
Golog+HTNTI: Adding time and intervals to procedural and hierarchical control
knowledge

Chitta Baral
Dept. of Computer Sc. & Eng.

Arizona State University
Tempe, AZ 85287, USA
chitta@asu.edu

Tran Cao Son
Department of Computer Sc.
New Mexico State University
Las Cruces, NM 88003, USA
tson@cs.nmsu.edu

Le-Chi Tuan
Dept of Computer Sc. and Eng.

Arizona State University
Tempe, AZ 85287, USA
lctuan@asu.edu

Abstract

In this paper we introduce a language for expressing procedu-
ral and HTN-based domain constraints. Our language starts
with features from GOLOG and HTN and extends them so
that we can deal with actions with duration by being able to
specify time intervals between the start (or end) of an action
(or a program) and the start of another action (or program).
We then discuss a planner based on the answer set planning
paradigm that can exploit such domain knowledge.

Introduction and Motivation
GOLOG (Levesque et al. 1997) is an Algol-like logic pro-
gramming language for agent programming, and control and
execution. It is based on a situation calculus theory of ac-
tions (Reiter 2000). GOLOG has been primarily used as a
programming language for high-level agent control in dy-
namical environments (see e.g. (Burgard et al. 1998)).
Although a planner can be written as a GOLOG program
(See Chapter 10 of (Reiter 2000)), in (Son, Baral, & McIl-
raith 2001) an alternative view of GOLOG programs is pre-
sented. There it is viewed as an incompletely speci£ed
plan (or a form of procedural knowledge) that includes non-
deterministic choice points that are £lled in by the planner.
For example, the GOLOG program a1; a2; (a3|a4|a5); f ,
when viewed as a procedural knowledge tells a planner that
the £rst action of the plan should be a1, the second action
should be a2, and the 3rd action should be one of a3, a4 and
a5 such that f holds afterward. A planner, when given this
procedural knowledge needs only to decide which one of a3,
a4, or a5 it should choose as its third action. In (Son, Baral,
& McIlraith 2001) it is shown how such procedural knowl-
edge can be exploited to speed up planning. There it is also
shown how to combine constructs from HTN-planning with
the GOLOG constructs.

Now suppose that actions have duration. In that case we
may want to say that start a1 and after 2 unit time of execu-
tion of a1 start executing a2 and so on. Similarly in an HTN-
based domain constraint instead of the standard a1 ≺ a2

– which means that a1 should be executed before a2 – we
might want to say that a1 should start at least 3 units of time

Copyright c© 2003, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

before the start of a2 and so on. To the best of our knowl-
edge current extensions of GOLOG and HTN do not have
such features. Thus our main goal in this paper is to develop
a language that allows the expression of domain knowledge
(procedural and HTN-based) of the above kind. We will re-
fer to this language as Golog+HTNTI , meaning that we add
time and intervals to a language that has features from Golog
and HTN.

To characterize Golog+HTNTI we need an action theory
that allows actions to have durations. For that we chose a
simple extension of the language A, which we refer to as
AD. We give the semantics of AD using logic programming
with answer sets. This (the semantics of AD) allows us to
de£ne the notion of a trajectory. We use the notion of a
trajectory to de£ne the notion of a trace of a Golog+HTNTI

speci£cation. We also use logic programming with answer
sets (by adding additional rules to the logic program that
de£nes a trajectory) to give an alternative de£nition of trace
and show the two notions to be equivalent. Finally we try to
show that using Golog+HTNTI speeds up planning.

Background: LPASS and LPsmodels

We now brie¤y introduce LPASS and its extension
LPsmodels. An LPASS program is a collection of rules of
the form

a0 ← a1, . . . , am, not am+1, . . . , not an (1)

where ai’s are atoms. For an atom a, “not a” is referred
to as a naf-literal. Intuitively, the above LPASS rule means
that if a1 . . . am are true and am+1 . . . an can be assumed to
be false then a0 must be true.

The semantics of an LPASS program is de£ned using an-
swer sets. LPASS programs whose rules do not have not in
the body – referred to as de£nite programs – have unique an-
swer sets, which are the least models of the theory obtained
by treating rules of the form a0 ← a1, . . . , am as the classi-
cal formula a1 ∧ . . . ∧ am ⊃ a0. Given an LPASS program
P and a set of atoms S, the Gelfond-Lifschitz transforma-
tion PS (Gelfond & Lifschitz 1990) is de£ned as the set of
rules obtained from P by removing all rules from P whose
body contains not b such that b ∈ S, and then removing
the naf-literals from the rest of the rules. A set S of atoms
is said to be an answer set of an LPASS program P if S is

the answer set of the de£nite program PS . Answer sets of
propositional LPASS programs can be computed using an-
swer set solvers such as smodels (Niemelä & Simons 1997)
and dlv (Citrigno et al. 1997). By LPsmodels we refer to the
extension of LPASS used in (Niemelä, Simons, & Soininen
1999) where rules of the following form are also allowed:

l{b1, . . . , bk}u ← a1, . . . , am, not am+1, . . . , not an

where ai and bj are atoms and l and u are two integers, and
l ≤ u. Intuitively, such a rule enforces the constraint that if
the body is true then at least l and at most u atoms from the
head are also true.

