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Abstract

This thesis discusses the automatic acquisition of conceptual distinctions using
empirical methods, with an emphasis on semantic relations. The goal is to
improve semantic lexicons for computational linguistics, but the work can be
applied to general-purpose knowledge bases as well.

The approach is to analyze dictionary definitions to extract the distin-
guishing information (i.e., differentia) for concepts relative to their sibling con-
cepts. A two-step process is employed to decouple the definition parsing from
the disambiguation of the syntactic relations into the underlying semantic ones.
Previous approaches tend to combine these steps through pattern matching
geared to particular types of relations. In contrast, here a broad-coverage
parser is first used to determine the syntactic relationships, and then statis-
tical classification techniques are used to disambiguate the relationships into
their underlying semantics.

There are several contributions of this thesis. First, it introduces an em-
pirical methodology for the extraction and disambiguation of semantic relations
from dictionary definitions. Second, it introduces a statistical representation for
these semantic relations using Bayesian networks, which are popular in artificial
intelligence for representing probabilistic dependencies. Third, it shows how
improvements in word-sense disambiguation can be achieved by augmenting a
standard statistical classifier approach with a probabilistic spreading-activation
system using the semantic information extracted using this process.
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CHAPTER 1
INTRODUCTION

Words are the basic unit of language for conveying meaning (Miller,
1996). Basic word knowledge involves the ability to determine entities that a
particular word might refer to (e.g., the class of objects that can be labeled
by the word). This aspect is referred to as the extension or denotation of the
word (Lyons, 1977). For example, the word ‘dog’ denotes members of Canis
familiaris, whereas the word ‘cat’ denotes members of Felis domesticus. Word
knowledge also involves being able to identify salient aspects associated with
the underlying entities, especially those distinguishing similar concepts. This
aspect is part of the intension or connotation of the word, which also covers a
variety of pragmatic aspects. For example, knowledge about ‘dog’ and ‘cat’ in-
cludes the recognition that dogs and cats are typical pets for humans and also
that dogs make a harsh sound compared to a cat’s soft sound. Strictly speak-
ing, this saliency aspect is more concerned with conceptual knowledge rather
than word knowledge. Nonetheless, lexicons for natural language processing
should include this information as well as basic denotations.

This research addresses how distinguishing properties of concepts un-
derlying word meaning can be acquired from dictionary definitions; that is, the
focus is on the automatic acquisition of conceptual distinctions. In particular,
this thesis aims to improve semantic lexicons for natural language process-
ing by automatically extracting information from conventional English language
definitions. The motivation for the work is that broad-coverage lexicons often
do not provide sufficient information to differentiate sibling concepts. Conse-
quently, words mapping to such undifferentiated sibling concepts are effectively
treated as synonyms. For instance, WordNet’s (Miller, 1990) representations
for the concepts Beagle and Wolfhound are semantically equivalent (i.e., both
specializations of Hound), although they should be quite distinct, especially with
respect to information on typical size.

In the short term, these additional properties for use in word meanings
can help word-sense disambiguation,1 as shown later, by allowing for the de-
termination of more interconnections among word senses. More ambitiously,
extensions to the research could be used to help achieve the long-term goal
of deep understanding, as part of that involves analyzing definition-like descrip-
tions contained in text. A more intermediate extension would be to improve web
searching. Current web search engines do not exploit word meanings when re-
trieving pages relevant to a particular query and instead mainly rely upon word

1The glossary at the end explains some of the technical terms used here.



co-occurrences. Although effective when the words are specific, this lack of un-
derstanding can lead to extraneous results that users must sift through. As with
word-sense disambiguation, interconnections among the concepts underlying
words can be exploited to filter out unlikely cases.

The acquisition of distinguishing information has been addressed by var-
ious approaches in the past. However, most of the previous work has relied
upon manually derived extraction rules. This has limited the coverage of the
associated system as well as introduced a bottleneck in the adaptation to new
types of information. Previous approaches also tended to be specific to partic-
ular dictionaries, for example, by taking advantage of the lexicographic conven-
tions used by a particular dictionary publisher.

There are several contributions of this thesis. First, it introduces an em-
pirical methodology for the extraction and disambiguation of semantic relations
from dictionary definitions. Second, it introduces a statistical representation for
these semantic relations using Bayesian networks (Pearl, 1988), which are pop-
ular in artificial intelligence for representing probabilistic dependencies. Third,
it shows how improvements in word-sense disambiguation can be achieved
by augmenting a standard statistical classifier approach with a probabilistic
spreading-activation system using the semantic information extracted using this
process.

The rest of this chapter is organized as follows. Section 1.1 presents
a high-level overview of the research presented in later chapters. Section 1.2
follows with motivation for this work both from within natural language process-
ing (i.e., computational linguistics), as well as from other disciplines, namely
psychology and lexicography. Section 1.3 then presents more details on the
contributions of this thesis. Lastly, Section 1.4 outlines the rest of the thesis.

1.1 Overview and Example

High-quality lexicons are critical for natural language processing applica-
tions. Words are generally defined in terms of other words via lexical relations.
Computational lexicons are quite effective at specifying the denotative aspect of
the meaning of a given word, in particular through type specifications and gen-
eralization relations. However, they are not good at conveying distinguishing
relationships, such as for words of the same type. For instance, even though
WordNet (Miller, 1990) recently introduced over 6,000 domain category and lo-
cation assertions in Version 2.0, about 38% of the concepts (i.e., synsets) for
nouns are still not explicitly distinguished from sibling concepts. In effect, this
leads to over 25,000 extraneous synonyms. This problem also exists to a lesser
extent with traditional knowledge bases, such as Cyc (Lenat, 1995), of which
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computational lexicons are a special case. The main reason for this lack of pre-
cision is that encoding differentiating assertions is more time-consuming than
adding categorical assertions.

Dictionaries are a prime source of differentiating relations. In fact, dictio-
naries have evolved from simple word lists into encyclopedic reference works
(Landau, 2001), making them repositories of important distinguishing charac-
teristics for words similar in meaning. Several reasons account for the differ-
entiating aspect of definitions. One is that dictionaries are often perceived as
authorities on language. Another reason for this is that publishers usually have
tight space constraints.

This thesis presents an approach for extracting differentiating informa-
tion (differentia) from dictionary definitions. This information encompasses at-
tributes such as has-size as well as functional relations such as used-for. Un-
like previous approaches, the thesis emphasizes empirical methods, providing
for more robust and adaptable extraction. Earlier extraction approaches have
relied predominantly on manually derived rules for this process. A drawback is
that the inclusion of more relations necessitates additional rule development.
Instead, an empirical approach is taken to address this problem by exploiting
existing annotations on relation usage, in particular, from the Penn Treebank
(Marcus et al., 1994) and Berkeley’s FrameNet (Fillmore et al., 2001). This in
effect replaces the manual rule construction of knowledge-based approaches
with manual text annotation. Thus, there still is a bottleneck before the acquisi-
tion of new types of relations can be acquired. However, the use of annotations
allows for more flexibility because less technical training is required to prepare
them. It also might be possible to approximate relation annotations by para-
phrasing assertions from knowledge bases (e.g., Cyc). As discussed later in
Section 4.3.4.1, one approach is to use corpora to extract text that most likely
refers to the same information as that contained in the assertions (e.g., “dryer
is for drying” given the assertion 〈drying, is-function-of , dryer〉).

Figure 1.1 shows the overall steps involved in enhancing a computa-
tional lexicon with differentiating information from dictionary definitions. The
process requires three input resources. The Basic Lexicon is assumed to con-
tain mappings from words to concepts, along with hierarchical relations for the
concepts. WordNet is used here, but other semantic lexicons could be used
(e.g., the one in Cyc). The Dictionary is an English language dictionary. For
simplicity, the definitions from WordNet are used here. The Corpus consists of
annotations on word-sense distinctions and relation usage in English text. This
currently uses the word-sense annotations from Extended WordNet (Harabagiu
et al., 1999) and the relation annotations from Treebank and FrameNet.

There are two main steps in the extraction process. During Differentia
Extraction, the definition text is parsed, and the output converted into a list of

9



<dog#1, has−part, coat#3>

She has a cat with#has−part large paws.
<spaniel#1, is−a, dog#1>
<dog#1, is−a, mammal#1>

CorpusDictionary
Lexicon
Basic

Enhanced
Lexicon

Extraction Disambiguation
Step 1: Differentia Step 2: Differentia

<dog, size, medium>

<coat, attribute, silky>

<dog, with, coat>

spaniel: medium−sized dog with silky coat

<dog#1, size, medium#1>

<coat#3, attribute, silky#1>

The animal’s coat#3 is rough.

Figure 1.1: Overview of differentia extraction and disambiguation. Sample
data is simplified version of actual input.

relational tuples. The components of the tuples at this stage are just words
taken from the definition. During Differentia Disambiguation, the words are
disambiguated to produce relations involving concepts. The example in Fig-
ure 1.1 shows that the content word ‘coat’ was disambiguated into the sense
coat#3 and also that the preposition ‘with’ was disambiguated into has-part.
This second step is the focus of this thesis. In addition, the emphasis is on the
disambiguation of prepositions, which has received much less attention than
content-word disambiguation.

1.2 Motivation

It almost seems self-evident that differentiating relations are important
for inclusion in semantic lexicons (or in knowledge bases in general). However,
in practice, this type of information is often overlooked. Therefore, this section
presents support for why it is important to incorporate such information.

1.2.1 Differentiating Relations are Important

There are several reasons why differentiating relations (i.e., differentia)
are needed for natural language processing. The main motivation is that these
are the properties that distinguish similar concepts from one another. Without
accounting for them, applications would not be able to recognize the important
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characteristics of particular concepts. Although some of these characteristics
might emerge from corpus analysis, such analysis would also yield incidental
associations not important for categorization. In other words, extracting the
properties from definitions provides a more direct means of obtaining this infor-
mation than other approaches, such as corpus analysis; and, in some cases,
this might be the only automated way to obtain the information. Nonetheless,
depending on the application, other approaches could be useful in order to
maximize the information available. This section discusses in depth why dif-
ferentiating relations are needed, and it shows why dictionaries are the best
resource for extracting them.

1.2.1.1 Support from Lexicography

Dictionary definitions emphasize differentiating relations, because most
dictionaries adhere to the analytic type of definition (Ayto, 1983, p. 89):

The basic tool of lexicographic semantic analysis is in fact mir-
rored on the dictionary page, in the form of the classical ‘analytic’
definition. This consists of a ‘genus’ word designating a superor-
dinate class to which that which is defined belongs, and ‘differen-
tiae,’ which distinguish it from others in the same class.

There are several historical reasons for the predominance of this type of def-
inition, including tradition and the influence of classical logic (Béjoint, 1994).
Even so, the format does suit the needs of most users. Consider the main pur-
pose of dictionaries: they are often perceived as ‘authorities’ on word meaning
(Kilgarriff, 1997). Publishers often capitalize on this perception, such as in the
following advertisement for Merriam-Webster’s Collegiate Dictionary:2

This best-selling dictionary is the ‘voice of authority’ with an in-
depth quality that has earned the trust of schools and scholars for
several generations.

There are two complementary aspects to the “dictionary as authority.”
An author might use a dictionary to make sure she is using a particular word
in a commonly recognized sense. If her intended usage differs considerably
from the senses detailed in the dictionary, she would probably consider reword-
ing the selection. In contrast, a reader might use a dictionary to determine the

2From http://stage1.worldbook.com/products/htmla/mw.htm.
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meaning of an unknown word or of an unfamiliar sense of a known word. The
first aspect (word choice) is addressed by having a dictionary concentrate more
on the differences in word meanings rather than commonalities; in contrast,
a thesaurus addresses commonalities. The analytic definition clearly fits this
need. The second aspect (word understanding) is addressed by having a dic-
tionary use common language in the definitions whenever possible. Because
this leads to the use of overly general category terms (i.e., the genus terms),
more differentiation in the definitions is required for precision (i.e., the differen-
tiae), again making the analytic definition suitable. For instance, consider the
LDOCE3 definition of ‘money’ versus the corresponding one in WordNet.

definitions for ‘money’:

LDOCE pieces of metal made into coins, or paper notes with
their value printed on them, given and taken in buying
and selling

WordNet the most common medium of exchange; functions as
legal tender

The LDOCE definition incorporates more common terms than the WordNet def-
inition, making it easier to grasp. This requires the use of additional differentiat-
ing information, for instance, to distinguish money from other “pieces of metal.”

Dictionaries typically just relate a word sense to an underlying concept
and provide enough information to distinguish it from other words related to the
same concept. That is, it is assumed that the underlying concept is understood
and need not be described; otherwise, an encyclopedia could in principle be
consulted. The emphasis again is on what distinguishes particular concepts
rather than on describing them in detail.

1.2.1.2 Support from Psychology

Distinguishing features play a prominent role in categorization. For in-
stance, in Tversky’s (1977) influential contrast model, the similarity comparison
incorporates factors that account for features specific to one or the other cate-
gory, as well as a factor for common features:

S(A, B) = θf(A ∩ B) − αf(A − B) − βf(B − A)

3LDOCE is the Longman Dictionary of Contemporary English (Procter, 1978).
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where f(X) is a salience measure over a set of features and θ, α, and β
are weighting factors.

By having separate weighting factors for the differences, this accounts for the
common intuition that similarity is asymmetric. For instance, consider the dif-
ferences in the following comparisons:

Butchers are like surgeons.
Surgeons are like butchers.

In these comparisons, the distinctive features of the italicized terms set the
stage for the analogy. In addition, Tversky later conducted experiments (Gati
and Tversky, 1984) showing that in certain cases, the distinctive features are
given more weight than common ones. Similar results are reported in (Medin
et al., 1993).

Rosch’s research into the use of family resemblances in categorization
highlighted the use of distinctive features as well as common features in cat-
egorization, especially with respect to natural categories, which are those for
which people can readily associate typical members (Rosch, 1973; Rosch and
Mervis, 1975). For instance, chair is a natural category, but not furniture. Natu-
ral categories are also referred to as basic-level categories, because they tend
to occur at the level in a taxonomy where most of the information resides with
respect to attributes (Rosch, 1973; Rosch and Mervis, 1975). One important
finding was that natural categories are generally organized to maximize the
similarity within a class and to minimize the similarity across classes. In effect,
categorization relies on distinctive features through the use of cue validities,
which refers to the degree to which a feature is associated with a particular cat-
egory compared to the association with contrasting categories. In probabilistic
terms, cue validity is the conditional probability of a class given a feature (Smith
and Medin, 1981):

cue validity of feature Fi for class Cj:

P(Cj|Fi) =
P(Fi|Cj)

P(Fi|Cj) + P(Fi|Ck)

where Ck is a concept that contrasts with Cj (assuming just one for sim-
plicity).

Rosch further noted that class prototypes are those members or abstract rep-
resentations that maximize the total cue validities. Thus, the notion of family
resemblances can be cast in terms of cue validities, but she prefers the former
term for clarity.
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1.2.1.3 Support from Knowledge Representation

Conceptual knowledge is commonly organized into hierarchies called
ontologies (Mahesh and Nirenburg, 1995). The concepts in these hierarchies
are usually partially ordered via the instance and subset relations (i.e., is-a and
is-subset-of ). Each is a relation of dominance, which Cruse (1986) considers
as the defining aspect of hierarchies. This ontological structure is implicit in dic-
tionaries in the relations among the genus terms, each of which corresponds
to a concept serving as the general category for the meaning of a word. Cruse
(1986) points out that an important part of branching hierarchies is the horizon-
tal differentiation among siblings. (Non-branching hierarchies correspond to a
simple linear ordering and thus only require a relation of dominance.) Without
the differentiating relations, the information in hierarchical lexicons would only
indicate how the concepts represented by words are ordered without indicating
differences among the concepts.

Manually derived lexicons, such as the one for English in the Mikrokos-
mos system for machine translation (Onyshkevych and Nirenburg, 1995), often
contain differentia in the rich case-frame structures associated with the under-
lying concepts. This contrasts with semi-automatically derived lexicons such as
WordNet (Miller, 1990), which emphasize the lexical hierarchy over the underly-
ing semantics. For instance, Mikrokosmos4 averages about 2.4 properties per
concept (including some inverse relations), whereas WordNet5 averages only
1.3 (including inverses).6

This suggests that the reason large-scale lexicons tend not to include
such differentiating relations is due more to the difficulty in automatically ex-
tracting the information than to the relative worth of the information. This holds
for both fully automated and partially automated lexicons. Hirst (1986) goes a
step further by advocating the inclusion of case structures to standard dictio-
naries, in the same manner that learner’s dictionaries indicate verbal subcat-
egorization frames. This would provide a common resource for more-detailed
language knowledge, useful for humans as well as for computerized process-
ing.

41998 version of Mikrokosmos (crl.nmsu.edu/Research/Projects/mikro/index.html).

5Version 1.7 of WordNet (www.cogsci.princeton.edu/˜wn).

6Properties refers to functional relations, attributes and part-whole relations (e.g., is-
member-meronym-of ), excluding just the instance and subset relations. WordNet 1.6
only averages 0.64 properties, so version 1.7 represents a substantial improvement.
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1.2.2 Dictionary Definitions are the Best Source of Differentiating Relations

As mentioned earlier, corpus analysis is unlikely to be an effective source
of differentiating relations. For example, collocations7 for a particular word (or
word sense) might include words that indicate aspects covered by the differen-
tiating relations. They would include other types of relations as well, ranging
from strict categorial relationships through generic relatedness down to mere
coincidence. However, as generally used, collocation sets are just “bags of
words,” so that there is no indication of which words indicate which properties.

As an illustration, consider what information collocations might provide
for the words ‘city’ and ‘state,’ both taken in the administrative sense. Figure
1.2 illustrates the variety of collocational words obtained when using a standard
conditional probability test to select collocations indicative of a particular sense
(Wiebe et al., 1997). Note that there is very little overlap among the collocations
for the two senses, although they are clearly related. The two words that over-
lap, ‘commissioner’ and ‘license,’ only involve situational relationships to both
senses (Morris and Hirst, 1991). However, the main point to note is that there
is no mention of ‘state’ in the collocation list for cityADMIN (or vice versa), except
for a few states listed along with other proper names. The closest connection
would be through ‘municipal,’ listed under the collocations for stateADMIN. Thus,
the fact that cities are governed by states would not be readily inferable by this
type of corpus analysis. (A similar result holds for collocations selected from
the Wall Street Journal portion of the DSO corpus.)

In summary, distinguishing properties are not likely to emerge from sta-
tistical analysis of raw corpora using current techniques. Therefore, at least for
the time being, the best source for them is dictionary text. Although definitions
indicate differentiation using standard conventions, there is the complication
that they are given in natural language, which leads to the usual problems with
structural and lexical ambiguities during analysis. The only other viable alter-
native is manual encoding of lexicons, which is undesirable due to the amount
of time required. Atkins (1995) estimates that it would take 100 person-years
to properly develop a semantic lexical database comparable in scope to a stan-
dard college dictionary.

7Collocations are used here in the broad sense of words that co-occur often in
context: there are no constraints on word order, etc.
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city: an incorporated administrative district established by state charter

administration animal battle both calendar can- candidate care choose close
collection commission commissioner condition convert coordinate council
county critic defence department dependent develop dog ease effectively
employes end estimate exception fee fight file finance financial fireman fiscal
gladden government hand hear improve interest island lead leader license
lively local locally majority narcotic organize outspoken pay personnel political
possible problem property propose purchase raise range reaction reply rule
serious service sewer six tax teamster union valley vary welfare year yesterday

state: the territory occupied by one of the constituent administrative districts of
a nation

adjust adjustment air allot allotment along assess assessment audio-visual be-
long blind boat bond border bridge century chain chapter coast commissioner
confederacy decry designate divide downward draft eighteenth exceed firm five
force forth four fourteen guard head hill identify immigration impressive inhabi-
tant intangible item legislature license look mail merchant minimum month mu-
nicipal murphy navy nomination non-residents nothing open openly participa-
tion particular peas percentage pick pivot pre-1960 prepare questionnaire race
recoup reduction refer respective respectively secede sell snow southeastern
stay sum tangible taxation team thereby thirteen twenty-five unadjusted uni-
formly upward

Figure 1.2: Collocations for ‘city’ and ‘state’ (in administrative sense).
These were selected from the Brown portion of the word-sense annotated cor-
pus produced by Ng and Lee (1996) at Singapore’s Defense Sciences Organi-
zation (DSO).
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1.3 Contributions of this Research

There are three main contributions of this thesis work: 1) the methodol-
ogy for extracting and disambiguating semantic relations from dictionary text;
2) the representation of these properties using Bayesian networks; and 3) the
use of these semantic relations to improve word-sense disambiguation. Each
of these is discussed briefly in the following subsections.

1.3.1 Empirical Extraction and Disambiguation of Semantic Relations

Previous approaches have mostly used hand-coded pattern matching
rules for extracting relations from dictionary definitions (Vanderwende, 1996;
Barrière, 1997). This can be considered as a top-down, model-driven ap-
proach. This can be very precise, but achieving broad coverage can be difficult.
Instead, we employ a bottom-up, data-driven approach. Specifically, a broad-
coverage dependency parser is first used to determine the syntactic relations
that are present among the constituents in the sentence. Then the syntac-
tic relations between sentential constituents are disambiguated into semantic
relations between the underlying concepts. In other words, the surface-level
syntactic relationships determined by the parser are disambiguated into the
underlying conceptual relationships.

The disambiguation involves each of the three components of the re-
lationships: the source and target terms being related, and the relation type.
Standard word-sense disambiguation (WSD) approaches are used to disam-
biguate the terms being related, but this aspect is not a focus of the research.
Statistical classifiers are used to disambiguate the relation types, exploiting
both tagged corpora (e.g., semantic role annotations) and knowledge bases
for the training data. Relations indicated by prepositions are addressed here,
so the classification can be viewed as preposition WSD. Note that these are
general-purpose classifiers, not ones tied into dictionary text. (See Appendix A
for a primer on statistical classification for machine learning.)

The method of creating these relation type classifiers and integrating
them into the differentia extraction process forms the basis for the most impor-
tant contribution of this thesis (see Chapter 4). Isolating the disambiguation
step from the extraction step in this manner allows for greater flexibility over
earlier approaches. For example, different parsers can be incorporated without
having to rework the disambiguation process. Although quantitative assess-
ments of this flexibility are not provided, the information produced by the pro-
cess has been evaluated by several different human judges (as discussed later
in Section 5.1).
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1.3.2 Representation of Semantic Relations using Bayesian Networks

Often the differentiating information in definitions reflects typical proper-
ties of the concept being described. For example, most beagles have brown
spots. This is modeled by attaching probabilities to each relation that is ex-
tracted from the definition. The result is a semantic network in the form of a
labeled directed graph, where each link has a probability attached indicating
degree of applicability.

To incorporate these probabilities in applications utilizing semantic relat-
edness, the semantic network representing the concept relationships is con-
verted into a Bayesian network, which is a directed acyclic graph (DAG). (See
Appendix B for a primer on Bayesian networks.) The DAG’s are not labeled,
so the various relation types (e.g., is-a, used-for), are conflated into a single
related-to relation. To account for the different degrees to which the various re-
lation types indicate semantic relatedness, the relation strengths from the orig-
inal semantic network are scaled by a factor representing the degree to which
the type of relationship is specific to the concept compared to similar concepts.
This models the salience of a relationship for a particular concept. The result
is a Bayesian network where the nodes represent concepts and the links, the
degree of relatedness between specific concepts. This network can then be
used to implement probabilistic spreading activation.

1.3.3 Improvements in Word Sense Disambiguation

The above Bayesian network representation for the differentiating infor-
mation is utilized to improve a word-sense disambiguation system that uses
both statistical classification as well as probabilistic spreading activation (Wiebe
et al., 1998b). The original system combined analytical knowledge about the
dependencies among word senses in WordNet along with empirical knowledge
for the suitability of particular senses of a word in context. Adding the differenti-
ating relations extracted from the WordNet definition glosses leads to improve-
ments that are statistically significant.

1.4 Organization of Thesis

This chapter has presented an overview of the types of semantic rela-
tions in computational lexicons, emphasizing the importance of differentiating
relations (i.e., differentia). Support for this comes from three different areas.
Lexicographic practice generally dictates the use of the analytic type of defi-
nition where the genus terms indicate general categories and the differentia

18



descriptions indicate how terms mapped to the same category differ. Psycho-
logical research shows the importance of differentiation in categorization, as
in the notion of natural categories, which maximize cue validities (e.g., condi-
tional probability of features given a class). Additional support for this is from
knowledge representation, where manually encoded KB’s (e.g., Mikrokosmos)
generally have a much higher degree of differentiating relations than semi-
automatically ones (e.g., WordNet).

This chapter also illustrates why dictionaries are a prime source for differ-
entia. For instance, corpus analysis is not likely to be sufficiently directed in or-
der to obtain this type of information while minimizing extraneous associations.
The methodology for differentia extraction involves statistical disambiguation
of the relation types, given output of a broad coverage parser over the defini-
tion text. Other contributions of this thesis include a representation supporting
probabilistic spreading activation and two new approaches for word-sense dis-
ambiguation. The remainder of this section describes the organization of the
thesis proper.

Chapter 2 presents related work mainly in lexical acquisition but also
covers work in natural language processing that incorporates machine learning
and Bayesian networks. Chapter 3 discusses how the surface-level relation-
ships are extracted from dictionary definitions, using a general-purpose depen-
dency parser. This concentrates on differentia (i.e., the distinguishing relations
and properties). In addition, the chapter discusses the structure of WordNet
and presents an analysis of the types of semantic relations implicit in the defini-
tions, based on manual annotations that were performed over several hundred
definitions. Note that these definition annotations are just used to provide in-
sight on the types of relations that occur in definitions. Chapter 4 discusses
the disambiguation of the surface-level relationships into conceptual relation-
ships. This briefly covers the disambiguation of the source and target terms
from English words to their most likely word senses, a process which has re-
ceived much attention recently (Edmonds and Kilgarriff, 2002). More emphasis
is placed on the disambiguation of relation types from their English specifica-
tion (e.g., preposition) into the underlying concept for the relation type. The
relation disambiguation exploits large corpora of semantic role annotations in
general-purpose text.

Chapter 5 discusses the application of the work to lexicon augmentation
and word-sense disambiguation, including detailed evaluations for each. This
includes the statistical representation for these relationships using Bayesian
networks, chosen to facilitate integration with common statistical approaches
used in natural language processing (e.g., Bayesian classifiers).

Chapter 6 compares the research to related work in the acquisition of
lexical semantics, with an emphasis on previous work on extracting informa-
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tion from dictionaries. It also sketches out areas for future research, such as
the long-term goal of applying the techniques to general text analysis rather
than just dictionary definitions. Chapter 7 summarizes the work and the main
contributions of the research.

There is also an appendix providing brief primers on areas of artificial
intelligence that might be unfamiliar to readers with general computational lin-
guistic backgrounds. Appendix A explains the general framework for machine
learning and discusses the two main types used in this research. Appendix
B gives a basic introduction to Bayesian networks, which are popular in arti-
ficial intelligence for representing probabilistic relations. Lastly, a glossary is
included for important technical terms as well as those used here in specialized
senses.
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CHAPTER 2
BACKGROUND ON LEXICAL SEMANTICS ACQUISITION

This thesis approaches the task of acquiring conceptual distinctions from
a computational linguistics framework (e.g., computational semantics). In com-
putational semantics, as in linguistics and lexicography, the emphasis is on
word-sense distinctions rather than conceptual distinctions in general. Word
senses can loosely be considered as concepts, albeit ones specialized to differ-
ent languages. For example, the canine senses of the words ‘perro’ and ‘dog’
both refer to the same underlying concept (i.e., Canis familiaris), but strictly
speaking they are two distinct senses.

Lexical knowledge encompasses all the information that is known about
words and the relationships among them. In addition to strictly linguistic knowl-
edge such as phonology, morphology, and grammatical categories, this in-
cludes conceptual knowledge (e.g., semantic categories), and pragmatic knowl-
edge, such as conventional usages for certain words. The emphasis here is on
semantic knowledge in the sense of conceptual meaning rather than associa-
tive or thematic meaning (Leech, 1974). Conceptual meaning corresponds to
the basic denotation for words; in contrast, associative meaning covers stylistic
and connotative aspects, and thematic meaning refers to emphasis due to word
order, etc.

This chapter primarily reviews work in computational semantics related
to the acquisition of word-sense distinctions (Sections 2.2 and 2.3). It also
covers the representation and utilization of such lexical information, as well as
other supporting areas (Sections 2.1 and 2.4).

2.1 Background on Lexical Semantics

2.1.1 Linguistics

Work in linguistics based on generative grammar tends to treat the lex-
icon as an ancillary resource providing information on features such as gram-
matical number and occasionally subcategorizations (Heim and Kratzer, 1998;
van Riemsdijk and Williams, 1986). Although generative grammar does incor-
porate the notions of case and thematic roles, the use is generally restricted
to describing how the roles are assigned by particular governing categories.
In other approaches, case roles are central to the theory. Two examples are
Fillmore’s (1968; 1977) work on case frames and Jackendoff’s (1990) semantic
structures which incorporate thematic relations into his framework for general
cognition (Jackendoff, 1983). Formal semantics work based on the Montague



Case Description
agentive the typically animate perceived instigator
instrumental inanimate force or object causally involved in the situation
dative the animate being affected by the situation
factitive object or being resulting from the situation
locative location or spatial orientation of the situation
objective anything representable by a noun whose role in the situa-

tion is identified by semantic interpretation of the verb

Table 2.1: Case roles identified by Fillmore. Situations refer to both events
and states to simplify the original descriptions (Fillmore, 1968, pp. 24-25).

tradition (Dowty, 1979) accounts more centrally for the semantics of words, such
as through meaning postulates (Chierchia and McConnell-Ginet, 2000); how-
ever, the scope tends to be somewhat limited. There is a variety of other work
in linguistics that can serve as useful resources in computational semantics;
for example, Raskin and Nirenburg (1995) illustrate a methodology for reconcil-
ing various theories of the lexical semantics of adjectives when developing the
framework for a computational system.

Fillmore (1968) holds that deep structure defines the relevant case rela-
tions: surface case relations are often insignificant, because the mapping from
deep structure to surface structure is not one-to-one. Fillmore identifies a half
dozen or so cases that any case system should include, shown in Table 2.1;
but, he feels more would be needed in practice (e.g., benefactive).

Jackendoff (1983) presents a unified framework for representing concep-
tual knowledge for all aspects of cognition, not just linguistic competence. The
representation is an outgrowth of earlier work in artificial intelligence, such as by
Schank and Wilks (Schank, 1973; Wilks, 1975b; Wilks, 1978), discussed later
in Section 2.1.3. Jackendoff’s framework incorporates a few noteworthy inno-
vations. One is that all semantic categories are treated uniformly: in particular,
manners and directions have the same status as things and events. Another is
the emphasis on thematic relations, showing how prepositions play an integral
part in the analysis of several different semantic fields. Later work (Jackend-
off, 1990) builds upon this framework to present a detailed analysis of various
types of natural language expressions. An important aspect of this work is that
the interpretation of adjuncts is given full treatment, a requirement for sentential
interpretations. For example, “Paint ran all over the wall” is represented as

[event GO ([thing paint], [path TO+DIST [place ON+DIST [wall]]])].
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Relation Description
hyponymy z in X ⇒ z in Y (i.e, subset relation)
taxonomy X is a kind/type of Y
meronymy X is part of Y; also called partonymy
cognitive synonymy X exactly equivalent to Y
plesionymy X is similar in meaning to Y
antonymy X is opposite to Y
paronymy X is derived from Y (of different syntactic category)

Table 2.2: Basic lexical relations defined by Cruse. Descriptions are based
on (Cruse, 1986).

Here, the distributive interpretation of the location is indicated by +DIST.
Jackendoff’s conceptual representations of words, called Lexical Con-

ceptual Structures (LCS), tend to be at a coarse level. For instance, distinctions
in meaning of perceptual objects and motion verbs are to be captured else-
where using geometric representations (i.e., via schematics rather than logical
descriptions). Dorr and others at the University of Maryland (Dorr, 1997; Dorr et
al., 1998) have created a large lexical database for machine translation based
on Jackendoff’s LCS. This concentrates on verb structure and incorporates in-
formation from Levin’s (1993) verb classes. Of particular note is the inclusion of
lexical entries for prepositions as this information is often omitted in computa-
tional lexicons. Over 150 prepositions are included with over 500 distinct LCS
structures.

Cruse details the important types of lexical relations with emphasis on
paradigmatic rather than syntagmatic relations. (Paradigmatic relations hold
between elements that can be substituted for one another in the same syntactic
context, whereas syntagmatic relations hold between elements that can occur
together in the same sentential context.) Table 2.2 shows a representative
sample of the basic relations.

The relations delineated by Cruse tend to be at an abstract level. Cer-
tain types of relations useful for representing conceptual distinctions are only
implicitly addressed. For example, accounting for Fillmore’s instrumental rela-
tion would require a configuration within which both the instrument and the fa-
cilitated action are considered as parts. Work in formal semantics tends not to
cover such functional relations much, although there are some notable excep-
tions. Pustejovsky’s Generative Lexicon theory accounts for them in his qualia
structure (Pustejovsky, 1995). This encapsulates aspects of lexical meaning
separate from argument valency structure, decomposition (e.g., subevents),
and type inheritance. Mel’čuk’s Meaning Text Theory (Mel’čuk and Polguere,
1987) accounts for functional relations via lexical functions in his Explanatory
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Combinatorial Dictionary (ECD). For a given headword, the lexical functions
indicate lexemes that serve in a variety of syntactic (e.g., typical object) and se-
mantic relationships (e.g., opposition). Heylen (1995) discusses the connection
between the two theories and shows how most of the qualia components of the
Generative Lexicon can be derived from the ECD.

