG of answer
sets, where Mi is an answer set of Π(Pi, n); and (ii) checking the compatibility of
{Mi}i∈AG . In what follows, we discuss a method for doing it. This method computes
a joint plan by (a) forming a program representing M from the programs representing
the individual plans and the set of constraints in M; and (b) extracting joint plan from
answer sets of the new program. This method is useful if the planning problem M is
known to an agent or a manager.

4.4 Computing Joint Plans by Answer Set Programming
Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a planning problem. We will define a program
Π(M) whose answer sets represent the solutions of M. M is constructed from the

programs Π(Pi) for i ∈ AG as follows. For each i ∈ AG, let Πi(Pi), referred as
the tagged version of Π(Pi), be the program obtained from Π(Pi) by replacing every
literal x in Π(Pi) with the atom xi (e.g., action(a)i for action(a), h(f, t)i for h(f, t),
etc.). The program Π(M) consists of
• for each i ∈ AG, the tagged version Πi(Pi) of Π(Pi);
• for each tuple (i, j, f i, f j) in F , the constraints

← hi(f i, T), hj(¬f j , T) (21)
← hi(¬f i, T), hj(f j , T) (22)

ensure that shared variables maintain their consistency.
• for each set S = {(i1, a1), . . . , (ik, ak)} in C, the constraint

← 0 {oi1(a1, T), . . . , oik(ak, T)} k − 1 (23)

which makes sure that if a part of S is executed, i.e., o(ij , aj) belongs to an answer
set, then the whole set S is executed.

• for each set {(i1, a1), . . . , (ik, ak)} in IC, the constraints

← oi1(a1, T), . . . , oik(ak, T) (24)

This constraint guarantees that not all the actions a1, . . . , ak are executed at the
same time.

• for every pair of instance r(γ, j) and p(γ, i) of a request-action r (for γ) of an agent
i and an offer-action p (for γ) of an agent j, the following constraints

← oi(r(γ, j), T), hi(ok(r(γ, j)), T + 1),not oj(p(γ, i), T) (25)
← oj(p(γ, i), T),not oi(r(γ, j), T) (26)
← oj(p(γ, i), T),not hi(ok(r(γ, j)), T + 1) (27)

The first constraint makes sure that if i requests for γ from j and it is satisfied then
j does indeed offer the service. The last two rules guarantee the converse.
For a set X of literals in the language of Π(M), let X|i = {a | a is a literal in the

language of Π(Pi) and ai ∈ X}. We have:

Theorem 3. Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a multiagent planning problem.
M is an answer set of Π(M, n) iff there exists a set of compatible answer sets {Mi}i∈AG
such that M |i = Mi.

The proof of Theorem 3 relies on the Splitting Theorem for logic programs [17]. It is
divided into two steps. First, it is proved for program without the constraints (21)-(27).
The significance of this proposition is that it allows us to compute the solution of a
multiagent planning problem by computing a single answer set of P(M). Since the
problem of determining whether a propositional program has an answer set or not is
NP-complete, the following holds.

Corollary 1. Determining whether a solution of polynomial bounded length of a mul-
tiagent planning problem M exists or not is NP-complete.

5 Related Works
Multiagent planning could be viewed as a special case of distributed problem solving
[9]. In this respect, our work could be viewed as one in the Centralized Planning for
Distributed Plans group according to the classification in [9]. This is achieved by the
program Π(M). Alternatively, the individual plans can also be computed distributedly
and coordinated using the program consisting of the constraints (21)-(27) and the tagged
versions of the individual answer sets.

Our main goal is to generate a joint plan for the agents before its execution. In
this regards, our work differs from many distributed continual planning systems that
were discussed in the survey [7] and many papers presented in the recent AAMAS
conferences which concentrate on planning and replanning or dealing with unexpected
events during the plan execution.