Reasoning about durative actions using LPASS
As we mentioned earlier, to characterize domain constraints,
we need to £rst describe an action description language. The
action description language that we plan to use is a simple
extension of the language A (Gelfond & Lifschitz 1998). In
our extension, which we will refer to as AD, we will allow
actions to have duration and this will be suf£cient to help us
to justify and illustrate our language for domain constraints
with new connectives.
Syntax of AD. An action theory consists of two £nite, dis-
joint sets of names A and F, called actions and ¤uents, re-
spectively, and a set of propositions of the following form:
(2) causes(a, f) initially(f) (4)
(3) executable(a, {p1, . . . , pn}) duration(a, v) (5)

where f and pi’s are ¤uent literals (a ¤uent literal is either a
¤uent g or its negation ¬g) and a is an action. (2) is called a
dynamic causal law and represents the effect of a while (3)
states an executability condition of a. Intuitively, a proposi-
tion of the form (2) states that f is guaranteed to be true after
the execution of a. An executability condition of a says that
a is executable in a state in which p1, . . . , pn hold. Proposi-
tions of the form (4) are used to describe the initial state. It
states that f holds in the initial state. Finally, a proposition
of the form (5) is used to say that duration of action a is v.

An action theory is a set of propositions of the form (2)-
(5). We will assume that each action a appears in one and
only one proposition of the form (5) and v is a non-negative
integer expression. We will often conveniently write d(a) to
denote the value v if duration(a, v) ∈ D and for a set of
actions A, d(A) = max{d(a) | a ∈ A}.

Example 1 Consider an action theory with the set of ¤uents
{f, g, h} and the set of actions {a, b, c, d} and the following
propositions:

causes(a, f) duration(a, 3) executable(a, {g, h})
causes(b, h) duration(b, 2) executable(b, {})
causes(c, g) duration(c, 2) executable(c, {})
causes(d,¬g) duration(d, 1) executable(d, {})
initially(¬f) initially(¬g) initially(¬h)

The propositions about a (the £rst line) say that a will cause
the ¤uent f to be true after 3 units of time and is executable
only if g and h are true. The propositions for other actions
have similar meaning.

Since the characterization of AD is not the aim of this pa-
per, we do not present an independent characterization of it.
(Recall that our goal is to use AD to show how to plan using
a proposed domain constraint language Golog+HTNTI .) In-

stead we give a LPASS encoding of prediction and planning
using AD. In another work, we present a transition function
based characterization of AD and prove that it is equivalent
to the LPASS characterization in this paper.

Semantics: Prediction in AD. Given a a set of propositions
D we construct an LPASS program πD as follows:

1. For each v-proposition (4) in D, πD contains the follow-
ing rule:

h(f, 1). (7)

This describes the initial state (which ¤uents hold in time
point 1) as speci£ed by the set of v-propositions in D.

2. For each ex-proposition (3) in D, πD contains the follow-
ing rules:

exec(a, T) ← not not exec(a, T). (8)

not exec(a, T) ← not h(p1, T). (9)

. . .

not exec(a, T) ← not h(pn, T). (10)

These rules de£ne when a is executable at a time point
T , based only on the truth of ¤uents. Rules (9)-(10) say
that a is not executable if any of the ¤uent literals in its
executability conditions does not hold.

3. For each d-proposition (5) in D, we add the following
rules to πD,

ends(a, T + v) ← init(a, T). (11)

in exec(a, T) ← init(a, T ′), T ′≤T<T+v. (12)

These rules de£ne when an action ends and when it is
under execution.

4. For each action a and an ef-proposition (2), the following
rules are added to πD,

h(f, T) ← ends(a, T). (13)

ab(f, T + 1) ← init(a, T). (14)

These rules are used to reason about truth value of ¤uents
at different time points.

Encoding the frame axiom. πD contains the following
rules that encode the frame axiom. They are slightly dif-
ferent from the normal LPASS encoding of the frame axiom
so as to take into account action duration.

h(F, T + 1) ← h(F, T), not ab(¬F, T + 1). (15)

h(¬F, T + 1) ← h(¬F, T), not ab(F, T + 1). (16)

If we now want to £nd out if f would be true at time point t
after starting the execution of actions a1 at time point t1, a2

at time point t2, . . . and an at time tn all we need to do is to
add

{init(ai, ti) | i ∈ {t1, . . . , tn}}
and the constraints

←init(ai, ti), not exec(ai, ti)

(for i = 1, . . . , n) to πD, set the limits for the various vari-
ables, and ask if the resulting program entails h(f, t).
One assumption we made in our characterization is that we
assume that the effect of an action takes into effect only after
its execution ends, and the ¤uents, whose value changes due
to an action execution, are in a unknown state during the
execution. This of course can be changed by appropriately
modifying πD, in particular the rule (14).

Answer Set Planning with AD Action Theories
We now show how the idea of answer set planning (Lifschitz
1999) can be extended to AD action theories. Our LPASS
planner for an action theory D, denoted by Π(D), will con-
sist of the program representing and reasoning about actions
of D, πD, the rules representing the goal, and the rules that
generate action occurrences. Besides, we will need to set
the limit on the maximal number of steps (the length) of the
plan. We will call it plan size. From now on, whenever we
refer to a time point t, we mean that 1 ≤ t ≤ plan size.
Representing goal. Assume that we have a goal that is a
conjunction of ¤uent literals g1 ∧ . . . ∧ gm. We represent
this by a set of atoms {finally(gi) | i = 1, . . . ,m}. The
following rules encode when the goal – as described by the
finally facts – is satis£ed at a time point T .

not goal(T) ← finally(X), not h(X,T). (17)

goal(T) ← not not goal(T). (18)

The following constraint eliminates otherwise possible an-
swer sets where the goal is not satis£ed at the time point
plan size.