2.1.2 Lexicography

Work in lexicography provides insight into lexical semantics, especially
in regard to word-sense distinctions. Kilgarriff (1997) criticizes the assumption
of a distinct set of word senses independent of usage in particular applications,
which is often implicit in word-sense disambiguation (WSD) research. One
problem is that lexicographers might distill disparate usages from citation files
into the same sense in a definition. Another is that some senses will not be
covered in dictionaries, as not all the citations can be addressed.

Landau (2001) stresses that most dictionaries represent written language,
since the citations are predominantly from written sources. Therefore, it is not
the ultimate authority on language, just an account of language usage as deter-
mined from written text. In addition, a key constraint on dictionary definitions is
lack of space, which implies that one should treat definitions as potentially be-
ing incomplete or vague about important details needed for fully understanding
a concept.

McCawley (1986) offers some suggestions on how lexicography can be
improved. For example, it would be helpful if dictionaries explicitly indicate
that relational nouns (e.g., ‘husband’) generally involve syntagmatic relations
in context. Therefore, grammatical tags analogous to transitivity for verbs are
desirable. This is related to the problem that definitions tend to emphasize
the referent of the word rather than the specifics of the word itself. Moreover,
dictionaries often do not clearly indicate that such encyclopedic information is
added mainly for the sake of illustration rather than being a critical part of the
word’s meaning.

2.1.3 Computational Semantics

2.1.3.1 Semantic Networks

Quillian’s (1968) work on semantic memory is significant for several rea-
sons. The main contribution is the introduction of semantic networks for knowl-
edge representation, and it was one of the first computational attempts to em-
phasize semantics over syntax. His work centered on encoding entire dictio-
nary definitions. Each word sense is represented by a graph with nodes for
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the defining words and links for the relations between the words, based on the
definition.

Schank (1973) popularized the notion of semantic-based analysis in the
use of conceptual dependencies to represent meaning. The motivations for the
conceptual dependency representation are to facilitate paraphrases, to support
inference, and to model human memory. To this end, a small set of semantic
primitives was developed, with which all expressions were encoded. Concep-
tual categories serve as the basic unit of the representation. Relations among
these conceptual categories are called dependencies. This approach has an
advantage over Quillian’s in facilitating inferences over the encoded meaning
representation. However, subtle distinctions in meaning might be lost in the
conversion process

Wilks’ (1975b; 1978) work was similar in spirit to Schank’s, but he em-
phasized the resolution of lexical ambiguity. Moreover, his representation clearly
distinguishes criterial aspects of word meaning from optional (or preferred) as-
pects. In his basic mode of analysis, interpretation is performed by finding the
set of word-sense formulas maximizing the density of satisfied preferences,
which mainly cover selectional restrictions. However, procedural knowledge
was used in the heuristics for the selection of competing interpretations. Later
extensions (Wilks, 1978) organized the vocabulary through a thesaural hierar-
chy.

Both Schank and Wilks emphasized the use of case relations in their rep-
resentations. Bruce (1975) provides a survey of early uses of cases systems
in natural language processing, as well as providing background on surface
cases versus deep cases. Several criteria for selecting deep cases are dis-
cussed, such as the need for distinguishing word senses, for specifying events
uniquely, and for modeling relevant domain aspects. His definition of ‘case’ is
thus quite generic (Bruce, 1975, p. 336):

A case is a relation which is “important” for an event in the context
in which it is described.

2.1.3.2 Word Experts/Agents

Small popularized the idea of word experts (Small and Rieger, 1982),
which are autonomous agents encapsulating the various aspects of knowledge
regarding a word (or stem, affix, etc.). In his model, the control mechanism is
modeled after the Unix-style processes and demons. Specifically, the word ex-
perts become active only for as long as they can perform useful work, such
as refining a concept based on long-term memory (e.g., world-knowledge).
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When they no longer can do productive work, they suspend themselves until
type-specific interrupts or signals occur. Hirst (1988) developed a declarative
system for representing lexical knowledge, using a conventional frame-based
representational language. This work was influenced by psychological research
into negative priming. To model priming, spreading activation is implemented
via marker passing among nodes in the knowledge base. Hirst proposed the
notion of self-developing objects, called Polaroid Words, for modeling the incre-
mental development of lexical knowledge during comprehension. If the objects
are not fully resolved after the sentence is processed, then several fallback
(procedural) mechanisms are applied, such as selecting preferred senses, and
relaxing the marker passing constraints. Note that Hirst and Small both rely
on word-specific agents to encapsulate lexical knowledge and world knowl-
edge; however, Small’s approach is predominantly procedural, whereas Hirst’s
is mostly declarative.

2.1.3.3 Ontological Semantics

Onyshkevych and Nirenburg (1995) advocate the ontological approach
to lexicon development, where language-dependent information is kept sepa-
rate from general world knowledge that is organized in a taxonomy called the
ontology . A rich frame structure is used for both the ontology and the lexicon.
Concepts are defined in terms of other concepts using a variety of semantic
relations (e.g., is-a, member-of , and has-part). For each lexical entry, the con-
nection between syntax and semantics is established by specifying the corre-
spondence between the grammatical arguments and concepts in the ontology.
This is accomplished via variable linkages between argument placeholders in
the syntactic structure (SYN-STRUC) and concept placeholders in the seman-
tic structure (SEM-STRUC). See Figure 2.1 for an illustration. Simple lexical
mappings are specified directly in terms of a single concept with the lexicon
entry mainly providing syntactic information relevant to the word. Complex lex-
ical mappings can override defaults associated with the concepts and provide
selectional restrictions associated with the word (e.g., verbal arguments).

The Cyc knowledge base (KB) is a large-scale repository of common-
sense knowledge that has been in development for about 20 years (Lenat,
1995), containing over 120,000 concepts and a million assertions. Cyc was
initially developed using a frame-based representation, but it now uses first-
order predicate calculus with a few minor extensions (e.g., some second-order
features for efficient indexing). Natural language lexicons are integrated directly
into the Cyc KB (Burns and Davis, 1999). There are several natural language
lexicons in the KB, kept separate via microtheories, but the English lexicon is
the only full-scale one. The mapping from phrases to concepts is done through
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(book
(book-N1

(cat n) ;; category
(morph) ;; morphology
(anno ;; annotations

(def “a copy of a written work or composition that has been published”)
(ex “I just read a good book on economics”)
(cross-ref)) ;; other lexemes referencing this entry

(syn) ;; syntactic features
(syn-struc ;; syntactic structure

(1 ((root $var0)
(cat n)) ))

(sem-struc ;; semantic structure
(lex-map ;; lexical mapping

(1 (book)) )) ;; to concept book
(lex-rules) ;; lexical rules
(pragm) ;; pragmatics
(styl))) ;; stylistics

Figure 2.1: Mikrokosmos lexical representation for ‘book’. Some of the
zones are left unspecified (e.g., pragm). Descriptions based on (Onyshkevych
and Nirenburg, 1995).
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a variety of lexical assertions. Proper name assertions map strings to individu-
als in the KB. A denotational assertion maps a phrase into a concept, usually a
collection. The phrase is specified via a lexical word unit (i.e., lexeme concept)
with optional string modifiers. In addition, complex subcategorization asser-
tions are used for mapping the arguments of verbs and other predicates into
the underlying semantics.

WordNet (Miller et al., 1990) combines aspects of a traditional dictio-
nary and thesaurus. It is structured around groups of synonymous words
called synsets (for synonym sets). WordNet also provides definitions and us-
age examples; but, more importantly, it provides explicit relationships among
the synsets, emphasizing taxonomic (is-a) and part-whole (has-a) relationships.
Thus, WordNet represents a basic ontology. The main drawback to the Word-
Net ontology is that it is particular to English. Therefore, separate ontologies
would be needed for other languages. The EuroWordNet project (Vossen et al.,
1997) is seeking to tie together separate “wordnets” that are being developed
for several different languages. It is addressing the problem of having separate
ontologies for each language by specifying high-level correspondences.

Hirst (1995) proposed a variation of the ontological approach to lexicon
semantics to account for subtle word-sense distinctions dealing with near syn-
onyms (called plesionyms). The approach sketched out is to represent the
differences among the plesionyms as objects in order that they can be ma-
nipulated directly. He suggests a two-level knowledge representation scheme,
modeled after proposals common in the literature. Course-grained conceptual
knowledge would be stored in a taxonomy, whereas fine-grained language-
specific knowledge is stored in the lexicon. For plesionyms that represent
distinct concepts, differences can be determined by comparing attributes, in-
cluding those inherited from ancestors leading to a common ancestor.

Edmonds (1999) follows up in this line of research by showing how the
differences among near synonyms can be represented using conventional on-
tologies augmented with non-denotational relations to account for the stylis-
tic differences (Edmonds and Hirst, 2002). Specifically, the plesionyms would
have traditional denotations to common concepts (e.g., ‘mistake’ and ‘error’ to
generic-error). In addition, there will be additional relations to account for the
pragmatic information associated with words. These would not provide nec-
essary and sufficient conditions as with the denotations but rather preferences
typical of the words. For example, ‘blunder’ would imply a high degree of perjo-
rativeness. Inkpen and Hirst (2001) discuss how to automate the acquisition of
such fine-grained distinctions by analyzing specialized synonymy dictionaries.
Decision lists of indicative keywords are learned for the broad types of prag-
matic distinctions, and these are then manually split into decision lists for the
particular values of each distinction.
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2.2 Manual Acquisition

Manual acquisition has been most commonly used when the lexicon
quality is critical (Onyshkevych and Nirenburg, 1995). For example, most of
the Mikrokosmos ontology was manually created, as was the core of the lex-
icons. The Mikrokosmos project has also investigated ways of capitalizing on
the existing lexical knowledge in the ontology to help automate the creation
of new lexical entries (Viegas et al., 1996). They stress that even with well-
constrained rules, manual review is inevitable, and thus this cost needs to be
accounted for during semi-automatic lexicon acquisition.

The core of the Cyc knowledge base has been carefully constructed by
knowledge engineers, many of whom have formal backgrounds in logic and
philosophy. Similarly, most of the knowledge in the Cyc Lexicon was manually
entered by knowledge engineers with backgrounds in computational linguistics
or philosophy of language. Some of the lexical information was provided by
knowledge engineers without backgrounds in linguistics, but most of this has
been reviewed by the computational lexicographers at Cycorp.1 Recently, there
has been work on providing interfaces for non-technical users to enter both
general and lexical knowledge into the system (Witbrock et al., 2003), but this
is still in the experimental stages.

WordNet was originally motivated by psycholinguistic principles of mean-
ing representation (Miller, 1996). However, it has become very useful for gen-
eral research in computational linguistics. Princeton’s cognitive science group
(Miller et al., 1993) manually created WordNet, using Collins English Dictionary
as a starting point for the senses. Initially, the definitions were simply used for
clarification rather than for defining word meaning as in traditional dictionaries.
For example, if the combination of words in a synonym set clearly indicated the
intended meaning, then the definition might be omitted. Later, more emphasis
was placed on the definitions, due both to increased ambiguity as WordNet ex-
panded and to requests from users who expected fuller definitions. Recently,
there has been work on making some of the information in the WordNet def-
initions more explicit, using semi-automated techniques as discussed later in
Section 2.3.3.

2.3 Automated Acquisition

Given the cost involved in manual acquisition, it is desirable to automate
the process as much as possible. Complete automation is often not feasible. It

1This information is based on personal experience from when working at Cycorp.
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might even be undesirable, unless the acquired information is similar in quality
as that for manual entry. Otherwise, there is liable to be a considerable amount
of post-editing, depending on the level of detail. This section concentrates on
the acquisition of semantics. There has been much work on acquiring syntactic
information, such as part-of-speech and subcategorization frames (Boguraev
and Briscoe, 1989; Wilks et al., 1996; Litkowski, 1997).

2.3.1 Corpus Analysis

2.3.1.1 Word Classes

Word clustering is commonly used in order to infer classes from un-
tagged corpora. For example, Pereira et al. (1993) determine word class for
nouns based on how similar the distributions are with respect to co-occurrence
with specific verbs, using relative entropy (or divergence) as their similarity
measure:2

D(pn1 || pn2) =
∑
v

pn1(v)log(
pn1(v)

pn2(v)
)

where pn(v) = fvn/
∑
v

fvn. Lin (1998) provides for thesaurus-like classes by

checking for a wide variety of syntactic contexts rather than just direct objects.
A broad-coverage parser is first used to extract dependency tuples of the form
〈word1, grammatical-relation, word2〉. He measures word similarity based on
frequency of the tuples and their constituents using mutual information (Man-
ning and Schütze, 1999), which measures the difference in the joint occurrence

of two events versus the occurrence expected by chance (i.e., −log(
p(xy)

p(x)p(y)
)).

The mutual information (MI) for the co-occurrences of two words in a particular
grammatical relationship is defined as follows:

MI(w1, r, w2) = −log(
(P(r)P(w1|r)P(w2|r))

P(w1, r, w2))

The similarity of two words is then calculated by the ratio of the summed MI
scores for common words that both are related to versus the summed MI scores
for all the words related to either of them.

2Entropy measures the uniformity of a distribution:
∑

x −p(x)log(p(x)). See Ap-
pendix A for more details.
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As seen later, the Longman Dictionary of Contemporary English (LDOCE)
is often used in dictionary analysis (Procter, 1978). Slator et al. (1990) apply
clustering to preposition descriptions derived from LDOCE to infer semantic
classes based on usage. The prepositions are manually annotated as a vector
with features for aspects of the LDOCE definition and for the semantic codes
of the complements used in the examples. For instance, one component is
the set of subject codes for the object of the preposition. A distance metric is
defined and then Pathfinder (Schvaneveldt et al., 1988) is used to reduce the
network of pairwise distances into one in which each link is maintained only if
the transitive closure does not produce a shorter path. The resulting clusters
then represent the classes for the prepositions.

2.3.1.2 Lexical Associations and Selectional Restrictions

Lexical associations derived from corpus analysis have been shown to
be useful for structural disambiguation and other tasks. Hindle and Rooth
(1993) were the first to demonstrate the basic technique. They show how to in-
duce lexical associations from simple syntactic relationships (e.g., verb/object)
extracted using shallow parsing in combination with a few heuristics for resolv-
ing ambiguous relationships. These associations can be considered as condi-
tional probabilities that a particular preposition is attached to the noun or verb,
given that the latter is present. Attachment is resolved by selecting the case
with the higher association. To train the system, they first applied a part-of-
speech (POS) tagger and a shallow parser to a large newswire corpus and
then extracted tuples of the form 〈verb, noun, prep〉 from the parses, where
either the verb or the noun might be empty. Next, heuristics were applied to
associate the preposition with the verb or noun, and the results were tabulated
to produce 〈verb, prep〉 and 〈noun, prep〉 bigram frequency counts.

To decide on the attachment for test data, the POS tagging and parsing
are performed as above, along with the extraction of the tuples. Then, instead
of using the heuristics on each ambiguous tuple (i.e., those with both verb and
noun non-empty), the bigram frequencies are used in a log-likelihood ratio test:

log2
P(verb-attach prep | v, n)

P(noun-attach prep | v, n)

where P(verb-attach prep | v, n) is estimated by freq(verb, prep)/TotalFreq and like-
wise for the noun attachment probability.

Basili et al. (1996b) show how the same type of disambiguation can
be achieved using selectional restrictions that are semi-automatically acquired
from corpus statistics. These are relational tuples of the form 〈word1, relation,
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word2〉. They define semantic expectation as the probability that a pair of con-
cepts occurs in a given relationship, based on the selectional restrictions for
words mapping into the concepts. Manual effort is first required to assign the
high-level concepts to the entries in the lexicon. However, once this has been
done, the rest of the process is automatic (i.e., the determination of the selec-
tion restrictions for particular words). An experiment in deciding prepositional
attachment shows how this method improves upon an extension to Hindle and
Rooth’s (1993) technique.

Building upon this basic framework for determining verb subcategoriza-
tions, Basili et al. (1996a) show how verbs can be hierarchically clustered into
classes. The classification is based on maximizing the extent to which cate-
gories are associated with different attributes, which is similar to the notion of
cue validities discussed in the previous chapter (see Section 1.2.1.2):

K∑
k=1

P(Ck)
∑
i j

P(attri = valj | Ck)
2

This can be seen as minimizing the mean entropy of the distribution of the
likelihood for the attribute values. The attributes are based on the pairings of
thematic roles and conceptual types derived from the relational tuples. The
main advantage of this clustering approach is that the thematic roles can serve
in the semantic description of the classes.

Resnik (1993) has done some influential work on combining statistical
approaches with more traditional knowledge-based approaches. For instance,
he defines a measure based on information content for the semantic similarity
of nouns that uses the WordNet hierarchy along with frequency statistics for
each synset. His technique relies on the use of WordNet synsets to define the
classes over which frequency statistics are maintained. This avoids the data
sparseness problem associated with statistical inference at the word level; the
classes also provide an abstraction that facilitates comparison. For instance,
he defines selectional preference profiles for verbs by tabulating the distribution
of the classes for the verbal subjects and objects. The degree to which verbs
select for their arguments can be summarized by a measure called the selec-
tional preference strength. This is the relative entropy of the distribution for the
conditional probability of the classes given the verb compared to the distribution
of the prior probabilities for the classes:

S(v) = D(P(C|v) || P(C)) =
∑

c ∈ C

P(c|v)log(
P(c|v)
P(v)

)

To find out the preference for a particular class, the selectional association mea-
sure is defined as follows:
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A(v, c) =
1

S(v)
P(c|v)log(

P(c|v)
P(c)

)

This is the relative contribution that the class makes to the selectional prefer-
ence strength.

There has been considerable work on domain-specific case frame ac-
quisition, especially in the context of information extraction. Much of this has
relied upon manually derived extraction rules, such as in the work by Lehn-
ert et al. (1992) at the University of Massachusetts. They later (Lehnert et al.,
1993) implemented steps to partly automate this process, such as in the use
of semantic dictionaries inferred from the training data. Riloff and Schmelzen-
bach (1998) further automate this process by learning selectional restrictions
from corpora. In follow-up work, Phillips and Riloff (2002) show how to learn
semantic categories for words using highly constrained syntactic patterns (e.g.,
appositive with proper noun followed by common noun).

2.3.1.3 Translation Lexicons

In addition to analyzing large corpora of the same language, there have
been several projects that have used bilingual corpora of the same text in differ-
ent languages, for example, transcripts of the Canadian parliament (Hansards)
in French and English (Brown et al., 1990). Once the sentences have been
aligned, fairly accurate lexical associations can be made between synonymous
words in the two languages (Gale et al., 1993). This has the advantage of pro-
ducing a quick and dirty translation lexicon tuned to a particular corpus. It has
also been found to be useful in lexical ambiguity resolution, since an ambigu-
ous word might be consistently associated with different unambiguous words in
the other language (Dagan et al., 1991).

Fung and Church (1994) present a simple approach for inducing a trans-
lation lexicon given two parallel texts. Both texts are divided in fixed blocks of
a given size. For each word in the text, a vector of the block size is produced
indicating if the word occurs in each of the blocks. Given the occurrence vec-
tors, contingency matrices are produced and used to derive mutual informa-
tion statistics. More sophisticated models for word alignment were developed
specifically for machine translation (MT). The models originally developed at
IBM are now available in the publicly available statistical MT package GIZA

(Brown et al., 1993; Al-Onaizan et al., 1999). Melamed (2000) discusses lexi-
con induction in depth and presents a formal statistical model for the process.
He improves upon earlier approaches via his Competitive Linking algorithm,
which does not allow word linkages to be considered twice when inducing the
translation lexicon.
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2.3.2 Lexical Rules

In computational semantics, most of the work involved in exploiting ex-
isting manually encoded knowledge deals with lexical rules. There has been
much work on the coercion of count nouns into mass nouns (and vice versa),
such as the ‘grinding rule’ (Briscoe et al., 1995), a special case of which covers
animal terms becoming mass nouns when referring to the food (e.g., “Let’s have
chicken tonight.”). Gillon (1999) generalizes this and similar cases to a rule that
converts a count noun usage for any object to a mass noun usage referring to
an aggregate part of the object (e.g., meat in the case of the animal grinding
rule).

As mentioned earlier, Viegas et al. (1996) use lexical rules to extend the
Mikrokosmos lexicons. For instance, they use lexical rules to infer morphologi-
cally related entries for Spanish verbs, using online dictionaries and corpora to
guard against overgeneration. For example, the entry for ‘comprador’ (buyer)
would be derived from the one for ‘comprar’ (to buy). They also point out difficul-
ties associated with lexical rules, such as for English adjectives. For example,
‘-able’ is a very productive affix for converting a verb into an adjective, but it
is not applicable to all senses of the verb or involves a restricted interpretation
(e.g., ‘perishable’ does not apply to humans).

Briscoe et al. (1995) present a formal account of how to model defaults
in the lexicon while still allowing the defaults to be overridden. At issue is how to
allow for blocking of lexical rules (for inheritance networks) in certain situations,
such as when another lexical item is equivalent. For instance, the animal grind-
ing is normally blocked for ‘cow’ since another word, ‘beef’, already accounts
for it.

Pustejovsky’s Generative Lexicon (1995) can be seen as formalizing the
use of lexical rules. The main goal of the Generative Lexicon is to minimize
the need for enumerating different senses of a word by providing operations
for deriving most senses for a word from a core sense. This contrasts with the
standard approach based on traditional lexicography (“sense-enumeration”), in
which numerous distinct senses are listed for particular words. To reduce re-
dundancy, senses are derived in context: with type coercion, the semantic type
of an object is changed to suit the predicate (e.g., event interpretations of static
objects when used with certain verbs); in contrast, with co-compositionality, the
interpretation of predicates adapts to that of the arguments (e.g., creation-event
interpretation of verbs when used with certain objects).
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2.3.3 Analysis of Dictionary Definitions

Around 1980, a trend began towards building more realistic applications
for natural language processing. Earlier work, in addition to being restricted
to specialized domains, generally dealt with limited lexicons. Therefore, the
analysis of machine-readable dictionaries (MRD’s) became a popular way to
overcome this limitation. The initial approaches concentrated on using the infor-
mation explicitly provided, such as grammatical codes, with the exception that
definitions were analyzed to establish the is-a hierarchies that were implicitly
specified for the terms defined. Much work was done with LDOCE, partly be-
cause of favorable research licensing but mainly due to its controlled vocabulary
of defining terms and its use of explicit grammatical codes. For a good survey
of early LDOCE-related research, see the collection of papers in (Boguraev and
Briscoe, 1989). This illustrates some of the difficulties commonly encountered,
such as format errors in the typesetting and inconsistencies in the definitions.
See (Wilks et al., 1996) for a comprehensive survey of work on MRD-related
research, including good discussions on its historical development and on the
philosophical issues involved.

The main contribution of Amsler’s (1980) thesis is the development of
procedures for the extraction of genus hierarchies from MRD’s. This is a man-
ually intensive process because the genus terms must be disambiguated by
human informants. The noun and verb hierarchies extracted from the Merriam-
Webster Pocket Dictionary were analyzed in depth. In addition, this work con-
tains useful information on other aspects of analyzing dictionary definitions: 1)
the analysis of the differentia descriptions commonly used in motion verbs, 2)
suggestions for parsing dictionary definitions, 3) indications of what might be
expected from a deep analysis (e.g., unraveling morphological relations), and
4) a technique for disambiguating dictionary definitions based on word overlap.
A similar disambiguation technique was popularized by Lesk (1986); this is dis-
cussed later in Section 2.4.3. Note that these analyses establish a practical limit
for what might be expected from automated analysis of dictionary definitions.

Alshawi (1989) discusses how to extract semantic information from dic-
tionary definitions. This represents one of the first attempts to extract infor-
mation outside of the genus terms. Pattern matching rules are applied to the
definitions; an example follows, given here as extended regular expressions:

genus-identification:
N .* (DET)? .* (ADJ)* (NOUN)?

predication-extraction:
N (DET)? (ADJ)* (NOUN)* NOUN THAT-WHICH 〈VERB-PRED〉
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Markowitz et al. (1986) illustrate several common patterns used in dictio-
nary definitions. Some are specifically used to resolve the genus relationships
given uninformative genus headwords such as ‘any.’ This is the empty-head
problem noted by Bruce and Guthrie (1991). One common pattern for these is
Any-NP or Any-of-NP, in which the genus is given by the NP element. There is
a special case of this pattern for definitions of terms in biology:

x: any of / [modifier ] taxon (formal name) / of [modifier ] superordinate /
attributes

grass: any of a large family (Gramineae) of monocotyledonous mostly
herbaceous plants ...

Jensen and Binot (1987) also use pattern matching over definitions to
determine whether certain relations hold (e.g., instrument and part-of ); how-
ever, they perform matching over the output from a parser rather than just us-
ing string matching over words or parts of speech. This extraction is in support
of a system for resolving prepositional phrase attachment. When making at-
tachment decisions, they first check whether the definition of the preposition’s
complement has a pattern indicative of one of the relations considered. They
then check for linkages to the headword of the governing constituent for the
attachment, using the hierarchy of the definition genus terms.

Wilks et al. (1989) describe three different methods for analyzing LDOCE.
All deal with aspects of converting the information in LDOCE into a lexical
knowledge base. The first method is based on co-occurrence analysis of the
controlled vocabulary usage in the definitions and examples. Using Pathfinder,
reduced networks are produced showing the connectivity of related terms. Com-
parisons of the co-occurrence-based semantic relatedness scores versus hu-
man ratings show high correlations. The second method is based on boot-
strapping a lexicon from a handcrafted lexicon for a subset of the controlled
vocabulary. The third method, called the Lexicon-Producer, creates lexical en-
tries based on the explicit information in the online version of LDOCE (e.g.,
grammar code, semantic restriction “box code”, and subject code), as well as
from pattern matching over parses of the definition to yield the genus term, ba-
sic features (e.g., modifiers), and some functional properties (e.g., used-for ).
Two methods are described for using this information. One is the Lexicon-
Consumer, which parses text using the word-sense frames from the Lexicon-
Producer. The other is the system of collative semantics, which is designed for
producing mappings between sense frames to capture their relatedness.

Slator and Wilks (1987) sketch out an approach for deriving rich lexi-
cal entries from the information present in LDOCE, augmenting the Lexicon-
Producer. The definitions are parsed to extract information from the differentia.
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Cause Domain
Hypernym Location
Manner Material
Means Part
Possessor Purpose
Quasi-hypernym Synonym
Time TypicalObject
TypicalSubject User

Table 2.3: Relations extracted by Vanderwende’s system. Adapted from
(Richardson, 1997, Table 2.1).

The parse tree is added to the entry as well as case information derived via
pattern-matching rules. A preliminary investigation of the patterns in LDOCE
suggests that the case usage is fairly uniform. Guo (1995a) later fleshed out
the bootstrapping process mentioned above as part of his thesis work. Lexical
entries are created by parsing the LDOCE definitions, guided by the manually
encoded preference knowledge for a subset of the controlled vocabulary. These
consist of thematic-style relations for pairs of word senses. This information is
used primarily for word-sense disambiguation of the definition text. Analysis
of the definitions and example sentences yields further preference information;
and, inductive machine learning techniques are used to generalize these via
the genus hierarchy to cover a larger number of cases.

Vanderwende (1996) extracts detailed semantic information from LDOCE,
building upon the work of Jensen and Binot (1987), again that uses a general-
purpose parser rather than string matching (e.g., over words or parts of speech).
Subcategorizations are only used to guide the parse, not to rule out poten-
tial parses, which is important because definitions incorporate ellipsis more so
than normal text. The following is a typical rule from her system (Vanderwende,
1996, p. 193):

LOCATION-OF pattern: if the hypernym is post-modified by a rel-
ative clause which has as its relativizer where or a wh-PP with the
preposition in, on, or from, then create a LOCATION-OF relation
with the head of the relative clause as the value.

In addition to extracting thematic roles, similar rules are used to extract func-
tional information, such as the underlying subject and object for embedded
verbals. The full set of relations extracted is shown in Figure 2.3.
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Barrière’s (1997) thesis illustrates how to acquire semantic knowledge
from a dictionary written for children, in particular the American Heritage First
Dictionary (AHFD). There are four basic steps in her process: parsing the defi-
nitions using a general grammar; transforming the parses to conceptual graphs;
disambiguating the lexical relations in the conceptual graphs; and, combin-
ing the conceptual graphs from different definitions. Her parser uses a simple
context-free grammar with some customization to dictionary definitions, such as
the use of a “meaning verb” category. The conversion into conceptual graphs
is a surface-level transformation from the parse tree into the conceptual graph
notation. Some rules are more general than required for dictionary definitions
to account for the AHFD’s typical-usage sentences (e.g., “ash is what is left ...”).

Barrière uses semantic relation transformation graphs (SRTG’s) to ex-
tract relations from the initial conceptual graph representation resulting from
the shallow parses for the dictionary entries. Some rules are quite specific and
lead to unambiguous semantic relations; others are mainly heuristics about
plausible interpretations. Table 2.4 lists the relations extracted by her system.
As can be seen, some of these are special purpose (e.g., home as in “a hive is
a home for bees”). A sample rule from her system follows:

Name: PART-OF
Description: part of an object
CG Representation: (part-of)

Sample definitions:
an arm is a part of the body
pines have needles on their branches

Before:
[something:A]←(agent)←[be]→(object)→[part]→(of)→[something:B]

[something:B]←(agent)←[have]→(object)→[something:A]

SRTG:
[something:B]→(part-of)→[something:A]

Nastase and Szpakowicz (2003) use Longman’s dictionary to augment
WordNet with noun-verb relatedness relations (e.g., derived from). They take
advantage of LDOCE’s controlled vocabulary in order to establish connections
between the noun and related verb. Word sense disambiguation of the defini-
tions is needed prior to establishing connections with WordNet, and this is done
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About Accompaniment Act
Agent As Attribute
Cause Content Direction
During Event Experiencer
Frequency Function Goal
Home Instrument Intention
Like Location Manner
Material Method Modification
Name Object Obligation
Opposite Path Possession
Process Recipient Result
Sequence Synonymy Taxonomy
Transformation

Table 2.4: Relations extracted by Barrière’s system. Based on transforma-
tion rules in Appendix E of (Barrière, 1997).

via a simple word overlap algorithm similar to Lesk’s (1986) approach. In ad-
dition, the relation type that holds between the noun and verb is inferred using
classifiers induced over tagged examples.

The Extended WordNet (XWN) project represents one of the most ambi-
tious attempts at extracting differentia from dictionary definitions (Harabagiu et
al., 1999; Moldovan and Rus, 2001). The main goal is to transform the defini-
tions into a logical form representation suitable for drawing inferences, such as
for question answering; in addition, the content words in the definitions are be-
ing disambiguated with respect to the WordNet sense inventory (i.e., synsets).
Given the open-ended nature of the task, they use a logical form that is closer
to the surface-level representation than to deep semantics. For example, there
will be predicates for each of the content words in the definition, as illustrated
for ‘supporter’:

supporter: a person who backs a politician
⇒ [person:n(subj1) & back:v(e1,subj1,obj2) & politician:n(obj2)]

In addition, there will be separate predicates for prepositions, as well as for
some other functional words (e.g., conjunctions). They achieve high precision
in the transformation into logical form by concentrating on the commonly oc-
curring grammar rules that occur in their parses (Rus, 2001; Rus, 2002). For
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these cases, manually encoded transformation rules are developed, as in the
following one for handling past participles:

NP → NP VP ⇒ noun(obj2) & verb(e, subj1, obj2).

Barnbrook’s (2002) definition analysis is more in the vein of language
exploration, in particular for the genre of definitions for language learners. He
analyzes definitions from Collins Cobuild Student Dictionary (CCSD), a sim-
plified version of Collins Cobuild English Language Dictionary. In the Cobuild
dictionaries, definitions use complete sentences incorporating the headword. In
addition, information about grammatical function and usage pragmatics are in-
dicated implicitly in the definition rather than explicitly using various typographic
conventions (e.g., grammar codes and usage labels). Therefore, his grammar
was developed to account for this non-traditional definition style, so that the
definition proper can be isolated correctly from the rest of the sentence con-
stituents. As an illustration, about 24% of the definitions in CCSD are defined
using initial ‘when’ clauses containing the headword. For example,

When a country liberalizes its laws or its attitudes, it makes them
less strict and allows more freedom.

Such cases are used mostly for verbs with the ‘when’ clause setting the back-
ground for the action description.

There have been a few papers criticizing work on extracting information
from machine-readable dictionaries. Amsler (1995) suggests that dictionaries
are perceived by computational linguists as being more definitive than they ac-
tually are. However, there are problems due to lack of uniformity in the quality
of different dictionaries. He further notes that the information might not be suit-
able for a broad range of uses. Ide and Véronis (1993) provide more details
on uniformity issues, particularly with respect to the genus hierarchies. They
point out how differentiating relations are included haphazardly. For instance, in
the definitions of ‘abricot’ (apricot) and ‘péche’ (peach) in three different French
dictionaries, only peach is described as having a hard pit. These criticisms
highlight that it will not be sufficient to rely solely on dictionaries as a basis for
a knowledge base.
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2.4 Supporting Areas

This thesis covers areas outside of lexical semantics as well. A brief
review of the some of the previous work is included here to provide background
on some of the material that might be unfamiliar.

2.4.1 Semantic Relatedness

Richardson (1997) discusses how to determine semantic relatedness
based on the information extracted from MRD’s, incorporating relations ex-
tracted using Vanderwende’s (1996) techniques. This forms the basis for Mi-
crosoft’s MindNet system (Richardson et al., 1998), a semantic network with
weighted semantic links between arbitrary words and named entities. All the
relations extracted from the same definition are first grouped into the same
structure, with backward links made explicit in the network. To alleviate prob-
lems due to ambiguous words, paths are generally restricted to occur within
a single structure. Extended paths are possible, but there is a penalty based
on the frequency of the joining word. The highest weighted path between two
words can be used to determine the relatedness of the words.

