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Abstract

This paper introduces a highly competitive contingent planner, that uses the novel idea of encoding belief
states as disjunctive normal form formulae proposed by To, Pontelli, and Son for conformant planning, for
the search for solutions in the belief space. In the previous work for conformant planning, a complete tran-
sition function for computing successor belief states under the representation in the presence of incomplete
information has been defined. This work extends the function to handle non-deterministic and sensing ac-
tions in the AND/OR forward search paradigm for contingent planning solutions. The function allows for
computing successor belief states efficiently, i.e., in polynomial time under reasonable assumptions. The
paper also presents a novel variant of a standard AND/OR search algorithm which allows the planner to
significantly prune the search space; furthermore, by the time a solution is found, the remaining search
graph is also a solution tree for the contingent planing problem, thanks to the pruning. The strength of these
techniques is confirmed by the empirical results obtained from a large set of most benchmarks available in
the literature.

Keywords: Planning, Contingent Planning, Belief State Representation, Transition Function, Disjunctive
Normal Form Formula, AND/OR Search, Pruning

1. Introduction

Contingent planning [22, 15, 16] is the problem of finding conditional plans given incomplete knowledge
about the initial world and uncertain action effects. The contingent plan allows the agent to act, at execu-
tion time, conditionally depending on the observed values of some uncertain properties of the world; and
guarantees to achieve the goal no matter what the actual initial world the agent starts from and which actual
action effects occur. Contingent planning is one of the hardest problems considered in the area [9, 2, 17].

One of the best-known and efficient approaches to contingent planning is to transform the problem into a
heuristic AND/OR search problem in the belief state space [4]. Using the notion of belief state is convenient
for capturing the semantic of the uncertain world and defining the transition function for computing the
successor (uncertain) world state. Yet it is impractical to use belief states themselves in the implementation
of a planner due to their exponential size. The question is then how to represent belief states and, given a
representation, how to define a transition function for computing successor belief states under conditional
action effects. To address this, the use of binary decision diagrams (BDDs) [6] was proposed to represent
belief states in a model checking based planner, called MBP [3]. Later, Bryce, Kambhampati, and Smith
used BDDs to represent literals and actions in the planning graph for computation of heuristics used to
search for solutions in their contingent planner, called POND[7]. The use of the BDD representation is
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advantageous since it is more compact than the belief state itself and it allows one to check whether a literal
holds in a world state easily. Nevertheless, the size of the BDD representation is still very large and sensitive
to the order of the variables. Moreover, computing successor belief states in the BDD form during the search
is very expensive, requiring the generation of intermediate formulae of exponential size. This explains why
MBP and POND do not scale well as shown in several previous works [10, 1, 21] and in this work (with
POND).

At the other extreme of the use of belief states (that explicitly enumerates all possible states of the
world), Hoffmann and Brafman represent belief states implicitly through the action sequences that lead
to them from the initial belief state, and uses forward search in the belief space for solutions [5, 10, 11].
This approach does not store the knowledge about the state of the world in memory, except the known
propositions and the corresponding action sequence. The advantage of this implicit representation is that
it requires very little memory, scaling up pretty well on a number of problems. The trade-off is that it
incurs a great amount of repeated computations, as it needs to reason about CNF formulae that capture the
semantic of the entire action sequences to the belief states from and in conjunction with the initial belief
state. Furthermore, checking whether a proposition holds after the execution of even one single action in the
presence of incomplete information is co-NP complete. This is one of the main reasons for their planners
to hardly find a solution for even small instances of harder problems, where the structure of the actions is
complex or there exist unknown propositions in the conditions of the conditional effects as observed from
the experimental results of several works [1, 19, 21].

A translated-based approach to contingent planning were proposed by Albore, Palacios, and Geffner [1].
This approach was extended from that of Palacios and Geffner, proposed in conformant planning [13, 14],
that translates a conformant planning problem into a classical planning problem and uses the well-known off-
the-shelf classical planner FF [12] as the underlying planner to solve the problem. The extended approach
[1] translates a contingent problem into a non-deterministic search problem in the state space whose literals
represent the beliefs over the original problem. The non-deterministic problem then is relaxed to be a
classical planning problem. This approach assumes that the uncertainty lies in the initial world only and
all actions are deterministic. The work showed that the translation is polynomial under some conditions.
This approach demonstrates a great improvement, i.e., the resulting planner CLG can solve hard problems
of large size, compared to the previous approaches. However, the translation and the number of literals in
the resulting problem can be exponential in the number of literals in the original problem, making the state
space extremely large and prohibiting the planners to scale up. Moreover, this approach does not consider
the problems with any disjunctions in the goal.

Our previous work in conformant planning brought a different perspective to deal with incomplete infor-
mation by using a special, compact form of disjunctive formulae, called minimal DNF, to represent belief
states. The work defined a direct complete transition function for computing the successor belief states
encoded in this representation in the presence of incomplete information efficiently, i.e., polynomial under
reasonable assumptions [18]. The advantage of this method is confirmed by the fact that our resulting con-
formant planner DNF can solve much larger instances of many benchmarks, including the hardest problems
given in the literature. The performance of DNF is not as good on the problems where the size of disjunctive
formulae encoding the belief states is too large even in a very compact (disjunctive) form. To address this,
we proposed a compact conjunctive normal form (CNF) formula, called minimal-CNF, and prime implicates
as other representations of belief states [19, 20].

Recently, we proposed a new approach to contingent planning by the use of the minimal-DNF repre-
sentation of belief states in a new AND/OR forward search algorithm for contingent solutions [21]. The
work extended the transition function, defined in the prior work [18] for conformant planning, to also han-
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dle uncertain action effects and sensing actions required in contingent planning. On the other hand, a novel
variant of AND/OR forward search algorithms, called PrAO, was developed for contingent planning. Key to
PrAO is a novel safe pruning technique which can significantly reduce the search space for most problems.
Furthermore, the solution extraction in PrAO is fairly simple, as the remaining search graph, by the time a
solution is found, is also a solution tree, thanks to the pruning technique. The PrAO algorithm and the ex-
tended minimal-DNF representation were implemented in a contingent planning system, called DNFct. The
experiments show that DNFct offers a very competitive performance compared with other state-of-the-art
contingent planners on a large set of benchmarks.1

This work completes and extends the aforementioned work [21] in different ways. It provides the proofs
for most results relevant to the minimal-DNF representation, that were not presented in the previous works
[18, 21]. For completeness, the paper presents underpinnings of contingent planning as AND/OR forward
search, a standard AND/OR forward search algorithm for contingent planning solutions and proofs for the
correctness of the algorithm, as the foundation for PrAO. Then the paper presents the PrAO algorithm,
extended from the standard algorithm by incorporating the minimal-DNF representation and the pruning
techniques. The proofs for soundness and completeness of PrAO are also provided. For the study of the
effectiveness of the pruning techniques, PrAO is experimentally compared with a variant of PrAO, where
the pruning techniques are not applied, on most of the benchmarks. The experiments show that the pruning
eliminates a large potion of the search space and improves the performance significantly for most problems.
Like several recent works in contingent planning [10, 1], this work does not consider contingent solutions
with loops. An AND/OR forward search algorithm that allows solutions with loops, e.g., LAO* [8], can be
used to solve Markov decision problems.

The paper is organized as follows. Next section presents the background of contingent planning. Section
3 reviews the minimal-DNF representation and extends it for handling non-deterministic and sensing actions.
Section 4 presents a standard AND/OR forward search algorithm for contingent planning solutions. Section
5 presents PrAO, extending the standard algorithm by incorporating the minimal-DNF representation and
the pruning techniques. Section 6 reports and discusses the experimental results. Section 7 summarizes the
main results of the paper.

2. Background: Contingent Planning

2.1. Contingent Planning
The contingent planning problem is defined as a tuple P = 〈F,A,Ω, I, G〉, where F is a set of propo-

sitions, A is a set of actions, Ω is a set of observations (sensing actions), I describes the initial state, and
G describes the goal. A and Ω are separate, i.e., A ∩ Ω = ∅. A literal is either a proposition p ∈ F or its
negation ¬p. ¯̀denotes the complement of a literal `—i.e., ¯̀ = ¬`, where ¬¬p = p for p ∈ F . For a set of
literals L, L = {¯̀ | ` ∈ L}. A conjunction of literals is often represented as the set of its conjuncts.