← not goal(plan size). (19)

We now de£ne the notion of a plan.

De£nition 1 Given an action theory D, a goal G, and a plan
size plan size, we say that a sequence of sets of grounded ac-
tions A1, . . . , An is a plan achieving G if goal(plan size)
is true in every answer set of the program the program
πPV er(D,G)1, which consists of

• the rules of Π(D) in which the time variable is less than
or equal plan size;

• the rules representing G;
• the set of action occurrences

n⋃

i=1

{init(a, i) | a ∈ Ai};

• the rules that disallow actions with contradictory conclu-
sions to overlap (rules (23) and (24), below.

We say that a plan p = A1, . . . , An is a concurrent plan
if there exists a pair i and j and an action a ∈ Ai ∩ Aj

such that i + d(a) > j, i.e., p contains an overlapping of
two instantiations of a same actions. p is said to be non-
concurrent if it is not a concurrent plan.
Generating Action Occurrences. The following rules enu-
merate action initiations. To decrease the number of answer

1The PV er stands for plan veri£cation.

sets we have made the assumption that two action instantia-
tions corresponding to the same action can not overlap each
other, i.e., we consider only non-concurrent plans. This need
not be the case in general. Our point here is that LPASS al-
lows us to express such restrictions very easily. For each
action a with the duration v (i.e., duration(a, v) belongs to
D), the following rule will be added to Π(D):

occ before(a, T) ← init(a, T1), T1<T<T1+v. (20)

init(a, T) ← exec(a, T), (21)

not occ before(a, T),

not not init(a, T).

not init(a, T) ← not init(a, T). (22)

The next rules disallow actions with contradictory effects
to overlap: for every pair of a and b such that causes(a, f)
and causes(b,¬f) belong to D, ΠD contains the two rules:

overlap(a, b, T) ← in exec(a, T), in exec(b, T). (23)

← overlap(a, b, T). (24)

Let πPGen(D,G) be the set of rules of Π(D) with the goal
G and plan size=n. For an answer set M of πPGen(D,G),
let si(M) = {f | h(f, i) ∈ M} and Ai(M) = {a |
init(a, i) ∈ M}. We can prove that

Theorem 1 For an action theory D and a goal G,
B1, . . . , Bn is a non-concurrent plan that achieves G iff
there exists an answer set M of πPGen(D,G) such that
Ai(M) = Bi.

Golog+HTNTI: Using durations in Procedural
and Hierarchical domain Constraints

We begin with an informal discussion on the new construct
in Golog+HTNTI . Consider the domain from Example 1.
It is easy to see that the program b; c; a is a plan achieving f
from any state and the time needed to execute this plan is the
sum of the actions’s durations (Figure 1, Case (a)). Observe
that b and c are two actions that achieve the condition for
a to be executable and can be executed in parallel. Hence
it should be obvious that any plan that allows b and c to
execute in parallel will have a shorter execution time. For the
moment, let us represent this by the program p1 = {b, c}; a.
The execution of this program is depicted in Figure 1, Case
(b).

✲� � � � � � � � � � �

0 1 2 3 4 5 6 7 8 9 10 time

(a) � b ✲� c ✲� a ✲

(b)

� b ✲
� c ✲� a ✲

Figure 1: A pictorial view of program execution (the dot shows
when an action starts and the arrow shows when an action stops)

Now consider a modi£cation of the domain in Exam-
ple 1, in which the executable propositions of c changes to
executable(c, {¬g}). A program achieving f would be to ex-
ecute b and d in parallel, then c, and lastly a. We cannot
execute b, c, and d in parallel all the time because c is not

executable until ¬g holds, and hence, it might need to wait
for d to £nish. It is easy to see, however, that it is better if c
starts whenever d £nishes. To account for this, we introduce
a new construct that allows programs to start even if the pre-
ceding program has not £nished. We write ({b, d};s[1,1] c); a
to indicate that c should start its execution 1 time unit af-
ter {b, d} and then a and denote this program by p2. The
execution of this program can be illustrated as follows.

✲� � � � � � � � � � �

0 1 2 3 4 5 6 7 8 9 10 time

� b ✲
�d✲� c ✲� a ✲

Figure 2: Execution of ({b, d};s[1,1] c); a

We now de£ne programs in Golog+HTNTI that express do-
main knowledge to be exploited by a planner.