Hirst and St-Onge (1998) determine semantic relatedness based on the
WordNet links between words. Strong relatedness is assigned if the words
occur in the same synset or if they are in a sibling relationship. For medium
relatedness, specific patterns for WordNet have been determined. For example,
an upward direction is not allowed following a downward direction segment. In
addition, only one change of direction is permitted.

2.4.2 Relation Weighting

Richardson (1997) also developed a novel procedure for weighting se-
mantic relationships, using notions derived from the weighting of terms in in-
formation retrieval by the combination of term frequency (TF) and inverse doc-
ument frequency (IDF), which is referred to as TF*IDF. Specifically, a term’s
weight is proportional to its overall frequency but inversely proportional to the
number of documents it occurs in. This scheme is adapted to weighting rela-
tions derived from definitions by considering the set of definitions for the same
word as a document. He uses semantic relations in place of terms, so the fre-
quencies are those for the relational tuples. In addition, in place of TF*IDF, he
uses a technique, called averaged vertex probability , that combines frequency
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scaling and probability smoothing. Frequent relations are scaled back when-
ever the frequency exceeds that of the vertex of a Zipfian hyperbolic function.3

2.4.3 Word-sense Disambiguation

Many distinct approaches have been developed for disambiguating words
in context (Ide and Véronis, 1998). These differ in the amount of training data
that is needed beforehand and in the range of words that are targeted. Su-
pervised approaches are quite precise but they only target a limited number
of words, specifically those for which there are sufficient annotations on the
senses that occur in text. Unsupervised approaches do not require annota-
tions for the words to be disambiguated, so they can be applied to all words
in the text, although with reduced precision. There are also hybrid approaches
that use a supervised approach to tag the senses for which there are training
data available and then apply heuristics to determine senses of words related
to those already tagged.

2.4.3.1 Supervised WSD

The standard approach to statistical WSD is based on example-based
learning over word-sense annotations (Ng and Lee, 1996; Bruce and Wiebe,
1999). (For an overview of example-based learning, see Appendix A.) Figure
2.2 shows sample annotations for ‘circuit.’ Prior to using machine learning to
induce classifiers from such annotations, word-sense annotations must be con-
verted into a tabular format with one row per example instance and one column
for each distinct feature used to describe the instance, as well as a column for
the instance classification (i.e., the word-sense from the annotation).

Figure 2.3 shows features that are commonly used in word-sense dis-
ambiguation. The subscripted features are actually a series of related features.
For example POS−i indicates i features for parts of speech for the i words pre-
ceding the target word, where i is typically 2 or 3. Similarly, Word+i indicates
i separate features to represent the i words following the target word. The last
group of features (WordColls) is for collocations, which provide important clues
for word-sense disambiguation. Collocational features are typically binary and
indicate the presence of a context word that is strongly associated with a par-
ticular sense of the word.

3Zipf’s law states that term frequency is inversely proportional to rank; for example,
the third most-common term has one-third the frequency of the first. The curve plotting
this relationship can be viewed as the top half of a hyperbola (rotated 45 degrees).

42



〈wf sense=5〉Circuits〈/wf〉 are normally flown with climb or take-off flap at
eighty knots, reducing to seventy with landing flap on final approach.

This means that there are only half as many samples in the 〈wf
sense=1〉circuit〈/wf〉 as there are delaying stages.

This term is derived from the fact that the way in which these 〈wf
sense=1〉circuits〈/wf〉 operate is roughly analogous to buckets of water
being passed along a human chain (as in the old method of fire fighting).

So are the reports that have flourished on the LA gossip 〈wf
sense=4〉circuit〈/wf〉 - Kilmer is going overboard; Kilmer thinks he is Jim
Morrison; Kilmer has it written into his contract that everybody has to address
him as Jim.

Figure 2.2: Sample word-sense annotations for ‘circuit’ from Senseval II.

Morph: morphology of the target word
POS−i: part-of-speech of i th word to left
POS+i: part-of-speech of i th word to right
Word−i: i th word to the left
Word+i: i th word to the right
WordColls: occurrence of word collocation for sense s in context

Figure 2.3: Typical features for supervised word-sense disambiguation.
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Supervised WSD currently is only feasible for a limited number of target
words (e.g., the “lexical-sample task” in SENSEVAL). Providing sufficient an-
notated training data for unrestricted word-sense disambiguation (e.g., the “all-
words task” in Senseval), would require a large corpus of sense-tagged data
for all content words. No existing corpus meets this requirement. For instance,
although a quarter of the one million word Brown corpus was sense-tagged by
the WordNet project members (Miller et al., 1994), this only covers about 15%
of the senses for the 45,000 word types that were in WordNet (out of 120,000
distinct word types).

Fortunately, this situation might improve in the near future. For instance,
the OpenMind project is aiming to produce a large-scale corpus with a broad va-
riety of content words tagged against the WordNet sense inventory (Chklovski
and Mihalcea, 2002). This is an all-volunteer effort, in order to circumvent the
traditional high cost of producing annotations. Multiple taggings for the same
word occurrence are used as a way to ensure better quality. OpenMind has an-
notated about 25,000 distinct sense occurrences per year. These annotations,
along with the annotations produced for the biannual Senseval conferences,
will likely make broad-covered supervised WSD viable in about ten years.

Supervised approaches to WSD rely mainly on collocations that co-
occur significantly with the sense in the training data, because clue words that
only occur once are considered unreliable. Attempts at using dictionary defini-
tions to augment these clue words have run into complications. Although some
of the words occurring in dictionary definitions are often quite indicative of a
sense, there is no straightforward way to filter out the unrelated defining words
that inevitably occur. For example, Veenstra et al. (2000) use definition clue
words for supervised WSD just to supplement standard word collocations. The
approach described in this thesis using related-word collocations illustrates one
way to address the insufficient data problem dealing with definition clue words.
By applying conditional probability tests, only those definitional words related
to words that co-occur frequently with the sense are considered. See Section
5.2.1.2.

2.4.3.2 Unsupervised WSD

Given the limitations of supervised WSD, unsupervised approaches are
more suitable as a general mechanism for WSD. A simple but effective method
is the definition word-overlap approach developed by Lesk (1986). The sense
selected is the one whose definition has the most overlap of content words with
the sentential context for the word to be disambiguated.

Cowie et al. (1992) extend the idea by using simulated annealing to opti-
mize a configuration of word senses simultaneously in terms of degree of word
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overlap. Véronis and Ide (1990) develop a neural network model to overcome
another limitation of word-overlap approaches, which only address pairwise de-
pendencies. Using dictionary definitions, they construct a network where there
is a link from a word node to nodes for each of its senses and links from each
of the sense nodes to the words used in the definition. By activation through
the neural network, longer-distance dependencies are addressed. Their model
introduces noise by utilizing links from senses to words, and meaningful lexical
relations are not distinguished from incidental ones. The probabilistic spreading
activation approach discussed in Chapter 5 improves upon word overlap in sev-
eral respects: for example, it provides differential weighting of the words based
on semantic relatedness; and, by using Bayesian networks (Pearl, 1988), evi-
dence is combined in a sound manner. Rosenzweig developed a recent version
of the Lesk algorithm incorporating TF-IDF weighting for the overlap terms. This
performed quite well in SENSEVAL I (Kilgarriff and Rosenzweig, 2000).

Nastase and Szpakowicz (2001) present a variation on word overlap that
exploits the structure of WordNet in order to disambiguate entries in Roget’s
Thesaurus. In particular, they include word overlap among definitions for hyper-
nym and hypernym synsets, as well as other related synsets. Word-overlap is
useful for a variety of other tasks as well, although in general it is more suitable
as a fallback rather than the main approach. For example, O’Hara et al. (1998)
use word-overlap heuristics to augment their main structural heuristics used in
aligning the Mikrokosmos ontology with WordNet.

Sussna (1993) minimizes pairwise distance among senses in a seman-
tic network based on WordNet, using a weighting scheme that accounts for
both fan-out and depth in the hierarchy. Of the approaches discussed here,
his is most similar to the use of an analytical component in the hybrid em-
pirical/analytical approach discussed in the applications chapter (Chapter 5),
which is based on Wiebe et al. (1998b). However, he uses a symmetric weight-
ing scheme to model similarity among senses, and he bases symmetry on the
shortest available path. Wiebe et al. support asymmetric weighting and incor-
porate all paths in the similarity measure.

A drawback to the word-overlap approach is that it only accounts for
words used in the definitions or examples associated with particular word senses.
Yarowsky (1992) developed an approach that also incorporates word colloca-
tions that are associated with particular thesaural categories. He uses corpus
analysis to see which words are generally indicative of each of the 1,000+ cat-
egories in Roget’s Thesaurus. A simple Bayesian classifier is used to select
the category that receives the highest collocational support given the words in
the sentential context for the word to be disambiguated. To integrate this with
WSD using the WordNet distinctions, the resulting category can be mapped
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into WordNet and the closest synset for the target word to the category can be
chosen as the sense. Figure 2.4 shows the revised algorithm.

1. Train Roget classifier over corpus

N = total number of words
Ncat = number of words associated with Roget category cat
freq(word) = number of times word co-occurs in corpus
freqcat(word) = number of times word co-occurs with any word in cat

P(cat) � Ncat

N

P(word) � freq(word)

N

P(word|cat) � freqcat(word)

Ncat

2. Disambiguate words by finding category with most support

P(cat|context) =
∑

w ∈ context

log(
P(w|cat) × P(cat)

P(w)
)

3. Map best category into WordNet and find closest synset for target word.

Figure 2.4: Word-sense disambiguation using Roget-based classifier.
Steps 1 and 2 are based on (Yarowsky, 1992). Step 3 is an extension for WSD
using WordNet distinctions.

2.4.3.3 Semi-supervised WSD

Since supervised systems do achieve the best performance when there
is training data available, it makes sense to incorporate them when possible.
One simple scheme would be to use a hierarchy of taggers, using the super-
vised classifiers if there is sufficient data available and then falling back to un-
supervised classifiers if not. Alternatively, hybrid systems could be developed
that exploit the training data used by supervised systems while retaining flex-
ibility for handling other words. For example, Mihalcea and Moldovan (2001)
used this to achieve the highest performing WSD system in the all-words task
for Senseval II. Figure 2.5 shows the heuristics used by their system.

2.4.4 Class-based Collocations

Class-based features are often used to address sparse data problems in
training data. A simple type of class-based feature uses part-of-speech labels
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1. Apply named-entity tagging.

For example, a person’s name implies personBEING.

2. Tag monosemous words.

3. Assign contextual positional bigrams the same sense in SemCor.

If all occurrences of W−1W and WW+1 from the text have the same sense
for W and occur more than N times then tag as that sense.

4. Check overlap of noun-contexts for each noun sense with current text.

A noun-context is the set of hypernym words for a given sense along with
the words within ten words of the tagged sense in SemCor.

5. Tag synonyms for words already disambiguated: words at semantic dis-
tance 0 (i.e., in same synset).

6. Tag words at semantic distance of 1 from disambiguated words.

7. Tag synonyms among non-disambiguated words with sense for synset.

8. Tag non-disambiguated words at semantic distance of 1 from synset.

Figure 2.5: Heuristics for semi-supervised WSD using bootstrapping.
Adapted from (Mihalcea and Moldovan, 2001). This forms the basis for one
of the systems used in the preparation of Extended WordNet (Novischi, 2002).
SemCor refers to the word-sense annotations (semantic concordance) that
comes with WordNet.

(Charniak, 1993), where words are replaced by their grammatical class. With
hypernym collocations, semantic classes are used instead. Scott and Matwin
(1998) use WordNet hypernyms for classification, in particular topic detection.
They include a numeric density feature for each synset that subsumes words
appearing in the document, potentially yielding hundreds of features. Mihal-
cea (2002) shows how hypernym information can be useful in deriving clues
for unsupervised WSD. Patterns for co-occurring words of a given sense are
induced from sense-tagged corpora. Each pattern specifies templates for the
co-occurring words in the immediate context window of the target word:

〈word-stem, part-of-speech, synset-ID, hypernym-synset-ID〉
where any of the components in the pattern can be unspecified. As an example,
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〈*, noun, *, roomAREA〉 〈‘door’, noun, doorBARRIER, *〉

would match “kitchen door” and “bedroom door.”
Other work shows how to use WordNet in deriving traditional colloca-

tions. For example, Pearce (2001) combines WordNet synonym information
with BNC corpus analysis when extracting collocations.

2.4.5 Relation Disambiguation

Until recently, preposition classification has received little attention, es-
pecially with respect to broad coverage rather than just special purpose usages.
Halliday (1956) did some early work on this in the context of machine trans-
lation. Later work in that area addressed the classification indirectly during
translation. In some cases, the issue is avoided by translating the preposition
into a corresponding foreign function word without regard to the preposition’s
underlying meaning (i.e., direct transfer). Other times an internal representa-
tion is helpful. Trujillo (1995) discusses these issues in depth. He favors a
transfer approach at the level of an internal representation for lexemes, rather
than at a surface level as traditionally done. Japkowicz and Wiebe (1991) illus-
trate the deep meaning approach in using conceptual structures to account for
the differences in how prepositions are used to conceptualize objects. In story
understanding work, preposition classification often is implicitly handled in the
conversion of text to case structures (Schank, 1973), as is also the case for
text extraction (Lehnert et al., 1992). Taylor (1993) discusses general strate-
gies for preposition disambiguation using a cognitive linguistics framework and
illustrates them for ‘over.’ There has been quite a bit of work in this area but
mainly for spatial prepositions (Zelinsky-Wibbelt, 1993).

There is currently more interest in this type of classification. Litkowski
(2002) presents manually derived rules for disambiguating prepositions, in par-
ticular for ‘of.’ Srihari et al. (2001) present manually derived rules for disam-
biguating prepositions used in named entities, but the disambiguation is more
oriented to delineating the constituents of the prepositional phrase rather than
determining the type of relation.

Gildea and Jurafsky (2002) classify semantic role assignments using
the annotations from FrameNet, for example, covering all types of verbal argu-
ments. They use several features derived from the output of a parser, such as
the constituent type of the phrase (e.g., NP) and the grammatical function (e.g.,
subject). They include lexical features for the headword of the phrase and the
predicating word for the entire annotated frame. They report an accuracy of
76.9% with a baseline of 40.6% over the FrameNet semantic roles.
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Blaheta and Charniak (2000) classify semantic role assignments using
the annotations from Treebank. They use a few parser-derived features, such
as the constituent labels for nearby nodes and part-of-speech for parent and
grandparent nodes. They also include lexical features for the head and alterna-
tive head (since prepositions are considered as the head by their parser). They
report an accuracy of 77.6% over the form/function tags from the Penn Tree-
bank with a baseline of 37.8%.4 Van den Bosch and Bucholz (2002) also use
the Treebank data to address the task of assigning function tags to arbitrary
phrases. For features, they use parts of speech, words, and morphological
clues. Chunking is done along with the tagging, but they only present results
for the evaluation of both tasks taken together; their best approach achieves
78.9% accuracy (at 79.1% recall).

Nastase and Szpakowicz (2003) assign relation types to the noun-verb
relationships inferred in WordNet. Separate binary classifiers are used for each
of 20 different relations, but no performance results are given. Their features
are based just on the words that occur in the definitions; as they note, this
doesn’t support generalizations. They use a limited training set with less than
300 total examples; and, the use of binary classifiers leaves open the prob-
lem of conflict resolution, such as if more than one of the classifiers returns a
positive result.

Liu and Soo (1993) present a heuristic approach for relation disambigua-
tion relying upon syntactic clues as well as occurrence of specific prepositions.
They assign roles to constituents of a sentence from corpus data provided that
sufficient instances are available. Otherwise, a human trainer is used to an-
swer questions needed by the system for the assignment. They report an 86%
accuracy rate for the assignment of roles to verbal arguments in about 5,000
processed sentences. Most recently, there have been two recent workshops
featuring competitions for semantic role tagging (Litkowski, 2004; Carreras and
Màrquez, 2004).

There has been more work in prepositional phrase interpretation deal-
ing with structural disambiguation for prepositional phrase attachment (Dalgren
and McDowell, 1986; Hindle and Rooth, 1993; Kayaalp et al., 1997). In a
knowledge-based approach, Dalgren and McDowell (1986) develop heuristics
for resolving prepositional phrase attachment. These heuristics incorporate
taxonomic information of the prepositional objects, from a manually encoded
knowledge base. An example of one of their rules follows:

4They target all of the Treebank function tags but give performance figures broken
down by the groupings defined in the Treebank tagging guidelines. The baseline figure
shown above is their recall figure for the ‘baseline 2’ performance.
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at-rule:
if abstract(Object) or place(Object) then

s attach(PP)
else

np attach(PP)

Section 4.3.2.1 later illustrates that ‘at’ is used in a temporal sense in an ab-
stract context. Temporal interpretations are more likely to apply to the sentence
as a whole rather than just the modified object. Thus, this approach auto-
matically acquires some of the knowledge implicitly assumed by these rules.
It will be interesting to see whether such attachment rules can be automati-
cally acquired, such as combining the corpus-based structural disambiguation
approach of Hindle and Rooth (1993) with the relation classification approach
discussed in Chapter 4.

2.5 Conclusion

This chapter has reviewed some of the literature related to lexical ac-
quisition with an emphasis on lexical semantics. Linguistic work on case roles
(Fillmore, 1968; Jackendoff, 1990) provides practical approaches for represent-
ing important semantic relations. Other work in linguistics serves to clarify the
types of semantic relations to be found in lexicons (Cruse, 1986; Mel’čuk and
Polguere, 1987). Semantic role inventories are an integral part of this work, as
discussed in Section 4.2. Lexicography also provides insights into what needs
to be represented and what can be expected of traditional dictionaries (Kilgar-
riff, 1997; Landau, 2001). Although not directly addressed here, these issues
might affect extensions to the research. Similarly, the knowledge representa-
tion issues addressed in computational semantics (Wilks, 1975b) and ontologi-
cal semantics (Nirenburg and Raskin, 2004) will be important for adapting this
thesis work for more general tasks.

A variety of automated acquisition approaches was presented. Corpus
analysis is often used for this, in particular via lexical associations (Hindle and
Rooth, 1993). Lexical rules are commonly used for acquisition involving highly
productive types of patterns, such as for the count/mass distinction and deriva-
tional morphology (Briscoe et al., 1995; Viegas et al., 1996). Analysis of dic-
tionary definitions complements this in addressing the idiosyncratic information
associated with particular words. Pattern matching is usually applied to the
definition using rules tailored for specific semantic relationships (Vanderwende,
1994; Barrière, 1997). Chapters 3 and 4 build upon such dictionary analysis
work by making it more corpus-driven, particularly in the relation disambigua-
tion process.
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CHAPTER 3
DIFFERENTIA EXTRACTION

This thesis is motivated by the desire to have more conceptual distinc-
tions in semantic lexicons and in knowledge bases in general. The first step
in this process involves extracting the distinguishing relations (differentia) in-
dicated in dictionary definitions. WordNet is used both as the source of defi-
nitions and as the semantic lexicon to be augmented. This first step involves
determining the important surface-level relations present in the definitions and
is implemented via a broad-coverage dependency parser. Dependency parsers
stress the connections between words rather than the structural configuration
of syntactic categories, which is typical of traditional phrase-structure parsers
(Sleator and Temperley, 1993; Jurafsky and Martin, 2000).

Definitions taken from a dictionary are first preprocessed to make them
more suitable for parsing (e.g., conversion to complete sentences). Then the
sentences are parsed to produce a list of low-level syntactic relations among the
words. After parsing, the relations are postprocessed to convert them into more
traditional grammatical relations. The postprocessing also makes the relations
centered on function words, such as prepositions. Certain relations will be more
salient for the term being defined than other relations extracted from the defi-
nition. A way to quantify this is included during an optional relation-weighting
step. The relations are also converted into a format easier for humans to read.

This chapter is organized as follows. Section 3.1 presents an overview
of WordNet. It also discusses manual annotations of a subset of the defini-
tions, prepared during the preliminary stage of this work but not used by the
extraction system. Section 3.2 discusses the definition parsing. This uses the
Link Grammar parser (Sleator and Temperley, 1993), along with postprocessing
support developed specifically for the extraction system. Section 3.3 discusses
the relation extraction, including the use of cue validities for estimating relation
salience. Section 3.4 closes with a summary of the extraction algorithm, along
with an example illustrating the processing done at each stage.

3.1 Analysis of Definitions in WordNet

The dictionary used here as the source of definitions is WORDNET (Fell-
baum, 1998).1 WordNet incorporates aspects of a thesaurus as well as a dic-

1WordNet version 1.7.1 is used throughout unless otherwise noted. WordNet is
freely available from Princeton. The database along with full documentation can be
found at www.cogsci.princeton.edu/˜wn.



tionary. Words are grouped into synonym sets called synsets, which serve as
the underlying concepts referred to by words in the lexicon. For example, for
the animal sense of ‘dog,’ the corresponding synset would be

{dog, domestic dog, Canis familiaris}.
Instead of listing the entire synset or using sense labels (e.g., dog#1), sub-
scripted category names (e.g., dogCANINE) are generally used here when refer-
ring to synsets with words that are ambiguous.

3.1.1 Structure of WordNet

Figure 3.1 shows some of the information given for the word ‘dog.’ The
distinguishing feature of WordNet compared to traditional dictionaries is the use
of explicit links among the synsets; for example, the ‘⇒’ links in the figure are for
WordNet’s hypernym relation (same as is-a). Table 3.1 gives descriptions and
usage statistics of all the relations in WordNet. These explicit relations form the
basis for a knowledge base and rudimentary ontology (Mahesh and Nirenburg,
1995; Sowa, 1999).

As a dictionary, WordNet is somewhat broader in scope than a learner’s
dictionary such as LDOCE, the Longman Dictionary of Contemporary English
(Procter, 1978); but, it not as comprehensive as a college dictionary such as
Merriam Webster’s Collegiate Dictionary (Mish, 1996). WordNet covers the
core lexicon of English, but also includes some scientific and technical terms.
Table 3.2 shows some statistics on the number of entries in WordNet. The En-
tries column lists the number of words or phrases with distinct entries in the
dictionary; this is the number dictionary publishers often highlight to indicate
the size. Senses column refers to the total number of sense distinctions for
all the entries (e.g., six for ‘dog’). As with traditional dictionaries, the senses
are numbered, but there are no further subdivisions (e.g., ‘1a’). Unlike tradi-
tional dictionaries, definitions are not given for the word senses but instead for
the synsets (i.e., the synonym sets). Thus, the Synsets column refers to the
number of underlying concepts, the targets for the senses. The sense versus
synset distinction is not apparent in Figure 3.1 alone, but it can be seen when
also considering the entry for ‘cad’ shown in Figure 3.2. Both entries incorpo-
rate the following synset:

{cad, bounder, blackguard, dog, hound, heel}
That is, sense 4 of ‘dog’ and sense 1 of ‘cad’ map into the same synset.

3.1.2 WordNet Definition Annotations

Manual annotations are commonly used in computational linguistics to
provide insight into the genre of text being studied. They also are used to de-
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Synonyms/Hypernyms (Ordered by Estimated Frequency) of noun dog
6 senses of dog
Sense 1
dog#1, domestic dog#1, Canis familiaris#1 – (a member of the genus Canis
(probably descended from the common wolf) that has been domesticated by
man since prehistoric times; occurs in many breeds; “the dog barked all night”)

⇒ canine#2, canid#1 – (any of various fissiped mammals with nonretractile
claws and typically long muzzles)

Sense 2
frump#1, dog#2 – (a dull unattractive unpleasant girl or woman; “she got a
reputation as a frump”; “she’s a real dog”)

⇒ unpleasant woman#1, disagreeable woman#1 – (a woman who is an
unpleasant person)

Sense 3
dog#3 – (informal term for a man; “you lucky dog”)

⇒ chap#1, fellow#1, feller#2, lad#1, gent#2, fella#1, blighter#2, cuss#2 –
(a boy or man; “that chap is your host”; “there’s a fellow at the door”; “he’s a
likable cuss”)

Sense 4
cad#1, bounder#1, blackguard#1, dog#4, hound#2, heel#3 – (someone who is
morally reprehensible; “you dirty dog”)

⇒ villain#1, scoundrel#1 – (a wicked or evil person; someone who does
evil deliberately)

Sense 5
pawl#1, detent#1, click#4, dog#5 – (a hinged catch that fits into a notch of a
ratchet to move a wheel forward or prevent it from moving backward)

⇒ catch#6, stop#10 – (a restraint that checks the motion of something; “he
used a book as a stop to hold the door open”)

Sense 6
andiron#1, firedog#1, dog#6, dogiron#1 – (metal supports for logs in a fireplace;
“the andirons were too hot to touch”)

⇒ support#10 – (any device that bears the weight of another thing; “there
was no place to attach supports for a shelf”)

Figure 3.1: Definitions for the noun ‘dog’ in WordNet.
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Synonyms/Hypernyms (Ordered by Estimated Frequency) of noun cad

2 senses of cad

Sense 1
cad#1, bounder#1, blackguard#1, dog#4, hound#2, heel#3 – (someone who is
morally reprehensible; “you dirty dog”)

⇒ villain#1, scoundrel#1 – (a wicked or evil person; someone who does
evil deliberately)

Sense 2
computer-aided design#1, CAD#2 – (software used in art and architecture and
engineering and manufacturing to assist in precision drawing)

⇒ software#1, software system#1, software package#1, package#3 –
((computer science) written programs or procedures or rules and associated
documentation pertaining to the operation of a computer system and that are
stored in read/write memory; “the market for software is expected to expand”)

Figure 3.2: Definitions for the noun ‘cad’ in WordNet.

Relation Usage Description
has-hypernym 88381 superset relation
is-similar-to 22492 similar adjective synset
is-member-meronym-of 12043 constituent member
is-part-meronym-of 8026 constituent part
is-antonym-of 7873 opposing concept
is-pertainym-of 4433 noun that adjective pertains to
also-see 3325 related entry (for adjectives and verbs)
is-derived-from 3174 adjective that adverb is derived from
has-verb-group 1400 verb senses grouped by similarity
has-attribute 1300 related attribute category or value
is-substance-meronym-of 768 constituent substance
entails 426 action entailed by the verb
causes 216 action caused by the verb
has-participle 120 verb participle

Table 3.1: Relation usage in WordNet. Based on analysis of database files
for WordNet 1.7.
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POS Entries Senses Synsets
Noun 109195 134716 75804
Verb 11088 24169 13214
Adjective 21460 31184 18576
Adverb 4607 5748 3629
Total 146350 195817 111223

Table 3.2: Number of entries in WordNet by part of speech. Based on doc-
umentation accompanying WordNet 1.7.1 (i.e., WNSTATS manual page). The
Synsets column gives the number of concepts and indicates the number of
distinct definitions. (LDOCE in comparison has about 70,000 definitions).

velop example-based learning systems. Notably, these types of systems cur-
rently achieve the highest performance in word-sense disambiguation (Kilgarriff
and Palmer, 2000b; Edmonds and Kilgarriff, 2002). One of the largest sets of
such annotations was prepared by Singapore’s Defense Sciences Organization
(DSO) under the direction of Ng and Lee (1996). They tagged the senses for
190 common nouns and verbs occurring in parts of the Wall Street Journal and
Brown Corpus, yielding 190,000 distinct annotations.

As part of this thesis work, the WordNet definitions for the words tagged
in the DSO data were annotated to determine the semantic relations implicit
in the definitions. Roughly 650 of the 1,500 definitions for these words were
annotated, yielding about 2,400 tagged relation instances. Figure 3.3 shows a
sample of the annotations. In the first case, the mechanism sense of ‘action,’
is defined in terms of the part category, which is quite generic. This is spe-
cialized via an attribute about being operational and the qualification regarding
transmission of power.

Table 3.3 shows the most common semantic relations occurring in these
annotations, along with a description of each. The next chapter will discuss
other semantic role annotations, mainly those centered on thematic roles (e.g.,
verb arguments and adjuncts). Thematic roles are also included in these Word-
Net annotations (e.g., location and source); however, specialization-type rela-
tions are more commonly used here (e.g., spec, qual, and concerning). For
example, four of the top six annotated relations in Table 3.3 deal with special-
ization. This reflects the focus of definitions on static descriptions rather than
actions or situations in general. The emphasis on specialization relations in
these annotations adds support that definitions are differential in nature. Note
that Figure 3.3 and Table 3.3 also serve to illustrate the types of information
the system attempts to extract from definitions. The steps in the process are
discussed next.
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Relation Freq. Description
genus .274 category for concept (definition genus)
attr .199 generic attribute
object .133 affected object or event
spec .107 specialization involving given type of participant
manner .047 manner in which action is done
qual .036 qualification of the genus category
subject .026 generic actor for action described
example .024 example for which the definition applies
alt-genus .024 secondary category for concept
location .017 physical or abstract location
purpose .016 what an object is used for; why an action is done
result .010 result produced by some action
means .009 means by which an action or condition is achieved
concerning .006 objective theme used for specialization
subject-attr .006 attribute of sentence subject (actor)
action .006 action in descriptive subordinating clause
agent .005 agent performing an event
field .005 domain indicated by usage label
source .005 physical or abstract starting point
complement .005 non-objective complement of a verb

Table 3.3: Common semantic relations from the definition annotations.
Freq. is the relative frequency out of about 2,400 total instances.
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action#4: the operating part that transmits power to a mechanism
genus part

attr operating
qual transmits

object power
recipient mechanism

experience#1: the accumulation of knowledge or skill that results from direct
participation in events or activities

genus accumulation
spec knowledge or skill

qual results
source participation

attr direct
containment events or activities

add#4: make an addition by combining numbers
genus make

object addition
manner combining

object numbers

keep#15: maintain by writing regular records
genus maintain
means writing

object records
attr regular

Figure 3.3: Sample of WordNet semantic relation annotations. Definitions
for the 190 words targeted in DSO corpus were annotated at NMSU. See
www.cs.nmsu.edu/˜tomohara/wordnet-annotations for all of the annotations.

3.2 Definition Parsing

The approach to differentia extraction is entirely automated. This starts
with the use of a broad-coverage parser to determine the syntactic lexical rela-
tions that occur in the sentence. Before parsing, however, the definitions must
be preprocessed in order to minimize parse failures. For example, definition
fragments are replaced with complete sentences. Afterwards, the low-level de-
pendency relations are converted into higher-level grammatical ones.
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3.2.1 Definition Preprocessing

Dictionary definitions are often given via sentence fragments that omit
the entry word (i.e., word being defined). (Some learner’s dictionaries now give
definitions in complete sentences (Barnbrook, 2002), but this is not common
practice.) For example, the definition for lockFASTENER is “a fastener fitted to a
door or drawer to keep it firmly closed.” Therefore, prior to running a general-
purpose parser, the sentences are converted into complete sentences. Other
preprocessing steps include the removal of example sentences and the removal
of domain indicators (e.g., “(chemistry) two or more atoms ...”).

Definitions for words of a given part of speech are usually given via
phrases having the same part of speech. One reason for this is to aid in under-
standing contextual usages of the word being defined. When the same part of
speech is used, the definition could be substituted for the entry word in a given
sentence without affecting grammaticality (Landau, 2001).

At least 80% of the noun definitions in WordNet follow this pattern, based
on analysis of output from a part-of-speech tagger and a simple phrase chun-
ker. Table 3.4 shows the most common part-of-speech patterns occurring in
the noun definitions. A similar analysis for the verb definitions shows that about
70% start with a verb. See Table 3.5 for the top occurring part-of-speech pat-
terns. Note that it is likely that many of the cases starting with NP shown in
the table (e.g., ‘NP adverb’) are due to erroneous part-of-speech assignments.
Part-of-speech taggers tend to have trouble labeling words in fragments be-
cause the complete sentential context is not available. In addition, the Word-
Net definitions have not been through the amount of editing that definitions for
commercial dictionaries go through.2 Therefore, commercial dictionaries un-
doubtedly will have a higher percentage of category-conforming definitions as
a result of better quality control (e.g., more emphasis on ensuring uniformity of
definitions).

Table 3.6 shows the patterns that are used for forming definitional sen-
tences, based on the grammatical type of the word being defined. The patterns
are designed to form complete sentences from the definitional fragments while
minimizing the introduction of extraneous semantic content. For nouns, the
optional determiner is used whenever the word is a count noun (e.g., ‘dog’ in
contrast to ‘sand’). The determiner ‘a’ is used unless the word being defined
starts with a vowel. Thus, for lockFASTENER, the following sentence would be
used for the parse: “A lock is a fastener fitted to a door or drawer to keep it

2The WordNet definitions were initially not included in the lexicon, because it was
felt the synset groupings would be sufficient to determine the meaning intended for
each sense (Miller, 1990).
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Pattern Freq.
NP 11785
NP verb preposition NP 2700
NP punctuation 1552
NP verb NP 1244
NP punctuation NP 1158
NP preposition verb NP 1005
NP determiner verb NP 758
NP pronoun verb NP 676
NP punctuation number punctuation number punctuation 624
verb NP 360

Table 3.4: Top part-of-speech patterns for WordNet noun definitions.
76,191 total definitions were analyzed.

Pattern Freq.
verb preposition NP punctuation 605
verb preposition NP 385
NP punctuation 332
verb NP punctuation 327
NP 290
verb NP 271
verb NP preposition punctuation 265
verb adverb punctuation 225
verb adjective punctuation 154
NP adverb punctuation 132

Table 3.5: Top part-of-speech patterns for WordNet verb definitions.
13,406 total definitions were analyzed.

Part of speech Sentence-completion template
noun 〈optional-determiner〉 〈word〉 is 〈definition〉
verb To 〈word〉 is to 〈definition〉
adjective 〈word〉 things are 〈definition〉
adverb It occurs 〈definition〉

Table 3.6: Templates for definitional sentences. This only includes content
words, as function words are not represented in WordNet.
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Pattern Freq.
verb preposition NP punctuation 773
verb NP punctuation 750
verb NP 449
verb preposition NP 341
preposition conjunction verb to-preposition NP 314
preposition conjunction verb to-preposition NP punctuation 298
preposition NP punctuation 296
adverb adjective punctuation 274
adjective preposition NP punctuation 272
adverb adjective 171

Table 3.7: Top part-of-speech patterns for WordNet adjective definitions.
18,700 total definitions were analyzed.

firmly closed.” In contrast, for anemiaDISEASE , the result would be “Anemia is a
deficiency of red blood cells.”