A set of literals X is consistent (resp. complete) if for every p ∈ F , {p,¬p} 6⊆ X (resp. {p,¬p} ∩X 6=
∅). A state is a consistent and complete set of literals. A belief state is a set of states. We will often use
lowercase (resp. uppercase) letter to represent a state (resp. a belief state).

Each action a in A is a tuple 〈pre(a), O(a)〉, where pre(a) is a set of literals indicating the precondition
of action a and O(a) is a set of action outcomes. Each outcome o in O(a) is a set of conditional effect of
the form ψ → ` (also written as o : ψ → `), where ψ is a set of literals, called an e-condition of o, and ` is a

1The systems and the benchmarks used for the experiments in this paper can be downloaded from http://www.cs.nmsu.
edu/~sto.
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literal. Each observation ω in Ω is a tuple 〈pre(ω), `(ω)〉, where pre(ω) is the precondition of ω which is a
set of literals, and `(ω) is a literal. If |O(a)| > 1 then a is non-deterministic. O(a) is mutual exclusive, i.e.,
the execution of a makes one and only one outcome in O(a) occur. However, which outcome that occurs is
uncertain.

A state s satisfies a literal ` (s |= `) if ` ∈ s. s satisfies a conjunction of literals X (s |= X) if X ⊆ s.
The satisfaction of a formula in a state is defined in the usual way. Likewise, a belief state S satisfies a literal
`, denoted by S |= `, if s |= ` for every s ∈ S. S satisfies a conjunction of literals X , denoted by S |= X ,
if s |= X for every s ∈ S. A ` is said to be known in S if either S |= ` or S |= ` holds.

Given a state s, an action a is executable in s if s|=pre(a). The effect of executing a in s w.r.t an
outcome o (o occurs during the execution of a) is

e(o, s) = {` | ψ → ` ∈ o, s |= ψ} (1)

The transition function that maps pairs of actions and belief states into a belief state in the planning
domain of P is defined by

Φ(a, S) =

{ ⋃
o∈O(a){s \ e(o, s) ∪ e(o, s) | s ∈ S} if S 6= ∅ ∧ S |= pre(a)

undefined otherwise
(2)

Example 1. Given a domain F = {head}, a belief state S that contains one single state S = {{head}},
an action flip with pre(flip) = {true} and O(flip) = {o1, o2}, where o1 contains one effect o1 : true→
head and o2 contains another effect o2 : true → ¬head. Then one can easily compute: Φ(o1, {head}) =
{head}, and Φ(o2, {head}) = {¬head}. Hence, Φ(flip, S) = {{head}, {¬head}}.

Observe that in Example 1, the non-deterministic action flip causes the certain belief state S to become
uncertain.

Let ω be an observation in Ω and S be a belief state. The application of ω in S results in a pair of two
belief states, denoted by S+

ω and S−ω and defined as

S+
ω = {s ∈ S | s |= `(ω)} and S−ω = {s ∈ S | s |= `(ω)}. (3)

Given a contingent planning problem P , a structure T constructed from the actions and observations of
P is said to be a transition tree of P if

• T is empty, denoted by []; or

• T = a ◦ T ′, where a ∈ A, T ′ is a transition tree, and a ◦ [] = a; or

• T = ω(T+|T−), where ω ∈ Ω and T+ and T− are transition trees.

Intuitively, a transition tree represents a conditional plan as defined in the literature. Let us denote
undefined by ⊥. The result of the execution of a transition tree T in a belief state S, denoted by Φ̂(T, S),
is a set of belief states defined as follows:

• If T = [] then Φ̂([], S) = {S}; else

• If S = ⊥ or S = ∅ ∧ T 6= [] then Φ̂(T, S) = ⊥; else

• If T = a, a ∈ A, then Φ̂(a, S) = {Φ(a, S)}; else

• If T = a ◦ T ′, a ∈ A, then Φ̂(T, S) = Φ̂(T ′,Φ(a, S)); else
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• If T = ω(T+|T−) then Φ̂(T, S) = Φ̂(T+, S+
ω )∪Φ̂(T−, S−ω ) if S |= pre(ω), and Φ̂(T, S) = ⊥ otherwise.

Note that the definition of Φ̂ allows the application of an observation ω in a belief state S where `(ω)
is known. In this case, either S+

ω = ∅ or S−ω = ∅ and the subtree rooted at the resulting empty belief state
must be empty2.

Let SI be the initial belief state, i.e., the set of all possible states satisfying I . A transition tree T is a
solution of P if T is finite and every belief state in Φ̂(T, SI) satisfies the goal G.

2.2. AND/OR forward Search for Contingent Planning Solutions

An AND/OR search graph Ts for a contingent planning problemP , or search graph for short, is a labeled
transition graph 〈S, T , s0〉 where

• S is a set of belief states, each belief state is referred to as a node;

• s0 is the initial belief state (the set of states that satisfy I) and s0 ∈ S; and

• T is a set of transitions, T ⊆ S × (A ∪ Ω)× S , such that
◦ for each (s, ω, s1) ∈ T such that ω ∈ Ω, s |= pre(ω) and there exists exactly one (s, ω, s2) ∈ T

such that {s1, s2} = {s+
ω , s

−
ω }; and

◦ for each (s, a, s1) ∈ T such that a ∈ A, s |= pre(a) and s1 = Φ(a, s).

Intuitively, a search graph represents the transition graph that have been expanded so far during the
search. Each node encodes a belief state, the initial belief state s0 is the start node, and T is the set of
transitions between nodes (belief states). A transition (s, t, s′) is called an or-edge (resp. and-edge) if t ∈ A
(resp. t ∈ Ω) and s′ is called an or-child (resp. and-child) of s. Two and-edges from the same node of
the same observation are called dual. For convenience, we often refer to a transition (s, t, s′) ∈ T as an
outgoing edge from s (or an incoming edge to s′). A complete transition is either an or-edge or a pair of
dual and-edges. A leaf node is a node that has no children. There are no outgoing edges from a leaf node.
A search graph is in general not a tree as a node may have multiple incoming edges. A graph 〈Ss, Ts, s〉 is
a subgraph of a search graph 〈S, T , s0〉 if Ss ⊆ S, Ts ⊆ T , and s ∈ Ss.

A subgraph 〈Sg, Tg, s0〉 of an AND/OR search graph 〈S, T , s0〉 for P is called a solution tree for P if:

1. Every leaf node in Sg satisfies the goal G,

2. From each non-leaf node s ∈ Sg there exists either exactly one outgoing or-edge (s, a, s′) ∈ Tg and
s′ ∈ Sg (and hence, s has exactly one or-child s′ ∈ Sg) or exactly a pair of outgoing dual and-
edges (s, ω, s1), (s, ω, s2) ∈ Tg and s1, s2 ∈ Sg (and hence, s has exactly a pair of dual and-children
s1, s2 ∈ Sg), and

3. The subgraph does not contain a loop, i.e., Tg does not contain a set of edges of the form

{(s1, t1, s2), (s2, t2, s3), . . . , (sn, tn, s1)}, where n ≥ 1.

For each node s in a solution tree 〈Sg, Tg, s0〉 forP , by tree(Sg, Tg, s) we denote the following transition
tree:
• tree(Sg, Tg, s) = [] if s |= G;

2In the implementation, the application of an observation ω in belief state S is allowed only if `(ω) is unknown in S
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• tree(Sg, Tg, s) = a ◦ tree(Sg, Tg, s′) if (s, a, s′) ∈ Tg and a ∈ A; and
• tree(Sg, Tg, s) = ω(tree(s1)|tree(s2)) if (s, ω, s1), (s, ω, s2) ∈ Tg and ω ∈ Ω.
A node is newly added to the search graph is called unexplored. When a node is chosen for expansion,

it becomes explored. We assume that when a node s is being explored, every possible outgoing edges from
s is added to T and every possible child of s is added to S . We also assume that a node that satisfies the
goal is never explored as expanding the search graph through this node is useless. The search graph for P
obtained when every node unsatisfying the goal has been explored is called the complete search graph for
P .