De£nition 2 (Program) For an action theory D,

1. an action a is a program;
2. a temporal constraint φ[t1, t2] is a program;
3. if p1 and p2 are programs and 0 ≤ t1 ≤ t2 are two time

non-negative integers then so are (p1|p2), (p1;s[t1,t2]
p2),

and (p1;e[t1,t2]
p2);

4. if p1 and p2 are programs and φ is a ¤uent formula then
so are “if φ then p1 else p2” and “while φ do p”;

5. if X1, . . . , Xn are variables of sort s1, . . . , sn, respec-
tively, p(X1, . . . , Xn) is a program, and f(X1, . . . , Xn)
is a formula, then pick(&X, f(&X), p(&X)) is a program
where &X stands for X1, . . . , Xn;

6. if p1, . . . , pn are programs then a pair (S,C) is a program
where S = {p1, . . . , pn} and C is a set of constraints over
S of the following form:
i) p1 ≺s

[t1,t2]
p2 (or p1 ≺e

[t1,t2]
p2), (ii) (p, φ[t1, t2]), (iii)

(φ[t1, t2], p), and (iv) (p1, φ[t1, t2], p2) where p, p1, p2

are programs, φ is a ¤uent formula and 0 ≤ t1 ≤ t2.

The constructs 1-5 in the above de£nitions are general-
izations of constructs in GOLOG (Levesque et al. 1997)
and the construct 6 is a generalization of hierarchical task
networks (HTN) (Erol, Nau, & Subrahmanian 1995).

Intuitively, φ[t1, t2] expresses the constraint that φ holds
during the time interval [t1, t2] (from the current moment)
and (p1;s[t1,t2]

p2) states that p2 should start its execution at
least t1 and at most t2 units of time after p1 starts whereas
(p1;e[t1,t2]

p2) forces p2 to wait for t (t1 ≤ t ≤ t2) units
of time after p1 £nishes. It is easy to see that (p1;s[0,0] p2)
requires that p1 and p2 be executed in parallel whereas
(p1;e[0,0] p2) requires that p2 starts its execution at the time
p1 £nishes. Note that (p1;e[0,0] p2) corresponds to the origi-
nal notation p1; p2.

The constraints in item 6 above are similar to truth con-
straints and ordering constraints over tasks in HTN. Intu-
itively, p1 ≺s

[t1,t2]
says that p2 can start its execution after

p1 is in execution (or after p1 £nishes its execution) for t1
time units but no later than t2 time units of time. Similarly,
(p, φ[t1, t2]) (resp. (φ[t1, t2], p)) means that φ must hold
from t1 to t2 immediately after (resp. before) p’s execution.

(p1, φ[t1, t2], p2) states that p1 must start before p2 and φ
must hold t1 units of time after p1 starts until t2 units of
time before p2 starts.

Example 2 In our notation, p1 and p2 (from the discussion
before Figure 1) are represented by ((b;s[0,0] c);

e
[0,0] a) and

(((b;s[0,0] d);s[1,1] c);
e
[0,0] a), respectively.

We will now de£ne the notion of a trace of a program,
which describe what actions are done when. But £rst we
need to de£ne the notion of a trajectory. For an action theory
D and an integer n, let πGen(D) be the program consisting
of the set of rules of Π(D) whose time variable belongs to
the set 1, . . . , n (recall that Π(D) consists of the rules (7)-
(16) and (20)-(24)).

De£nition 3 (Trajectory) For an action theory D and an
answer set M of πPGen(D), let si = {f | h(f, i) ∈ M}
and Ai = {a | init(a, i) ∈ M}. We say that the sequence
α = s1A1 . . . snAn is a trajectory of D.

Intuitively, a trajectory is an alternating sequence of states
and action occurrences s1A1, . . . , snAn, where si is a state
at time point i and Ai is the set of actions that are supposed
to have occurred at time point i. We are now ready to de£ne
what is a trace of a program. Since the de£nition of a trace is
somewhat complicated we divide it into several small de£-
nitions and illustrate the complex ones with examples. First,
we begin with the primitive cases.

De£nition 4 (Trace - Primitive Cases) A trajectory α =
s1A1 . . . snAn is a trace of a program p if
• p = a, n = d(a) and A1 = {a} and Ai = ∅ for i > 1; or
• p = φ[t1, t2], n = t2, Ai = ∅ for every i, and φ holds in
st for t1 ≤ t ≤ t2.

The next de£nition deals with programs that are constructed
using GOLOG-constructs ((Levesque et al. 1997)).

De£nition 5 (Trace – Programs with GOLOG-
Constructs) A trajectory α = s1A1 . . . snAn is a
trace of a program p if one of the following is satis£ed.
• p = p1 | p2, α is a trace of p1 or α is a trace of p2,
• p = if φ then p1 else p2, α is a trace of p1 and φ holds
in s1 or α is a trace of p2 and ¬φ holds in s1,
• p = while φ do p1, n = 1 and ¬φ holds in s1 or φ holds
in s1 and there exists some i such that s1A1 . . . Ai is a trace
of p1 and si+1Ai+1 . . . An is a trace of p, or
• p = pick(&X, f(&X), q(&X)), then there exists a constant &x
of the sort of &X such that f(&x) holds in s1 and α is a trace
of q(&x).
The trace of each program is de£ned based on its structure,
i.e., how it is built. We next deal with the new connectives
;s[t1,t2]

and ;e[t1,t2]
.