Our approach to generating a joint plan in this paper blends the two components
“planning” and “coordination” in the equation

Multiagent planning = Planning + Coordination

presented in [6] into a single step. Furthermore, we employ a plan representation
that allows for the coordination to be done by using time-steps presented in individual
plans. This is different from several other systems in which partial order plans are used
for plan representation and refinement planning is used for coordination (e.g., [4, 3] or
earlier works such as the Partial Global Planning framework).

We use answer set programming [16], a method that has been used for single agent
planning [10, 25], in computing the joint plan. The declarativeness and modularity of
answer set programming make the process of computing the joint plan fairly simple and
simplify the coordination of the plans7. Our work is similar to the spirit of that in [8]
where an attempt is made to construct joint plan using SAT-based single agent planner.
Nevertheless, our use of answer set programming does not require the development of
additional algorithms to assemble the final joint plan.

In [2], a language based on PDDL for modeling multiagent planning problems has
been proposed that allows for the specification of and reasoning about several features
important for multiagent planning and execution such as concurrency, individual and
mutual beliefs of agents, planning and acting with incomplete information, communi-
cation, continuous events, etc. A special agent, called env, is present in all problems
for modeling the environment which may act “unpredictably”. Our language is less ex-
pressive than the above mentioned language as our focus is solely on the generation of a
joint plan prior to its execution. On the other hand, the semantics provided in this paper
can be used to prove formal properties of plans as well as the correctness of the logic
program encoding of multiagent planning problem.

We note that collaborative actions presented in this paper is also suitable for the
modeling of multiagent planning with resources. Requesting for a resource and offering
a resource can be modeled in a similar fashion to that of asking for and offering of a
nail (Example 4). Since our focus is the generation of joint plan before execution, the
proposed language is different from the resource logic introduced in [5], whose focus

7 Recall that this is achieved by simply adding the rules (21)-(27).

was on the plan merging phase. The requesting/offering actions can be seen as special
case of negotiation actions discussed in [26].

We would like to point out that we use A because of its simple semantics and its
close relationship to PDDL, the language developed for describing planning problems
[14]. This means that other extensions or variations of A (e.g,. B, C [13], E [15]) could
also be extended to formalize cooperative actions. Observe that there are subtle differ-
ences between request actions and non-deterministic actions. First, a cooperative action
changes the world of other agents while a non-deterministic action does not. Second, a
cooperative action does not change the world of the agent executing this action, while
a non-deterministic action does. In this sense, a cooperative action of an agent is like
an exogenous action for other agents. Thus, modeling cooperative actions using non-
deterministic actions might not be the most natural way.

Finally, we would like to note that an extension of the STRIPS language has been
considered for multiagent planning in [1]. In this framework, a multiagent planning
problem is formulated as a single problem and agent identifiers are attached to the ac-
tions, which is different from what we proposed here. As such, the framework in [1] is
only appropriate for domains where no privacy among agents is required. This is not an
issue in our formulation.

6 Conclusions and Future Works
We extend the action language A to define a language for representing and reasoning
about actions and their effects in presence of cooperative actions between agents. We
define the notion of a plan with cooperative actions and use it in formalizing the notion
of a joint plan. We use answer set programming to generate joint plans. We introduce
the notion of a set of compatible answer sets and provide a translation of a multiagent
planning problem to a logic program whose answer sets represent joint plans.

The work so far has focused on the development of a theoretical framework for
generating joint plans using answer set programming. The encoding of the examples
are available in the technical report version of this paper [24]. Our immediate goal for
the future is to investigate the scalability and efficiency of the proposed method. The
use of answer set programming allows us to easily incorporate preferences or domain
knowledge in the generation of the joint plans [22, 23]. Additionally, we would like to
explore the use of more expressive languages (e.g., action languages with constraints
and sensing actions) in representing and reasoning about joint-plans of multiagents by
addressing various questions mentioned in [2]. This is because the method provides in
Section 2 has proved to be very effective in the single agent case (e.g. [25]).

‘

References
1. C. Boutilier and R.I. Brafman. Partial-order planning with concurrent interacting actions.