Theorem 1. Let Ts = 〈S, T , s0〉 be an AND/OR search graph for a contingent planning problem P .

1. Let Tg = 〈Sg, Tg, s0〉 be a subgraph of Ts. If Tg is a solution tree for P then tree(Sg, Tg, s0) is a
solution for P .

2. If Ts is the complete AND/OR search graph for P and P has a solution then there exists a subgraph
of 〈S, T , s0〉 that is a solution tree for P .

Proof. (Sketch) The proof for each statement is as follows

1. Since 〈Sg, Tg, s0〉 is a solution tree, it does not contain a loop. By induction on the height of
〈Sg, Tg, s0〉 (the longest path from s0 to a leaf node), one can easily prove that Φ̂(tree(Sg, Tg, s0), s0)

is the set of leaf nodes of 〈Sg, Tg, s0〉. Hence, every belief state in Φ̂(tree(Sg, Tg, s0), s0) satisfies the
goal G. Moreover, tree(Sg, Tg, s0) is finite as a solution tree does not contain a loop. By definition,
tree(Sg, Tg, s0) is a solution for P .

2. Let T be a solution for P . By induction on the height of T (the longest loop-free branch of the transi-
tion tree T ) one can easily construct a solution tree Tg = 〈Sg, Tg, s0〉 forP such that tree(Sg, Tg, s0) =
T . Since Ts is complete, Tg must be a subgraph of Ts (proof).

Theorem 1 allows for the use of an AND/OR forward search as a sound and complete algorithm for
solving contingent planning problems.

Example 2. Consider a simple problem P with an agent A and a bug B in a house with two rooms.
Initially, B is healthy (¬dead(B) ∧ ¬wounded(B)) but its location is unknown among the two rooms.
The goal is B being dead (dead(B)). A can perform the following actions: move around within the two
rooms (move), sense to determine whether B is in the same room with A (sense(B), and kill B if they
are in the same room (kill(B)). When A kills B, B will be dead if B is wounded and B can be either
dead or wounded if it is healthy. Thus, the action kill(B) is non-deterministic with the two outcomes
{∅ → dead(B) ∧ ¬wounded(B)} and {¬dead(B) ∧ ¬wounded(B) → wounded(B), wounded(B) →
dead(B) ∧ ¬wounded(B)}}). The problem P is given as

• Propositions: F = {sameRoom, dead(B), wounded(B)}

• Actions: A = {move, kill(B)}, where

– pre(move) = ∅,O(move) = {{sameRoom→ ¬sameRoom,¬sameRoom→ sameRoom}}

6



 
 
 
 

sense(B) sense(B) 

move 

kill(B) 

move 

move 

Start node 

Goal dead(B) 
wounded(B) 

sameRoom 

dead(B) 
wounded(B) 
sameRoom 

dead(B) 
wounded(B) 
?sameRoom 

dead(B) 
wounded(B) 

sameRoom 

kill(B) 

dead(B) 
wounded(B) 

sameRoom 

dead(B) 
wounded(B) 
sameRoom 

Figure 1: A contingent solution (red edges) in an AND/OR forward search graph. Solid edges denotes or-edges (actions)
and dash edges denotes and-edges (observation). Two dual and-edges are connected by an arc.

– pre(kill(B)) = sameRoom, O(kill(B)) = {{∅ → dead(B) ∧ ¬wounded(B)},
{¬dead(B)∧¬wounded(B)→ wounded(B), wounded(B)→ dead(B)∧¬wounded(B)}}

• Observations: Ω = {sense(B)}, where pre(sense(B)) = ∅ and `(sense(B)) = sameRoom

• Description of the initial state: I = ¬dead(B) ∧ ¬wounded(B)

• Goal: G = dead(B)

Figure 1 demonstrates an AND/OR search graph for the problem P . The subgraph formed by the red
edges and the nodes connected by those edges is a solution tree for P . The corresponding solution for P is:

”sense(B)(kill(B) ◦ kill(B) | move ◦ kill(B) ◦ kill(B))”

3. Minimal-DNF Representation

This section reviews the minimal-DNF representation of belief states, adds relevant proofs (as they may
not be provided in the previous work [18] due to lack of space), and presents an extension of the transition
function proposed previously for conformant planning [18]. This extension is for handling non-deterministic
and sensing actions required in contingent planning in addition to incomplete information.
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3.1. Background

A partial state is a consistent set of literals. A state s is a completion of a partial state δ if δ ⊆ s. The
extension of δ, denoted by ext(δ), is the set of all completions of δ.

A DNF-state is a set of partial states that does not contain a pair of δ1 and δ2 such that δ1 ⊂ δ2.
Let ∆ be a DNF-state. |∆| denotes the number of partial states in ∆. The set ∆ \ {δ | ∃δ′∈∆.δ′ ⊂ δ},

denoted by min(∆), is a DNF-state equivalent to ∆. Let ext(∆) =
⋃
δ∈∆ ext(δ) be the extension of ∆.

ext(∆) is a belief state equivalent to ∆. For a belief state S, we say that ∆ represents S if S = ext(∆).
Given a partial state δ, a literal ` is true (resp. false) in δ if ` ∈ δ (resp. ¯̀∈ δ), denoted by δ |= ` (resp.

δ |= ¯̀). A literal ` is said to be known in δ if it is true or false in δ.
For a set of literals γ, δ |= γ if γ ⊆ δ. For a DNF-state ∆ and a set of literals γ, ∆ |= γ if ∀δ ∈ ∆.δ |= γ.
Let δ be a partial state and γ be a consistent set of literals. The partial extension δ + γ of δ w.r.t. γ is

defined as

δ + γ =

{
{δ} if γ ⊆ δ or γ ∩ δ 6= ∅
{δ ∪ γ} ∪ {δ ∪ {¯̀} | ` ∈ γ\δ} otherwise

(4)

Proposition 1. Let δ be a partial state and γ be a consistent set of literals. Then δ + γ is a DNF-state
equivalent to δ and, for every δ′ ∈ δ + γ, either δ′ |= γ or δ′ |= ¬γ holds.

Proof. Consider two cases in Equation 4 as follows.

• If γ ⊆ δ or γ ∩ δ 6= ∅, then δ + γ = {δ}. Obviously, this is a DNF-state equivalent to δ. Moreover,
γ ⊆ δ iff δ |= γ and γ ∩ δ 6= ∅ iff δ |= ¬γ (proof).

• In the other case, observe that δ ≡ (δ ∧ γ) ∨ (δ ∧ ¬γ), where both δ ∧ γ and δ ∧ ¬γ are satisfiable.
It is easy to see that δ ∧ γ ≡ δ ∪ γ, a partial state (consistent set of literals). On the other hand,
δ ∧ ¬γ ≡ {δ ∪ {`} | ` ∈ γ}. Eliminating inconsistent sets of literals from {δ ∪ {`} | ` ∈ γ}, we
obtain {δ ∪ {¯̀} | ` ∈ γ\δ}, a set of partial states equivalent to δ ∧ ¬γ. Observe that no partial states
in {δ ∪ {¯̀} | ` ∈ γ\δ} is a subset of another one in this set as they all contain the same number of
literals. Moreover, for each α ∈ {δ ∪ {¯̀} | ` ∈ γ\δ}, δ ∪ γ cannot be either a superset or a subset
of α as δ ∪ γ |= γ and α |= ¬γ. Thus, {δ ∪ γ} ∪ {δ ∪ {¯̀} | ` ∈ γ\δ} is a DNF-state equivalent to
δ and, for every partial state δ′ in this DNF-state, either δ′ |= γ or δ′ |= ¬γ holds. In this case, since
δ + γ = {δ ∪ γ} ∪ {δ ∪ {¯̀} | ` ∈ γ\δ}, a proof is obtained.

In both cases, the proposition has been proved.

For a DNF-state ∆, let ∆+γ= min(
⋃
δ∈∆(δ+γ)).

3.2. Transition Function ΦDNF for Non-deterministic Actions

This subsection presents the extension of the transition function defined in [18] to non-deterministic
actions.

The definition of enabling notion is extended as follows

Definition 1. Let o be an action outcome. A partial state δ is called enabling for o if for every conditional
effect ψ → ` in o, either δ |= ψ or δ |= ¬ψ holds.