For verbs, the definition is first changed if necessary to an infinitive
phrase. The definition is then used as a verbal complement with the subject
formed via an infinitive phrase with the entry word. For delayWAIT this yields
the definitional sentence “To delay is to act later than planned, scheduled, or
required.” A better pattern might be just to convert the definition into the past
tense and supply a dummy subject of ‘it’ (e.g., “It acted later than planned,
scheduled, or required ”). This would make it easier to discard the parts of the
parse structure that correspond to the sentential template and not the definition
proper. However, this would require morphological support for recognizing or
producing the past tense, which has numerous special cases. Future work will
investigate producing better patterns, possibly incorporating different patterns
based on the form of the definition fragment.

Adjectives and adverbs present more of a problem in the conversion to
complete sentences. Tables 3.7 and 3.8 show the common part-of-speech pat-
terns from the WordNet definitions. The adjective definitions often start with
verbs in the past or present participle, which also serve as modifiers. The
adverb definitions show a preponderance of prepositional phrases, with a spe-
cial case being ‘in a 〈adjective〉 manner’ (779 cases). Although most modifiers
use simple defining phrases, occasionally these are defined through a series
of defining phrases indicating various aspects of the corresponding concepts.
In WordNet, roughly 10% of the modifier definitions incorporate semicolons to
specify additional aspects of the meaning. For example, ‘matte’ is defined as
“not reflecting light; not glossy.” Such constructions are turned into disjunc-
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Pattern Freq.
preposition NP punctuation 1592
preposition NP 198
preposition NP punctuation preposition NP punctuation 103
preposition determiner adjective conjunction NP punctuation 97
to-preposition NP punctuation 78
preposition determiner adverb NP punctuation 71
preposition determiner verb NP punctuation 65
adverb punctuation 41
verb NP punctuation 36
preposition NP conjunction to-preposition NP punctuation 21

Table 3.8: Top part-of-speech patterns for WordNet adverb definitions.
3,636 total definitions were analyzed.

tions. For adjectives, the definition is used as a predicate complement of a
subject phrase with a dummy word (e.g., ‘thing’) modified by the adjective in
question. For ‘incredible’ this yields “Incredible things are beyond belief or un-
derstanding.” For adverbs, the definition is used as a post modifier in a generic
“It occurs ...” sentence. For ‘worthily’ this yields “It occurs in a worthy manner
or with worthiness.”

Instead of converting the definitions into sentences, an alternative ap-
proach would be to customize the grammar of the parser to accommodate the
definition fragments. However, this would involve a substantial amount of work,
much of which might be specific to the parser being used. The definitions
would still likely require some form of reformatting (e.g., for isolating punctu-
ation). Thus, it is better to put more emphasis on preprocessing, which is less
dependent on the parser implementation.

3.2.2 Dependency Parsing

Traditional parsers are based on phrase-structure rules that indicate how
constituents of a sentence are decomposed (e.g., S → NP VP). In contrast, a
dependency parser stresses the connections among the words in the sentence
(Manning and Schütze, 1999; Jurafsky and Martin, 2000). For example, the
transitive verb ‘open’ would require connections to a subject and object, which
are its dependents in the analysis. By emphasizing word-level relations over
constituent-level ones, dependency parsers make it easier to determine the
syntactic relationships involving the phrase headwords in a sentence.
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The Link Grammar Parser (Sleator and Temperley, 1993) is used here
for parsing the definitions. As an illustration, Figure 3.4 shows the parse for the
definition of ‘wine’ in the alcohol sense: “fermented juice (of grapes especially).”
This shows that the Link Parser outputs syntactic dependencies among punc-
tuation and sentence boundary elements, as well as among words. The parse
output includes word offsets. This is a minor customization to the parser added
to facilitate relation extraction.

3.2.3 Parse Postprocessing

After parsing, a series of postprocessing steps is performed prior to the
extraction of the lexical relations. For the Link Parser, this mainly involves con-
version of the binary dependencies into relational tuples and the realignment of
the tuples around function words. In addition, the part of speech specification is
normalized in terms of a prefix rather than suffix. Note that the first parse pro-
duced by the parser is the one used for analysis: this is the simplest approach
for resolving structural ambiguity. Alternatively, the parses could be analyzed to
see which makes most sense in terms of lexical associations as sketched out
later in the future work chapter.

The Link Parser uses quite specialized syntactic relations, so these are
converted into general ones prior to the extraction of the relational tuples. The
mapping for performing this conversion was created as part of this research.
For example, the relation A, which is used for pre-noun adjectives, is converted
into modifies. Table 3.9 shows the conversions for some of the common rela-
tions encountered.

The syntactic relationships are first converted into relational tuples using
the following format:

〈source-word, relation-word, target-word〉

This conversion is performed by following the dependencies involving the con-
tent words, ignoring cases involving sentence boundary elements or punctu-
ation. The first tuple extracted from the parse in Figure 3.4 would thus be
〈n:wine, v:is, n:juice〉. More specifically, the conversion checks for pairs of tu-
ples involving the same function word (or linking verb) first as a target term and
subsequently as a source term. These are collapsed into a single tuple that
uses the function word for the grammatical relation:

(〈word1, relation1, function-word〉 and 〈function-word, relation2, word2〉)
⇒ 〈word1, function-word, word2〉
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Definition sentence:
Wine is fermented juice (of grapes especially).

Parser output:

+-------------------------------Xp-------------------------------+
| +-------Ost-------+--MXs--+-----------Xc----------+ |
+--Wd--+--Ss-+ +----A----+ +Xd+--Jp-+ | |
| | | | | | | | | |

///// wine.n is.v fermented.v juice.n ( of grapes.n [especially] ) .

///// Xp <---Xp----> Xp .
(m) ///// Wd <---Wd----> Wd wine.n
(m) wine.n Ss <---Ss----> Ss is.v
(m) is.v O*t <---Ost---> Os juice.n
(m) fermented.v A <---A-----> A juice.n
(m) juice.n MXs <---MXs---> MX of
(m) ( Xd <---Xd----> Xd of
(m) of Xc <---Xc----> Xc )
(m) of J <---Jp----> Jp grapes.n

. RW <---RW----> RW /////

Syntactic relationships:

Relationship Relation type
〈/////, Wd, 1. n:wine〉 connection to left boundary
〈/////, Xp, 10. .〉 sentence-ending period
〈1. n:wine, Ss, 2. v:is〉 singular subject
〈10. ., RW, 11. /////〉 connection to right boundary
〈2. v:is, Ost, 4. n:juice〉 object of verb
〈3. v:fermented, A, 4. n:juice〉 pre-noun modification
〈4. n:juice, MXs, 6. of〉 post modification
〈5. (, Xd, 6. of〉 preceding separator-punctuation
〈6. of, Jp, 7. n:grapes〉 preposition with plural object
〈6. of, Xc, 9. )〉 following separator-punctuation

Figure 3.4: Link Grammar parse for wineALCOHOL . The Relationship column
shows the tuple-based representation based on the default output of the Link
Parser over the input (shown above). The syntactic relationships include word
offsets, produced via a simple extension to the parser.
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Link Rel. General Rel. Description
A modifies pre-noun adjectives to following nouns
AN modifies noun-modifiers to following nouns
Am comparative used with comparatives
B subject-of noun to verb [relative clause]
CC joined-with clauses to following coordinating conjunctions
C subject-of subject of clause
D determiner-of determiners to nouns
E modifies verb-modifying adverbs which precede the verb
I modal-verb verbs with infinitives
ID idiom words of idiomatic expressions
If modal verbs with infinitives
J prep-obj prepositions to their objects
K particle verbs with particles
MVa modified-by verbs and adjectives to modifying post-phrases
MX modifies modifying phrases to preceding noun
O has-object transitive verbs to their objects
O has-object other types of grammatical objects
R modified-by nouns to relative clauses
RS subject-of relative pronoun to the verb
RW to-wall right-hand wall to the left-hand wall
S subject-of subject nouns to finite verbs
TO modal verbs and adjectives to the word ‘to’
W to-wall marks beginning or end of sentence (the wall)
X is-punctuation used with punctuation
YS is-possessive nouns to the possessive suffix

Table 3.9: Mapping from Link Parser relation types into general ones.
Link Rel. are Link Parser relations, and General Rel. are the general rela-
tions resulting from the mapping. Relation types ending with underscores (e.g.,
MX ) stand for a series of relations starting with that prefix (e.g., MX, MXs,
and MXp, where ‘s’ and ‘p’ indicate modification of a singular and plural noun,
respectively). Detailed documentation on the relation types can be found at
http://hyper.link.cs.cmu.edu/link/dict/summarize-links.html.
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〈1. n:wine, 2. v:is, 4. n:juice〉
〈3. v:fermented, modifies-3-4, 4. n:juice〉
〈4. n:juice, 6. of, 7. n:grapes〉

Figure 3.5: Initial lexical relations for wineALCOHOL .

Certain types of dependencies are preserved by converting the syntactic re-
lationships directly into a relational tuple involving a special relation-indicating
word (e.g., ‘modifies’). For the wine example, this yields the tuple 〈v:fermented,
modifies, n:juice〉. The result of the initial conversion for the wine example is
shown in Figure 3.5. Offsets are also incorporated into the relation name (e.g.,
modifies-3-4), as shown in the figure. These offsets are used to ensure that the
placeholder relation words are unique (for the purposes of relation disambigua-
tion).

3.3 Deriving Lexical Relations from the Parses

The relational tuples shown in Figure 3.5 form the basis for the lexical
relations extracted from the definition parse. That is, the final part of the parser
output post-processing determines the initial set of relations extracted from the
definition. The remaining steps in the process account for structural ambiguity
in the parses and for assigning weights to the relations that are extracted.

3.3.1 Attachment Resolution

Certain parsing problems arise during the extraction process. An im-
portant one is how to handle phrase attachment, in particular for prepositional
phrases. This is not an emphasis of the research, so this is currently handled
by only considering the first parse produced by the parser. Two alternatives
have been considered. The first handles structural ambiguity resolution by hav-
ing the parser return multiple parses and selecting the attachments that occur
most often. In this case, the relations are weighted by the percentage of the
times they occur in all of the parses. This might lead to incompatible relations
(e.g., crossing dependencies in the parse), so it is left for future work. The other
alternative uses class-based lexical associations and is sketched in the future
work chapter.

3.3.2 Assigning Relation Weights using Cue Validities

When using the extracted relations in applications, it is desirable to have
a measure of how relevant the relations are to the associated concepts (e.g.,
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Cue validity of feature F for concept C:

P(C|F) =
P(F|C)∑
P(F|Ci)

� f(F, C)/f(C)∑
f(F, Ci)/f(Ci)

where Ci is a concept that contrasts with C

Figure 3.6: Calculation of cue validities. Formula based on (Smith and
Medin, 1981). The features can be considered as attributes or relations as-
sociated with a concept (e.g., 〈 , size, small〉).

synset for definition being parsed). One such measure would be the degree
to which the relation applies specifically to a given concept, with respect to the
occurrence of the relation with contrasting concepts. To account for this, cue
validities are used. As discussed in Section 1.2.1.2, these can be interpreted
as probabilities indicating the degree to which features apply to a given concept
versus similar concepts (e.g., sibling concepts).

Cue validities (CVs) are estimated by calculating the percentage of times
that features are associated with a concept versus the total associations for
contrasting concepts, as shown in Figure 3.6. As an example, 39 of the 180
WordNet definitions for types of dogs mention the size small. Thus smallness is
not discriminating with respect to dogs, and it should be assigned a low weight:

P(small-dog | small) � 1/39
In contrast, only eight of the definitions mention the color red. Redness is much
more discriminating and should be given a relatively high cue validity weight:

P(red-dog | red) � 1/8
This illustrates that cue validities are inversely proportional to feature frequency.

There are several issues in using cue validities for weighting semantic
relations. The main issue concerns what are considered as features: is it just
the relational target term, the relation type, or both of these? Note that the en-
tire relationship is not considered as this would most likely be unique, leading to
all CV’s near 1. Just using the target term does not account for the type of rela-
tionship and is thus undesirable; and, if just the relation type is used, informative
relations such as is-a might be penalized due to high frequency. Therefore, the
relation type and target term are used together as the feature, as in 〈 , is-a,
mammal〉. This works well for relations that have comparable frequencies. For
example, the range for is-a covers a large percentage of the entire set of con-
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cepts. Therefore, relationships using it are generally weighted high unless the
target term is commonly used (e.g., animal). In contrast, low weights are usu-
ally assigned to relations having a restricted domain (e.g. has-attribute maps
just into characteristics). Exceptions would deal with target terms rarely used in
such relations (e.g., an uncommon attribute). One aspect this approach does
not account for is the informativeness of relations. For instance, a large range
of target terms can occur with a generic semantic-relatedness relation (e.g.,
related-to). Such relations might be weighted as high as is-a, even though it is
much less informative. This is left for future work.

The calculation of cue validities requires a means of determining the
set of contrasting concepts for a given concept. The simplest way to do this
would be just to select the set of sibling concepts (e.g., synsets sharing a com-
mon parent in WordNet). However, due to the idiosyncratic way concepts are
specialized in knowledge bases, this likely would not include concepts intu-
itively considered as contrasting. For example, in WordNet geometry teacher
and piano teacher have different immediate parents, math teacher and music
teacher, respectively, although they do have the common grandparent teacher.
The related concept lecturerEDUCATOR specializes the more general educator
concept, which is the parent of teacher. Thus, a lecturer would not be con-
sidered as contrasting with geometry and piano teachers in a simple scheme
based on sibling or cousin terms.

To alleviate this problem the most-informative ancestor is used instead
of the parent, and all of its descendants used for the set of contrasting concepts.
The most-informative ancestor is determined by selecting the ancestor that best
balances frequency of occurrence with specificity. This is similar to Resnik’s
(1995) notion of most-informative subsumer for a pair of concepts. In his ap-
proach, estimated frequencies for synsets are percolated up the hierarchy, so
that the frequency increases as one progresses up the hierarchy. Therefore,
the first common ancestor for a pair is the most-informative subsumer (i.e., has
the most information content). Here attested frequencies from SemCor (Miller
et al., 1994) are used, so all ancestors are considered. Specificity is accounted
for by applying a scaling factor to the frequencies that decreases as one pro-
ceeds up the hierarchy. Thus, ‘informative’ is used more in an intuitive sense
rather than a technical one.

The cue validities for all of the relations are calculated at the same time
in a two-step process. Whenever the knowledge base changes, the cue validi-
ties might need to be revised, since they are a global measure. (Such updates
will typically be restricted to portions of the knowledge base (e.g., mammals),
minimizing overhead.) First, for each concept associated with relations (e.g.,
the synset for the word being defined), its most-informative ancestor (MIA) is
determined. Associations are then updated for each of the features present in
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the relations (i.e, f(F, C) in Figure 3.6), with features determined by the combi-
nation of relation type and target term (i.e., 〈 , relation, target〉). In the second
step, the cue validities (i.e., P(C|F)) are determined by the ratio of this frequency
to the sum of the frequencies for all concepts that are descendants of the MIA
(i.e.,

∑
f(F, Ci)).
Cue validities can be viewed as a type of summary statistic, character-

izing the state of the knowledge base without requiring external training data
(as with lexical associations). In the actual system, they are applied after the
disambiguation step discussed in the next chapter. That way, the cue validities
are calculated using conceptual features (e.g., 〈 , category , grapeFRUIT〉) rather
than word features (e.g., 〈 , of, grape〉).

3.3.3 Converting into Nested Relation Format

The unstructured relation listing resulting from the parse postprocessing
can become unreadable when the parses are complex. To alleviate this prob-
lem, the relations are converted into a format that incorporates nesting to ac-
count for subordinate relationships. The nesting also dispenses with the need
for word offsets. This format makes it easier for humans to evaluate the relation
extraction and facilitates revisions in case humans will be doing post-editing of
the extracted relations prior to incorporation in a lexicon. Figure 3.7 shows an
example of this conversion.

3.4 Differentia Extraction Algorithm

To summarize the extraction process, Figure 3.8 presents a high-level
description of the differentia extraction algorithm. This includes the disambigua-
tion step to be discussed in the next chapter, as that needs to be run prior to the
relation weighting. The code has been implemented using Perl. It is available
for download at www.cs.nmsu.edu/˜tomohara/differentia-extraction.

.
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Definition sentence:
An artifact is a man-made object taken as a whole.

Extracted relations in tuple format:
〈2. n:artifact, 3. v:is, 6. n:object〉
〈5. man-made, modifies, 6. n:object〉
〈6. n:object, modified-by , 7. v:taken〉
〈7. v:taken, 8. p:as, 10. n:whole〉

Extracted relations in nested format:
noun:artifact

verb:is noun:object
modifies man-made
modified-by verb:taken

as noun:whole

Figure 3.7: Sample conversion from relation tuples into nested format.
Source terms from the relationships are omitted and instead indicated implicitly
by indentation.
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Input Definitions for lexicon entries

Output List of word-level relationships:
〈source-word, relation-function-word, target-word〉

Example Extracting relations from definition of ‘kennel’:
“an outbuilding that serves as a shelter for a dog”
⇒
〈4. noun:outbuilding, 5. pronoun:that, 6. verb:serves〉
〈6. verb:serves, 10. prep:for, 12. noun:dog〉
〈6. verb:serves, 7. prep:as, 9. noun:shelter〉

Steps For each definition:

1. Preprocess definition text, isolating punctuation, removing domain
indicators and example sentences.

2. Convert definition fragments into complete sentences.

3. Parse definitions using Link Grammar parser producing syntactic re-
lations.

4. Convert into format with relation types based either on high-level
grammatical relations or on function words.

5. Disambiguate the parses (see Chapter 4).

6. Weight the relations based on cue validities (P(C|F) with features
interpreted as 〈 , relation, target〉).

7. Convert from flat relational tuples into nested relation format.

Figure 3.8: Differentia extraction algorithm. Steps 1 through 4 form the
basic differentia extraction process as discussed in Section 3.2; the example
just illustrates these steps. Step 5 is discussed in the next chapter. Steps 6 and
7 are discussed in Section 3.3.
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CHAPTER 4
DIFFERENTIA DISAMBIGUATION

After the differentiating properties have been extracted from a definition
(as discussed in the last chapter), the words for the relation source and object
terms should be disambiguated in order to reduce vagueness in the relation-
ships. In addition, the relation types should be disambiguated from surface-
level relations or relation-indicating words (e.g., prepositions) into the underly-
ing semantic relationship. For example, the relationship 〈dog, with, coat〉 would
get transformed into 〈dogCANINE, has-part , coatHAIR〉.

Both aspects of this disambiguation are discussed in this chapter with
emphasis on relation disambiguation, since word-sense disambiguation (WSD)
has received more attention in computational linguistics (Kilgarriff and Palmer,
2000b; Edmonds and Kilgarriff, 2002). The approach to disambiguation uses
statistical classifiers learned from training data annotated with semantic rela-
tions, so information about these inventories is included as well.

Note that the two disambiguation processes, namely WSD of the source
and target words (e.g., ‘dog’ and ‘coat’) and WSD of the relation words (e.g.,
‘with’), are not necessarily sequential. They can be applied in either order or at
the same time. As presented here, they are independent, but it might be helpful
to interleave the processes. This way the results of disambiguation for some
of the source and target terms can influence the disambiguation of the relation
types (and vice versa).

This chapter is organized as follows. Section 4.1 briefly discusses term
disambiguation and the word-sense annotations used for this purpose. Section
4.2 presents background information on the relation inventories used during
classification. Section 4.3 discusses the relation classifiers in depth with results
given for three different inventories. Section 4.4 closes with a summary of the
disambiguation algorithm, including an example.

4.1 Source and Target Term Disambiguation

The first step in differentia disambiguation is to resolve the relational
source and target terms into the underlying concepts (e.g., ‘coat’ into coatHAIR).
Since WordNet serves as the knowledge base being targeted, this involves
selecting the most appropriate synset for both the source and target terms.
Synsets and word senses are closely related, so word-sense disambiguation
serves to resolve the underlying concept at the same time. If another dictionary
were being used as the source of the sense inventory for the WSD, there would
be an additional step of mapping the word senses into the target knowledge



base (e.g., sense 2b of ‘dog’ in Merriam-Webster’s dictionary into dogCHAP).
Some applications might not require disambiguated terms, so this step is op-
tional. An example would be text segmentation where relations among words
are used to provide clues for segment cohesiveness (as sketched out later in
Section 6.2.3).

Several different approaches to word-sense disambiguation were pre-
sented in Section 2.4.3. These fall into two main categories: supervised ap-
proaches use examples to induce classifies; and, unsupervised approaches
instead use heuristics when deciding on the best word sense (e.g., based on
word overlap with dictionary definitions). There have also been a few hybrid
approaches.

The Extended WordNet (XWN) project is endeavoring to convert Word-
Net into a more comprehensive knowledge base by providing logical form repre-
sentations of the definitions (Harabagiu et al., 1999; Rus, 2002). As part of this,
the content words from the definitions are being sense annotated with respect
to the WordNet inventory (Novischi, 2002). The disambiguation approach used
here is based only on these sense annotations (i.e., table lookup). For other
dictionaries, use of traditional word-sense disambiguation algorithms would be
required.

Figure 4.1 gives an example of the XWN annotations for the defini-
tion of ‘beagle.’ The wnsn attribute gives the sense number. For example,
‘breed’ refers to breed#2, the animal-group sense, rather than the lineage or
caste senses. With respect to word-sense disambiguation, the annotations are
treated as follows (with part-of-speech and sense number indicated by sub-
scripts):

a smalladj1 shortadj1-leggedadj1 smoothadj1-coatedadj1 breedn2 of houndn1

For Extended WordNet, they have used a semi-automated process to
annotate senses. They use two separate systems to sense-tag the defini-
tions: one is tailored to WordNet (see Figure 2.5) and the other is a general
word-sense tagger. If the two systems disagree, then the tagging from the sys-
tem tailored to WordNet is used with a default confidence indicator (i.e., qual-
ity=“normal”). If these two systems agree then the selected sense is used and
assigned a higher confidence indicator (i.e., quality=“silver”). They have also
manually checked some of the annotations (roughly 5% of the data). These are
assigned the highest confidence indicator (i.e., quality=“gold”).

Note that the WordNet team is working on an alternative source of sense
annotations for the glosses (Langone et al., 2004). These are being manually
produced and thus will be more reliable in general than the ones produced for
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〈gloss pos=“NOUN” synsetID=“02005361”〉
〈synonymSet〉beagle〈/synonymSet〉
〈text〉

a small short-legged smooth-coated breed of hound
〈/text〉

〈wsd〉
〈wf pos=“DT”〉a〈/wf〉
〈wf pos=“JJ” lemma=“small” quality=“normal” wnsn=“1”〉small〈/wf〉
〈wf pos=“JJ” lemma=“short” quality=“normal” wnsn=“1”〉short〈/wf〉
〈punct〉-〈/punct〉
〈wf pos=“JJ” lemma=“legged” quality=“silver” wnsn=“1”〉legged〈/wf〉
〈wf pos=“JJ” lemma=“smooth” quality=“normal” wnsn=“1”〉smooth〈/wf〉
〈punct〉-〈/punct〉
〈wf pos=“JJ” lemma=“coated” quality=“normal” wnsn=“1”〉coated〈/wf〉
〈wf pos=“NN” lemma=“breed” quality=“normal” wnsn=“2”〉breed〈/wf〉
〈wf pos=“IN” 〉of〈/wf〉
〈wf pos=“NN” lemma=“hound” quality=“silver” wnsn=“1”〉hound〈/wf〉

〈/wsd〉

〈parse quality=“SILVER”〉
(TOP (S (NP (NN beagle) )

(VP (VBZ is)
(NP (NP (DT a) (JJ small) (JJ short-legged) (JJ smooth-coated)

(NN breed) )
(PP (IN of)

(NP (NN hound) ) ) ) )
(. .) ) )

〈/parse〉

〈lft quality=“GOLD”〉
beagle:NN(x1) ⇒ small:JJ(x1) short-legged:JJ(x1) smooth-coated:JJ(x1)

breed:NN(x1) of:IN(x1, x2) hound:NN(x2)
〈/lft〉
〈/gloss〉

Figure 4.1: Extended WordNet annotations for ‘beagle’ definition. Based
on Extended WordNet version 2.0.1-1. The database is freely available at
http://xwn.hlt.utdallas.edu.
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Extended WordNet. Future work will incorporate these WSD annotations when
available.

4.2 Semantic Relation Inventories

The representation of natural language utterances often incorporates
the notion of semantic roles, which are analogous to the slots in a frame-based
representation. In particular, there is an emphasis on the analysis of thematic
roles, which serve to tie the grammatical constituents of a sentence to the un-
derlying semantic representation. Thematic roles are also called case roles,
since in some languages the grammatical constituents are indicated by case
inflections (e.g., ablative in Latin).

There is a wide range of variability in the usage of semantic roles in
natural language processing. Some systems use just a small number of very
general roles, such as beneficiary . At the other extreme, some systems use
quite specific roles tailored to particular domains, such as catalyst .

4.2.1 Background on Semantic Roles

Bruce (1975) presents an early account of case systems in natural lan-
guage processing. For the most part, the systems had limited case role inven-
tories, along the lines of the cases defined by Fillmore (1968). Palmer (1990)
discussed some of the more contentious issues regarding case systems, in-
cluding adequacy for representation, such as in reliance solely upon case in-
formation to determine semantics versus the use of additional inference mech-
anisms. Barker (1998) provides a comprehensive summary of case inventories
in NLP, along with criteria for the qualitative evaluation of case systems: gener-
ality, completeness, and uniqueness. Linguistic work on thematic roles tends to
stick with a limited number of roles. Frawley (1992) presents a detailed discus-
sion of twelve thematic roles and discusses how they are realized in different
languages.

During the shift in emphasis away from systems that work in small, self-
contained domains to those that can handle open-ended domains during the
past 15 or so years, there has been a trend towards the use of larger sets of
semantic primitives (Wilks et al., 1996). These primitives can be seen as a
generalization of cases to include properties as well as relations. The Word-
Net (Miller et al., 1990) lexicon (see Section 3.1) serves as one example of
this, where a synset can be defined in terms of any of the 100,000+ synsets
rather than using a set of features like [±ANIMATE]. At the same time, there
has been a shift in focus from deep understanding (e.g., story comprehension)
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facilitated by specially constructed knowledge bases to shallow surface-level
analysis (e.g., text extraction) facilitated by corpus analysis. Thus, issues such
as paraphrasability (Schank, 1973) became less critical than representational
coverage (Jurafsky and Martin, 2000). Both trends seem to be behind the in-
crease in case inventories in two relatively recent resources, namely FrameNet
(Fillmore et al., 2001) and OpenCyc (OpenCyc, 2002), both of which define
well over a hundred case roles. It is arguable that once deep understanding
becomes back in focus, counter-trends will emerge favoring smaller inventories
for tractability. However, provided that the case roles are well-structured in an
inheritance hierarchy, both needs can be addressed by the same inventory.

4.2.2 Inventories Developed for Corpus Annotation

With the emphasis on corpus analysis in computational linguistics, there
has been shift away from relying on explicitly coded knowledge towards the
use of knowledge inferred from naturally occurring text, in particular text that
has been annotated by humans to indicate phenomena of interest. For exam-
ple, rather than manually developing rules for preferring one sense of a word
over another based on context, the most successful approaches have automat-
ically learned the rules based on word-sense annotations, as evidenced by the
SENSEVAL competitions (Kilgarriff, 1998; Edmonds and Cotton, 2001).

The PENN TREEBANK version II (Marcus et al., 1994) provided the first
large-scale set of case annotations for general-purpose text. These are very
general roles as with Fillmore’s (1968) roles discussed in Chapter 2. The
Berkeley FRAMENET (Fillmore et al., 2001) project provides the most recent
large-scale annotation of semantic roles. These are at a much finer granularity
than those in Treebank, so they should prove quite useful for applications learn-
ing semantics from corpora. Relation disambiguation experiments for both of
these role inventories are discussed later in this chapter.

4.2.2.1 Penn Treebank

The original TREEBANK (Marcus et al., 1993) provided syntactic anno-
tations in the form of parse trees for text from the Wall Street Journal. This
resource is very popular for computational linguistics, in particular for inducing
part-of-speech taggers and parsers. Treebank II (Marcus et al., 1994) added
20 functional tags, including a few thematic roles such as beneficiary , direction,
and purpose. These can be attached to any verb complement but normally oc-
cur with clauses, adverbs, and prepositions. For example, here is a simple
parse tree with the newer annotation format:
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Role Freqrel Description
temporal .120 indicates when, how often, or how long
locative .092 place/setting of the event
direction .030 starting or ending location (trajectory)
manner .023 indicates manner, including instrument
purpose .019 purpose or reason
extent .012 spatial extent
benefactive .0003 beneficiary of an action

Table 4.1: Frequency of Treebank II semantic role annotations. Relative fre-
quencies taken from (Blaheta and Charniak, 2000) and descriptions from (Bies
et al., 1995). The syntactic role annotations generally have higher frequencies;
for example, the subject role occurs 41% of the time.

(S (NP-TPC-5 This) topic (i.e., discourse focus)
(NP-SBJ every man) grammatical subject
(VP contains

(NP *T*-5) trace element linked to ‘this’
(PP-LOC within locative

(NP him))))

In addition to the usual syntactic constituents such as NP and VP, function
tags are included. For example, the first NP gives the discourse topic. This
also shows that the prepositional phrase (PP) is providing the location for the
state described by the verb phrase. Frequency information for the semantic role
annotations is shown in Table 4.1.

4.2.2.2 FrameNet

FRAMENET (Fillmore et al., 2001) is striving to develop an English lex-
icon with rich case structure information for the various contexts that words
can occur in. Each of these contexts is called a frame, and the semantic re-
lations that occur in each frame are called frame elements. For example, in
the communications frame, there are frame elements for speaker , message,
etc. FrameNet annotations occur at the phrase level instead of the grammatical
constituent level as in Treebank. An example follows:

〈S TPOS=“56879338”〉
〈T TYPE=“sense2”〉〈/T〉
It had a sharp, pointed face and
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〈C FE=“BodP” PT=“NP” GF=“Ext”〉 a feathery tail that 〈/C〉
〈C TARGET=“y”〉arched〈/C〉
〈C FE=“Path” PT=“PP” GF=“Comp”〉 over its back 〈/C〉
. 〈/S〉

The constituent (C) tags identify the phrases that have been annotated. The
frame element (FE) attributes indicate the semantic roles, and the phrase type
(PT) attributes indicate the grammatical function of the phrase.

Table 4.2 shows the top 25 semantic roles by frequency of annotation.
This illustrates that the semantic roles in FrameNet can be quite specific, as
with the roles cognizer , judge, and addressee. In all, there are over 140 roles
annotated with over 117,000 tagged instances.

4.2.3 Inventories for Knowledge Representation

The next two case inventories discussed, from Cyc and Conceptual
Graphs respectively, are based on the traditional knowledge representation
paradigm. With respect to natural language processing, these approaches are
more representative of the earlier approaches in which deep understanding is
the chief goal. Nonetheless, both are evolving to meet the needs of current
applications. Another case inventory is that from Factotum. It is likewise based
on the knowledge representation paradigm. However, in a sense it reflects the
empirical aspect of the corpus annotation approach, because the annotations
were developed to address the relations implicit in Roget’s Thesaurus.

Relation disambiguation experiments are only presented for Factotum,
given that the others do not readily provide sufficient training data. However,
both inventories are discussed because each provides relation types incorpo-
rated into the inventory used below for differentia extraction (see Section 4.3.5).

4.2.3.1 Cyc

The CYC system (Lenat, 1995) is the most ambitious knowledge repre-
sentation project undertaken to date. It has been in development since 1984,
originally as part of Microelectronics and Computer Technology Corporation
(MCC), but later as a separate company called Cycorp (Lenat and Guha, 1990;
Lenat, 1995). The full Cyc KB is proprietary, which has hindered its adapta-
tion in natural language processing. However, to encourage broader usage,
portions of the KB have been made freely available to the public. For in-
stance, there is now an open-source version of the system called OPENCYC

(www.opencyc.org), which covers the upper part of the KB and also includes
the Cyc inference engine, KB browser, and other tools.
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Role Freqrel Description
speaker .071 person producing the message
message .060 content which is communicated
self-mover .058 living being moving under its own power
theme .054 object in relation to a particular location
agent .050 entity that acts on another entity
goal .047 identifies the endpoint of movement
path .046 trajectory which is neither a source nor a goal
cognizer .039 person who becomes aware of a phenomenon
manner .038 property of motion unrelated to the trajectory
source .032 starting-point of motion
content .031 entity whose salience is described
experiencer .030 being who has a physical experience
evaluee .026 entity about whom/which a judgment is made
judge .026 evaluator of protagonist’s mental state
topic .026 subject matter of the communicated message
undefined .022 unspecified frame element
cause .020 non-agentive cause of the physical experience
addressee .019 person that receives a message
perceptual source .019 source of perception (e.g., clatter [of hoofs])
phenomenon .017 entity the perceiver experiences or senses
reason .015 reason for the judgment
area .011 a region in which the motion takes place
degree .011 no description; ex: shook me [to my roots]
body part .010 the body part in which a sensation is located
protagonist .009 person to whom a mental property is attributed

Table 4.2: Common FrameNet semantic roles. The top 25 of 141 roles are
shown. Descriptions based on FrameNet 0.75 frame documentation.