De£nition 6 (Trace – Parallel and Overlapping Pro-
grams) A trajectory α = s1A1 . . . snAn is a trace of a pro-
gram p if
• p=p1;s[t1,t2]

p2, there exists two numbers t3 and t4 such
that t1 + 1 ≤ t3 ≤ t2 + 1 and t4 ≤ n (because the index
of the trace starts from 1) and either (i) there exists a trace
s1B1 . . . st4Bt4 of p1 and a trace st3Ct3 . . . snCn of p2 such

that Ai = Bi ∪Ci for every i; or (ii) t3 ≤ t4 and there exists
a trace s1B1 . . . snBn of p1 and a trace st3Ct3 . . . st4Ct4 of
p2 such that Ai = Bi ∪ Ci (we write Bj = ∅ or Cj = ∅ for
indexes that do not belong to the trace of p1 or p2); or
• p=p1;e[t1,t2]

p2, there exists two numbers t3 and t4 such
that t1 + t3 ≤ t4 ≤ t2 + t3 and t4 ≤ n and s1A1 . . . st3At3
is a trace of p1 and a trace st4At4 . . . snAn is a trace of p2

and Ai = ∅ for every t3 ≤ i < t4.

This de£nition is best illustrated using a picture.

✲� � � � � � � � � � �� � � �

time

� �
B1 Bt3 Bt4✲

� �

Ct3 Cn
Ct4 ✲

A1 At3 At4 An

Figure 3: Ai = Bi ∪ Ci – First Item, Case 1 (De£nition 6)

Example 3 • For p1 = ((b;s[0,0] c);
e
[0,0] a) (wrt. the action

theory in Example 1), we can easily check that

s11 {b, c} s12 ∅ s13{a} s14 ∅ s15 ∅ s16 ∅
where
– s1

1 = {¬f,¬g,¬h},
– s1

2 = {¬f},
– s1

3 = {¬f, g, h},
– s1

4 = {g, h},
– s1

5 = {g, h},
– s1

6 = {f, g, h},
is a trace of p1. On the other hand,

s11 {b, c,d} s12 ∅ s13{a} s14 ∅ s15 ∅ s16 ∅
although it contains a trace of p1.

• For p2 = (((b;s[0,0] d);s[1,1] c);
e
[0,0] a). (wrt. the modi£ed

action theory), we can easily check that

s21 {b,d} s22 {c} s23 ∅ s24{a} s25 ∅ s26 ∅ s27 ∅
where
– s2

1 = {¬f,¬g,¬h},
– s2

2 = {¬f,¬g},
– s2

3 = {¬f, h},
– s2

4 = {¬f, g, h},
– s2

5 = {g, h},
– s2

6 = {g, h},
– s2

7 = {f, g, h},
is a trace of p2. but

s21 {b,d} s22 ∅ s22 {c} s23 ∅ s24{a} s25 ∅ s26 ∅ s27 ∅
is not a trace of p2 because c should start at the time mo-
ment 2.

In the next de£nition we deal with HTN-programs.

De£nition 7 (Trace - HTN Programs) A trajectory α =
s1A1 . . . snAn is a trace of a program p = (S,C) with
S = {p1, . . . , pk} if there exists two sequences of num-
bers b1, . . . , bk and e1, . . . , ek with bj ≤ ej , a permu-
tation (i1, . . . , ik) of (1, . . . , k), and a sequence of traces

αj = sbj
Aj

bj
. . . sej

Aj
ej

that satisfy the following condi-
tions:
• for each l, 1 ≤ l ≤ k, αl is a trace of pil

,
• if pt ≺ pl ∈ C then it < il,
• if pt ≺s

[q1,q2]
pl ∈ C then it < il and bit

+ q1 ≤ bil
≤

bit
+ q2,

• if pt ≺e
[q1,q2]

pl ∈ C then it < il and eit
+ q1 ≤ bil

≤
eit

+ q2,
• if (φ[t1, t2], pl) ∈ C (or (pl, φ[t1, t2]) ∈ C) then φ holds
in the state sbil

−t2 , . . . , sbil
−t1 (or seil

+t1 , . . . , seil
+t2), and

• if (pt, φ[t1, t2], pl) ∈ C then φ holds in sbit+t1 , . . .,
sbil

−t2 .

• Ai = ∪k
j=1A

j
i for every i = 1, . . . , n where we assume

that Aj
i = ∅ for i < bj or i > ej .

The intuition of the above de£nition is as follows. First, each
program starts (bi’s) and ends (ei’s) at some time point and
it cannot £nish before it even starts, hence, the requirement
bi ≤ ei. The order of the execution is speci£ed by the or-
dering constraints and not by the program’s number. The
permutation (i1, . . . , ik) and j’s record the starting time of
the programs. The conditions on the trajectories make sure
that the constraints are satis£ed (£rst four items) and they
indeed create A1, . . . , An (last item).

An LPASS interpreter
We now present an LPASS interpreter for programs. We will
adopt the way to encode formulas and programs in (Son,
Baral, & McIlraith 2001) for use with answer set solvers. In
short, each program p (resp. formula φ) will be associated
with a unique name np (resp. nφ) and will be replaced by
a set of rules and facts, denoted by r(np) (resp. r(nφ)).
The formal de£nition of r(np) and r(nφ) can be found in
the aforementioned paper. Here, we demonstrate it by an
example.

Example 4 p1=((b;s[0,0] c);
e
[0,0] a) is encoded by

the two atoms proc(p1, p
1
1, a, start, 0, 0) and

proc(p1
1, b, c, start, 0, 0).

p2=(((b;s[0,0] d);s[1,1] c);
e
[0,0] a) is encoded by the atoms

proc(p2, p
1
2, a, end, 0, 0), proc(p1

2, p
2
2, c, start, 1, 1), and

proc(p2
2, b, c, start, 0, 0).