A DNF-state ∆ is enabling for o if every partial state in ∆ is enabling for o.

For an action outcome o and a DNF-state ∆, let expo(∆) = ((∆ + ψ1) + . . .) + ψk, where o = {ψ1 →
`1, . . . , ψk → `k}.
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Proposition 2. For every DNF-state ∆ and every action outcome o, expo(∆) is a DNF-state equivalent to
∆ and enabling for o.

Proof. The proof is by induction on the number of conditional effects in the outcome o as follows.

• Base case |o| = 1: We have expo(∆) = ∆ + ψ1 = min(
⋃
δ∈∆(δ + ψ1)), where o = {ψ1 → `1}.

Consider each partial state δ ∈ ∆, by Proposition 1, δ + ψ1 is a DNF-state equivalent to δ and either
δ |= ψ1 or δ |= ¬ψ1 holds. This implies that expo(∆) is a DNF-state equivalent to ∆ and enabling
for o (proof).

• Inductive step: Suppose the proposition is true for |o| = k − 1 for some k > 1. Consider an
outcome o of k conditional effects, o = {ψ1 → `1, . . . , ψk → `k}. Let o′ be the outcome of the
first k − 1 conditional effects of o: o′ = {ψ1 → `1, . . . , ψk → `k−1}. Then, by definition we have
expo(∆) = expo′(∆) + ψk. By the inductive hypothesis, expo′(∆) is a DNF-state equivalent to ∆
and enabling for o′. Hence, as proved in the base case, expo′(∆) + ψk is a DNF-state equivalent
to expo′(∆), which is equivalent to ∆. This implies that expo(∆) is a DNF-state equivalent to ∆.
Consider each partial state δ1 in expo′(∆) + ψk. Observe from Equation 4 that δ1 is a superset of
some partial state δ2 in expo′(∆). Hence, for every ψi, i = 1, . . . , k− 1, if δ2 |= ψi (resp. δ2 |= ¬ψi)
then δ1 |= ψi (resp. δ1 |= ¬ψi). This implies that, like δ2, δ1 is also enabling for o′. Moreover,
since δ1 ∈ expo′(∆) + ψk, either δ1 |= ψk or δ1 |= ¬ψk holds. Thus, δ1 is enabling for o and so is
expo′(∆) + ψk. In conclusion, expo(∆) is a DNF-state equivalent to ∆ and enabling for o (proof).

For an outcome o of an action a and a partial state δ, the effect of a in δ if the outcome o occurs, denoted
e(o, δ), is defined similarly the effect of a in a state s w.r.t. o:

e(o, δ) = {` | ψ → ` ∈ o, δ |= ψ}. (5)

Proposition 3. Let o be an action outcome and δ be a partial state enabling for o, then

∀s ∈ ext(δ). e(o, s) = e(o, δ)

Proof. Let s be an arbitrary state in ext(δ). It suffices to prove that e(o, s) = e(o, δ).

(1) For each ` ∈ e(o, δ), we will show that ` ∈ e(o, s): by Equation 5, there exists ψ → ` ∈ o such that
δ |= ψ. This implies s |= ψ, since δ ⊆ s. Hence, ` ∈ e(o, s) (Equation 1)

(2) Now for each `′ ∈ e(o, s), we prove that `′ ∈ e(o, δ): Assume that `′ 6∈ e(o, δ). Since `′ ∈ e(o, s),
there exists an effect ψ′ → `′ ∈ o such that s |= ψ′. On the other hand, `′ 6∈ e(o, δ) so δ 6|= ψ′. This means
that δ |= ¬ψ′ (because δ is enabling for o, either δ |= ψ′ or δ |= ¬ψ′ holds). This implies s |= ¬ψ′ as δ ⊆ s,
a contradiction.

The proof has been obtained by (1) and (2).

We are now ready to define the transition function ΦDNF which maps pairs of actions and DNF-states
into DNF-states as follows.
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Definition 2. Let ∆ be a DNF-state and a be an action. The execution of a in ∆ results in a DNF-state,
denoted by ΦDNF (a,∆), defined as follows:

ΦDNF (a,∆) =

{
min(

⋃
o∈O(a){δ′ \ e(o, δ′) ∪ e(o, δ′) | δ′ ∈ expo(∆)}) if ∆ 6= ∅ ∧∆ |= pre(a)

undefined otherwise
(6)

Lemma 1. Let ∆ be a set of partial states and e be a consistent set of literals. Then,

ext({δ \ ē ∪ e | δ ∈ ∆}) = {s \ ē ∪ e | s ∈ ext(∆)}

Proof. First we will prove that, for every partial state δ,

ext(δ \ ē ∪ e) = {s \ e ∪ e | s ∈ ext(δ)} (7)

Consider a state s ∈ ext(δ), we have δ ⊆ s. Hence, δ \ ē ∪ e ⊆ s \ e ∪ e, i.e., s \ e ∪ e |= δ \ ē ∪ e or
s \ e ∪ e ∈ ext(δ \ ē ∪ e) (it is easy to see that s \ e ∪ e is a state). This means that

{s \ e ∪ e | s ∈ ext(δ)} ⊆ ext(δ \ ē ∪ e) (8)

Now, let s1 be an arbitrary state in ext(δ \ ē ∪ e), we will prove that s1 also belongs to {s \ e ∪ e | s ∈
ext(δ)}. Since s1 ∈ ext(δ \ ē ∪ e), s1 |= (δ \ ē ∪ e) or (δ \ ē ∪ e) ⊆ s1. Let γ = s1 \ (δ \ ē ∪ e). Observe
that γ is a consistent set of literals that are independent from δ \ ē ∪ e (we say that a literal ` is independent
from a formula ϕ if neither ` nor ¯̀appears in ϕ). Let e− = δ ∩ ē, e+ = e \ e−, and δ0 = δ \ e−. Observe
that, s1 = δ \ ē ∪ e ∪ γ = (δ0 ∪ e−) \ (e− ∪ e+) ∪ (e− ∪ e+) ∪ γ = δ0 ∪ e− ∪ e+ ∪ γ. Now consider
s2 = δ0∪e−∪e+∪γ = δ∪e+∪γ. Furthermore, every partition set in s2: δ0, e−, e+, and γ are consistent;
e− and γ are independent from all the other sets while δ0 ∪ e+ is consistent. Therefore, s2 is consistent and
thereby it is a state (because the states s1 and s2 are complete). Since δ ⊆ s2 so s2 ∈ ext(δ). Observe that
s2 \ ē ∪ e = δ ∪ e+ ∪ γ \ ē ∪ e = δ \ ē ∪ e ∪ γ = s1 (because γ is independent from ē and e+ ⊆ e). This
means that s1 ∈ {s \ e ∪ e | s ∈ ext(δ)}. This implies that

ext(δ \ ē ∪ e) ⊆ {s \ e ∪ e | s ∈ ext(δ)} (9)

Together (8) and (9) we have the proof for (7). Now we have

ext({δ \ ē ∪ e | δ ∈ ∆}) =
⋃
δ∈∆

ext(δ \ ē ∪ e)

=
⋃
δ∈∆

{s \ e ∪ e | s ∈ δ} (By Equation (7))

= {s \ e ∪ e | s ∈
⋃
δ∈∆

ext(δ)}

= {s \ e ∪ e | s ∈ ext(∆)} (Proof)

Theorem 2. Let ∆ be a DNF-state and a be an action. Then,

ext(ΦDNF (a,∆)) = Φ(a, ext(∆))
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Proof. It is easy to see that ∆ = ∅ iff ext(∆) = ∅ and ∆ |= pre(a) iff ext(∆) |= pre(a). The second case
is trivial. Now we are going to prove for the first case (∆ 6= ∅ ∧∆ |= pre(a)) as follows

ext(ΦDNF (a,∆)) = ext(min(
⋃

o∈O(a)

{δ′ \ e(o, δ′) ∪ e(o, δ′) | δ′ ∈ expo(∆)}))

=
⋃

o∈O(a)

ext(min({δ′ \ e(o, δ′) ∪ e(o, δ′) | δ′ ∈ expo(∆)}))

=
⋃

o∈O(a)

ext({δ′ \ e(o, δ′) ∪ e(o, δ′) | δ′ ∈ expo(∆)})

(Since for two partial states δ1 and δ2, δ1 ⊂ δ2 iff ext(δ2) ⊂ ext(δ1))

=
⋃

o∈O(a)

{s \ e(o, δ′) ∪ e(o, δ′) | s ∈ ext(expo(∆))} (By Lemma 1)

=
⋃

o∈O(a)

{s \ e(o, s) ∪ e(o, s) | s ∈ ext(expo(∆))} (By Prop. 3)

=
⋃

o∈O(a)

{s \ e(o, s) ∪ e(o, s) | s ∈ ext(∆)} (By Prop. 2)

= Φ(a, ext(∆)) (Proof)

According to Theorem 2, if a DNF-state ∆ represents a belief state S (ext(∆) = S) then the successor
DNF-state of ∆ (ΦDNF (a,∆)) represents the successor belief state of S (Φ(a, S)). This allows for building
a sound and complete contingent planner using the minimal-DNF representation.