Cyc uses a wide range of role types: very general roles (e.g., bene-
ficiary ); commonly occurring situational roles (e.g., victim); and, highly spe-
cialized roles (e.g., catalyst). Of the 8756 concepts in OpenCyc, 130 are for
thematic roles (i.e., instances of ActorSlots) with 51 other semantic roles (i.e.,
other instances of Role). Table 4.3 shows the most commonly used thematic
roles in the KB. The frequency was determined by using the Cyc’s indexing
functions that return the assertions associated with a given term.

The Cyc role inventory is not used directly in the experiments discussed
later. However, some of the roles are incorporated into the combined role in-
ventory developed for differentia analysis. In addition, the future work chapter
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Role Freqrel Description
doneBy .178 relates an event to its “doer”
performedBy .119 doer deliberately does act
objectOfState-
Change

.081 object undergoes some kind of intrinsic change
of state

objectActedOn .057 object is altered or affected in event
outputsCreated .051 object comes into existence sometime during

event
transporter .044 object facilitating conveyance of transportees
transportees .044 object being moved
toLocation .041 where the moving object is found when event

ends
objectRemoved .036 object removed from its previous location
inputs .036 pre-existing event participant destroyed or incor-

porated into a new entity
products .035 object is one of the intended outputs of event
inputsDestroyed .035 object exists before event, is destroyed during

event
fromLocation .034 loc is where some moving-object in the move is

found at the beginning
primaryObject-
Moving

.033 object is in motion at some point during the
event and this movement is focal

seller .030 agent sells something in the exchange
objectOf-
Possession-
Transfer

.030 rights to use object transferred from one agent
to another

transferredThing .030 object is being moved, transferred, or ex-
changed in the event transfer

senderOfInfo .030 sender is an agent who is the source of informa-
tion transferred

inputsCommitted .028 object exists before event and continues to exist
afterwards, and as a result of event, object be-
comes incorporated into something created dur-
ing event

objectEmitted .026 object is emitted from the emitter during the
emission event

Table 4.3: Most common thematic roles in OpenCyc. Descriptions based
on comments from the OpenCyc knowledge base (version 0.7).
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sketches out how annotations for attributes can be inferred from Cyc. This
extends the relation marker inference technique discussed below for Factotum.

4.2.3.2 Conceptual Graphs

Conceptual Graphs (CG) are the mechanism introduced by Sowa (1984)
for knowledge representation as part of his Conceptual Structures theory. The
original text listed two dozen or so thematic relations, such as destination and
initiator . In all, 37 conceptual relations were defined. This inventory formed
the basis for most work in conceptual graphs. Recently, Sowa (1999) updated
the inventory to allow for better hierarchical structuring and to incorporate the
important thematic roles identified by Somers (1987). Four broad categories
were used, corresponding roughly to Aristotle’s four causes (or aitia): initiator,
resource, goal, and essence. In addition, six categories of verbs were used:
action, process, transfer, spatial, temporal, and ambient. Table 4.4 shows a
sample of these roles, along with estimated usage. These roles are generally
more abstract than traditional usage. For example, Duration can refer to any
of a variety of resources used in a temporal process, not just the time of the
process.

There are currently no large-scale resources based on CG relations (i.e.,
neither a knowledge base nor an annotated dataset). Therefore, the role us-
age is estimated by issuing web searches for the various relation names and
abbreviations and seeing when CG-style notation is used with the relation. In
effect, this technique uses online academic papers and other CG-related web
resources as a corpus. For example, for patient a web search would be done
on the following query:

(patient or PTNT) and (“conceptual structure” or CS or “conceptual graph”
or CG)

Then the resulting text is analyzed to see how often the relation occurs in CG’s
linear notation, such as the following:

[SITUATION: [CAT]←(AGNT)←[EAT]→(PTNT)→[FISH]].

The restriction to parenthesized relation names is important for reduc-
ing extraneous hits, because ‘CS’ and ‘CG’ are common search terms, dealing
with computer science and C.G. Jung, respectively. However, for simplicity, the
check for the arrows is omitted, as CG’s linear notation makes the arrows op-
tional in certain contexts. Table 4.4 shows the relative frequencies of the roles
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Role Freqrel Description
Agent .267 entity voluntarily initiating an action
Attribute .155 entity that is a property of some object
Characteristic .080 types of properties of entities
Theme .064 participant involved with but not changed
Patient .061 participant undergoing structural change
Location .053 participant of a spatial situation
Possession .035 entity owned by some animate being
Part .035 object that is a component of some object
Origin .035 source of a spatial or ambient situation
Experiencer .035 animate goal of an experience
Result .032 inanimate goal of an act
Instrument .027 resource used but not changed
Recipient .019 animate goal of an act
Destination .013 goal of a spatial process
PointInTime .011 participant of a temporal situation
Path .011 resource of a spatial or ambient situation
Accompaniment .011 object participating with another
Effector .008 source involuntarily initiating an action
Beneficiary .008 entity benefiting from event completion
Matter .005 resource that is changed by the event
Manner .005 entity that is a property of some process
Source .003 present at beginning of activity
Resource .003 material necessary for situation
Product .003 present at end of activity
Medium .003 resource for transmitting information
Goal .003 final cause which is purpose or benefit
Duration .003 resource of a temporal process
Because .003 situation causing another situation
Amount .003 a measure of some characteristic

Table 4.4: Common semantic roles used in Conceptual Graphs. Inventory
and descriptions based on (Sowa, 1999, pp. 502-510). The term situation is
used in place of Sowa’s nexus (i.e., “fact of togetherness”), which also cov-
ers spatial structures. Freqrel gives estimated relative frequency based on web
searches.
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using this technique for estimation. To expand this beyond the set of relations
specified in (Sowa, 1999), the relation name can be omitted from the search
and then all of the relation names that occur in →(relation)→ or ←(relation)←
constructions could be tabulated.

4.2.3.3 Factotum

The FACTOTUM semantic network (Cassidy, 2000) developed by Micra,
Inc. makes explicit many of the functional relations in Roget’s Thesaurus.1 Out-
side of proprietary resources such as Cyc, Factotum is the most comprehen-
sive KB with respect to functional relations. OpenCyc does include definitions
of many non-hierarchical relations. However, there are not many instantiations
(i.e., relationship assertions), because it concentrates on the higher level of the
ontology.

The Factotum knowledge base was based on the 1911 version of Ro-
get’s Thesaurus and specifies the relations that hold between the Roget cat-
egories and the words listed in each entry. Factotum incorporates informa-
tion from other resources as well. For instance, the Unified Medical Language
System (UMLS) formed the basis for the initial inventory of semantic relations,
which was later revised during tagging.

Figure 4.2 shows a sample from Factotum. This illustrates that the ba-
sic Roget organization is still used, although additional hierarchical levels have
been added. The relations are contained within double braces (e.g., “{{has -
subtype}}”) and generally apply from the category to each word in the synonym
list on the same line. Therefore, the line with “{{result of}}” indicates that con-
version is the result of transforming, as shown in the semantic relation listing
that would be extracted.2 There are over 400 different relations instantiated in
the knowledge base, which has over 93,000 assertions. Some of these are
quite specialized (e.g., has-brandname). In addition, there are quite a few in-
verse relations, since most of the relations are not symmetrical. Certain fea-
tures of the knowledge representation are ignored during the relation extraction
used later. For example, relation specifications can have qualifier prefixes, such
as an ampersand to indicate that the relationship only sometimes holds.

Table 4.5 shows the most common relations in terms of usage in the se-
mantic network, and includes others that are used in the experiments discussed

1Factotum is based on the public domain version of Roget’s Thesaurus. The latter
is freely available via Project Gutenberg (http://promo.net/pg), thanks to Micra, Inc.

2For clarity, some of the relations are renamed to make the directionality more ex-
plicit, following a suggestion for their interpretation in the Factotum documentation.
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Original data:

A6.1.4 CONVERSION (R144)
#144. Conversion.
N. {{has subtype(change, R140)}} conversion, transformation.
{{has case: @R7, initial state, final state}}.
{{has patient: @R3a, object, entity}}.
{{result of}} {{has subtype(process, A7.7)}} converting, transforming.
{{has subtype}} processing.
transition.

Extracted relationships:

〈change, has-subtype, conversion〉 〈change, has-subtype, transformation〉
〈conversion, has-case, initial state〉 〈conversion, has-case, final state〉
〈conversion, has-patient , object〉 〈conversion, has-patient , entity〉
〈conversion, is-result-of , converting〉 〈conversion, is-result-of , transforming〉
〈process, has-subtype, converting〉 〈process, has-subtype, transforming〉
〈conversion, has-subtype, processing〉
Figure 4.2: Sample data from Factotum. Based on version 0.56 of Factotum.

later.3 The relative frequencies just reflect relationships explicitly labeled in the
KB data file. For instance, this does not account for implicit has-subtype rela-
tionships based on the hierarchical organization of the thesaural groups. The
functional relations are shown in boldface. This excludes the meronym or part-
whole relations (e.g., is-conceptual-part-of ), in line with their classification by
Cruse (1986) as hierarchical relations. The reason for concentrating on the
functional relations is that these are more akin to the roles tagged in Treebank
and FrameNet.

Table 3.1 from the previous chapter shows the relation usage in Word-
Net version 1.7. This shows that the majority of the relations are hierarchical
(is-similar-to can be considered as a hierarchical relation for adjectives). As
mentioned earlier, WordNet 1.7 averages only 1.3 non-taxonomic properties
per concept (including inverses). OpenCyc provides a much higher average at
3.7 properties per concept, although with an emphasis on argument constraints
and other usage restrictions. Factotum compares favorably in this respect, av-

3The database files and documentation for the semantic network are available from
Micra, Inc. via ftp://micra.com/factotum.
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Relation Freqrel Description
has-subtype .401 inverse of is-a relation
is-property-of .077 object with given salient character
is-caused-by .034 force that is the origin of something
has-property .028 salient property of an object
has-part .022 a part of a physical object
has-high-intensity .018 intensifier for property or characteristic
has-high-level .017 implication of activity (e.g., intelligence)
is-antonym-of .016 generally used for lexical opposition
is-conceptual-part-of .015 parts of other entities (in case relations)
has-metaphor .014 non-literal reference to the word
causesmental .013 motivation (causation in the mental realm)
uses .012 a tool needing active manipulation
is-performed-by .012 human actor for the event
performshuman .011 human role in performing some activity
is-function-of .011 artifact passively performing the function
has-result .010 more specific type of causes
has-conceptual-part .010 generalization of has-part
is-used-in .010 activity or desired effect for the entity
is-part-of .010 distinguishes part from group membership
causes .009 inverse of is-caused-by
has-method .009 method used to achieve some goal
is-caused-bymental .009 inverse of causesmental

has-consequence .008 causation due to a natural association
has-commencement .007 state that commences with the action
is-location-of .007 absolute location of an object
requires .004 object or sub-action needed for an action
is-studied-in .004 inquires into any field of study
is-topic-of .002 communication dealing with given subject
produces .002 what an action yields, generates, etc.
is-measured-by .002 instrument for measuring something
is-job-of .001 occupation title for a job function
is-patient-of .001 action that the object participates in
is-facilitated-by .001 object or sub-action aiding an action
is-biofunction-of .0003 biological function of parts of living things
was-performed-by .0002 is-performed-by occurring in the past
has-consequenceobject .0002 consequence for the patient of an action
is-facilitated-bymental .0001 trait that facilitates some human action

Table 4.5: Common Factotum semantic roles. These account for 80% of
the instances. Boldface relations are used in the experiments (Section 4.3.4.2).
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eraging 1.8 properties per concept.4 Therefore, the information in Factotum
complements WordNet through the inclusion of more functional relations.

4.3 Relation Disambiguation

Relations indicated by prepositional phrases are the focus of this work.
The goal of general relation disambiguation is to determine the underlying se-
mantic role indicated by particular words in a phrase or by word order. For re-
lations indicated directly by function words, the disambiguation can be seen as
a special case of word-sense disambiguation. As an example, disambiguating
the relationship 〈‘dog’, ‘with’, ‘ears’〉 into 〈‘dog’, has-part , ‘ears’〉, is equivalent
to disambiguating the preposition ‘with,’ given senses for the different relations
it can indicate. For relations that are indicated implicitly (e.g., adjectival modi-
fication), other classification techniques would be required, reflecting the more
syntactic nature of the task. For example, adjective modification could be ap-
proximated by positing an underlying preposition (e.g., ‘modifier-of’) that occurs
as a trace element in the sentence. Providing a general framework for the dis-
ambiguation of implicitly indicated relations is an area for future work.

Traditionally, prepositions have numerous senses. For instance, the
preposition ‘for’ has 20 different senses defined in Merriam-Webster’s dictio-
nary (10th Edition), as shown in Table 4.6. (WordNet does not include func-
tion words, so sense inventories from other dictionaries are discussed here.)
The Treebank roles are more general than these: for the preposition ‘for,’ there
are six distinctions (four with low-frequency pruning). The Treebank role dis-
ambiguation experiments thus address a coarse form of sense distinction. In
contrast, the FrameNet distinctions are quite specific: there are 41 distinctions
associated with ‘for’ (18 with low-frequency pruning). The FrameNet role dis-
ambiguation experiments thus address fine-grained sense distinctions.

4.3.1 Overview of Relation Type Disambiguation

Recall that the output of the extraction step is a list of relationship tuples
in the following format:

〈source-word, relation-word, target-word〉
These need to be disambiguated into the underlying concepts:

4These figures are derived by counting the number of relations excluding the in-
stance and subset ones. Cyc’s comments and lexical assertions are also excluded, as
these are implicit in Factotum and WordNet. The count is then divided by the number
of concepts.
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1. in place of; instead of [to use blankets for coats]
2. as the representative of; in the interest of [to act for another]
3. in defense of; in favor of [to fight for a cause]
4. in honor of [to give a banquet for someone]
5. with the aim or purpose of [to carry a gun for protection]
6. with the purpose of going to [to leave for home]
7. in order to be, become, get, have, keep, etc. [to walk for exercise]
8. in search of [to look for a lost article]
9. meant to be received by a specified person or thing, or to be used in a

specified way [flowers for a girl, money for paying bills]
10. suitable to; appropriate to [a room for sleeping]
11. with regard to; as regards; concerning [a need for improvement]
12. as being [to know for a fact]
13. considering the nature of; as concerns [cool for July]
14. because of; as a result of [to cry for pain]
15. in proportion to; corresponding to [two dollars spent for every dollar

earned]
16. to the amount of; equal to [a bill for $50]
17. at the price or payment of [sold for $20,000]
18. to the length, duration, or extent of; throughout; through [to walk for an

hour]
19. at (a specified time) [a date for two o’clock]
20. [Obs.] before

Table 4.6: Definitions of preposition ‘for’ in Merriam-Webster’s dictionary.
Taken from (Mish, 1996), also available at www.m-w.com.

〈source-concept, relation-type, target-concept〉
For the “dog with coat” example, the relation word ‘with’ would be disambiguated
into the relation type has-part

Unlike the situation with the relational source and target concepts (e.g.,
synsets), there is just a limited number of relation types (e.g., case roles). As an
illustration, Cyc has the largest number of thematic roles compared to other re-
sources, but the total number is still just a few hundred (Lehmann, 1996). This
is quite small compared to the 100,000+ synsets in WordNet, each of which
could serve as a source or target concept. Therefore, a supervised learning
approach is much more feasible. In this approach, predefined classifications
for several examples of each of the possible relation types (or roles) are in-
put, along with feature descriptions of the examples, into a machine learning
system that induces classification rules. The resulting rules can either be sym-
bolic (e.g., decision trees) or statistical (e.g., conditional probability tables). To
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simplify the following discussion, the term roles is used whenever the relation
types are restricted to thematic roles (Fillmore, 1968) rather than relation types
in general. This convention alleviates a source of ambiguity between ‘relation’
as relation type versus relation instantiation (often referred to as ‘relationship’
here).

4.3.1.1 Class-based Collocations via Hypernyms

A straightforward approach for preposition disambiguation would be to
use standard WSD features, such as the parts-of-speech of surrounding words
and, more importantly, collocations (e.g., lexical associations). Although this
can be highly accurate, it tends to overfit the data and to generalize poorly. The
latter is of particular concern here as the training data is taken from a different
genre. For example, the Treebank data is from general-purpose newspaper
text (i.e., Wall Street Journal), but the differentiating relations are being ex-
tracted from dictionary definitions. To overcome these problems, a class-based
approach is used for the collocations, with WordNet high-level synsets as the
source of the word classes. Therefore, in addition to using collocations in the
form of other words, this uses collocations in the form of semantic categories.

Word collocation features are derived by making two passes over the
training data. The first pass tabulates the co-occurrence counts for each of the
context words (i.e., those in a window around the target word) paired with the
classification value for the given training instance (e.g., the preposition sense
from the annotation). These counts are used to derive conditional probabil-
ity estimates of each class value given co-occurrence of the various potential
collocates. The words exceeding a certain threshold are collected into a list
associated with the class value, making this a “bag of words” approach. In
the experiments discussed below, a potential collocate is selected whenever
the conditional probability for the class value exceeds the prior probability by a
factor greater than 20%:

P(C|coll) − P(C)

P(C)
≥ .20

That is, the relative difference between the class conditional probability given
the potential collocation occurrence (P(C|coll)) and the prior probability for the
class value (P(C)) must be 20% or higher for the potential collocation word
(coll) to be treated as one of the actual collocation words. The second pass
over the training data determines the value for the collocational feature of each
classification category by checking whether the current context window has any
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of the associated collocation words. Note that for the test data, only the second
pass is made, using the collocation lists derived from the training data.

In generalizing this to a class-based approach, the potential collocational
words are replaced with each of their hypernym ancestors from WordNet. The
adjective hierarchy is relatively shallow, so it is augmented by treating is-similar-
to as has-hypernym. Adverbs would be included, but there is no hierarchy for
them. Since the co-occurring words are not sense-tagged, this is done for each
synset serving as a different sense of the word. Likewise, in the case of multiple
inheritance, each parent synset is used. For example, given the co-occurring
word ‘money,’ the counts would be updated as if each of the following tokens
were seen, shown grouped by sense.

1. { medium of exchange#1, monetary system#1, standard#1, criterion#1,
measure#2, touchstone#1, reference point#1, point of reference#1, refer-
ence#3, indicator#2, signal#1, signaling#1, sign#3, communication#2, so-
cial relation#1, relation#1, abstraction#6 }

2. { wealth#4, property#2, belongings#1, holding#2, material possession#1,
possession#2 }

3. { currency#1, medium of exchange#1, monetary system#1, standard#1,
criterion#1, measure#2, touchstone#1, reference point#1, point of -
reference#1, reference#3, indicator#2, signal#1, signaling#1, sign#3, com-
munication#2, social relation#1, relation#1, abstraction#6 }

Thus, the word token ‘money’ is replaced by 41 synset tokens. Then, the
same two-pass process described above is performed over the text consisting
of the replacement tokens. Although this introduces noise due to ambiguity, the
conditional-probability selection scheme (Wiebe et al., 1998a) compensates by
selecting hypernym synsets that tend to co-occur with specific categories.

4.3.1.2 Classification Experiments

A supervised approach for word-sense disambiguation is used following
Bruce and Wiebe (1999). The results described here were obtained using the
settings in Figure 4.3. These are similar to the settings used by O’Hara et al.
(2000) in the first SENSEVAL competition, with the exception of the hypernym
collocations. This shows that, for the hypernym associations, only those words
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Features:
Prep: preposition being classified
POS−i: part-of-speech of i th word to left
POS+i: part-of-speech of i th word to right
WordCollr: context has word collocation for role r
HypernymCollr: context has hypernym collocation for role r
Collocation context:
Word: anywhere in the sentence
Hypernym: within 5 words of target preposition
Collocation selection:
Frequency: f(word) > 1
Conditional probability: P(C|coll) ≥ .50
Relative conditional probability: (P(C|coll) − P(C))/P(C) ≥ .20
Organization: per-class-binary
Model selection:
Overall classifier: Decision tree
Individual classifiers: Naive Bayes

Figure 4.3: Feature settings used in preposition classification experi-
ments. The per-class-binary organization uses a separate binary feature per
role (Wiebe et al., 1998a).

that occur within five words of the target prepositions are considered (i.e., a five
word context window).5

As mentioned above, the main difference from that of a standard WSD
approach is the use of WordNet hypernyms as class-based collocations. The
feature settings in Figure 4.3 are used in three different configurations: word-
based collocations alone, hypernym-collocations alone, and a combination of
the two types of collocations. This combination generally produces the best
results. This balances the specific clues provided by the word collocations with
the generalized clues provided by the hypernym collocations.

4.3.2 Penn Treebank

When deriving training data from Treebank via the parse tree annota-
tions, the functional tags associated with prepositional phrases are converted

5This window size was chosen after estimating that on average the prepositional ob-
jects occur within 2.35±1.26 words of the preposition and that the average attachment
site is within 3.0±2.98 words. These figures were produced by analyzing the parse
trees for the semantic role annotations in the Penn Treebank.
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Tag Role Freqrel

LOC locative .472
TMP temporal .290
DIR direction .149
MNR manner .050
PRP purpose .030
EXT extent .008
BNF benefactive .001

Table 4.7: Treebank semantic roles for PP’s. Tag is the label for the role
used in the annotations, whereas Role is the full name. Freqrel is the relative
frequency of the role occurrence (36,476 total instances).

into preposition sense tags. Consider the sample annotation for Treebank
shown earlier:

(S (NP-TPC-5 This) topic (i.e., discourse focus)
(NP-SBJ every man) grammatical subject
(VP contains

(NP *T*-5) trace element linked to ‘this’
(PP-LOC within locative

(NP him))))

Treating locative as the preposition sense would yield the following annotation:

This every man contains withinLOC him.

The relative frequencies of the roles in the Treebank prepositional phrase an-
notations are shown in Table 4.7.

The frequencies for the most frequent prepositions that have occurred in
the prepositional phrase annotations are shown later in Table 4.11. The table
is ordered by entropy, which measures the inherent ambiguity in the classes as
given by the annotations. Note that the Baseline column is the probability of
the most frequent sense, which is a common estimate of the lower bound for
classification experiments.

4.3.2.1 Illustration with ‘at’

As an illustration of the probabilities associated with class-based col-
locations, consider the differences in the prior versus class-based conditional
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Relation P(R) Example
locative .732 workers at a factory
temporal .239 expired at midnight Tuesday
manner .020 has grown at a sluggish pace
direction .006 CDs aimed at individual investors

Table 4.8: Prior probabilities of roles for ‘at’ in Treebank. P(R) is the relative
frequency. Example usages are taken from the corpus.

Category Relation P(R|C)
ENTITY#1 locative 0.86
ENTITY#1 temporal 0.12
ENTITY#1 other 0.02

ABSTRACTION#6 locative 0.51
ABSTRACTION#6 temporal 0.46
ABSTRACTION#6 other 0.03

Table 4.9: Sample conditional probabilities of roles for ‘at’ in Treebank.
Category is WordNet synset defining the category. P(R|C) is probability of the
relation given that the synset category occurs in the context.

probabilities for the semantic roles of the preposition ‘at’ in the Penn Treebank
(version II). Table 4.8 shows the global probabilities for the roles assigned to ‘at.’
Table 4.9 shows the conditional probabilities for these roles given that certain
high-level WordNet categories occur in the context. In a context with a concrete
concept (entity#1), the difference in the probability distributions,

P(R = locative|C = entity#1) − P(R = locative) = 0.13
P(R = temporal|C = entity#1) − P(R = temporal) = −0.12
P(R = other|C = entity#1) − P(R = other) = −0.22,

shows that the locative interpretation becomes even more likely. In contrast, in
a context with an abstract concept (abstraction#6), the difference in the proba-
bility distributions,

P(R = locative|C = abstraction#6) − P(R = locative) = −0.22
P(R = temporal|C = abstraction#6) − P(R = temporal) = 0.22
P(R = other|C = abstraction#6) − P(R = other) = 0.001,
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Experiment Accuracy STDEV

Word Only 81.1 .996
Hypernym 85.9 .702
Combined 86.1 .491

# Instances: 26616
# Classes: 7
Entropy: 1.917
Baseline: 48.0

Table 4.10: Overall preposition disambiguation results over Treebank
roles. A single classifier is used for all the prepositions. # Instances is the
number of role annotations. # Classes is the number of distinct roles. Entropy
measures non-uniformity of the role distributions. Baseline is estimated by the
most-frequent role. The Word Only experiment uses just word collocations,
whereas Combined uses both word and hypernym collocations. Accuracy is
average for percent correct over ten trials in cross validation. STDEV is the
standard deviation over the trials. The difference in the combination versus
word-only experiments is statistically significant at p < .01 via a paired t-test.

shows that the temporal interpretation becomes more likely. Therefore, these
class-based lexical associations reflect the intuitive use of the prepositions.

4.3.2.2 Results

The classification results for these prepositions in the Penn Treebank
show that this approach is very effective. Table 4.10 shows the results when
all of the prepositions are classified together. Unlike the general case for WSD,
the sense inventory is the same for all the words here; therefore, a single clas-
sifier can be produced rather than individual classifiers. This has the advantage
of allowing more training data to be used in the derivation of the clues indica-
tive of each semantic role. Good accuracy is achieved when just using stan-
dard word collocations. Table 4.10 also shows that significant improvements
are achieved using a combination of word and hypernym collocations. For the
single-classifier case, the accuracy is 86.1%, using Weka’s J4.8 classifier (Wit-
ten and Frank, 1999), which is an implementation of Quinlan’s (1993) C4.5 de-
cision tree learner. For comparison, Table 4.11 shows the results for individual
classifiers created for each preposition (using Naive Bayes). In this case, the
word-only collocations perform slightly better than the combined collocations:
78.5% versus 77.8% accuracy.
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Preposition Freq Entropy Baseline Word Only Combined
through 332 1.668 0.438 0.598 0.634
as 224 1.647 0.399 0.820 0.879
by 1043 1.551 0.501 0.867 0.860
between 83 1.506 0.483 0.733 0.751
of 30 1.325 0.567 0.800 0.814
out 76 1.247 0.711 0.788 0.764
for 1406 1.223 0.655 0.805 0.796
on 1927 1.184 0.699 0.856 0.855
throughout 61 0.998 0.525 0.603 0.584
across 78 0.706 0.808 0.858 0.748
from 1521 0.517 0.917 0.912 0.882
Total 6781 1.233 0.609 0.785 0.778

Table 4.11: Per-preposition disambiguation results over Treebank roles.
A separate classifier is used for each preposition. Freq gives the frequency
for the prepositions. The Word Only and Combined columns show averages
for percent correct over ten trials. Total averages the values of the individual
experiments (except for Freq). See Table 4.10 for information on the other
columns.

4.3.3 FrameNet

A similar preposition word-sense disambiguation experiment is carried
out over the FrameNet semantic role annotations involving prepositional phrases.
Consider the sample annotation shown earlier:

〈S TPOS=“56879338”〉
〈T TYPE=“sense2”〉〈/T〉
It had a sharp, pointed face and
〈C FE=“BodP” PT=“NP” GF=“Ext”〉 a feathery tail that 〈/C〉
〈C TARGET=“y”〉arched〈/C〉
〈C FE=“Path” PT=“PP” GF=“Comp”〉 over its back 〈/C〉
. 〈/S〉

The prepositional phrase annotation is isolated and treated as the sense of the
preposition. This yields the following sense annotation:

It had a sharp, pointed face and a feathery tail that arched overPath its
back.

93



The annotation frequencies for the most frequent prepositions are shown later
in Table 4.16, again ordered by entropy. This illustrates that the role distributions
are more complicated, yielding higher entropy values on average. In all, there
are over 100 prepositions with annotations, 65 with ten or more instances each.
(Several of the low-frequency cases are actually adverbs (e.g. ‘anywhere’), but
are treated as prepositions during the annotation extraction.)

4.3.3.1 Illustration with ‘at’

Relation P(R) Example
addressee .315 growled at the attendant

other .092 chuckled heartily at this admission
phenomenon .086 gazed at him with disgust

goal .079 stationed a policeman at the gate
content .051 angry at her stubbornness

Table 4.12: Prior probabilities of roles for ‘at’ in FrameNet. Only the top 5
of 40 applicable roles are shown; otherwise similar to Table 4.8.

Category Relation P(R|C)
ENTITY#1 addressee 0.28
ENTITY#1 goal 0.11
ENTITY#1 phenomenon 0.10
ENTITY#1 other 0.09
ENTITY#1 content 0.03

ABSTRACTION#6 addressee 0.22
ABSTRACTION#6 other 0.14
ABSTRACTION#6 goal 0.12
ABSTRACTION#6 phenomenon 0.08
ABSTRACTION#6 content 0.05

Table 4.13: Sample conditional probabilities of roles for ‘at’ in FrameNet.
See Table 4.9 for the legend.

It is illustrative to compare the prior probabilities of the roles (i.e., P(R))
for FrameNet to those seen earlier for ‘at’ in Treebank. See Table 4.12 for the
most frequent roles out of the 40 cases that were assigned to it. This highlights
a difference between the two sets of annotations. The common temporal role
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Experiment Accuracy STDEV

Word Only 48.9 0.94
Hypernym 48.0 1.32
Combined 49.4 0.59

# Instances: 27295
# Classes: 129
Entropy: 5.128
Baseline: 14.9

Table 4.14: Overall results for preposition disambiguation with FrameNet.
All roles are considered. See Table 4.10 for the legend.

from Treebank is not directly represented in FrameNet, and it is not subsumed
by another specific role. There is a location role in FrameNet, but it applied in
less than 0.3% of all the role annotations. This reflects the bias of FrameNet
towards roles that are an integral part of the frame under consideration: location
and time apply to all frames, so these cases are generally not annotated.

4.3.3.2 Results

Table 4.14 shows the results of classification when all of the prepositions
are classified together. Due to the very large number of roles, the overall results
are not that high. However, the combined collocation approach still shows slight
improvement (49.4% versus 49.0%). The FrameNet inventory contains many
low-frequency relations that complicate this type of classification. By filtering
out relations that occur in less than 1% of the role occurrences for prepositional
phrases, significant improvement results, as shown in Table 4.15. Even with
filtering, the classification is challenging (e.g., 25 classes with entropy 4.055).

Table 4.16 shows the results when using individual classifiers. This
shows that the combined collocations produce better results: 70.3% versus
68.5% for word collocations alone. Unlike the case with Treebank, the single-
classifier performance is below that of the individual classifiers. This is due to
the fine-grained nature of the role inventory. When all the roles are considered
together, prepositions are sometimes being incorrectly classified using roles
that have not been assigned to them in the training data. This occurs when
contextual clues are stronger for a commonly used role than for the appropriate
one. Given Treebank’s small role inventory, this problem does not occur in the
corresponding experiments.
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Experiment Accuracy STDEV

Word Only 59.5 1.20
Hypernym 58.4 1.32
Combined 60.5 1.14

# Instances: 22125
# Classes: 25
Entropy: 4.055
Baseline: 18.4

Table 4.15: Preposition disambiguation omitting rare FrameNet roles. Ex-
cludes roles with less than 1% relative frequency. Table 4.10 gives the legend.

Prep Freq Entropy Baseline Word Only Combined
between 286 3.258 0.490 0.325 0.537
against 210 2.998 0.481 0.310 0.586
under 125 2.977 0.385 0.448 0.440
as 593 2.827 0.521 0.388 0.598
over 620 2.802 0.505 0.408 0.526
behind 144 2.400 0.520 0.340 0.473
back 540 1.814 0.544 0.465 0.567
around 489 1.813 0.596 0.607 0.560
round 273 1.770 0.464 0.513 0.533
into 844 1.747 0.722 0.759 0.754
about 1359 1.720 0.682 0.706 0.778
through 673 1.571 0.755 0.780 0.779
up 488 1.462 0.736 0.736 0.713
towards 308 1.324 0.758 0.786 0.740
away 346 1.231 0.786 0.803 0.824
like 219 1.136 0.777 0.694 0.803
down 592 1.131 0.764 0.764 0.746
across 544 1.128 0.824 0.820 0.827
off 435 0.763 0.892 0.904 0.899
along 469 0.538 0.912 0.932 0.915
onto 107 0.393 0.926 0.944 0.939
past 166 0.357 0.925 0.940 0.938
Total 10432 1.684 0.657 0.685 0.703

Table 4.16: Per-preposition disambiguation results over FrameNet roles.
See Table 4.11 for the legend.

4.3.4 Factotum

Note that Factotum does not indicate the way the relationships are ex-
pressed in English. Similarly, WordNet does not indicate this, but it does include
definition glosses. For example,
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Factotum:
〈drying, is-function-of , drier〉

WordNet:
dryALTER remove the moisture from and make dry
dryerAPPLIANCE an appliance that removes moisture

These definition glosses might be useful in certain cases for inferring the rela-
tion markers (i.e., generalized case markers). As is, Factotum cannot be used
to provide training data for learning how the relations are expressed in English.
This contrasts with corpus-based annotations, such as Treebank II (Marcus et
al., 1994) and FrameNet (Fillmore et al., 2001), where the relationships are
marked in context.

4.3.4.1 Inferring Semantic Role Markers

To overcome the lack of context in Factotum, the relation markers are in-
ferred through corpus checks, in particular through proximity searches involving
the source and target terms. For example, using AltaVista’s Boolean search,6

this can be done via “source NEAR target.” Unfortunately, this technique would
require detailed post-processing of the web search results, possibly including
parsing, in order to extract the patterns. As an expedient, common prepo-
sitions7 are included in a series of proximity searches to find the preposition
occurring the most with the terms. For instance, given the relationship 〈drying,
is-function-of , drier〉, the following searches would be performed.

drying NEAR drier NEAR in
drying NEAR drier NEAR to
...
drying NEAR drier NEAR “around”

To account for prepositions that occur frequently (e.g., ‘of’), mutual infor-
mation (MI) statistics (Manning and Schütze, 1999) are used in place of the raw
frequency when rating the potential markers. These are calculated as follows:

6AltaVista’s Boolean search is available at www.altavista.com/sites/search/adv.