In the above, a program is speci£ed by the predicate proc
with 5 arguments: the name, the £rst sub-program (the
head), the rest of the program (the tail), whether the tail
should start relative to the start or to the end of the head
(start/end), and the minimal or the maximal time the tail
needs to wait. Programs constructed using other con-
structs are encoded similarly. For example, the program
p = if φ then p1 else p2 is encoded by the atom
if(p, nφ, p1, p2) and the set of atoms encoding p1 and p2,
and φ[t1, t2] by formula(nφ, t1, t2) etc.

For a program p of an action theory D, we de£ne a logic
program Π that consists of the rules encoding the domain,
πD, the rules describing the program r(np), the set of rules
for generating action occurrences (20)-(24), and a set of
rules that realizes the operational semantics of programs.
We follow the approach in (Son, Baral, & McIlraith 2001)

and de£ne a predicate trans(p, t1, t2) which holds in an an-
swer set M iff st1(M)At1(M) . . . st2(M)At2(M) is a trace
of p2. We will concentrate on describing the ideas behind
the rules and their meaning rather than presenting the rules
in great detail. We will present only a few representative
rules. Readers interested in the source code of the program
can obtain it from our web site3.

We will begin with an informal discussion on the ideas be-
hind the rules de£ning trans(p, t1, t2). Intuitively, because
of the rules (20)-(24), each answer set M of the program Π
will contain a sequence of sets of actions α = A1, . . . , An

where Ai = {a | init(a, i) ∈ M}. The encoding of the
action theory, πD, makes sure that whenever an action a is
initiated it is executable. Thus, the sequence α is a trajectory
of D. So, it remains to be veri£ed that α is indeed a trace of
the program p. We will do this in two steps. First, we check
if α contains a trace of p, i.e., we make sure that there is a
trace s1B1 . . . snBn of p such that Bi ⊆ Ai. Second, we
make sure that no action is initiated when it is not needed.
To do so, we de£ne two predicates:
• tr(p, t1, t2) - st1At1 . . . At2 contains a trace of p;
• used in(p, q, t, t1, t2) - a trace of p starting from t is

used in constructing a trace of q from t1 to t2. Intuitively,
this predicate records the actions belonging to the traces of q.
The de£nition of this predicate will make sure that for a sim-
ple action a, only action a is used to construct its trace, i.e.,
used in(a, a, t1, t1, t1 + d(a)) is equivalent to init(a, t1)
and used in(b, a, t1, t1, t1 + d(a)) is false for every b �= a.

Finally, we say that trans(p, t1, t2) holds iff tr(p, t1, t2)
holds and every action a ∈ Aj for t1 ≤ j ≤ t2,
used in(a, p, j, t1, t2) holds. The rules for tr(p, t1, t2) are
similar to the rules of the predicate trans(p, t1, t2) from
(Son, Baral, & McIlraith 2001) with changes that account
for action duration and the new constructs such as ;s[t1,t2]

and ;e[t1,t2]
and checking for the condition of new constraint

on a HTN-program. Below, we list some of the rules for tr.

tr(A, T1, T1 +D) ← init(A, T1), duration(A,D). (25)

tr(P, T1, T2) ← proc(P, P1, P2, start,M1,M2), (26)

T1 +M1 ≤ T3 ≤ T1 +M2,

T1 ≤ T4 ≤ T2,

tr(P1, T1, T4), tr(P2, T3, T2).

tr(P, T1, T2) ← proc(P, P1, P2, start,M1,M2), (27)

T1 +M1 ≤ T3 ≤ T1 +M2,

T3 ≤ T4 ≤ T2,

tr(P1, T1, T2), tr(P2, T3, T4).

tr(P, T1, T2) ← proc(P, P1, P2, end,M1,M2), (28)

T3 ≤ T4, T3 +M1 ≤ T4 ≤ T3 +M2,

tr(P1, T1, T3), tr(P2, T4, T2).

tr(I, T1, T2) ← if(I, F, P1, P2), (29)

hf(F, T1), tr(P1, T1, T2).

tr(I, T1, T2) ← if(I, F, P1, P2), (30)

not hf(F, T1), tr(P2, T1, T2).
4

2For an answer set M , si(M) = {f | h(f, i) ∈ M, f is a
¤uent literal} and Ai(M) = {a | init(a, i) ∈M}.

3http://www.cs.nmsu.edu/˜tson/duration.