Lemma 2. Let ∆ be a DNF-state and o be an action outcome. Let n be the number of propositions in
the domain, k be the number of distinct e-conditions of o that are unknown in ∆, and r be the maximum
number of literals in an e-condition of o. Then expo(∆) and {e(o, δ) | δ ∈ expo(∆)} can be computed in
O(n|∆|2(1 + r2)k) time and |expo(∆)| ≤ |∆|(1 + r)k.

Proof. (Sketch) Observe that expo(∆) is exactly the same as expa(∆) defined in [18] for a deterministic
action a, whose conditional effect set is o. Hence, to prove the lemma, we prove that expa(∆) can be
computed in O(n|∆|2(1 + r2)k) time and |expa(∆)| ≤ |∆|(1 + r)k. Due to the length and the complexity
of the proof of this result, we omit it in this paper, which mainly focuses on the AND/OR search algorithm
PrAO for contingent solutions. Interested readers are referred to a manuscript at www.cs.nmsu.edu/
~sto submitted to Artificial Intelligence, where the proof can be found in the subsection Computational
Cost of ΦµDNF of the section Minimal DNF Representation.

The following theorem shows the computational cost of ΦDNF .

Theorem 3. Let ∆ be a DNF-state and a be an action. Let n be the number of propositions in the domain,
k be the maximum number of distinct e-conditions in an outcome o of O(a) that are unknown in ∆, and
r be the maximum number of literals in an e-condition of O(a). Then ΦDNF (a,∆) can be computed in
O(n|∆|2|O(a)|2(1 + r)2k) time.
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Proof. We are interested only in the first case (ΦDNF (a,∆) = min(
⋃
o∈O(a){δ′ \ e(o, δ′) ∪ e(o, δ′) | δ′ ∈

expo(∆)})) as the proof for the second case is trivial. By Lemma 2, for each outcome o in O(a), expo(∆)
and expo(∆) and {e(o, δ) | δ ∈ expo(∆)} can be computed in O(n|∆|2(1 + r2)k) time and |expo(∆)| ≤
|∆|(1+r)k. Hence, the computation of all δ′ and e(o, δ′) in

⋃
o∈O(a){δ′ \e(o, δ′)∪e(o, δ′) | δ′ ∈ expo(∆)}

is O(n|∆|2(1 + r2)k|O(a)|) time and the number of partial states in the set is O(|∆|(1 + r)k|O(a)|).
Moreover, it is easy to see that for each partial state δ and for each set of literal e, δ \ e∪ e can be computed
in O(n) time. Hence,

⋃
o∈O(a){δ′ \ e(o, δ′) ∪ e(o, δ′) | δ′ ∈ expo(∆)} can be computed in O(n|∆|2(1 +

r2)k|O(a)|) +O(n|∆|(1 + r)k|O(a)|) = O(n|∆|2(1 + r2)k|O(a)|). Comparison of two partial states takes
O(n) time (assume that the literals in a partial state are sorted) so the application of the min function to the
set
⋃
o∈O(a){δ′\e(o, δ′)∪e(o, δ′) | δ′ ∈ expo(∆)} ofO(|∆|(1+r)k|O(a)|) partial states takesO(n|∆|2(1+

r)2k|O(a)|2) time. In summary, ΦDNF (a,∆) = min(
⋃
o∈O(a){δ′ \ e(o, δ′)∪ e(o, δ′) | δ′ ∈ expo(∆)}) can

be computed in O(n|∆|2(1 + r2)k|O(a)|) +O(n|∆|2(1 + r)2k|O(a)|2) = O(n|∆|2|O(a)|2(1 + r)2k) time
(proof).

Theorem 3 shows that ΦDNF (a,∆) is exponential in k with the base r + 1, where k is the maximum
number of distinct e-conditions in an outcome inO(a) that are unknown in ∆ and r is the maximum number
of literals in an e-condition of a conditional effect of the action. In most problems in the literature, r is 1
or 2 while k is rather small in many problems. Thus, ΦDNF (a,∆) can be computed in polynomial time on
many problems.

3.3. Extension to Sensing Actions

Let ω be a sensing action and ∆ be a DNF-state. Similar to that for belief states (Equation (3)), the
result of the execution of ω in ∆ is a pair of DNF-states, one satisfies `(ω) and the other satisfies `(ω) and
their union is equivalent to ∆. To compute the pair of DNF-states, we need to extend ∆ w.r.t. `(ω) so that
for each partial state δ in the new DNF-state, either δ |= `(ω) or δ |= `(ω) holds. The pair of DNF-states is
obtained by splitting the new DNF-state based on `(ω).

Definition 3. Let ω be a sensing action and ∆ be a DNF-state. The application of ω in ∆ results in a pair
of sets of partial states, denoted by ∆+

ω and ∆−ω , defined as

∆+
ω = {δ ∈ ∆ + {`(ω)} | δ |= `(ω)}

∆−ω = {δ ∈ ∆ + {`(ω)} | δ |= `(ω)}.

Theorem 4. Let ∆ be a DNF-state representing a belief state S and ω be an observation. Then ∆+
ω is a

DNF-state representing S+
ω , and ∆−ω is a DNF-state representing S−ω .

Proof. Observe that a subset of a DNF-state is also a DNF-state as it is a set of partial states such that no one
is a subset of another. Hence, ∆+

ω and ∆−ω are DNF-states as they are subsets of the DNF-state ∆ + {`(ω)}.
Now we need to prove ext(∆+

ω ) = S+
ω and ext(∆−ω ) = S−ω . Observe that ∆ + {`(ω)} = ∆+

ω ∪ ∆−ω .
Hence, ext(∆+

ω ) ∪ ext(∆−ω ) = ext(∆ + {`(ω)}) = ext(∆) = S. By definition, ∆+
ω |= `(ω) and ∆−ω |=

`(ω). This implies that ext(∆+
ω ) = {s ∈ S | s |= `(ω)} and ext(∆−ω ) = {s ∈ S | s |= `(ω)}, since

ext(∆+
ω ) ∪ ext(∆−ω ) = S and ext(∆+

ω ) ∩ ext(∆−ω ) = ∅. Thus, ext(∆+
ω ) = S+

ω and ext(∆−ω ) = S−ω
(proof).
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Let Φ̂DNF be the extended transition function that maps a pair composed of a transition tree and a DNF-
state to a set of DNF-states, defined in the same manner as Φ̂ is, where Φ is replaced with ΦDNF and the
belief state S is replaced with the DNF-State ∆. The next theorem shows that Φ̂DNF is equivalent to the
complete semantics defined by Φ̂.

Theorem 5. Let ∆ be a DNF-state and T be a transition tree. Then, each DNF-state in Φ̂DNF (T,∆)
represent a belief state in Φ̂(T, ext(∆)) and each belief state in Φ̂(T, ext(∆)) is the extension of a DNF-
state in Φ̂DNF (T,∆).

Proof. (Sketch) A proof by induction on the depth of the transition tree T can be easily obtained using
Theorems 2 and 4.

This theorem allows for the development of contingent planners that employ an AND/OR forward search
in the belief space where each node in the search graph is a DNF-state instead of a belief state.