7The common prepositions are determined from the prepositional phrases assigned
functional annotations in Penn Treebank II (Marcus et al., 1994).
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MIprep = log2
P(X, Y)

P(X) × P(Y)
≈ log2

f(source NEAR target NEAR prep)

f(source NEAR target) × f(prep)

Such checks are done for the 25 most common prepositions to find the prepo-
sition yielding the highest mutual information score. Using this metric, the top
three markers for the 〈drying, is-function-of , drier〉 relationship are ‘during,’ ‘af-
ter,’ and ‘with.’

4.3.4.2 Method for Classifying Functional Relations

Given the functional relationships in Factotum along with the inferred
relation markers, machine learning algorithms can be used to infer what relation
most likely applies to terms occurring together with a particular marker. Note
that the main purpose of including the relation markers is to provide clues for
the particular type of relation. Because the source term and target terms might
occur in other relationships, associations based on them alone might not be as
accurate. In addition, the inclusion of these clue words (e.g., the prepositions)
makes the task closer to what would be done in inferring the relations from
free text. The task thus approximates preposition disambiguation, using the
Factotum relations as senses.

Figure 4.4 gives the feature settings used in the experiments. This is
a streamlined version of the feature set from Figure 4.3, which is used in the
Treebank and FrameNet experiments, to account for the lack of sentential con-
text. Figure 4.5 contains sample feature specifications from the experiments
discussed in the next section. The top part shows the original relationships
from Factotum; the first example indicates that connaturalize causes similarity.
Also included is the most likely relation marker inferred for each instance. This
shows that ‘n/a’ is used whenever a preposition for a particular relationship can-
not be inferred. This happens in the first example because ‘connaturalize’ is a
rare term.

The remaining parts of Figure 4.5 illustrate the feature values that would
be derived for the three different experiment configurations, based on the in-
clusion of word and/or hypernym collocations. In each case, the classification
variable is given by Relation. For brevity, the feature specification only includes
collocation features for the most frequent relations. Sample collocations are
also shown for the relations (e.g., ‘vulgarity’ for is-caused-by ). In the word
collocation case, the occurrence of ‘similarity’ is used to determine that the is-
caused-by feature (WC1) should be positive (i.e., ‘1’) for the first two instances.
Note that there is no corresponding hypernym collocation due to conditional-
probability filtering. In addition, although ‘new’ is not included as a word collo-
cation, one of its hypernyms, namely Adj:early#2, is used to determine that the
has-consequence feature (HC3) should be positive in the last instance.
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Features:
POSsource: part-of-speech of the source term
POStarget: part-of-speech of the target term
Prep: preposition serving as relation marker (‘n/a’ if not inferable)
WordCollr: 1 iff context contains any word collocation for relation r
HypernymCollr: 1 iff context contains any hypernym collocation for relation r

Collocation selection:
Frequency: f(word) > 1
Relative conditional probability: (P(C|coll) − P(C))/P(C) ≥ .20
Organization: per-class-binary grouping

Model selection:
Decision tree using Weka’s J4.8 classifier (Witten and Frank, 1999)

Figure 4.4: Features used in Factotum role classification experiments.
Simplified version of Figure 4.3: context is simply the source and target terms.

4.3.4.3 Results

To make the task more similar to the Treebank and FrameNet cases
covered above, only the functional relations in Factotum are used. These are
determined by removing the hierarchical relations (e.g., has-subtype and has-
part) along with the attribute relations (e.g., is-property-of ). In addition, in cases
where there are inverse functions (e.g., causes and is-caused-by ), the most
frequently occurring relation of each inverse pair is used. This is done because
the relation marker inference approach does not account for argument order.
The boldface relations in the listing shown earlier in Table 4.5 are those used
in the experiment. Only single-word source and target terms are considered
to simplify the WordNet hypernym lookup. The resulting dataset has 5,959
training instances. The dataset also includes the inferred relation markers (e.g.,
one preposition per training instance), thus introducing some noise. Figure
4.5 includes a few examples from this dataset. This shows that the original
relationship 〈similarity, is-caused-by , rhyme〉 from Factotum is augmented with
the ‘by’ marker prior to classification. Again, these markers were inferred via
web searches involving the terms from the original relationship.

Table 4.17 shows the results of the classification. The combined use
of both collocation types achieves the best overall accuracy at 71.2%, which
is good considering that the baseline of always choosing the most common
relation (is-caused-by ) is 24.2%. This combination generalizes well by using
hypernym collocations, while retaining specificity via word collocations. The
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Relationships from Factotum with inferred markers:
Relationship Marker
〈similarity, is-caused-by , connaturalize〉 n/a
〈similarity, is-caused-by , rhyme〉 by
〈approximate, has-consequence, imprecise〉 because
〈new, has-consequence, patented〉 with

Word collocations only:
Relation POSs POSt Prep WC1 WC2 WC3 WC4 WC5 WC6 WC7

is-caused-by NN VB n/a 1 0 0 0 0 0 0
is-caused-by NN NN by 1 0 0 0 0 0 0
has-consequence NN JJ because 0 0 0 0 0 0 0
has-consequence JJ VBN with 0 0 0 0 0 0 0

Sample collocations:
is-caused-by {bitterness, evildoing, monochrome, similarity, vulgarity}
has-consequence {abrogate, frequently, insufficiency, nonplus, ornament}

Hypernym collocations only:
Relation POSs POSt Prep HC1 HC2 HC3 HC4 HC5 HC6 HC7

is-caused-by NN VB n/a 0 0 0 0 0 0 0
is-caused-by NN NN by 0 0 0 0 0 0 0
has-consequence NN JJ because 0 0 0 0 0 0 0
has-consequence JJ VBN with 0 0 1 0 0 0 0

Sample collocations:
is-caused-by {N:hostility#3, N:inelegance#1, N:humorist#1}
has-consequence {V:abolish#1, Adj:early#2, N:inability#1, V:write#2}

Combined collocations:
The combination of the above specifications:
that is, 〈Relation, POSs, POSt, Prep, WC1, ... WC7, HC1, ... HC7〉.

Legend:
POSs & POSt are the parts of speech for the source and target terms; and
WCr & HCr are the word and hypernym collocations as follows:
1. is-caused-by 2. is-function-of 3. has-consequence 4. has-result
5. is-caused-bymental 6. is-performed-by 7. uses

Figure 4.5: Sample feature specifications for Factotum experiments. Each
relationship from Factotum is augmented with one relational marker inferred via
web searches. Collocation features are omitted for low-frequency relations.
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Experiment Accuracy STDEV

Word 68.4 1.28
Hypernym 53.9 1.66
Combined 71.2 1.78

# Instances: 5959
# Classes: 21
Entropy: 3.504
Baseline: 24.2

Table 4.17: Functional relation classification over Factotum. This uses
the relational source and target terms with inferred prepositions. The accuracy
figures are averages based on 10-fold cross validation. The gain in accuracy for
the combined experiment versus the word experiment is statistically significant
at p < .01 (via a paired t-test).

classification task is difficult, as suggested by the number of classes, entropy,
and baseline values all being comparable to the filtered FrameNet experiment
(see Table 4.15).

4.3.5 Combining the Different Semantic Role Inventories

For the application to differentia disambiguation, the classifiers learned
over Treebank, FrameNet and Factotum need to be combined. This can be
done readily in a cascaded fashion with the classifier for the most specific re-
lation inventory (i.e., FrameNet) being used first and then the other classifiers
being applied in turn whenever the classification is inconclusive. This has the
advantage that new resources can be integrated into the combined relation
classifier with minimal effort. However, the resulting role inventory will likely
be heterogeneous and might be prone to inconsistent classifications. In addi-
tion, the role inventory could change whenever new annotation resources are
incorporated, making the overall differentia disambiguation system somewhat
unpredictable.

Alternatively, the annotations can be converted into a common inventory,
and a separate relation classifier induced over the resulting data. This has
the advantage that the target relation-type inventory remains stable whenever
new sources of relation annotations are introduced. In addition, the classifier
will likely be more accurate as there are more examples per relation type on
average. The drawback however is that annotations from new resources must
first be mapped into the common inventory before incorporation.

The latter approach is employed here. The common inventory incorpo-
rates some of the general relation types defined by Gildea and Jurafsky (2002)
for their experiments in classifying semantic relations in FrameNet using a re-
duced relation inventory. They defined 18 relations (including a special-case
Null role for expletives), as shown in Table 4.18. Most of these roles are con-
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Agent Cause Degree Experiencer Force Goal
Instrument Location Manner Null Path Patient
Percept Proposition Result Source State Topic

Table 4.18: Abstract roles defined by Gildea and Jurafsky based on
FrameNet. Taken from (Gildea and Jurafsky, 2002).

tained in the common relation inventory developed as part of this work to sup-
port the differentia disambiguation. 26 total relations are defined, including
a few roles based on the Treebank, Cyc and Conceptual Graphs inventories.
Table 4.19 shows this role inventory along with a description of each case.
In addition to traditional thematic relations, this includes a few specialization-
type relations. Specialization relations are prevalent in dictionary differentia, as
noted in the previous chapter (see Section 3.1.2). For example, Characteris-
tic corresponds to the general relation from Conceptual Graphs for properties
of entities; and, Category generalizes the corresponding FrameNet role, which
indicates category types, to subsume other FrameNet roles related to catego-
rization (e.g., Topic).

To apply the common inventory to the FrameNet data, annotations using
the 141 FrameNet relations (see Table 4.2) need to be mapped into those using
the 26 common relations shown in Table 4.19.8 Results for the classification of
the FrameNet data mapped into the common inventory are shown in Table 4.20.
As can be seen, the performance improves by 6 percentage points compared
to the full classification over FrameNet (see Table 4.14). Although the low-
frequency role filtering yields the highest performance, as shown in Table 4.15,
this comes at the expense of having 5,000 training instances discarded. Corpus
annotations are a costly resource, so such waste is undesirable.

This illustrates that the reduced, common-role inventory has an addi-
tional advantage of improving performance in the classification, compared to a
cascaded approach. This occurs because several of the miscellaneous roles
in FrameNet cover subtle distinctions that are not relevant for differentia dis-
ambiguation. The common inventory therefore strikes a balance between the
overly general roles in Treebank, which are easy to classify, and the overly spe-
cialized roles in FrameNet, which are quite difficult to classify. Nonetheless, a
certain degree of classification difficulty is inevitable in order for the inventory
to provide adequate coverage of the different distinctions present in dictionary

8See www.cs.nmsu.edu/˜tomohara/differentia-extraction/relation-mapping.html for
the complete mapping. This covers the mapping of most of the other role inventories
discussed in this chapter, such as from Conceptual Graphs, into the common inventory.
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Relation Description
Accompaniment entity that participates with another entity
Agent entity that acts on another entity
Amount quantity used as a measure of some characteristic
Area region in which the action takes place
Category general type or class of which the item is an instance
Cause entity that produces an effect
Characteristic general properties of entities
Direction either spatial source or goal (same as in Treebank)
Distance spatial extent of motion
Duration period of time that the situation applies within
Experiencer entity undergoing some physical experience
Goal location that the theme ends up in
Ground background or context for situation or predication
Instrument entity or resource facilitating event occurrence
IntervalOfTime reference time interval for situation
Location reference spatial location for situation
Manner property of the underlying process
Means action taken to affect something
Medium setting in which the theme is conveyed
Path trajectory which is neither a source nor a goal
PointInTime reference time point for situation
Product entity present at end of event (same as Cyc products)
Recipient recipient of the resources
Resource entity utilized during event (same as Cyc inputs)
Source initial position of the theme
Theme entity somehow affected by the event

Table 4.19: Inventory of semantic relations for differentia disambiguation.
This inventory of common roles is primarily based on FrameNet (Fillmore et al.,
2001) and Conceptual Graphs (Sowa, 1999); it also includes roles based on
the Treebank and Cyc inventories.

differentia. Note that, by using the annotations from Treebank and FrameNet,
the end result is a general-purpose classifier, not one tied into dictionary text.
Thus, it is useful for other tasks besides differentia disambiguation.
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Experiment Accuracy STDEV

Word Only 54.5 0.94
Hypernym 53.0 0.75
Combined 55.5 0.54

# Instances: 27295
# Classes: 31
Entropy: 4.006
Baseline: 15.0

Table 4.20: Results for preposition disambiguation with common roles.
The FrameNet annotations are mapped into the common inventory from Table
4.19. See Table 4.10 for the legend.

4.4 Differentia Disambiguation Algorithm

To summarize the approach taken to differentia disambiguation, Figure
4.6 presents the high-level algorithm for the process. Differentia disambiguation
is done in two main steps. First, the source and target terms are disambiguated.
Next, the relation-indicating terms are disambiguated into semantic relations
by applying the common-inventory relation classifier. The disambiguation of
prepositional phrases has been illustrated in depth in this chapter. Support for
other types of relation indicators is sketched out later in Chapter 6, building
upon the relation marker inference technique used for Factotum.

Note that the relation disambiguation system just combines the semantic
role data from Treebank and FrameNet. The integration of the data from Facto-
tum is not addressed due to time constraints. The next chapter shows how the
disambiguated relations facilitate lexical augmentation and word-sense disam-
biguation.
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Input Definition text and list of extracted lexical relationships:
〈source-word, relation-function-word, target-word〉

Output List of conceptual relationships:
〈source-concept, relation-type, target-concept〉

Example Disambiguating relationships extracted from definition of ‘kennel’
Input : “A kennel is an outbuilding that serves as a shelter for a dog.”
〈4. noun:outbuilding, 5. pronoun:that, 6. verb:serves〉
〈6. verb:serves, 10. prep:for, 12. noun:dog〉
〈6. verb:serves, 7. prep:as, 9. noun:shelter〉
Output :
〈noun:outbuilding#1, Agent , verb:serves#1〉
〈verb:serves#1, Reason, noun:dog#1〉
〈verb:serves#1, Manner , noun:shelter#1〉

Steps For each relationship:

1. Disambiguate the source and target words.
For WordNet, this just incorporates the word-sense annotations pro-
vided by Extended WordNet. Application to other dictionaries require
use of one of the WSD algorithms outlined in Section 2.4.3.

2. Disambiguate the relation function word.

• Convert definition text into untagged annotation format:
pre-context 〈wf sense=“?”〉function-word〈/wf〉 post-context

Example:
A kennel is an outbuilding that serves 〈wf sense=“?”〉as〈/wf〉 a shelter
for a dog.

• Run common-inventory relation classifier to determine the se-
mantic role serving as the sense for the function word.

3. Consolidate the results of relation disambiguation with that of term
disambiguation.
This is a bookkeeping step necessary to coordinate the two different
disambiguation systems.

Figure 4.6: Differentia disambiguation algorithm. Step 1 is addressed in
Section 4.1; and step 2 is covered in the previous section. The final step
is not discussed here but is documented in the program source available at
www.cs.nmsu.edu/˜tomohara/differentia-extraction.
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CHAPTER 5
APPLICATION AND EVALUATION

To illustrate the usefulness of the differentiating relationships extracted
and disambiguated using the methods from the previous chapters, two dis-
tinct application areas are discussed here, including detailed evaluations. The
first area involves the use of this information to augment existing lexicons (i.e.,
lexicon augmentation). The differentiating information is directly evaluated by
having humans assess the quality of random samples from the extracted rela-
tionship listings. The second area is word-sense disambiguation. The differ-
entiating information is indirectly evaluated by comparing the performance of
systems utilizing the differentia versus those based on typical approaches.

This chapter is organized as follows. Section 5.1 discusses the qualita-
tive evaluation of the system output, including an inter-coder reliability analysis
of the human judges. Section 5.2 presents results from two distinct word-sense
application systems that utilize the differentiating relations to improve perfor-
mance.

5.1 Lexicon Augmentation

From a lexical semantics point of view, the main purpose of this thesis is
to augment existing semantic lexicons for natural language processing. There-
fore, the first evaluation determines the quality of the information that would be
added to the lexicons, in particular with respect to relation disambiguation as
that is the focus of the research.

5.1.1 Overview of Extracted Relations

All the definitions from WordNet 1.7.1 were run through the differentia-
extraction process. This involved a total of 111,223 synsets as shown earlier in
Table 3.2. 10% of these had preprocessing or parse-related errors leading to
no relations being extracted.

Table 5.1 shows the frequency of the relations that occur in the out-
put from the differentia extraction process. The most common relation used is
Theme, which accounts for four times as many of the cases as it does among
the annotations. In the annotations, it is most often being tagged as the sense
for ‘of,’ which also occurs significantly with roles Source, Category , Ground ,
Agent , Characteristic, and Experiencer . Some of these represent subtle dis-
tinctions, so it is likely that the difference in the text genre is causing the classi-
fier to use the default case more often as a default. Note that Theme is a very



Abbreviation Relation Frequency
THME Theme 0.316
GOAL Goal 0.116
GROUND Ground 0.080
CAT Category 0.069
AGNT Agent 0.069
CAUSE Cause 0.061
MANR Manner 0.058
RCPT Recipient 0.053
MED Medium 0.039
CHRC Characteristic 0.022
RESOURC Resource 0.021
MEANS Means 0.021
SOURCE Source 0.019
PATH Path 0.017
EXPR Experiencer 0.017
ACCM Accompaniment 0.011
AREA Area 0.010
DIR Direction 0.001

Table 5.1: Frequency of extracted relations after disambiguation. WordNet
definitions are analyzed with relations disambiguated with respect to the com-
mon relation inventory (Table 4.19), yielding about 19,000 total relationships.

generic relation that subsumes most of the other relations. Therefore, this type
of overgeneration does not pose a problem with respect to lexicon augmenta-
tion.

Table 5.1 also shows that the specialization relations (e.g., Category
and Characteristic) are more predominant in the extracted relations than in the
data for the annotations (see Table 4.19). This is similar to the situation with
the WordNet definitions annotations, where the specialization relations occur
more often than in general text, reflecting the differentiating nature of definitions
(discussed earlier in Section 3.1.2).

Figure 5.1 shows a random sample from the output of the system. This
omits relationships due to modification and other types not considered during
the disambiguation process. Therefore, no extracted relations are listed for the
last case (verb:lunge#1).
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noun:weaning#1: A weaning is the act of substituting other food for the mother ’s milk
in the diet of a child or young mammal.

of#THME noun:child#1 (0.001953125)
of#THME noun:mammal (0.001953125)
n/a verb:weaning (0.0009765625)
verb:is noun:act#2 (4.296875e-05)

of#THME verb:substituting#3 (0.00390625)
unknown:for#SOURCE noun:milk (0.00390625)

noun:area#1: An area is a particular geographical region of indefinite boundary
(usually serving some special purpose or distinguished by its people or culture or
geography).

n/a verb:serving (0.0009765625)
by#AGNT noun:people (0.0029296875)
by#AGNT noun:culture (0.0029296875)
by#AGNT noun:geography (0.0029296875)

noun:Bavaria#1: A Bavaria is a state in southwestern Germany famous for its
beer; site of automobile factory.

n/a noun:beer#1 (0.0009765625)
n/a noun:state#2 (0.0001396484375)

unknown:for#THME unknown:famous#1 (0.0009765625)

noun:slowdown#1: A slowdown is the act of slowing down or falling behind.
verb:is noun:act#2 (0.000125)

of#GROUND verb:falling#3 (0.001953125)
of#GROUND verb:slowing (0.001953125)

verb:lunge#1: To lunge is to make a thrusting forward movement.
n/a

Figure 5.1: Sample lexical relations extracted by system. Definitions from
WordNet 1.7.1 used as input to process described in Figures 3.8 and 4.4. Syn-
tactic relations such as modification are omitted for sake of brevity. Relation
strengths derived via cue validity analysis are shown in parentheses.

5.1.2 Qualitative Evaluation

Six human judges were recruited to evaluate random samples of the
relations that were extracted. Four are graduate students in computer science
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with exposure to computational linguistics, and two are computer programmers
with backgrounds in business and humanities, respectively. Each was given
about 70 relationships to evaluate. To allow for inter-coder reliability analysis,
each evaluator rated 35 samples that were also evaluated by the others, 25
as part of a training phase and the rest after training. In addition, they also
evaluated 20 samples that were manually corrected beforehand. This provides
a baseline against which the uncorrected results can be measured.

Because this thesis only addresses relations indicated by prepositional
phrases, the evaluation is restricted to these cases. The evaluation also does
not directly account for aspects related to prepositional attachment, although
incorrect attachment decisions by the parser do negatively affect the evaluation.
The judges only rated the assignment of relations to the prepositional phrases
on a scale from 1 to 5, with 5 being an exact match. They were presented with
the list of common relation types shown in the last chapter (Table 4.19), so that
correctness is relative to this relation inventory.

For example, consider the ‘kennel’ example from the last chapter:

an outbuilding that serves as a shelter for a dog
〈verb:serves#1, Reason, noun:dog#1〉
〈verb:serves#1, Manner , noun:shelter#1〉

In this case, the Reason assignment might be rated as 3 since Recipient is
more appropriate, and the Manner might be rated as 4 since Goal is a bet-
ter relation to account for purpose. Figure 5.2 shows the instructions given to
the judges. These are informal in nature, so as not to burden the judges in
performing their task. This is appropriate given the volunteer nature of the eval-
uation; however, more detailed instructions are usually preferable to achieve
better uniformity.

5.1.2.1 Inter-coder Reliability Analysis

To assess the reliability of the evaluations, the kappa statistic was calcu-
lated (Carletta, 1996):

κ =
Pa − Pe

1 − Pe

This determines the extent to which the coders agree (Pa) less that which is
due to chance agreement (Pe). Kappa can thus be negative if the actual agree-
ment is less than that due to chance. Figure 5.3 shows how the intermediate
agreement values are calculated for the case of two coders. With three or more
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Instructions for evaluation of extracted relations
Please evaluate the following conceptual relation listing extracted from dictionary def-
initions. The evaluation is restricted to relations indicated by prepositions. So in each
case, indicate the appropriateness of the relation on a scale of 1 (poor) to 5 (good).
The listing contains a form for each of the cases to be annotated, such as the following:

〈noun:mouth, of#GOAL, noun:river〉 (bad) 1 2 3 4 5 (good)

The evaluation should be based on the selection of one of the 26 relations shown in the
next section to serve as the meaning of the preposition. Please review the descriptions
carefully before proceeding. In some cases, none of the relations might be a close
match, so evaluate the extent to which the listed relation approximates the ideal one.
In such cases where no relation is suitable, add a brief comment explaining what was
expected, as done in the first example below.

The relation description is followed by a sample of five annotated definitions to give you
an idea of the task. At the end is the actual sample of relationships to be evaluated.

Relation descriptions
See Table 4.19.

Sample annotations
sense: verb:repel#2
sentence: To repel is to be repellent to ; cause aversion in .
conceptual relations:

〈verb:repel, to#CAUSE , verb:be〉 (bad) 1 x 2 3 4 5 (good)
〈verb:repel, has-object-2-6, noun:repellent〉
〈noun:repellent, to#CAUSE , verb:cause〉 (bad) 1 x 2 3 4 5 (good)
〈verb:cause, has-object-9-10, noun:aversion〉

comments:
’to’ is infinitive marker

sense: noun:reason#2
sentence: Reason is an explanation of the cause of some phenomenon .
conceptual relations:

〈noun:explanation, of#GROUND, noun:cause〉 (bad) 1 2 3 4 x 5 (good)
〈noun:cause, of#GROUND, noun:phenomenon〉 (bad) 1 2 3 4 x 5 (good)

comments:

...

Figure 5.2: Instructions for evaluation of extracted relations. Excerpt from
the annotation instructions, omitting the actual relations to be judged. Four
other sample annotations are included, along with the common-relation inven-
tory table (Table 4.19).
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Let G = #categories, nij the disagreements for categories i and j,
and wij the weight for disagreement involving categories i and j

N number of codings
∑G

i=1

∑G
j=1 nij

p(ri) row marginal probability for category i 1
N

∑N
j=1 nij

p(cj) column marginal probability for category j 1
N

∑N
i=1 nij

Pa actual agreement 1
N

∑G
i=1

∑G
j=1 wijnij

Pe expected agreement
∑G

i=1

∑G
j=1 wijp(ri)p(cj)

κ =
Pa − Pe

1 − Pe

Figure 5.3: Calculation of the weighted kappa statistic. Based on (Altman,
1997).

coders, the pairwise kappa scores are averaged. The figure shows the gen-
eralization of kappa that accounts for partial agreement in the case of ordinal
data. A weight from 0 to 1 is defined for each pair of categories, indicating the
amount of partial credit to be assigned when the coders chose the respective
categories. Normally the weights are based on the absolute value of the dif-
ference in the ordinals or on the squared differences. Standard kappa can be
viewed as defining a weight function that is 1 only when the category values
are the same and otherwise 0.

Carletta (1996) indicates that a κ value of 0.8 or greater suggests a high
level of reliability among raters, with values between 0.67 and 0.8 suggesting
only moderate agreement. Altman (1997) provides an alternative interpretation,
with .41 to .60 being considered moderate and .61 to .80 as good. Table 5.2
shows the results of the inter-coder reliability analysis over the judge ratings
given to the manually corrected subset of the samples evaluated. The weighted
kappa statistic uses the squared distance measure as implemented via the
LKAPPA function in the R statistical environment (R Team, 2004). The overall
kappa score is somewhat low even with weighting (.291), partly due to the
difficulty of selecting specific scores (e.g., 4 versus 5). To alleviate this problem,
the scores are converted into 3 values (bad, ok and good ) by combining values
1 and 2 as well as 4 and 5. In this case, the weighted kappa measure increases
to .400. Although the weighting scheme might need to be revised to better
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Training phase
Groups Cases κ κw

5 25 .079 .269
3 25 .231 .283

Final phase
Groups Cases κ κw

5 10 .078 .291
3 10 .274 .400

Table 5.2: Inter-coder reliability analysis for evaluation. Groups gives the
number of ranges for the assessment scores: with 3 categories, scores 1&2
and 4&5 are treated the same. Cases is the number of distinct assessments
per coder. κ gives the kappa statistic, and κw the weighted kappa statistic.

Corrected
Metric Training Final
Cases 10 10
Scores 60 60
Mean 3.433 3.650
STDEV 1.466 1.424

Uncorrected
Metric Training Final
Cases 15 35.8
Scores 90 243
Mean 3.011 3.263
STDEV 1.510 1.465

Table 5.3: Mean assessment score for all extracted relationships. Cor-
rected shows assessments over manually corrected output, whereas Uncor-
rected evaluates the system output as is. Cases is the (average) number of
distinct relationships judged, and Scores is the number of individual assess-
ments (i.e., total cases). Mean gives the mean of the assessment ratings (from
1 to 5), and STDEV is the corresponding standard deviation.

model the intuitive qualitative differences in the assessed scores, this suggests
moderate agreement.

5.1.2.2 Results

The overall evaluation is based on averaging the assessment scores
over the relationships. Table 5.3 shows the results from this evaluation, over
the manually corrected and uncorrected subsets of the relationships. For the
corrected output, the mean assessment value was 3.650, whereas for the un-
corrected system output, the mean assessment value was 3.263. Therefore,
although the absolute score is not high, the system’s output is generally ac-
ceptable, especially given that the score for the uncorrected set of relationships
is close to that of the manually corrected set.
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5.2 Word Sense Disambiguation

Two different approaches are used for word-sense disambiguation (WSD).
The first is based on a typical supervised approach for WSD using tagged train-
ing data to induce a statistical classifier for each word to be disambiguated.
The second is a hybrid supervised/unsupervised approach that incorporates
knowledge from WordNet to provide a model of the dependencies among word
senses. It can be used to propagate empirical support derived from annotated
corpora to related senses for which there might not be training data.

5.2.1 Supervised Classification

The typical approach using statistical classification for word-sense dis-
ambiguation was illustrated in Section 2.4.3.1. The same general approach is
used here, but additional features based on differentia are included. In partic-
ular, a new type of collocation feature is included that checks whether words
related to those occurring in the context of the target words are indicators of
a particular sense. This adds a level of indirection to the standard word col-
location selection scheme discussed in Section 4.3.1.1, allowing for words not
occurring in the training data context to be included as collocations.

5.2.1.1 Feature Overview

Figure 5.4 shows the feature settings that are used in this application.
Five of the feature variables are based on part of speech (POS±i for i from -2
to +2). The POS+0 feature is labeled Morph in Figure 2.3, since it uses the
full set of part-of-speech tags rather than those corresponding to the traditional
grammatical categories (e.g., noun and verb). There are also four adjacency-
based collocational features (Word±i for i from −2 to +2), which were found to
be beneficial in other work (Pedersen and Bruce, 1998; Ng and Lee, 1996).

The collocation variable WordColls for each sense s is binary, corre-
sponding to the presence (or absence) of any word in a set specifically chosen
for s. A word w is considered as a collocation for sense s if the relative percent
gain in the conditional probability over the prior probability is 20% or higher:

(P(s|w) − P(s))

P(s)
≥ .20.

However, if the word only occurs once in the training data, it is ignored. This is
a variation of the per-class, binary organization and the conditional probability
test used by Wiebe et al. (1998a)

113



Features:
Morph: morphology of the target word (i.e., part of speech)
POS−i: part-of-speech of i th word to left
POS+i: part-of-speech of i th word to right
Word−i: i th word to the left
Word+i: i th word to the right
WordColls: occurrence of word collocation for sense s in context
RelatedColls: occurrence of differentia related-word collocation for sense s
Collocation selection:
Word context: anywhere in the sentence
Word collocation frequency: f(word) > 1
Related-Word collocation frequency: f(related-word) > 4
Conditional probability: p(c|coll) >= .50
Relative conditional probability (RCP): (p(c|coll) − p(c))/p(c) >= .20
Related-Word RCP: (p(c|coll) − p(c))/p(c) >= .80
Feature organization: per-class-binary
Model selection:
Decision tree via Weka’s J4.8 classifier (Witten and Frank, 1999)

Figure 5.4: Features for word-sense disambiguation with differentia. The
RelatedColls features represent the main change from those used in Figure 2.3.

Note that the use of the relative-percent-gain ratio is different from most
other approaches to deriving sense-specific collocations, where usually just
an absolute conditional probability threshold is used (e.g., P(s|w) > .5). The
purpose is to account for cases when the prior probability is high to begin with.
For example, if a sense occurs 70% of the time in the training data, then the
conditional probability for words entirely independent of the sense would also
be .70. Requiring a relative percent gain of .20 restricts potential collocations
for which the conditional probability is .84 or higher.

5.2.1.2 Differentia-based Collocational Features

The relations extracted via differentia analysis are used to determine the
semantic relatedness of words. Other sources for relatedness could be consid-
ered, including corpora and the WordNet hierarchy. Here the purpose is just
to show that information derived from differentia analysis is useful for super-
vised word-sense disambiguation. O’Hara et al. (2004) illustrate other types of
class-based collocations for WSD, as part of research done for Senseval III.

The context words are not disambiguated, so the relations for separate
senses of the same word are conflated. When determining the potential col-
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locations, the words strongly related to each context word in the training data
are considered when tabulating the frequencies f(c, coll) used in estimating the
conditional probability table P(c|coll). Instead of using a unit weight for each
occurrence, the relation weight is used. In addition, a given related-collocation
word might occur with more than one co-occurring word for the same sense,
so the contributions are added. Afterwards, the conditional probability of the
class given the relatedness collocation is estimated by dividing the weighted
frequency by the sum of all such weighted co-occurrence frequencies for the
class:

P(c|coll) � wf(c, coll)∑
ci

wf(ci, coll)

Here wf(c, coll) stands for the weighted co-occurrence frequency of the related-
word collocation coll and class c.

A similar conditional probability test as before is used. However, the
related-word collocations are less reliable given the level of indirection involved
in their extraction. Therefore, tighter constraints are used in order to filter out
extraneous potential collocations. In particular, the relative percent gain in the
conditional probability over the prior probability must be 80% or higher. In ad-
dition, the words they are related to must occur more than four times in the
training data. Recall that the related-word collocations themselves do not nec-
essarily occur in the training data. Since they might be related to several differ-
ent co-occurring words, the total number of distinct training instances need not
be five. In fact, there might just be one training instance in case there are five
different context words related to the same potential collocation.