We next present the rules de£ning tr for HTN-programs.
First, we begin with the encoding of a HTN-program. A
program p = (S,C) is encoded by the set of atoms and rules
encoding S and C where elements of C will be represented
by the predicates

• order(∗,+,+, start,m1,m2),

• order(∗,+,+, end,m1,m2),

• postC(∗,+,−,m1,m2),

• preC(∗,−,+,m1,m2), and

• maintain(∗,+,−,+,m1,m2)
where m1, m2 are non-negative integers representing units
of time and the place holder ‘*’, ‘+’, or ‘-’ denotes the
name of the constraint, a program, or a formula, respec-
tively. To make sure that for every program q belonging
to p, the trajectory st1At1 . . . At2 contains a trace of q,
we generate the begin- and end-point of each q, denoted
by begin(p, q, tq1) and end(p, q, tq2), respectively, and then
check whether tr(q, tq1 , tq2) holds or not. The key idea is
to check whether this creates a trace for p. For this reason,
we de£ne a predicate on trace(p, t) and nok(p, t1, t2) to
say that the trace of p contains the time moment t and the
current assignment of start- and end-point for the programs
belonging to S does not satisfy the constraints in C. Some
of these rules are given below:

nok(N,T1, T2) ← htn(N,S,C), T1 ≤ T ≤ T2, (31)

not on trace(N,T).

nok(N,T1, T2) ← htn(N,S,C), I1∈S, I2∈S, (32)

begin(N, I1, B1), begin(N, I2, B2),

O∈C, order(O, I1, I2, start,M1,M2),

B1+M1>B2. or (B1+M2<B2)

The £rst rule says that every time point between T1 and T2

must be on the trace of p. The second checks for the ordering
constraints in C. Rules to check for truth constraints are to
the second rule and are omitted here.
We now de£ne the rules for used in(p, q, t, t1, t2). We have
the following rules.

used in(A,A, T1, T1, T2) ← action(A), tr(A, T1, T2). (33)

used in(P,Q, T3, T1, T2) ← T1 ≤ T3 ≤ T2, (34)

T4 ≤ T2, T1 ≤ T5 ≤ T2,

T4 ≤ T3 ≤ T5,

used in(P,Q1, T3, T4, T5),

used in(Q1, Q, T4, T1, T2).

The £rst rule accounts for the fact that used in(a, a, t, t, t+
d(a)) is always true if init(a, t) is true. The second rule says
that if p is used in a trace of q1 and q1 is in a trace of q then p
is also in a trace of q. These two rules are not enough, how-
ever, because so far we have not speci£ed when a program

4Rules for tr to work with other programs such as the while-do
or non-deterministic choice of arguments pick or actions | are de-
£ned similarly. We must note that in de£ning tr using the rules for
trans given in (Son, Baral, & McIlraith 2001), we have improved
them in several aspects. The style is similar though.

p is used in a trace of q. This is done easily by using the
weight rules. For instance, instead of the rule (26), we use
the following rule:
3{tr(P, T1, T2), used in(P1, P, T1, T1, T2),
used in(P2, P, T3, T1, T2)}3←
proc(P, P1, P2, start,M1,M2), (26′)
T1 +M1 ≤ T3 ≤ T1 +M2, T1 ≤ T4 ≤ T2,
tr(P1, T1, T4), tr(P2, T3, T2).

The intuition of the above rule is that whenever we
used the rule to derive tr(P, T1, T2) then we also record
what sub-programs are used and starting from which mo-
ment (by requiring that used in(P1, P, T1, T1, T2) and
used in(P2, P, T3, T1, T2) also true). Similarly modi£ca-
tion needs to be done for other rules de£ning tr. We omit
them here for space reason.

Having de£ned tr and used in, de£ning trans is sim-
ple: for every program P , trans(P, T1, T2) holds only if
tr(P, T1, T2) holds and every action A initiated during T1
and T2 − 1 must be used to construct a trace of P from T1
to T2. So, we have the following rules:

not min(P, T1, T2) ← action(A), init(A, T), (35)

T1 ≤ T ≤ T2,

not used in(A,P, T, T1, T2).

trans(P, T1, T2) ← T1 ≤ T2, tr(P, T1, T2), (36)

not not min(P, T1, T2).

We illustrate this de£nition using a simple example.

Example 5 Consider p1=((b;s[0,0] c);
e
[0,0] a) from Example

4 and the trajectory {b, c}, ∅, {a}, ∅, ∅, ∅.
For p1 = ((b;s[0,0] c);

e
[0,0] a) (wrt. the action theory in Ex-

ample 1) from Example 4 and the trajectory (Example 3)

s11 {b, c} s12 ∅ s13{a} s14 ∅ s15 ∅ s16 ∅
with

• s1
1 = {¬f,¬g,¬h},

• s1
2 = {¬f},

• s1
3 = {¬f, g, h},

• s1
4 = {g, h},

• s1
5 = {g, h},

• s1
6 = {f, g, h}.

Clearly, tr(b, 1, 3), tr(c, 1, 3), tr(a, 3, 6) hold (because of
rule (25)). used in(b, b, 1, 1, 3), used in(c, c, 1, 1, 3), and
used in(a, a, 3, 3, 6) hold (because of rule (33)). Fur-
thermore, we have tr(p1

1, 1, 3), used in(b, p1
1, 1, 1, 3) and

used in(c, p1
1, 1, 1, 3) hold (because of (26’)). Similarly,

tr(p1, 1, 6), used in(b, p1, 1, 1, 6), used in(c, p1, 1, 1, 6),
and used in(a, p1, 3, 1, 6) hold (because of (26’) and (34)).
This implies that trans(p1, 1, 6) holds. It is worth noting
that trans(b, 1, 3) does not hold since c is initiated at 1 but
used in(c, b, 1, 1, 3) does not hold.