4. A Standard Heuristic AND/OR forward Search Algorithm for Contingent Planning

Let P = 〈F,A,Ω, I, G〉 be a contingent planning problem. For completeness of the paper, this section
presents a standard heuristic AND/OR forward search algorithm for a solution of P and the correctness of
the algorithm as the foundation of the PrAO algorithm.

Let s0 be the initial belief state for the problem P . The search iteratively expands the search graph
Ts = 〈S, T , s0〉, initialized with 〈{s0}, ∅, s0〉, and updates the state of nodes in the graph. Initially the start
node s0 is set as unexplored (if it does not satisfies the goal G) and in each iteration the search explores
an unexplored node in S until a solution is detected or it is determined that P has no solution. The main
procedure of this AND/OR search is implemented in Algorithm 1.

In the procedure Plan(F,A,Ω, I, G) (Algorithm 1) and its sub-procedures, the components of the prob-
lem P and the search graph 〈S, T , s0〉 are represented by global variables. For each node s ∈ S, the variable
state(s) is used to encode the state of s, which can be explored, unexplored, goal, or dead. The state
goal or dead indicates that the node is goal-reachable or dead-end, respectively, and will be defined next.

Definition 4. Let 〈S, T , s0〉 be a search graph for P . A node s is goal-reachable, or goal for short, if
• s |= G,
• There exists an or-edge (s, a, s1) in T such that s1 is goal-reachable, or
• There exist two dual and-edges (s, ω, s1) and (s, ω, s2) in T such that s1 and s2 are goal-reachable.

For each goal node s, there exists a path from s to a node s′ such that s′ |= G and every node on
the path is a goal node. By path-to-goal we call such a path where any possible loops are eliminated. By
distance-to-goal of s we refer to the number of edges of the longest path-to-goal of s.

Proposition 4. If a node s on a search graph Ts = 〈S, T , s0〉 for P is goal-reachable, then there exists a
subgraph 〈Ss, Ts, s〉 of the search graph Ts that is a solution tree for the problem Ps = 〈F,A,Ω, s,G〉.

Proof. The proof is by induction on the distance-to-goal of s.

• Base case, the distance-to-goal of s is 0: then s |= G. Clearly, the subgraph 〈{s}, ∅, s〉 is a solution
tree for Ps.
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Algorithm 1 Plan(F,A,Ω, I, G) The main procedure of a standard AND/OR search algorithm for
contingent planning

1: Input: A contingent problem P = 〈F,A,Ω, I, G〉
2: Output: A solution for P if it has a solution or NULL otherwise
3: Let s0 be the initial belief state of P {The set of states satisfying I}
4: if s0 |= G then
5: return [] {Return the empty solution}
6: else
7: Set state(s0) = unexplored
8: end if
9: Let S = {s0}, T = ∅ {Initialize the search graph with ({s0}, ∅, s0)}

10: while true do
11: if {s ∈ S | state(s) = unexplored} = ∅ then
12: return NULL {No solutions}
13: end if
14: Let s be the unexplored node with the best heuristic in S
15: explore(s) {Expand the search graph and update the state of nodes by exploring the node s}
16: if state(s0) = goal then
17: solution_tree(Sg, Tg, s0) {Extract a solution tree 〈Sg, Tg, s0〉 from 〈S, T , s0〉}
18: return tree(Sg, Tg, s0) {Return a solution for the problem P}
19: end if
20: if state(s0) = dead then
21: return NULL {No solutions}
22: end if
23: end while

• Inductive step: Assume that the proposition is true for every goal node with the distance-to-goal not
greater than d, for some d ≥ 0. Consider a case where the distance-to-goal of s is d + 1. Since s is
goal-reachable, we consider the following two cases either one of which holds.

– There exists an or-edge (s, a, s′) in T and s′ is a goal node. By the inductive hypothesis, there
exists a subgraph 〈Ss′ , Ts′ , s′〉 of Ts that is a solution tree for Ps′ = 〈F,A,Ω, s′, G〉. Let Ss =
Ss′ ∪ {s} and Ts = Ts′ ∪ {(s, a, s′)}. Obviously, 〈Ss, Ts, s〉 is a subgraph of Ts. Moreover, by
the definition of a solution tree, it is easy to see that 〈Ss, Ts, s〉 is a solution tree for the problem
Ps = 〈F,A,Ω, s,G〉.

– There exist two dual and-edge (s, ω, s1) and (s, ω, s2) in T such that both s1 and s2 are goal-
reachable. The proof is similar to the previous case.

Intuitively, every node in a solution tree is goal-reachable and if the start node s0 becomes goal-reachable
then the search tree contains a solution tree as shown in the following theorem.

Theorem 6. If the start node s0 is a goal-reachable node on a search graph Ts = 〈S, T , s0〉, then Ts
contains a solution tree for P .
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Proof. This proposition is a direct corollary of Proposition 4.

Theorem 6 is instantiated in Lines 15-18 of Algorithm 1, i.e., if the start node s0 becomes goal-reachable
then the procedure solution_tree(Sg, Tg, s0) extracts a solution tree 〈Sg, Tg, s0〉 from the search graph Ts
and from the obtained solution tree it computes and returns the corresponding solution tree(Sg, Tg, s0). One
may think that the extraction of a solution tree from a search graph when it is detected to contain a solution
tree is simple. Indeed, since from a goal node there can be multiple outgoing transitions that lead to other
goal nodes and there may exists a loop in a subgraph formed by a set of goal nodes, this computation is rather
complicated and can be computationally exponential in the number of transitions from a goal node to other
goal nodes with the base equal to the number of goal nodes as it may incurs backtracking. Since the purpose
of presenting this standard AND/OR search algorithm is to provide a foundation for the development of
the PrAO algorithm, we do not present an algorithm for the extraction of a solution tree. Instead, we will
show in the next section that when PrAO detects a solution, due to the pruning techniques it employs, the
remaining search graph is also a solution tree for the contingent planing problem. This demonstrates another
desirable property of PrAO besides the reduction of the search space.

The dead-end (dead) state of a node is defined as follows.

Definition 5. Let 〈S, T , s0〉 be a search graph for P . An explored node s is dead-end, or dead for short, if
• s 6|= G and there is no outgoing edge from s; or
• for every or-edge (s, a, s′) in T , s′ is dead; and for every pair of and-edges (s, ω, s1) and (s, ω, s2)
in T at least one of the two nodes s1 and s2 is dead.

For a node s, by the depth of s we refer to the number of edges on the longest loop-free path from s to a
leaf node.

Proposition 5. Let 〈S, T , s0〉 be a search graph for P and s be a dead node. Then there does not exists a
solution tree for P that contains s.

Proof. To prove the proposition, we prove that s is not a goal node and can never become a goal node when
the search graph is expanded further. The proof is by induction on the depth d of s.

• Base case, the depth of s is 0: Clearly s cannot be a goal node since s 6|= G. Since s is dead, s is
an explored node and there is no outgoing edge from s. Hence, s can never become a goal node as
expanding the search graph can only create new edges from unexplored nodes.

• Inductive step: Suppose that the proposition is true for every node with depth less than d, for some
d ≥ 0. We will show that it also true for every node with depth d+1. Consider a dead node s with the
depth d + 1. By definition, s is not a goal node in the current search graph. s is a node in a solution
tree only if s is a goal node. This can happens only if a child of s becomes goal-reachable. By the
inductive hypothesis, every dead child of s can never become a goal node. The only children of s
can possibly become goal-reachable are and-children of s. However, the fact that those nodes become
goal-reachable cannot make s goal-reachable since their dual and-nodes are dead nodes and can never
become a goal node. Thus, s can never be a goal node.

Since s can never be a goal node, there does not exists a solution tree for P that contains s (proof).

Theorem 7. If the start node s0 is a dead node on a search tree then P has no solution.

Proof. The proof follows directly from Proposition 5.
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One can see that Theorem 7 is instantiated in the main procedure by Lines 19-21, Algorithm 1. In
each iteration of the while loop, the explore(s) procedure (Line 14) expands the search graph and updates
the state of their nodes accordingly by exploring the unexplored node s with the best heuristic value. This
procedure is implemented in Algorithm 2.