JAIR, 14:105–136, 2001.
2. M. Brenner. Planning for Multiagent Environments: From Individual Perceptions to Coordi-

nated Execution. In Work. on Multiagent Planning & Scheduling, ICAPS, 80–88. 2005.
3. J. S. Cox and E. H. Durfee. An efficient algorithm for multiagent plan coordination. AAMAS

2005, 828–835.
4. J. S. Cox and E. H. Durfee and T. Bartold. A Distributed Framework for Solving the Multi-

agent Plan Coordination Problem. In AAMAS, pages 821–827. ACM Press, 2005.

5. M. de Weerdt, A. Bos, H. Tonino, and C. Witteveen. A resource logic for multi-agent plan
merging. Ann. Math. Artif. Intell., 37(1-2):93–130, 2003.

6. M. de Weerdt, A. ter Mors, and C. Witteveen. Multi-agent planning: An introduction to
planning and coordination. In Handouts of the Euro. Agent Summer School, 1–32, 2005.

7. M. desJardins, E. H. Durfee, C. L. Ortiz, and M. Wolverton. A survey of research in dis-
tributed, continual planning. AI Magazine, 20(4):13–22, 1999.

8. Y. Dimopoulos and P. Moraitis. Multi-agent coordination and cooperation through classical
planning. In IEEE/WIC/ACM/IAT, 398–402. IEEE Comp. Society, 2006.

9. E. Durfee. Distributed Problem Solving and Planning. In Muliagent Systems (A Modern
Approach to Distributed Artificial Intelligence), pages 121–164. MIT Press, 1999.

10. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Answer Set Planning under Action
Costs. Journal of Artificial Intelligence Research, 19:25–71, 2003.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Int.
Conf. on Logic Programming, 1070–1080, 1988.

12. M. Gelfond and V. Lifschitz. Representing actions and change by logic programs. Journal
of Logic Programming, 17(2,3,4):301–323, 1993.

13. M. Gelfond and V. Lifschitz. Action languages. ETAI, 3(6), 1998.
14. M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and

D. Wilkins. PDDL — the Planning Domain Definition Language. Ver. 1.2. TR1165, Yale,
1998.

15. A. C. Kakas, R. Miller, F. Toni: E-RES. Reasoning about Actions, Events and Observations.
In LPNMR, 254-266, 2001.

16. V. Lifschitz. Action languages, answer sets and planning. In The Logic Programming
Paradigm: a 25-Year Perspective, pages 357–373. Springer Verlag, 1999.

17. V. Lifschitz and H. Turner. Splitting a logic program. In ICLP, 23–38, 1994.
18. V. Marek and M. Truszczyński. Stable models and an alternative logic programming

paradigm. In The Log. Prog. Paradigm: a 25-year Perspective, 375–398, 1999.
19. I. Niemelä. Logic programming with stable model semantics as a constraint programming

paradigm. AMAI, 25(3,4):241–273, 1999.
20. I. Niemelä, P. Simons, and T. Soininen. Stable model semantics for weight constraint rules.

In Proc. Logic Programming and NonMonotonic Rreasong, 315–332, 1999.
21. S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing. J. of

Log. and Comp., 8(3):261–292, 1998.
22. T. C. Son, C. Baral, N. Tran, and S. McIlraith. Domain-Dependent Knowledge in Answer

Set Planning. ACM Transactions on Computational Logic, 7(4), 2006.
23. T. C. Son and E. Pontelli. Planning with Preferences using Logic Programming. Journal of

Theory and Practice of Logic Programming (TPLP), 6:559–607, 2006.
24. T. C. Son and C.. Sakama. Reasoning and Planning with Cooperative Actions for Multiagents

Using Answer Set Programming. Technical Report, 2008.
25. P. H. Tu, T. C. Son, C. Baral. Reasoning and Planning with Sensing Actions, Incomplete

Information, and Static Causal Laws using Logic Programming. TPLP, 7:1–74, 2006.
26. M. Wooldridge and S. Parsons. Languages for negotiation. In Proceedings of ECAI, 2000.