We next present a theorem that extends a result from (Son,
Baral, & McIlraith 2001) discussing a property of the above
described program. Let p be a program and D be an action
theory. Let Πn be the program consisting of

• the set of rules of Π(D),

• the rules de£ning tr, used in, and trans, and

• the rule expressing our goal of £nding a trace of p

←not trans(p, 1, n)

where all the time variables in Πn are bounded by n. Ex-
tending a result from (Son, Baral, & McIlraith 2001), we
have the following theorem.

Theorem 2 For an action theory D and a program p, (i) for
every answer set M of Πn, s1(M)A1 . . . sn(M)An(M) is
a trace of p; and (ii) if s1B1s2 . . . snBn is a trace of p then
there exists an answer set M of Πn such that si = {f |
h(f, i) ∈ M} and Bi = {a | init(a, i) ∈ M}.

Experimental Evaluations
We have used Golog+HTNTI in planning for domains from
the AIPS2002 competition. We concentrate on formulating
and testing our language in complex domains in which ac-
tions have durations, which might depend on the concrete
situation. For example, the duration of £lling a tank depends
on various factors: the current level of fuel in the tank, the
rate of which the fuel ¤ows, etc. Of the 13 planners com-
peted in the AIPS2002 competition, only 5 have this ca-
pability (see (Long et al.)). As an example, our planner
5 can solve all 20 Zeno Flying problems in which the £rst
seven problems were solved in less than 1 second, the next
six problems were solved in less than 2 second and the last
seven problems were solved within 10 to 60 seconds.

Conclusion
In this paper we proposed a domain constraint lan-
guage Golog+HTNTI that generalizes procedural (based on
GOLOG) and HTN-based domain constraints to allow time
intervals. In the process we generalize the connective ‘;’ to
two connectives ‘;s[t1,t2]

’ and ‘;e[t1,t2]
’ and similar generaliza-

tions of HTN constraints. We then show how the answer
set planning paradigm can be used to plan where actions
have duration, and we have domain constraints expressed
in the language Golog+HTNTI . In terms of related work
(that we have not mentioned yet) Reiter in (Reiter 2001) dis-
cusses temporal GOLOG where time is a parameter of the
actions. Two differences (as relevant to the focus of this
paper) between his approach and ours is that we general-
ize the connective ‘;’ rather than actions, and we consider
HTN-based constructs not considered by Reiter. Other dif-
ferences include his use of Situation calculus (and £rst-order
logic) as opposed to our use of a propositional action theory.
cc-Golog (Grosskreutz & Lakemeyer 2000) extended Con-
Golog to allow time to be added to the program but cc-Golog
concentrates on accommodating even-driven behavior rather
than for planning.

5We contacted authors of other planners to help us setting up
their planners so that a fair comparison between our planner and
theirs can be done. Unfortunately, we were not able to £nish this
task in a timely fashion and did not yet have the comparison ready
for this paper. We plan to have this issue resolved as soon as possi-
ble.

References
Burgard, W.; Cremers, A. B.; Fox, D.; H’́ahnel, D.; Lake-
meyer, G.; D., S.; Steiner, W.; and Thrun, S. 1998. The
interactive museum tour-guide robot. In Proceedings of the
15th National Conference on Arti£cial Intelligence (AAAI-
98), 11–18. AAAI Press.
Citrigno, S.; Eiter, T.; Faber, W.; Gottlob, G.; Koch, C.;
Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello, F. 1997.
The dlv system: Model generator and application fron-
tends. In Proceedings of the 12th Workshop on Logic Pro-
gramming, 128–137.
Erol, K.; Nau, D.; and Subrahmanian, V. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. Arti£cial Intelligence 76(1-2):75–
88.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Warren, D., and Szeredi, P., eds.,
Logic Programming: Proceedings of the Seventh Interna-
tional Conf., 579–597.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
ETAI 3(6).
Grosskreutz, H., and Lakemeyer, G. 2000. cc-golog: To-
wards more realistic logic-based robot controllers. In Pro-
ceedings of the 17th National Conference on Arti£cial In-
telligence, 476–482. AAAI Press.
Levesque, H.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31(1-3):59–84.
Lifschitz, V. 1999. Answer set planning. In International
Conference on Logic Programming, 23–37.
Long, D.; Fox, M.; Smith, D.; McDermott, D.; Bacchus,
F.; and Geffner, H. International Planning Competition.
Niemelä, I., and Simons, P. 1997. Smodels - an implemen-
tation of the stable model and well-founded semantics for
normal logic programs. In Proceedings ICLP & LPNMR,
420–429.
Niemelä, I.; Simons, P.; and Soininen, T. 1999. Stable
model semantics for weight constraint rules. In Proceed-
ings of the 5th International Conference on on Logic Pro-
gramming and Nonmonotonic Reasoning, 315–332.
Reiter, R. 2000. On knowledge-based programming with
sensing in the situation calculus. In Proc. of the Second
International Cognitive Robotics Workshop, Berlin.
Reiter, R. 2001. KNOWLEDGE IN ACTION: Logical
Foundations for Describing and Implementing Dynamical
Systems. MIT Press.
Son, T.; Baral, C.; and McIlraith, S. 2001. Domain de-
pendent knowledge in planning - an answer set planning
approach. In Proceedings of the 6th International Confer-
ence on Logic Programming and NonMonotonic Reason-
ing, 226–239.