Algorithm 2 explore(s) Expand and update the search graph by exploring an unexplored node s
1: Input: (unexplored) node s ∈ S
2: for each action a ∈ A do
3: if s |= pre(a) then
4: Compute s′ = Φ(a, s) {Compute a successor (or-child) of s}
5: if s′ 6= s then
6: expand(s, a, s′) {Extend the graph with (only new) node s′ and edge (s, a, s′), Algorithm 3}
7: goal_propagation(s, a, s′) {Algorithm 4}
8: end if
9: end if

10: end for
11: for each observation ω ∈ Ω do
12: if s |= pre(ω) and s 6|= `(ω) and s 6|= `(ω) then
13: Compute s1 = s+

ω , s2 = s−ω {Compute a pair of dual and-children of s}
14: expand(s, ω, s1) {Extend the graph with node s1, if it is a new node, & and-edge (s, ω, s1)}
15: expand(s, ω, s2) {Extend the graph with node s2, if it is a new node, & and-edge (s, ω, s2)}
16: goal_propagation(s, ω, s1) {Algorithm 4}
17: end if
18: end for
19: if ∃(s, t, s′) ∈ T then
20: Set state(s) = explored
21: else
22: Set state(s) = dead {The explored node s is dead if there are no outgoing transitions from s}
23: dead_propagation(s) {Algorithm 5}
24: end if

Algorithm 3 expand(s, t, s′) Set the state of s′ and extend the graph with node s′ (if s′ is a new node) and
edge (s, t, s′)

1: Input: node s, t ∈ A ∪ Ω, node s′

2: if s′ 6∈ S then
3: if s′ 6|= G then
4: Set state(s′) = unexplored
5: else
6: Set state(s′) = goal
7: end if
8: S = S ∪ {s′} {Extend the graph with the new node s′}
9: end if

10: T = T ∪ {(s, t, s′)} {Extend the graph with the edge (s, t, s′)}
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During the exploration of a node s, s can become goal-reachable if it has a goal or-child or a pair of goal
dual and-children (which can be either a new node satisfying the goal or an existing goal node). In turn, the
parent(s) of s, and hence some of its ancestors, may become goal-reachable if s becomes goal-reachable.
The goal_propagation(s, t, s′) procedure (Algorithm 4) recursively identifies the nodes that become goal
due to the addition of an edge (s, t, s′) to the graph (if s′ is a goal node) and updates the state of those nodes
as goal (Lines 7 & 16, Algorithm 2). Observe that Line 5 eliminates the creation of an edge from a node
to the same node. A similar condition for and-transitions is not needed due to the conditions s 6|= `(ω) and
s 6|= `(ω) (Line 12), that make sure s 6= s1 and s 6= s2.

Algorithm 4 goal_propagation(s, t, s1)

1: Input: A transition (s, t, s1) ∈ T
2: if state(s1) 6= goal or state(s) = goal then
3: return
4: end if
5: if t ∈ A then
6: Set state(s) = goal
7: for each (s′, t′, s) ∈ T do
8: goal_propagation((s′, t′, s))
9: end for

10: else
11: Let (s, t, s2) be the dual and-edge of (s, t, s1) in T
12: if state(s2) = goal then
13: Set state(s) = goal
14: for (s′, t′, s) ∈ T do
15: goal_propagation((s′, t′, s))
16: end for
17: end if
18: end if

The following proposition validates the correctness of Algorithm 4.

Proposition 6. Let s be the node being explored and (s, t, s1) be a new edge added to the search graph.
Suppose that the set {s ∈ S | state(s) = goal} is equal to the set of goal-reachable nodes of the search
graph before the edge (s, t, s1) is added to T . Then, after (s, t, s1) is added to T and the execution of
goal_propagation(s, t, s1) is completed, the two sets remain equal.

Proof. (Sketch) It is easy to see that goal_propagation changes the state of a node to be goal only if the
node is goal-reachable. Hence, after an edge (s, t, s1) is added to T and the execution of goal_propagation(s,
t, s1) is completed, every node s with state(s) = goal on the search graph is indeed goal-reachable. Now
we need to prove that there does not exist a node s′ such that s′ is goal-reachable but state(s′) 6= goal.
Assume the contrary, i.e., there exists such a node s′. Due to the precondition ({s ∈ S | state(s) =
goal} is exactly the set of goal-reachable nodes before the edge (s, t, s1) is added to T ) and the fact that
goal_propagation only changes the state of a node to be goal, s′ is goal-reachable due to its goal-reachable
descendant s1 but state(s′) is not changed to be goal by goal_propagation. This means that the propa-
gation process stops at a node s2 before s′ on the reverse path from s1 to s′, where s2 is an ancestor of s1.
However, this propagation stops at s2 only if:
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• s2 is already a goal node before the propagation (Line 2). In this case, a propagation from s2 was
already executed which updated the state of s′ correctly. The further propagation towards s′ this
time if executed would only repeat what was done before and would not change the state of s. In
other words, if state(s′) is changed to goal by the propagation this time if it continued until s′, then
state(s′) would have been changed to goal by the earlier propagation when its descendant s2 became
goal-reachable. Thus, this case cannot make state(s′) to be wrong.

• The child of s2 on the path to s1 is not goal-reachable (Line 2). Look into Algorithm 4, this is the case
only if s1 is not a goal node. However, the earlier discussion shows that s1 must be goal-reachable.

• The child of s2 on the path to s1 is an and-child of s2 and the other dual and-child is not goal-reachable
(consider Lines 11-12). In this case, by definition, s2 does not become goal-reachable and, hence, the
termination of the propagation is correct. s′ cannot become goal-reachable due to s2 and thereby due
to s1.

In all the cases, we showed that the existence of such a node s′ is impossible (proof).

After a node s is explored, s may become a dead node (there does not exist an outgoing edge from s).
If s is dead then some of its parent(s) can also become dead; and if a parent of s becomes dead then, in
turn, some of the parents of that parent of s can become dead and so on. Similar to goal_propagation, the
dead_propagation procedure (Algorithm 5) identifies the set of dead-end nodes and changes their state to
dead.

Algorithm 5 dead_propagation(s)

1: Input: A dead node s ∈ S
2: for each edge (s1, t, s) ∈ T do
3: {Check whether s1 is dead-end according to Definition 5}
4: if s1 is dead-end then
5: Set state(s1) = dead
6: Execute dead_propagation(s1)
7: end if
8: end for

The correctness of the dead_propagation procedure (Algorithm 5) is expressed in the following propo-
sition.

Proposition 7. Let s be a node being explored. Suppose that the set {s ∈ S | state(s) = dead} is equal to
the set of dead-end nodes of the search graph before exploring s and there does not exist an outgoing edge
from s after the exploration of s. Then, after the exploration of s and the execution of dead_propagation(s),
the two sets remain equal.

Proof. The proof follows directly from Definition 5.

Proposition 8. If a node ever becomes a goal node or a dead node in the search graph then its state can
never change.

Proof. This is obvious as a dead node cannot become an unexplored node (no explored node can become
unexplored again), an explored node (a dead node will not be explored again), or a goal node. Similarly for
a goal node.
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With the assumption that the procedure solution_tree(Sg, Tg, s0) (Line 16, Algorithm 1) always returns
a solution tree if the search graph contains a solution tree, the correctness of the presented search algorithm
is confirmed by the following theorem.

Theorem 8. Let P = 〈F,A,Ω, I, G〉 be a contingent planning problem and Ts = 〈S, T , s0〉 be a search
graph constructed by the Plan(F,A,Ω, I, G) procedure (Algorithm 1). It holds that

1. If state(s0) = goal then Ts contains a solution tree for P and P has a solution.

2. If P has a solution then eventually s0 becomes a goal node.

3. Plan(F,A,Ω, I, G) returns NULL iff P does not have a solution.

Proof. Before the while loop of Algorithm 1, it is easy to see that the state of s0 is set correctly (Lines 3-7).
Hence, the state of every node in the search graph Ts before the while loop is set correctly as Ts contains
only one node s0. Inside while loop, the state of nodes is changed only by the explore procedure (Line 14).
Looking into Algorithm 2 and due to Propositions 6 and 7, one can see that the state of every node in the
search graph is always set correctly after the execution of explore(s) (Line 14) in each iteration and so is it
before the execution of explore(s).