5.2.1.3 System Results

Tables 5.4, 5.5, and 5.6 show the results of classifying the word-sense
annotations from the Senseval II data for nouns, verbs, and adjectives, respec-
tively. The entries are ordered by entropy, which measures the uniformity of
the sense distribution (Manning and Schütze, 1999) and hence the general dif-
ficulty expected during classification. In each case, accuracy results are given
for systems with and without the relatedness collocation features (RelatedColls),
which are derived from the relations extracted from the WordNet definitions for
the target words. The performance results for both systems are fairly close
with the relatedness collocations leading to slight improvements. Overall, the
differentia-based system achieves 63.8% accuracy versus 63.4% accuracy for
the typical system, with a baseline accuracy of 57.7%.
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Noun Senses Freq Entropy Baseline -Diff +Diff
bar 11 283 2.340 0.516 0.588 0.560
post 9 146 2.331 0.438 0.562 0.594
nature 5 90 2.003 0.489 0.569 0.534
channel 9 86 1.963 0.628 0.707 0.681
sense 5 107 1.905 0.393 0.533 0.517
stress 6 79 1.852 0.557 0.449 0.547
material 5 139 1.821 0.439 0.451 0.487
hearth 4 61 1.738 0.443 0.652 0.671
authority 8 162 1.698 0.623 0.783 0.764
art 4 169 1.676 0.503 0.731 0.727
mouth 8 117 1.648 0.504 0.452 0.497
restraint 6 91 1.614 0.659 0.707 0.723
facility 4 113 1.584 0.504 0.577 0.532
circuit 6 167 1.584 0.611 0.859 0.891
day 6 288 1.555 0.677 0.654 0.644
feeling 4 102 1.501 0.539 0.332 0.438
fatigue 6 84 1.476 0.583 0.846 0.858
bum 5 89 1.318 0.719 0.685 0.672
spade 4 62 1.192 0.677 0.755 0.712
church 3 111 1.095 0.568 0.712 0.695
grip 6 102 1.037 0.814 0.883 0.862
child 4 125 1.012 0.680 0.680 0.667
lady 4 90 0.906 0.822 0.742 0.773
detention 2 57 0.804 0.754 0.991 0.960
nation 3 57 0.797 0.825 0.771 0.724
dyke 2 50 0.722 0.800 0.752 0.787
chair 4 138 0.694 0.877 0.881 0.880
yew 2 54 0.605 0.852 0.842 0.862
holiday 2 61 0.208 0.967 0.967 0.967
Total 0.637 0.694 0.697

Table 5.4: Supervised WSD results over Senseval II noun training data.
Senses is number of word senses; Freq gives the number of training instances,
and Entropy measures the non-uniformity of the sense distributions. Accuracy
results are given averaged over ten-fold cross validation: Baseline selects the
most-frequent sense; -Diff uses all the features from Figure 5.4, except for the
relatedness collocations derived from differentia (RelatedColls); and, +Diff in-
cludes the relatedness collocations as well.
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Verb Senses Freq Entropy Baseline -Diff +Diff
draw 21 62 3.928 0.177 0.214 0.143
find 14 122 3.530 0.172 0.288 0.287
play 19 119 3.403 0.210 0.280 0.366
strike 14 86 3.366 0.198 0.268 0.235
carry 19 102 3.290 0.304 0.332 0.285
turn 15 76 3.272 0.263 0.508 0.548
see 17 128 3.173 0.320 0.402 0.411
develop 15 133 3.120 0.301 0.322 0.347
call 13 107 3.013 0.308 0.356 0.386
serve 11 99 2.953 0.263 0.429 0.386
leave 11 127 2.909 0.299 0.396 0.419
keep 15 112 2.887 0.429 0.338 0.323
work 12 96 2.676 0.344 0.327 0.329
train 9 125 2.564 0.272 0.435 0.485
drive 9 76 2.464 0.355 0.457 0.486
pull 10 69 2.440 0.391 0.283 0.317
match 8 86 2.375 0.360 0.278 0.343
drift 7 58 2.294 0.328 0.318 0.215
wash 6 16 2.233 0.375 0.500 0.633
treat 6 88 2.158 0.318 0.423 0.439
dress 10 87 2.118 0.517 0.645 0.618
live 6 116 1.864 0.569 0.600 0.615
begin 8 557 1.768 0.591 0.765 0.760
use 6 146 1.631 0.678 0.650 0.663
replace 4 86 1.569 0.512 0.525 0.473
face 7 186 1.056 0.833 0.814 0.818
wander 4 100 0.856 0.830 0.819 0.802
collaborate 3 57 0.719 0.860 0.922 0.907
Total 0.406 0.460 0.466

Table 5.5: Supervised WSD results over Senseval II verb training data.
See Table 5.4 for the legend.

5.2.2 Probabilistic Spreading Activation

Spreading activation has been a popular technique in artificial intelli-
gence for propagating support throughout a semantic network. A variety of
approaches have been developed for doing this (Ide and Véronis, 1998), such
as link counting techniques, marker passing, and approaches accounting for
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Adjective Senses Freq Entropy Baseline -Diff +Diff
cool 8 94 1.629 0.649 0.737 0.779
fine 8 135 1.357 0.748 0.837 0.824
natural 8 200 1.322 0.765 0.828 0.854
simple 5 130 1.245 0.746 0.803 0.790
blind 5 102 1.239 0.725 0.795 0.786
fit 3 56 1.206 0.661 0.923 0.840
oblique 3 57 1.106 0.526 0.707 0.650
green 6 184 0.930 0.804 0.935 0.926
free 6 152 0.916 0.842 0.862 0.855
colorless 2 68 0.787 0.765 0.791 0.789
vital 4 74 0.728 0.865 0.930 0.932
graceful 2 56 0.592 0.857 0.760 0.797
local 3 75 0.539 0.907 0.926 0.950
solemn 2 52 0.457 0.904 0.860 0.887
faithful 2 47 0.149 0.979 0.975 0.990
Total 0.783 0.845 0.846

Table 5.6: Supervised WSD results over Senseval II adjective training data.
See Table 5.4 for the legend.

fan-in and fan-out of nodes. Here Bayesian networks are used to implement
a probabilistic version of spreading activation. They are used because they
integrate well with empirical classifiers, such as the one just discussed above.

5.2.2.1 Bayesian Network Representation

The properties conveyed by dictionary differentia involve relations of
varying strengths. Consider the WordNet definitions of ‘lock’ and ‘key’:

key: metal device shaped in such a way that when it is inserted
into a lock the lock’s mechanism can be rotated

lock: a fastener fitted to a door or drawer to keep it firmly closed

The definition for ‘key’ indicates a strong relationship to lockFASTENER, but the
definition for ‘lock’ only indicates a moderate relationship to doorBARRIER. There-
fore, a probabilistic representation is useful for representing the differentia.
Moreover, given the asymmetries in the relationships, a Bayesian network (Pearl,
1988) is appropriate. Basically, Bayesian networks are acyclic, directed graphs
in which nodes are associated with probability tables indicating the probabilistic
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relation of their values to those of their parent nodes. See Appendix B for a
brief primer on Bayesian networks.

Two important issues concern the use of Bayesian networks: 1) the in-
terpretation of the links; and, 2) the derivation of the conditional probability ta-
bles (CPT’s). Causality is the dominant type of link interpretation for Bayesian
networks, because it is prevalent in medical domains (e.g., cold causes runny
nose), which were the first major application area. However, interpreting differ-
entia in terms of causality is possible but awkward (e.g., beagle causes small-
size). Instead, salience is used to quantify how relevant a concept is for another,
when considered as an attribute. That is, the salience value measures the de-
gree to which an attribute is characteristic of the object. This notion is based on
the psychological usage of salience for determining which properties are rele-
vant for comparisons (Medin et al., 1993). Note that using salience rather than
causality accords with the broader notion of causality discussed by Lauritzen
and Spiegelhalter (1988, p. 160):

‘Causality’ has a broad interpretation as any natural ordering in
which knowledge of a parent influences opinion concerning a
child—this influence could be logical, physical, temporal or sim-
ply conceptual in that it may be most appropriate to think of the
probability of children given parents.

A problem related to link interpretation is the directionality required in order to
support belief propagation. As discussed by Wiebe et al. (1998b), it might be
necessary to invert the logical direction, because evidence propagation gener-
ally occurs among the nodes for the children (not the parents).

The main problem with CPT derivation deals with how salience should
be quantified. Although predefined salience values for each relation type can
be determined based on intuitive judgment, a more empirical approach is desir-
able. One approach would be an extension of the idea of using the information
retrieval term-weighting technique based on term frequency and inverse docu-
ment frequency (TF*IDF ), as proposed by Richardson (1997). To apply this to
dictionary text, documents are defined as the cluster of definitions that refer to
a particular headword. However, this does not model salience well because it
does not take into consideration categories similar to the one being defined.

Here the relation weights are based on cue validities, which were dis-
cussed earlier in Chapter 3. The cue validity of a feature F for concept C is
calculated as:

P(C|F) =
P(F|C)∑
i P(F|Ci)
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where Ci is a concept that contrasts with C. To determine the contrasting con-
cepts for a given concept, its most-informative ancestor is first estimated based
on frequency considerations using SemCor (Miller et al., 1994), as shown in
Section 3.3.2. Other concepts subsumed by this most-informative ancestor are
then considered as contrasting.

Another problem with CPT derivation concerns how to handle converg-
ing links (i.e., causal interactions among parent nodes in the Bayesian network).
Several different models of causal independence were considered (Heckerman
and Breese, 1994). The basic idea is to treat multiple causes as independent,
so that interactions need not be quantified. To do this a model is chosen for
determining how the individual cause strengths are combined. For instance,
using the Noisy-OR model, the weights are combined in a manner analogous
to the Boolean OR function (Wiebe et al., 1998b). To see how this is defined,
first consider that the inclusive-or connective can be viewed as outputting a true
value only when not all of the inputs are false:

output = ¬((¬v1)∧ · · · ∧(¬vn))

where each vi is a logical-valued input variable. The extension to the case
where probabilities are associated with each input is relatively straightforward:

child = ¬((¬v1)∧ · · · ∧(¬vn))
P(child|V1 = v1, ..., Vn = vn) = 1.0 − ∏

(1.0 − P(child|vi)), ∀Vi
vi = T.

The child’s value is still an inclusive-or function of the parents. The probability
of a positive value is 1 less the joint probability that the parents are negative,
for those that are activated. Note that the use of these causal independence
models is a simplifying assumption. Future work will investigate whether the
dependencies can be induced from the data.

To illustrate the network structure that is derived from lexical relations,
a small network was manually constructed based on the definitions for a few
types of hounds, as shown in Figure 5.5. The figure also shows the relation-
ships extracted from the definitions. The resulting semantic network is shown
in Figure 5.6.

The Bayesian network representation for the relationships involving the
hounds would have the same structure as that in Figure 5.5. To complete the
Bayesian network specification, the CPT tables have to be defined. A variation
of the Noisy-OR model is used for this purpose: each case is approximately
the sum of the relation strengths for the incoming links derived via the cue
validity measures. More precisely, given a node N with parents Pi, each row
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hound: a hunting dog typically having large drooping ears
basset: a small hound with short legs
beagle: a small hound with a smooth coat
wolfhound: a large hound with a rough coat
greyhound: a large slender hound used as a racing dog
whippet: a small greyhound found in England
Italian greyhound: a very small greyhound

hound:
is-a dog (1.00)
has-part ears (1.00)

size large (0.33)
attr drooping (1.00)

purpose hunting (1.00)

basset:
is-a hound (0.25)

size small (0.25)
has-part legs (1.00)

size short (1.00)

beagle:
is-a hound (0.25)

size small (0.25)
has-part coat (0.50)

attr smooth (1.00)

wolfhound:
is-a hound (0.25)

size large (0.33)
has-part coat (0.50)

attr rough (1.00)

greyhound:
is-a hound (0.25)

size large (0.33)
girth slender (1.00)

purpose dog (1.00)
attr racing (1.00)

whippet:
is-a greyhound (0.50)

size small (0.25)
location England (1.00)

Italian greyhound:
is-a greyhound (0.50)

size small (0.25)
attr very (1.00)

Figure 5.5: Lexical relations for sample hound definitions. The definitions
are simplified versions of the corresponding WordNet definitions. The relations
were manually extracted and weighted using the cue validity process.

of the CPT table for N has a value based on the sum of the corresponding
relation strengths for those Pi’s that are positive (i.e., P(N|...Pi = True...)), with
normalization to ensure proper probabilities. More details on this derivation
process are given in the next section.
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As can be seen from the figure, embedded attributes are treated as
separate nodes. Therefore, [beagle →HAS-PART coat →ATTRIBUTE smooth] is
modeled as [beagle →HAS-PART beagle-coat] and [beagle-coat →ATTRIBUTE
smooth]. This use of object-specific attribute nodes is inspired by the work
by Koller and Pfeffer (1998) on probabilistic frame systems. Although it would
be possible to use their system, they interpret the probabilities as the distri-
bution of the possible values, not their salience. Embedded-attributes nodes
are important when dealing with large networks, since otherwise the size of
the underlying cliques might make direct evaluation intractable (Lauritzen and
Spiegelhalter, 1988).

Although other probabilistic representations are possible, Bayesian net-
works offer advantages in terms of tractability and software availability. For ex-
ample, by using undirected nodes as in Markov Networks (Pearl, 1988), prob-
lems with circularity are avoided; however, there are few implementations of
Markov networks available, and this ignores the important information regard-
ing directionality. It is also possible to use a more general representation to
distinguish uncertainty from disbelief, such as in the Dempster-Shafer theory
(Shafer, 1976; Shafer, 1987). This can be viewed as a switch from a point-
based probability specification into an interval-based specification, allowing for
three possibilities: belief, disbelief, and uncertainty. Naturally, the added flex-
ibility complicates inferencing, making the representation less tractable than
Bayesian networks. It is still an open issue whether general belief functions are
necessary rather than just standard probabilities. See (Lindley et al., 1987) for
a debate on the suitability of both for artificial intelligence, in particular expert
systems. In addition, Almond (1995) explored the use of graphical belief func-
tions for his dissertation, but he is unsure that the added expressivity is worth
the extra computational costs.

Extensions to standard Bayesian networks are also possible. As men-
tioned above, Koller and Pfeffer (1998) have developed probabilistic frame sys-
tems, which are used to provide more structure to Bayesian network models.
This also allows for better integration with existing knowledge bases.

5.2.2.2 System Overview

The application to word-sense disambiguation builds upon the frame-
work laid out in (Wiebe et al., 1998b), which augments a traditional statisti-
cal classifier with probabilistic spreading activation. In particular, they use be-
lief propagation in Bayesian networks to model the activation of similar word
senses; the network is initialized with the local contextual support determined
by the statistical classifier (similar to the supervised WSD system described
above in Section 5.2.1). Their model can be viewed as propagating support
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only along lines of strong semantic similarity, namely among nodes having a
common ancestor in an is-a hierarchy. This is extended here to semantic re-
latedness (or weak semantic similarity ) by relaxing the restriction on the paths
along which the activation can occur. Specifically, the set of paths is expanded
to include those incorporating differentia-based relations.

For this application, ambiguity in the dictionary differentia generally leads
to degraded performance, so only those properties involving specific senses
are considered. That is, if the Extended WordNet data did not have sense
annotations for a particular word in a definition, relations involving it are not
included. This occurs for less than 5% of the contents words in the WordNet
definitions.

For each sentence with target words to be disambiguated, a separate
Bayesian network is constructed to represent the interconnections among the
various senses that are possible. As an example, consider the task of disam-
biguating ‘community’ and ‘town’ in the following sentence:

The community leaders expressed concern about the town’s spiritual decline.

In WordNet, the sense distinctions for these words follow:

community:
1. a group of people living in a particular local area
2. a group of people having ethnic or cultural or religious characteris-

tics in common
3. common ownership
4. a group of nations having common interests
5. the body of people in a learned occupation
6. agreement as to goals
7. a district where people live; occupied primarily by private residences
8. (ecology) a group of interdependent organisms inhabiting the same

region and interacting with each other

town:
1. an urban area with a fixed boundary that is smaller than a city
2. an administrative division of a county
3. the people living in a municipality smaller than a city

When defining a CPT incorporating the hypernym relations from Word-
Net, the conditional probability P(hyponym | hypernym) is inversely proportional
to the number of children that the hypernym synset has; however, the cue va-
lidity weights are used as is. For instance, municipality#1 has two children in
WordNet, so the following is the CPT for town#1.
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P(town#1 | municipality#1)
municipality#1 P(town#1)

F ε
T 0.500

This illustrates that logical zeros are encoded using an epsilon rather than 0.0.
This is a requirement for Bayesian network inferencing (Lauritzen and Spiegel-
halter, 1988). It also leaves open the remote possibility for the false case being
applicable. In the case with multiple parents, the Noisy-OR inspired model is
used. The next CPT shows the probabilities that are derived for municipality#1,
given its hypernyms urban area#1 and administration dist#1, which have 7 and
16 hyponyms, respectively. Thus, the probabilities of the parents in isolation
would be as follows:

P(municipality#1 | urban area#1) = 0.143
P(municipality#1 | administration dist#1) = 0.0625

The CPT for municipality#1 combines these basically by summing the positive
probabilities. So the above P(c|pij) terms can be seen in the entries having just
one T value.

P(municipality#1 | urban area#1, administration dist#1)
urban area#1 administration district#1 P(municipality#1)

F F ε
F T 0.143
T F 0.062
T T 0.205

Lastly, in the case of synsets without hypernyms (i.e., “starters” in WordNet), a
uniform distribution is assigned to the node.

P(location#1)
0.5

Figure 5.7 shows a graph from a Bayesian network based on the lexical
relations pertaining to these words. This includes embedded attribute nodes,
such as town-smaller-city (used for the main relation inferred by the definition
for town#1). In the graph, solid links indicate the strong semantic similarity re-
lations implied by the WordNet is-a hierarchy. In contrast, dashed links show
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the semantic-relatedness relations derived from dictionary differentia, and dot-
ted links are used for evidence derived from context, as described below. All
nodes with numeric suffixes represent senses (WordNet synsets), and the two
octagonal nodes at the bottom encode the empirical support for each sense of
the given words. These nodes are implemented as virtual evidence nodes, with
the empirical distribution being encoded directly in the CPT’s.

Virtual evidence nodes are binary-valued and do not have effect until
clamped to a positive value. They influence the network indirectly through their
incoming links. For example, assuming that the empirical distribution for ‘town’
is (.033, .263, .704), the following CPT would be created for its empirical sup-
port node (support-town):

P(support-town | town#1, town#2, town#3)
town#1 town#2 town#3 support-town

F F F ε
F F T .705
F T F .264
F T T ε
T F F .034
T F T ε
T T F ε
T T T ε

If the virtual evidence node support-town is not enabled, then the effect is as
if the node were omitted from the network: the nodes for the senses of ‘town’
would be equally likely. However, when support-town is activated, it will cause
the node for town#3 to have a much higher likelihood of holding than the others.

5.2.2.3 System Results

To evaluate the Bayesian network word-sense disambiguation system,
sentences having multiple, distinct sense annotations in the Wall Street Journal
portion of the DSO corpus (Ng and Lee, 1996) were used. This is necessary
since the system specifically addresses propagation of support among interde-
pendent senses rather than just word-sense disambiguation in isolation, as with
standard supervised WSD. Note that the Senseval II data used in the previous
experiment (see Section 5.2.1.3) is not suitable for this purpose because the
sense annotations are spread out through a much larger corpus. The top 100
sentences from the DSO corpus were chosen for the evaluation. Of these, six
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sentences had eight distinct sense annotations, and there were just three sen-
tences with fewer than four distinct annotations; the average was 6.2 different
sense annotations per sentence.

Table 5.7 shows the results for the system over this data compared to
a system based on (Wiebe et al., 1998b). In addition, a simple baseline of al-
ways selecting sense 1 for each word is included; this is a reasonable default
choice because WordNet senses are ordered by frequency. As can be seen,
using a Bayesian network with differentia-based relations generally leads to im-
provement over a system incorporating just the WordNet is-a relations. Overall,
the differentia-based approach achieves a gain of nearly two percentage points
(61.8% vs. 59.9%), a statistically significant difference. The baseline system
that selects the most-frequent sense has accuracy of 55.2%. (The DSO data
used for this experiment is entirely different from the Senseval II data used by
the supervised classifier, so these results are not comparable to those in Table
5.4).

5.3 Summary

The distinguishing information in dictionary definitions can be exploited
to improve word-sense disambiguation, as shown with two different approaches.
Using the Senseval II data, a supervised classifier improves upon a typical ap-
proach to WSD through the use of relatedness collocations derived from differ-
entia (63.8% accuracy versus 63.4%). A separate WSD system was developed
that implements spreading activation over a Bayesian network based on Word-
Net augmented with differentiating relations. When evaluated over the DSO
data, a significant improvement was achieved (61.8% versus 59.9%).

This chapter also discussed a qualitative evaluation by several human
judges (with moderate agreement), showing that the relations extracted are
generally acceptable. The next chapter discusses other possible application
areas for this research (e.g., text segmentation). It also highlights the important
differences of the techniques used here versus closely related work.
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SentID -Diff +Diff
dj01-221 57.14 57.14
dj01-230 72.73 72.73
dj01-499 87.50 87.50
dj01-559 100.00 100.00
dj02-100 50.00 50.00
dj03-1275 50.00 50.00
dj04-1900 87.50 87.50
dj05-1106 37.50 50.00
dj05-1218 42.86 57.14
dj05-1424 57.14 42.86
dj05-244 62.50 75.00
dj06-358 87.50 87.50
dj07-272 50.00 50.00
dj07-530 62.50 50.00
dj11-624 87.50 87.50
dj11-627 71.43 71.43
dj11-771 69.23 76.92
dj12-1069 42.86 57.14
dj14-1675 100.00 100.00
dj14-1984 57.14 57.14
dj14-486 28.57 28.57
dj14-573 57.14 57.14
dj15-1422 57.14 42.86
dj15-1580 44.44 44.44
dj15-1583 33.33 66.67
dj15-1622 28.57 57.14
dj16-604 71.43 85.71
dj18-619 14.29 14.29
dj19-160 0.00 14.29
dj19-487 33.33 55.56
dj21-369 83.33 66.67
dj22-1408 77.78 77.78
dj22-2341 33.33 33.33
dj23-742 85.71 85.71

SentID -Diff +Diff
dj24-1329 66.67 66.67
dj24-1805 57.14 71.43
dj24-212 18.18 9.09
dj25-195 42.86 42.86
dj25-2412 100.00 100.00
dj25-2466 42.86 42.86
dj26-1131 33.33 50.00
dj26-713 85.71 85.71
dj26-962 42.86 42.86
dj27-060 33.33 33.33
dj27-722 83.33 83.33
dj28-1161 66.67 66.67
dj28-1323 85.71 71.43
dj28-1780 33.33 33.33
dj28-325 66.67 83.33
dj29-1166 66.67 66.67
dj29-699 33.33 33.33
dj30-128 83.33 83.33
dj30-1445 50.00 50.00
dj30-1980 100.00 100.00
dj30-2154 25.00 50.00
dj32-249 40.00 40.00
dj33-1099 16.67 33.33
dj33-673 66.67 83.33
dj34-1671 83.33 83.33
dj34-1677 50.00 50.00
dj34-1737 66.67 50.00
dj34-561 33.33 33.33
dj35-1092 83.33 100.00
dj36-1781 33.33 50.00
dj36-2313 50.00 50.00
dj37-1389 66.67 33.33
dj37-1538 83.33 83.33
dj38-500 57.14 57.14

SentID -Diff +Diff
dj39-1272 100.00 100.00
dj39-1427 33.33 50.00
dj40-1033 83.33 83.33
dj40-133 42.86 57.14
dj41-1856 57.14 28.57
dj41-2302 83.33 83.33
dj42-1378 90.00 90.00
dj42-1380 50.00 33.33
dj42-1382 55.56 66.67
dj42-1638 71.43 57.14
dj42-496 50.00 50.00
dj43-1747 66.67 50.00
dj44-680 66.67 66.67
dj45-809 100.00 100.00
dj46-173 100.00 100.00
dj48-1129 66.67 83.33
dj48-1134 66.67 66.67
dj48-1153 33.33 33.33
dj48-2082 37.50 62.50
dj49-1563 28.57 28.57
dj49-578 83.33 83.33
dj51-1871 100.00 100.00
dj52-1462 50.00 50.00
dj52-1657 100.00 100.00
dj53-1569 28.57 28.57
dj55-772 71.43 71.43
dj56-625 50.00 50.00
dj57-1626 28.57 42.86
dj57-1636 77.78 77.78
dj57-1907 42.86 42.86
dj59-046 16.67 16.67
dj60-566 71.43 71.43
Baseline 55.23 55.23
Total 59.92 61.84

Table 5.7: Bayesian network WSD classifier results. SentID gives the
sentence ID from the DSO corpus. -Diff gives the accuracy when using just
WordNet hypernym relations (is-a). +Diff gives the accuracy when using dif-
ferentiating relations in addition to the is-a relations. Baseline always selects
sense 1. Total gives the mean accuracy. The improvement of +Diff over -Diff is
statistically significant at p < .05 via a paired t-test.
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CHAPTER 6
DISCUSSION AND FUTURE WORK

This thesis work has touched on a variety of areas in computational lin-
guistics. Section 6.1 highlights the important differences in the approaches
taken compared to previous work. (See Chapter 2 for a discussion of other
related work, as well as more details on the approaches mentioned below.)
Section 6.2 presents ideas for how the work can be extended.

6.1 Comparison to Related Work

The background chapter presented a wide range of work that can be
used for lexical acquisition. Here the main differences with closely related re-
search are discussed, with an emphasis on the relation extraction and disam-
biguation processes.

6.1.1 Differentia Extraction

Most of the work addressing differentia extraction has relied upon man-
ually constructed pattern matching rules (Vanderwende, 1995; Barrière, 1997;
Rus, 2001), as discussed in Section 2.3.3. Here the emphasis is switched
from transformation patterns for extracting relations to statistical classification
for relation disambiguation, given tagged corpora with examples. Specifically,
different classifiers are induced for each preposition using the feature organiza-
tion shown in Figure 4.3. Different classifiers are also produced when targeting
different role inventories; see Tables 4.11 and 4.16.

In Extended WordNet (Rus, 2001) relation disambiguation is not yet ad-
dressed: for instance, prepositions are converted directly into predicates in the
underlying logical form representation (e.g., by(e, x)). In addition, the approach
is closely tied into the grammar used by the parser, as a transformation rule
is developed for each syntax rule. In a similar vein, Barnbrook’s (2002) defini-
tion analysis system is tied into the specifics of a particular dictionary, namely
Collins Cobuild Student Dictionary. Separating the surface-level relation extrac-
tion from the relation disambiguation helps to minimize such dependencies on
the parser and on the definition format.

6.1.2 Relation Disambiguation

The work here addresses relation disambiguation specifically with re-
spect to those indicated by prepositional phrases (i.e., preposition word-sense



disambiguation). Until recently, there has been little work on general-purpose
preposition disambiguation. Litkowski (2002) and Srihari et al. (2001) present
approaches using manually derived rules. Both approaches account only for a
handful of prepositions, in contrast to the several dozen attempted here.

There have been a few machine-learning approaches that are more sim-
ilar to the approach used in Chapter 4. Gildea and Jurafsky (2002) perform rela-
tion disambiguation using the FrameNet annotations as training data. However,
they condition the classification on the predicating word (e.g., the verb corre-
sponding to the frame under which the annotations are grouped). Therefore,
the range of roles for a particular classification instance is more limited than in
the experiments discussed here. Blaheta and Charniak (2000) use the Tree-
bank annotations for relation disambiguation, addressing all adjuncts, not just
prepositions. Therefore, they include the nominal and adverbial roles, which
are syntactic and more predictable than the roles occurring with prepositional
phrases.

6.1.3 Relation Weighting

Richardson (1997) illustrates how TF*IDF techniques can be used for
relationship weighting, where documents are the set of definitions for the same
dictionary entry word (see Section 2.4.2). The use of cue validity weights would
produce comparable results if the set of contrasting concepts (see Figure 3.6)
corresponded to those in the same entry word ‘document.’ This is because both
measures are proportional to the co-occurrence frequency of an item and its
reference class. However, the weighting will be different because the reference
classes used here are determined based on semantic grounds (e.g., common
most-informative ancestor) rather than morphological ones (e.g., same entry
word).

6.1.4 Class-based Collocations

Scott and Matwin (1998) also use WordNet hypernyms for classifica-
tion. Their approach is different in that they include a numeric density feature
for any synset that subsumes words appearing in the document, potentially
yielding hundreds of features. The hypernym collocations used here just in-
volve a binary feature for each of the relations being classified, using indicative
synsets based on the conditional probability test. In addition, adjective hyper-
nyms are included rather than just nouns and verbs (see Section 4.3.1.1). Both
approaches consider all senses of a word, distributing the alternative readings
throughout the set of features. Gildea and Jurafsky (2002) instead just select
the first sense for their hypernym features. They report marginal improvements
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using the features, whereas the hypernym collocations resulted in significant
improvement for the preposition disambiguation.

6.2 Areas for Future Work

The differentia extraction process was shown to provide useful informa-
tion for word-sense disambiguation. This section sketches out a few other ap-
plications and mentions other areas for future work.

6.2.1 Extensions to Differentia Extraction Process

An obvious area for future work would be the application of the differ-
entia extraction process to other types of dictionaries, both general-purpose
dictionaries and specialized ones such as those used in medicine. Certain dic-
tionaries, such as the Longman Dictionary of Contemporary English (LDOCE)
and other learner’s dictionaries, should be readily adaptable. Full-sized dictio-
naries would pose minor complications due to the wider range of formatting
conventions, but this should mainly just affect the preprocessing stage.

The surface-level relations extracted by the system are dependent upon
the parser used to analyze the definitions. Other parsers could be investigated,
both dependency parsers as well as traditional phrase-structure parsers. For
example, lexicalized grammars might be suitable, as they capture the depen-
dencies among words via probabilities rather than parse rules (Jurafsky and
Martin, 2000). Other direct extensions could be based on using different re-
sources for the relation refinement. For example, the WordNet annotations
discussed in Section 3.1.2 could be used as input into the relation disambig-
uation process discussed in Chapter 4, in addition to training over annotations
from general text (e.g., in Treebank). Also helpful would be The Preposition
Project (Litkowski, 2005), which is in the process of compiling detailed sense
information for prepositions based on lexicographer analysis of definitions from
machine readable dictionaries as well as annotations from FrameNet.

Several issues involved in the extraction process presented here have
already been mentioned, such as structural ambiguity resolution and the as-
sumption of uniformity in the definitions. One issue that has not been addressed
is whether the information that is being extracted is indeed differential. This is
not a focus of the current research, since it is assumed that dictionary defini-
tions do not contain much extraneous information. Traditional dictionaries have
always had considerable size constraints (Landau, 2001), so this is generally a
safe assumption. Nonetheless, the use of cue validities could be used for this
purpose. Section 3.3.2 showed how these are used for weighting the relations.
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One way to evaluate how differential a particular relationship is would be
to compare its cue-validity weight versus those for other relationships. Because
this would have a bias towards incidental co-occurrences (e.g., ‘greyhound’ with
‘motorcoach’), a separate measure could be used to quantify the usefulness of
a relationship by seeing how frequently similar ones occur in the entire taxon-
omy as well as in a corpus. For instance, ‘small’ occurs 44 times in the WordNet
definitions under the dogCANINE branch, but only two times under the houndDOG
sub-branch. In contrast, ‘large’ occurs 36 times under dogCANINE but 10 times
under houndDOG. Thus, small is more differential than large in the context of
hounds. Moreover, ‘small’ occurs frequently enough to be considered an im-
portant attribute for dogs, unlike ‘bred by Pharaohs,’ which only occurs once
(for Ibizan hound).

Lastly, to facilitate structural disambiguation, class-based lexical associ-
ations could be investigated, for example, with the classes defined via WordNet.
This line of research could use an extension of the approach taken by Hindle
and Rooth (1993), discussed in Section 2.3.1.2. Instead of using word associa-
tions, the associations would be based on WordNet hypernym synsets. These
associations would be different from those for the class-based collocations (see
Section 4.3.1.1), because the latter involve word-sense distinctions rather than
parse constituent placement decisions (e.g., prepositional phrase attachment).
However, similar techniques could be used in the derivation of the associations.

6.2.2 Inferring Additional Semantic Role Markers

In Section 4.3.4.1, relational markers were inferred for the relationships
in the Factotum semantic network. Recall that Factotum encodes the implicit
relations among words in the Roget’s Thesaurus, but does not indicate how
the relations are manifested in English. The approach for inferring relational
markers from the Factotum data checked for common prepositions occurring
in proximity of the relational source and target terms. A similar approach can
be taken for other types of relations, although it might be necessary to analyze
the resulting text from the corpus checks to allow for a wider range of relation
markers.

The Cyc Knowledge Base (KB) provides a large set of relations that
could be used for this purpose, in particular providing a rich source of attribute
relations. In the Cyc KB, properties for members of a category are specified via
the relationAllInstance predicate. A few examples follow:

(relationAllInstance numberOfEdges Nonagon 9)
(relationAllInstance objectHasColor Slug BeigeColor)
(relationAllInstance hardnessOfObject StoneStuff Hard)
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Note that the first relationAllInstance assertion is a shorthand notation (i.e.,
macro) for the following rule:

(implies
(isa ?OBJ Nonagon)
(numberOfEdges ?OBJ 9))

This is needed because Cyc distinguishes class-level concepts (i.e., Collection)
from instance-level ones (i.e., Individual).

There are over 10,000 such class-level macro assertions in the KB,
many of which deal with attribute specifications. For the first example, the
relationship would be 〈Nonagon, numberOfEdges, 9〉. A proximity search of
“nonagon NEAR 9” would produce hits similar to the following:

AltaVista found 107 results About
...
Math Forum - Ask Dr. Math Archives: College Geometry - Triangles/Polygons
... Equilateral triangle ABC has, near its center, point P, which is ... rectangle.
Nonagon or Enneagon? [ 02/06/2003] Is ’enneagon’ really the correct name for
a 9-sided polygon ...
mathforum.com/library/drmath/sets/college triangles.html
More pages from mathforum.com
...
Mr. Collins - 7th Grade Math - Math Vocabulary Sheet
... Trend Line—The line that can be drawn near the points on a scattergram ...
Octagon–A polygon with 8 sides. 134. Nonagon–A polygon with 9 sides. 135
...
members.aol.com/teacher677/mathvocabsheet.html
More pages from members.aol.com ..

After analyzing the text of such hits, the patterns “9 sided” and “with 9 sides”
would likely emerge. Analyzing the results over the entire set of Cyc’s num-
berOfEdges assertions could produce the following patterns:

with 〈target〉 sides
has 〈target〉 sides
〈target〉-sided

This technique can also be extended to finding relation markers in for-
eign languages, such as Spanish, given a bilingual dictionary. Specifically, the
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proximity searches can be done over the translation equivalents of the source
and target terms. Ambiguous translations pose a complication, but in most of
these cases, similar relation markers should result unless the alternatives for a
term’s translation have significantly different meanings. As an illustration, when
the process is applied to the translated relationship for the example in Section
4.3.4.1, namely 〈secar, is-function-of , secarador〉, the top three markers are
‘con,’ ‘de,’ and ‘para.’

6.2.3 Application to Text Segmentation

In addition to word-sense disambiguation, the conceptual differentia-
extraction work can be applied to text segmentation. Since related words tend
to occur together (Morris and Hirst, 1991), the co-occurrence frequency of re-
lated words can serve as an indication of text cohesion and thus can be used
to estimate segment boundaries. Hearst’s (1994) TextTiling program is repre-
sentative of the general approach currently taken towards text segmentation.
Hearst relies solely on word frequency, so the main issue is how to incorporate
the data on word relatedness into this framework.

In TextTiling, the similarity computation is as follows (Hearst, 1993):

sim(b1, b2) =

∑
t W(t, b1)W(t, b2)√∑

t W(t, b1)2
∑

t W(t, b2)2

where W(t, b) is weight of term t in block b, which is given by its frequency. In
effect, the blocks are described by vectors with frequencies for each word:

Vi = 〈fi(w1)fi(w2)...fi(wN)〉
where fi(w) is the frequency of word w in block i. Similarity is given by the cosine
of the angle between the vectors.

A direct extension of this approach to one using conceptual differentia
would be to assign semantic-relatedness classes to words based on occur-
rence in differentia-based relations. In effect, this augments the vectors com-
puted by the original algorithm by a component consisting of the frequency
counts for class labels:

Vi = 〈fi(w1)...fi(wN), fi(c1)...fi(cM)〉

6.2.4 Mapping Senses from other Dictionaries into WordNet

Given that different dictionaries emphasize different aspects of word
meaning, it is desirable to combine the information acquired. This would likely

135



require human assistance, as determining which aspects of the different mean-
ings apply to the same sense might involve subtle decision making. This thesis
work could be integrated into an interactive system in which the relational analy-
ses of the meanings for the same word in different dictionaries are presented to
the user. The user then can combine the appropriate lexical relations that have
been extracted into a single entry for incorporation into the lexicon. A similar
system could be used to map senses from other dictionaries into WordNet.

Additional processes not discussed here would be required to facilitate
the sense mapping. For example, due to the use of different sense invento-
ries in different dictionaries, it is desirable for the computer to help with the
determination of which sense definitions involve the same underlying concept.
Although simple word-overlap schemes could help in this respect (Nastase and
Szpakowicz, 2001), it would be beneficial to integrate work on aligning ontolo-
gies (O’Hara et al., 1998; Hovy, 1998) to account for WordNet’s hierarchy.

6.2.5 Analyzing Lexical Gaps

Bilingual dictionaries are an important resource for machine translation.
Usually, the entries consist merely of target language words with the same
meaning as the source language word (i.e., translation equivalents). For in-
stance,1

quinterı́a f. farm, grange.
perdido, -da adj. lost. 2 mislaid. ...

However, when there is no word or commonly used phrase in the target lan-
guage, the situation represents a lexical gap. In such cases, the entries in bilin-
gual dictionaries give brief definitions more akin to monolingual dictionaries, as
seen in the following example.

alhóndiga public granary or grain market
traspapelarse ref. to be mislaid among other papers

When definitions are used in place of translation equivalents, the differentia ex-
traction system could be applied to the definition text to determine the concep-
tual relations and attributes that apply to the underlying concept being defined.

1These examples are taken from the Spanish-English Dictionary provided with the
NTC Languages of the World CD-ROM from the National Textbook Company.
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This would be beneficial in an interactive lexicon acquisition system that
helps users create lexicon entries by either copying entries from an existing lex-
icon or creating one from scratch. For example, one way to bootstrap a foreign
language lexicon is to apply transformations to an English lexicon based on a
bilingual dictionary. In terms of a Mikrokosmos lexicon entry (Onyshkevych and
Nirenburg, 1992), this would just modify the SYN-STRUC part of the frame struc-
ture while preserving the SEM-STRUC (see Section 2.1.3.3). The user would
verify the suggested foreign language lexicon entry, making corrections if nec-
essary. However, in the case of lexical gaps (e.g., no English lexicon entry to
transform), the differentia extraction system could be used as a fallback mech-
anism to infer relations for the SEM-STRUC.

6.3 Summary

This chapter briefly highlighted the differences in this research versus
closely related work (e.g., use of semantic role annotations for relation disam-
biguation instead of rules). It also mentioned some of the more promising areas
for future work, such as text segmentation using word relatedness class derived
from differentia. The next chapter includes a summary of the entire thesis, as
well as speculations inspired by the work.
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CHAPTER 7
CONCLUSION

This thesis has advocated an empirical methodology for extracting differ-
entiating relations (i.e., differentia extraction), demonstrating a viable approach
to exploiting information in text-based resources without involving the expense
of manual knowledge extraction rules. This research has also touched upon a
variety of other areas as illustrated in the previous chapter (e.g., class-based
collocations for word-sense disambiguation).

This concluding chapter first summarizes the thesis to review the im-
portant points that were discussed (Section 7.1). In addition, I offer several
observations resulting from the research. These encompass the main contri-
butions of the research (Section 7.2) and include other insights based on the
work (Section 7.3).

7.1 Summary of Thesis

This thesis improves upon previous work on extracting information from
dictionary definitions by the use of data-driven relation disambiguation. This re-
search exploits the Treebank and FrameNet semantic roles annotations mapped
into a reduced inventory suitable for representing distinctions present in defini-
tions. All the definitions from WordNet 1.7.1 were analyzed using this process.
A random sample of the results was evaluated by six human judges, indicating
that the quality is generally acceptable (e.g., compared to manually corrected
output). In addition, the extracted information was shown to improve two sep-
arate approaches to word-sense disambiguation. Detailed summaries of the
chapters follow.

7.1.1 Importance of Differentiating Relationships

Chapter 1 provided motivation for the research, in particular the need for
including differentiating relations in semantic lexicons. For instance, differenti-
ation is an integral part of categorization as revealed by research in cognitive
psychology. Additional support for this hypothesis is based on the prevalence of
differentiating relations in manually constructed lexicons versus those predom-
inantly acquired using automated means. The introductory chapter also illus-
trated that dictionary definitions are still the best resource for extracting these
relations, because corpus analysis over free text is not likely to be sufficiently
directed at acquiring differentiating relations.



7.1.2 Approaches for Lexical Acquisition

Chapter 2 presented background material on lexical semantics and illus-
trated the common techniques used for acquiring semantic knowledge. Several
different representations based on semantic networks were presented, in par-
ticular the early influential work by Schank (1973) on conceptual dependencies
and by Wilks (1975b) on preference semantics. The ontological semantics ap-
proach is currently the state-of-the-art for lexicons that provide detailed seman-
tics (Nirenburg and Raskin, 2004). Representing fine-grain distinctions would
require more emphasis on stylistics and other pragmatic considerations (Ed-
monds and Hirst, 2002).

Manual acquisition is preferred when quality of lexicon entries is critical
(Onyshkevych and Nirenburg, 1995; Burns and Davis, 1999). A variety of au-
tomatic approaches to lexical acquisition was discussed. Corpus approaches
to lexical acquisition often involve the use of lexical associations, such as in
words clustered according to similarity (Lin, 1998) or in preferences for verbal
arguments (Resnik, 1995). Translation lexicons illustrate cross-lingual lexical
associations (Melamed, 2000). The initial definition analysis attempts concen-
trated on extracting the main semantic category for the word being defined
(genus extraction), as seen in the influential work by Amsler (1980). Later work
addressed extracting the differentiating relationships from definitions (i.e., dif-
ferentia). Such analysis can acquire precise relationships; however, it has relied
primarily upon manually derived extraction rules (Barrière, 1997; Vanderwende,
1996; Rus, 2002).

7.1.3 Extraction of Differentiating Relations

Chapter 3 illustrated the steps in automatically extracting surface-level
relations from dictionary definitions. Statistics on WordNet (Miller, 1990) version
1.7.1 were first presented, showing that it is equivalent in scope to a learner’s
dictionary such as the Longman Dictionary of Contemporary English (LDOCE),
a popular dictionary for computational linguistics research (Procter, 1978). The
WordNet definitions are not as uniform as those in commercial dictionaries (e.g.
LDOCE), but they still tend to follow the classical genus/differentia format (Lan-
dau, 2001). The first extraction step involves preprocessing the definitions,
such as in forming a complete sentence with the word being defined. The defi-
nition is then parsed using the Link Grammar (Sleator and Temperley, 1993), a
dependency parser that produces a list of highly specialized grammatical rela-
tions among the words in the form of tuples.

The specialized dependency relations resulting from the definition parse
are converted into higher-level grammatical relations, using a simple mapping
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into relations like modifier-of . In addition, pairs of tuples involving the same
function word in the target and source term positions are combined into a sin-
gle tuple with the function word serving as the relation. The last extraction
step involves the weighting of the grammatical relationships using the notion of
cue validities (Smith and Medin, 1981). The relation type and target term are
treated together as a feature of the source term, and the weighting ensures that
features more specific to a given source term are weighted higher.

7.1.4 Disambiguation into Conceptual Relations

Chapter 4 presented the crucial disambiguation process that transforms
the syntactically oriented relationships into conceptual ones. For the relation
source and target terms, this amounts to word-sense disambiguation (WSD).
Since WordNet definitions are being targeted here, the WSD annotations pro-
vided in Extended WordNet (Novischi, 2002) are incorporated. Information on
two separate types of semantic role resources is provided. The emphasis is
on corpus-based resources providing annotations of naturally occurring text as
done with Treebank (Marcus et al., 1994) and FrameNet (Fillmore et al., 2001).
In addition, semantic role inventories from knowledge bases are illustrated, in
particular for Cyc (Lehmann, 1996) and Factotum (Cassidy, 2000).

The disambiguation concentrates on relations indicated by prepositional
phrases, and is framed as word-sense disambiguation for the preposition in
question. A new type of feature for word-sense disambiguation is introduced,
using WordNet hypernyms as collocations rather than just words as typically
done. For relationships derived from knowledge bases, the prepositions and
other relational markers need to be inferred from corpora. A method for doing
this is demonstrated using Factotum. In addition, to account for granularity
differences in the semantic role inventories, the relations are mapped into a
common inventory that was developed based on the inventories discussed in
the chapter. This allows for improved classification in cases where inventories
provide overly specialized relations (e.g., FrameNet).

7.1.5 Lexicon Augmentation and WSD Applications

Chapter 5 discusses two aspects on how the work can be applied, namely
lexicon augmentation and word-sense disambiguation; in each case, detailed
evaluations are presented (one direct and the other indirect). The output pro-
vided by the analysis can be used to augment existing lexicons, in particu-
lar WordNet. To directly evaluate the quality of the information that would be
added, a random sample was selected and evaluated by four human judges
familiar with computational linguistics and two others with computer science
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backgrounds. To provide a baseline for the accuracy, part of the output was
manually corrected prior to the evaluation. Inter-coder reliability analysis was
performed using the Kappa statistic (Carletta, 1996). The evaluation illustrated
that the quality of the uncorrected relationships is acceptable, based on com-
parisons of scores assigned to that of the manually corrected relations.

An indirect evaluation of the extracted information is illustrated with re-
spect to word sense disambiguation. For a supervised WSD approach, a new-
type of collocation feature is introduced that uses the differentia to expand
the set of potential collocations. Standard collocations are derived using co-
occurrence counts for the context words and the tagged word senses. For the
differentia-based collocations, the relatedness weight is used in place of unit
weights assigned to each co-occurrence. When tested over the Senseval II
data (Edmonds and Kilgarriff, 2002), these features consistently yield improve-
ments compared to just using word collocations. For a probabilistic spreading
activation approach, the differentia properties are used to enhance the con-
nectivity in a Bayesian network representing the interdependencies among the
word senses for the target words being disambiguated. This builds upon the
work of Wiebe et al˙ (1998b), where the connectivity is based solely on the
WordNet hypernym relations (i.e., is-a hierarchy). When tested over the DSO
data (Ng and Lee, 1996), this leads to statistically significant improvements.

7.1.6 Looking Backward and Then Forward

Chapter 6 first compared the work in this thesis to previous research.
Since the background chapter covered earlier differentia-extraction work, this
chapter concentrated on relation disambiguation, such as the recent work over
Treebank (Blaheta and Charniak, 2000) and FrameNet (Gildea and Jurafsky,
2002). Other topics discussed include relation weighting (Richardson, 1997)
and class-based collocations (Scott and Matwin, 1998). Chapter 6 also sketched
areas for future work. One future application could use differentia-derived
relatedness classes to augment existing approaches for text segmentation.
The relation disambiguation methodology could also be extended to handle
modification-type relations. For instance, information can be inferred from Cyc
using similar techniques as those developed for Factotum.

7.2 Significance of Research

7.2.1 Empirical Acquisition of Conceptual Distinctions

Contrary to what some of the criticisms of machine-readable dictionary
(MRD) research might imply (Amsler, 1995; Ide and Véronis, 1993), this type

141



of analysis can still be quite fruitful. This thesis provides an empirical method-
ology for extracting information from MRD’s that is not tied into the specifics
of the defining language used in the dictionary being analyzed. For instance,
there are no pattern-matching rules tailored to the way the instrument relation
is commonly indicated in definition text. In contrast, occurrences of this relation
type are inferred using lexical associations derived from preposition usage in
general text. Of course, such flexibility comes at a cost, which in this case is
the requirement for tagged corpora indicating how the relations are expressed
in natural language. By utilizing existing annotations prepared for general text
(e.g., Treebank and FrameNet), such costs can be minimized.

7.2.2 Exploiting Resources on Relation Usage

This thesis demonstrated effective means of exploiting resources pro-
viding information on relation usage. In the case of corpus-based resources,
annotations covering prepositional phrase usage were treated as sense anno-
tations for the corresponding prepositions. In addition, in the case of FrameNet,
the fine-grained relations were converted into a common relation inventory (see
Table 4.19). Knowledge bases generally do not provide information on how
specific relationships are indicated in natural language. Therefore, a way to
infer relational markers was developed and illustrated using Factotum. Such
techniques can be used to extract information from Cyc.

7.2.3 Bayesian Networks for Differentia Representation

Although popular in artificial intelligence, Bayesian networks are not com-
monly used in computational linguistics. The probabilistic spreading activation
approach of Wiebe et al. (1998b) illustrates an effective use of Bayesian net-
works in modeling explicit relations in WordNet. This is extended here to include
the implicit relations from the WordNet definitions. The links are defined based
on the cue validity weights determined for the implicit relations: thus, causality
is interpreted in terms of salience. The inclusion of relations based on differen-
tia can lead to large networks. To avoid problems with overly large cliques in the
underlying representation used for direct evaluation (Lauritzen and Spiegelhal-
ter, 1988), embedded attributes are treated as separate nodes. Using Bayesian
networks modeling differentia leads to significant improvements in a system for
word-sense disambiguation.
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7.2.4 Class-based Collocations for Sense Disambiguation

Supervised systems for word-sense disambiguation (WSD) often rely
upon word-based keywords or collocations to provide clues on the most likely
sense for a word given the context. In the second Senseval competition, these
features figured predominantly among the feature sets for the leading systems
(Mihalcea, 2002; Yarowsky et al., 2001). A limitation of such features is that
the words selected must occur in the test data in order for the features to apply.
To alleviate this problem, class-based approaches replace word-level features
with category-level ones (Ide and Véronis, 1998). When applied to collocational
features, this approach effectively uses class labels rather than wordforms in
deriving the collocational features.

Two separate types of class-based collocation features for WSD were
developed as part of the work for this thesis. The hypernym collocations were
designed initially for preposition disambiguation, but they have been found use-
ful for WSD in general (O’Hara et al., 2004). To derive the collocations, the
input text is transformed by replacing each wordform with tokens representing
each of the hypernyms in WordNet. This introduces noise due to ambiguity,
but the sense-specific conditional probability tests used for collocation selec-
tion will compensate. Differentia-based collocations are derived in a similar
process, except that co-occurrences are weighted based on relatedness rather
than assuming unit weights.

7.3 Speculations

In concluding this thesis, some speculations are offered. These include
aspects of the research not yet formally evaluated. It also covers the future
direction of natural language processing (NLP), in particular, with respect to
computational semantics.

7.3.1 Adaptability of Thesis Work

In Section 2.3.3, some criticisms of the work in machine-readable dictio-
naries (MRD) analysis were mentioned, casting doubts on the optimistic view-
point that dictionaries can provide adequate information to form the basis for
knowledge bases. Nevertheless, work in extracting information from MRD’s can
be beneficial to the extent that the techniques apply to knowledge acquisition
from other resources such as technical dictionaries or encyclopedias. For ex-
ample, Microsoft’s MindNet (Richardson et al., 1998) was originally developed
just using definition analysis, but it was enhanced via analysis of encyclopedia
articles with minor change to the underlying extraction processes.

143



By isolating the disambiguation from the extraction step, this approach
can be readily adapted to related tasks, such as in extracting semantic infor-
mation from encyclopedia texts. Moreover, this approach can be more directly
extended to handling foreign languages. The main requirements would be the
availability of a parser for the target language as well as a tagged corpus for re-
lation usage. Fortunately, these resources might already have been developed
for other purposes. For instance, there are currently three projects on the cre-
ation of FrameNet-style lexicons for languages other than English (specifically
German, Spanish, and Japanese).1

7.3.2 Computational Semantics in General

In many respects, the area of computational semantics is less ambi-
tious than it was thirty years ago, when Schank and Wilks were developing
rule-based systems for natural language understanding (Schank, 1973; Wilks,
1975a). Deep understanding is currently not attempted except for specialized
domains. In addition, much effort is now being directed at aspects of NLP that
were once taken for granted, such as parsing and word-sense disambiguation
(e.g., using statistical approaches for better coverage). Such a pattern now
seems inevitable for progress in natural language processing as with artificial
intelligence in general: knowledge-based or heuristic approaches define new
frontiers and then empirical approaches are used later on to provide improve-
ments.

This might give the impression that knowledge-based approaches should
be avoided in general. On the contrary, they often are necessary for clarify-
ing techniques effective for certain problem areas before empirical approaches
can be attempted to provide better coverage. The work in the last decade on
named-entity recognition illustrates this pattern (Cowie and Lehnert, 1996; Sri-
hari et al., 2001); and, the recent advances in question answering follow similar
patterns (Moldovan and Rus, 2001; Ravichandran and Hovy, 2002).

When deep semantics becomes back in vogue, the ideas presented in
this thesis can be used for important subtasks that will be required. For in-
stance, as noun definitions are often indefinite descriptions, it is likely that anal-
ysis of the latter will be amenable to similar approaches. This research would
also be helpful in the analysis of definite descriptions, although additional mech-
anisms would be required to account for anaphora and co-reference resolution.
Additional knowledge-based work is likely to be required before such corpus-

1See www.icsi.berkeley.edu/ framenet/FNabroad.html.
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based approaches are feasible in general (Vieira and Poesio, 2000; McShane
and Nirenburg, 2002).

In short, although the techniques described here have only been applied
to dictionary definitions, the research actually is a step towards deep under-
standing of general English text.
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APPENDIX A
PRIMER ON MACHINE LEARNING

This appendix presents a primer for the two machine learning techniques
used in this thesis. Both are supervised approaches relying upon training data
to provide examples along with the correct classification for each. There are
several useful texts introducing machine learning techniques. Witten and Frank
(1999) provide a practical introduction along with a discussion of their Java
implementation. Mitchell (1997) provides a more-theoretical introduction but
still is somewhat accessible. Several texts concentrate on the application of
these techniques to natural language processing (Charniak, 1993; Manning
and Schütze, 1999).

Bayesian Classification

The first technique covered uses probabilities for the various combina-
tions of feature (attributes) and classification values (classes) in a purely statis-
tical decision procedure. Bayesian classification derives its name from the use
of Bayes Rule from probability theory, which provides a way to express the con-
ditional probability P(x|y) in terms of the inverse conditional probability P(y|x).
Bayes Rule follows:

P(x|y) =
P(x∧y)
P(y)

=
P(y|x)P(x)

P(y)

In particular, the probability of a particular class given the features P(ci|f1...fn)
is expressed in terms of the probability of the features given the class value
P(f1...fn|ci). Specifically,

P(ci|f1...fn) =
P(ci∧f1...fn)

P(f1...fn)
=

P(f1...fn|ci)P(ci)

P(f1...fn)
.

Figure A.1 shows the basic steps in using Bayesian classification for ma-
chine learning. Classifiers using this technique are often referred to as Naive
Bayes. Note that the simplification via the conditional independence assump-
tion in step 4 is omitted in general Bayesian classification. The normalization
constant (z) is actually determined after the probabilities are determined as the
inverse of the total sum. Advanced approaches also use more sophisticated



Input: Instance I described in terms of features Fi.

Goal: Determine the class cj ∈ C that best describes the input.

Method:

1. Collect large sample of known classifications:
〈{f1, ..., fn}, ci〉

2. Estimate probability of each class value

P(C = cj) � f(cj)∑
if(ci)

3. Estimate probability of each feature given each class value:

P(Fi = fi|C = cj) � f(fi, cj)

f(cj)

4. Choose class value that maximizes posterior probability:
P(Cj = cj|F1 = f1, ..., Fn = fn)

=
P(f1, ..., fn|cj)P(cj)

P(f1, ..., fn)
Bayes Rule

�
∏n

i=1 P(fi|cj)P(cj)

P(f1, ..., fn)
Conditional Independence Assumption

=
n∏

i=1

P(fi|cj)P(cj)z Normalization Constant

Figure A.1: Simple Bayesian classification (“Naive Bayes”). Based on
(Weiss and Kulikowski, 1991; Mitchell, 1997).
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F1 F2 F3 C
Type Flavor Fat Carbos OK?
Anchovies spicy high low No
Bananas bland none medium Yes
Burritos hot moderate high Yes
French fries mild high high No
Hamburgers mild moderate low Yes
Hotdogs bland high low No
Jalapeños hot none low No
Liver bland moderate low No
Meatloaf mild moderate low No
Pizza spicy high high Yes
Sushi spicy low low Yes
Tacos spicy moderate medium No
Zucchini mild low low Yes
Enchiladas hot moderate high ???

Table A.1: Data for favorite-foods example. The top part shows the training
data, and the bottom indicates the test data.

probability approximation techniques than used in step 2 to account for prob-
lems with spare data.

As a simple example, consider the task of classifying food preferences
based only on the characteristics of flavor, fat content, and complex carbohy-
drate content. The feature descriptions follow, and sample data is shown in
Table A.1.

F1=Flavor: f1 ∈ {bland, mild, spicy, hot}

F2=Fat: f2 ∈ {none, low, moderate, high}

F3=Carbos: f3 ∈ {low, medium, high}

To determine the acceptability of a new type of food not shown in the table,
such as enchiladas, the following steps are done, assuming the input instance
to be classified is {Flavor=hot, Fat=moderate, Carbos=high}.

1. Obtain training data on food preferences: 〈{F1, ..., Fn}, Ci〉
See Table A.1.
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2. Estimate probability of each class value

P(C = cj) � f(cj)∑
if(ci)

P(C = no) � 7

13

P(C = yes) � 6

13

3. Estimate P(Fi = fi|cj) as
f(fi, cj)

f(cj)

P(Flavor = hot|C = Yes) � f(hot, Yes)

f(Yes)
=

1

6

P(Flavor = hot|C = No) � f(hot, No)

f(No)
=

1

7
...

P(Carbos = high|C = Yes) � f(high, Yes)

f(Yes)
=

2

6

P(Carbos = high|C = No) � f(high, No)

f(No)
=

1

7

4. Find cj maximizing P(C = cj|F1 = f1, ..., Fn = fn)

P(no|hot, moderate, high)

� P(hot|no)P(moderate|no)P(high|no)P(no)

P(hot, moderate, high)
� P(hot|no)P(moderate|no)P(high|no)P(no)z
= (1/7 × 3/7 × 1/7 × 7/13)z = 0.0047z = 0.356

P(yes|hot, moderate, high)

� P(hot|yes)P(moderate|yes)P(high|yes)P(yes)

P(hot, moderate, high)
� P(hot|yes)P(moderate|yes)P(high|yes)P(yes)z
= (1/6 × 2/6 × 2/6 × 6/13)z = 0.0085z = 0.644

Thus, enchiladas would be classified as acceptable. The probability of accep-
tance (i.e., P(yes|...)) is nearly twice that of rejection, even though the latter is
more common overall (i.e., P(no) > P(yes)).

Decision Trees

Decision trees involve a more heuristic decision procedure than Bayesian
classification. The idea is to apply a series of attribute value tests to partition
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the data into subsets that are more predictable than the original data. Then the
majority class for a subset is chosen as the classification matching the attribute
tests. Figure A.2 shows a decision tree for the favorite-foods example. It first
checks the fat content of the food. Low fat foods are accepted immediately.
Most of the remaining cases are then decided by just checking flavor. How-
ever, in two cases the carbohydrate content needs to be checked as well. For
example, spicy foods high in fat are only accepted if also high in carbohydrates.

if (Fat = low) then Yes
if (Fat = none) then

if (Flavor = mild) then Yes
if (Flavor = spicy) then null
if (Flavor = hot) then No
if (Flavor = bland) then Yes

if (Fat = moderate) then
if (Flavor = mild) then

if (Carbos = low) then No
if (Carbos = medium) then No
if (Carbos = high) then null

if (Flavor = spicy) then null
if (Flavor = hot) then Yes
if (Flavor = bland) then No

if (Fat = high) then
if (Flavor = mild) then No
if (Flavor = spicy) then

if (Carbos = low) then No
if (Carbos = medium) then null
if (Carbos = high) then Yes

if (Flavor = hot) then null
if (Flavor = bland) then No

Figure A.2: Decision tree for favorite-foods example. Combinations of fea-
tures not covered in the training data yield null classification.

Decision trees are induced in a process that recursively splits the train-
ing examples based on the feature that partitions the current set of examples
to maximize information gain (Mitchell, 1997; Witten and Frank, 1999). This
is commonly done by selecting the feature that minimizes the entropy of the
distribution (i.e., yields least uniform distribution). Entropy is a measure of the
uniformity of a distribution of values. Higher entropy values signify higher uni-
formity (or randomness). Entropy can be viewed as the weighted average of the
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information content associated with each probability of a distribution (Manning
and Schütze, 1999):

Entropy =
∑

i

−p(xi)log2(p(xi))

With N classes, the entropy ranges from 0 to log2(N); so, for a binary distinction,
as in the favorite-foods example, the entropy is in the range from 0 to 1.

As an illustration, consider the steps in using entropy to determine the
first attribute to split. For the entire dataset, the entropy of the class distribution
with 6 Yes’s and 7 No’s is as follows:

Entropy =
∑

i

−p(xi)log2(p(xi))

= −P(yes)log2(P(yes)) − P(no)log2(P(no))
= −6/13 × log2(P(6/13)) − 7/13 × log2(P(7/13)) = .996

If the Flavor attribute is chosen first to split the data, then the resulting parti-
tions would be as follows, yielding a small decrease in entropy (i.e., to .951 on
average).1

Flavor Classification distribution Entropy
bland { No, No, Yes } 0.918
hot { Yes, No } 1.000
mild { No, No, Yes, No, Yes} 0.971
spicy { Yes, No, Yes } 0.918

If attribute Fat is used instead, the decrease in entropy is better (i.e., to .835).

Fat Classification distribution Entropy
high { No, Yes, No, No } 0.811
low { Yes } 0.000
moderate { Yes, No, No, Yes, No } 0.971
none { No, Yes, Yes } 0.918

Lastly, if the Carbos attribute is used first, the split would be slightly higher than
the first (i.e., to .952).

1The overall entropy for the partition split is based on a weighted average of the
splits (i.e., .951 = 3/13 ∗ .918 + 2/13 ∗ 1.0 + 5/13 ∗ .917 + 3/13 ∗ .918).
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Carbos Classification distribution Entropy
high { No, Yes, Yes } 0.918
low { No, No, No, No, No, Yes, Yes, Yes } 0.954
medium { No, Yes } 1.000

Therefore, using Fat to partition the data first yields the lowest average entropy
and thus leads to the highest information gain. This process is then repeated
for the remaining attributes in turn on each of the partitions. For the example in
Figure A.2, this involves using Flavor and then Carbos.

Quinlan (1986; 1993) has developed a series of decision trees that per-
form very well for a variety of tasks. ID3 is the simplest and just uses infor-
mation gain for splitting the nodes in the tree, as described above. C4.5 is an
extension that uses statistical tests to address the problem with overfitting of
data that can occur with decision trees. For example, when deciding whether
to split a node, it checks whether the difference in the information content can
be attributed to chance. If so, then the majority-test decision is applied instead
of further attribute checks.
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APPENDIX B
PRIMER ON BAYESIAN NETWORKS

Bayesian networks provide a convenient way to represent probabilistic
relations in a graphical format. They are suitable for problems where the proba-
bilistic dependencies are such that only a small number of variables have direct
influence over a given variable. For example, when determining whether you
can afford a particular purchase, you only need to consider whether you have
enough money at your disposal, not the various ways by which to obtain more
money.

As a simple example, consider the problem of whether you should order
an espresso drink (e.g., Cafe Latte) or just plain coffee. Espresso drinks gen-
erally taste better and are much stronger; however, they usually cost twice as
much as regular coffee. Figure B.1 depicts this situation, from the perspective
of a student (e.g., low funds at end of semester).

An assumption underlying Bayesian networks is that nodes are only de-
pendent upon those directly connected to it in the graph. For example, the Buy
Espresso is not directly dependent upon Just Paid. Therefore, the conditional
probability table (CPT) for Buy Espresso does not include Just Paid. Instead, it
only accounts for the parent nodes Real Tired and Little Money. As with other
statistical representations, the inference implicitly involves calculating the joint
probability for all the variables represented by the nodes. Without the inde-
pendence assumption, the calculation would involve many combinations of the
variables. Via the chain rule, the joint probability can be determined as follows:
(omitting the GO node for simplicity):

P(BE,RT,LM,ES, JP) =
P(JP)×P(ES|JP)×P(LM|ES, JP)×P(RT|ES, JP,LM)×P(BE|ES, JP,LM,RT)

However, by accounting for the independent assumptions represented in the
graph, this formula can be simplified to the following:

P(BE,RT,LM,ES, JP) =
P(JP)×P(ES)×P(LM|ES, JP)×P(RT)×P(BE|LM,RT)

For the most part, evaluation of the network involves working top-down
through the network propagating the prior probabilities for nodes without par-
ents to those nodes directly connected to them and then recursively propagat-
ing the resulting posterior probabilities. For a particular node with parents, the



Just Paid? (JP)

Little money? (LM)

End of semester? (ES)

Buy espresso? (BE) Go out? (GO)

P(LM | ES,JP) =
Y   Y  .50
Y   N  .90
N   Y  .25
N   N  .75

Real tired? (RT)

P(BE | RT,LM) =
Y   Y  .75
Y   N  .90
N   Y  .10
N   N  .75

P(GO|LM) =
Y   .10
N   .75

P(JP) = .25

P(RT) = .60

P(ES) = .0625

Figure B.1: Bayesian network for choosing espresso over regular coffee.
Oval nodes represent random variables, and boxes indicate their probability
distributions. Only the positive case probabilities are shown.
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value is based on weighting each entry of its CPT by the probability that the
particular combination of parent values occurs. For example, the value for the
embedded node LM would be based on weighting the four possibilities for ES
and JP, namely (False, False), (False, True), (True, False), and (True, True):

P(LM) = .75P(ES)P(JP) + .25P(ES)P(JP) + .90P(ES)P(JP) + .50P(ES)P(JP)
P(LM) = .75(1 − .0625)(1 − .25) + .25(1 − .0625)(.25)

+.90(.0625)(1 − .25) + .50(.0625)(.25)
= .636

Thus, by default, Little Money holds 64% of the time. A similar formula applies
for the BE node, which has a default value of .617 (i.e., buying espresso holds
62% of the time).

If there were evidence that any of the ancestors nodes (e.g., JP) hold
particular values, then the formulas would be the same as above except that
the value of the given node would be fixed. For example, if Just Paid holds
then P(JP) is zero, so the cases involving it are effectively ignored, yielding a
probability of 27% for Little Money and increasing BE to 75%. The calculations
for P(LM) in this case follow:

P(LM) = .75P(ES)P(JP) + .25P(ES)P(JP) + .90P(ES)P(JP) + .50P(ES)P(JP)
P(LM) = .75(1 − .0625)(0) + .25(1 − .0625)(1) + .90(.0625)(0) + .50(.0625)(1)

= .266

A special case causes evaluation to be different from the simple top-
down process. If any descendant node for an interior node is set, then the
interior node is given a posterior distribution that would have produced the same
value for the descendant node. For example, if the Go Out variable is known to
hold, then Little Money is not likely to hold. Details on this special case can be
found in (Charniak, 1992; Russell and Norvig, 1995), as well as information on
an efficient algorithm for propagating values through the network.
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GLOSSARY

annotations Markup added by humans to text corpora to make certain lan-
guage phenomena explicit (e.g., relation types implied by prepositions).

attribute The properties of an entity expressed via qualities (not other entities).

collocation A word that tends to co-occur with another word. Collocations can
be viewed as generalizing word associations.

concept Abstract representation for a class of entities.

differentia Differentiating relations as distinguished from taxonomic relations
like is-a. Also, the part of a dictionary definition describing how a term
differs from ones involving the same genus headword.

entity An instance of a concept , either an object, an attribute, or an event.

entry word The word being defined in a dictionary definition.

genus The type of a term. Also, the part a dictionary definition describing the
general category for a term.

headword The main word in a phrase, determining overall syntactic properties.

property A feature of a concept, either an attribute or a relation.

relation The characterization of how two entities can be related (i.e., relation
type). Also, a particular instance of this (i.e., relationship).

relation instance Same as relationship.

relation type A concept indicating how two entities can be related.

relationship A particular instance of a relation type, including the source and
target terms (i.e., 〈source, relation-type, target〉).

sense One of the meanings a word can convey.

term A label used for a concept, typically given via a word or phrase.

word A language unit used to convey distinct meanings (i.e., lexeme).

wordform A spoken or written instance of a word (e.g., conveying inflection).

word-sense disambiguation The process of selecting a particular sense for
an ambiguous word .
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