1. Since the state of every node in the search graph is set correctly, this is obvious due to Theorems 6
and 1.

2. One can see that after the exploration of an unexplored node s, explore(s) created and added to the
Ts every possible child and every possible outgoing edge from s. By Theorem 7 and due to the correct
state of nodes in the graph, s0 cannot be a dead node during the search. This means that the search
will not terminate until s0 becomes goal or Ts has been fully expanded and becomes complete (there
are no more unexplored nodes in the search graph). In the first case clearly we have the proof. In the
second case, Ts is the complete search graph for P and, by Theorem 1, it contains a solution tree for
P . This implies that s0 is a goal node due to the correct state of nodes in Ts (proof).

3. Plan(F,A,Ω, I, G) returns NULL iff either s0 is dead or Ts is complete and s0 is not a goal node
iff P does not have a solution (Theorem 7) or Ts is complete and Ts does not contain a solution tree
for P iff P does not have a solution (Theorem 1) (proof).

5. PrAO: A New AND/OR Search Algorithm for Contingent Planning

This section describes a new AND/OR search algorithm, called PrAO (Pruning AND/OR Search), for
contingent planning. PrAO is similar to the standard AND/OR graph search algorithm presented previously
in the way it generates and maintains an AND/OR graph during the search. The key difference between
PrAO and others lies in the way PrAO keeps track of nodes and edges of a potential solution and eliminates
useless parts of the graph. We start by introducing the notion of a variant search graph for more convenience
to use with the minimal-DNF representation.

Definition 6. Let P = 〈F,A,Ω, I, G〉 be a contingent planning problem. A search graph is a labeled
transition graph 〈S, T , s0〉 where
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• S is a set of DNF-states, each DNF-state is referred to as a node;

• s0 is the initial DNF-state representing I and s0 ∈ S; and

• T is a set of transitions, T ⊆ S × (A ∪ Ω)× S , such that
◦ for each (s, ω, s1) ∈ T such that ω ∈ Ω, s |= pre(ω) and there exists exactly one (s, ω, s2) ∈ T

such that {s1, s2} = {s+
ω , s

−
ω }; and

◦ for each (s, a, s1) ∈ T such that a ∈ A, s |= pre(a) and s1 = ΦDNF (a, s).

Observe that this graph is similar to the one used in the standard AND/OR search previously presented,
except:

◦ Nodes in the graph are DNF-states instead of belief states, the start node s0 is a DNF-state ∆0 that
represents the description of the initial state (I) as well as the initial belief state of the problem.

◦ The transitions in the graph are regulated by the transition function (for both actions and observations)
for DNF-states instead of that for belief states.

Due to the equivalency between the transition functions for DNF-states and belief states (Theorems 2, 4,
and 5), it is easy to see that all the theoretical results presented earlier in this paper for the standard AND/OR
search graph are also true for this variant search graph. We will use the same notions for this variant search
graph as for the standard search graph. Note that, although every solution tree in a standard search graph is
a solution tree in the complete variant search graph for the same contingent planning problem, the converse
is not necessarily true. The reason is that each belief state can be equivalent to multiple DNF-states while
a DNF-state has only a unique extension (the belief state equivalent to the DNF-state) and, hence, multiple
nodes of (though) different DNF-states in a variant search graph may represent the same belief state. Thus,
let Tg = 〈Sg, Tg, s0〉 be a solution tree in a variant search graph for a problem P and if we replace each
node in Tg by the belief state it represents, the obtained graph may not be a solution tree in the complete
standard search graph for the same problem as it may contains a loop. However, one can prove (similarly
to Theorem 1) that tree(Sg, Tg, s0) is a solution for P (note that tree(Sg, Tg, s0) is finite as Tg does not
contain a loop in the variant search graph). Theoretically, since there is a finite number of DNF-states that
are equivalent to each belief state, the complete variant AND/OR search graph for a contingent planning
problem is still finite and hence, Theorems 1 and 8 (when we use this variant search graph in the standard
search for contingent solutions) still hold for this variant search graph. As the matter of fact, we have never
witnessed two different DNF-states representing a same belief state from the experiments on a large diverse
set of problems.

Besides the use of DNF-states as nodes with the new function for transitions between them in a search
graph3, PrAO differs from the standard search algorithm previously presented due to pruning techniques
incorporated in it. Those pruning techniques are built based on the propositions presented next. Let P =
〈F,A,Ω, I, G〉 be a contingent planning problem and Ts = 〈S, T , s0〉 be a search graph constructed by
PrAO during the search.

Proposition 9. Let s be a node in Ts such that s is goal-reachable via a transition t, i.e., either t ∈
A∧∃(s, t, s′) ∈ T ∧state(s′) = goal or t ∈ Ω∧∃(s, t, s1), (s, t, s2) ∈ T ∧state(s1) = state(s2) = goal

3For convenience, from now on we will call a variant search graph simply a search graph and a graph used in the standard search
a standard search graph if the distinguishment is needed.
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holds. Let T ′s = 〈S, T ′, s0〉 be the graph obtained by removing all the other transitions from s in T , i.e.,
T ′ = T \ {(s, ti, si) ∈ T | ti 6= t}. Let Tf and T ′f be the graphs obtained by fully expanding Ts and T ′s,
respectively. If Tf contains a solution tree for P then so does T ′f .

Proof. Assume that Tf contains a solution tree Tg for P . If s is not a node in Tg then, clearly, Tg is also a
subgraph of T ′f as T ′f differs from Tf by only some transition(s) from s. Thus, T ′f contains a solution tree
(Tg) for P . If s belongs to Tg and there is the transition t from s in Tg then Tg is a subgraph of T ′f too. Now
we need to consider the last case that s belongs to Tg but the transition t from s does not belong to Tg. Let
t′ be the transition from s in Tg. By Proposition 4 and the proof for it, there exists a subgraph Tt′ of Tg and
another subgraph Tt of Tf that are solution trees for the problem Ps = 〈F,A,Ω, s,G〉, where the transition
t′ from s is in Tt′ and the transition t from s belongs to Tt. Observe that, Tt is also a subgraph of T ′f and if
we replace Tt′ with Tt in Tg we will obtain another solution tree for P . This new solution tree is a subgraph
of T ′f (proof).

Proposition 9 shows that when a node s becomes goal-reachable via a transition (or a pair of dual
transitions), we can remove all the other transitions from s and the search still will find a solution if the
problem has a solution.

Proposition 10. Let s be a dead node in Ts. Then, the removal of every incoming transition to s (s′, t, s)
and its dual (s′, t, s”) if t ∈ Ω from the search graph does not lose any solution tree that Ts or its expanded
search graphs may contain.

Proof. Since s is a dead node, s cannot be a node in a solution tree for the problem (Proposition 5). Hence,
any incoming transition to s (s′, t, s) and its dual (s′, t, s”) if t ∈ Ω cannot belong to a solution tree. This
implies the proposition.

Proposition 10 allows for removing all the incoming edges to a dead node and the and-edges that are
dual with some of them from the search graph.

Thus, during the search, PrAO will remove from the search graph such transitions as mentioned in
Propositions 9 and 10. Consider the case that a transition s′, t, s is removed from the search graph because
s′ is a goal node via another transition or t ∈ Ω and there exists s′, t, s” such that s” is a dead node, s and
thereby some of its descendants that can be reached from s may no longer be reached from the start node
s0. We say that a node s is connected (to the search graph) if s can be reached from the start node, i.e.,
there is a path (sequence of edges) in the graph leading from s0 to s. Otherwise, s is said to be isolated or
disconnected from the graph. It is easy to see that if a node is connected then so are all its descendants. The
converse, however, does not always hold due to the fact that there can be multiple incoming transitions to a
node.

Since every node in a solution tree can be reached from the start node, PrAO will consider only un-
explored nodes that are connected to the search graph for expansion. However, an isolated node s can be
connected to the search graph again if the exploration of a (connected) node s′ creates a transition s′, t, s
and, in turn, the isolated descendants of s will be connected again if s is connected. For that reason, PrAO
does not eliminate isolated nodes from the search graph. Instead, PrAO uses another boolean variable
connected(s) for each node s to keep track of its connection state for the selection of nodes to explore.
Whenever an isolated node s is connected to the search graph again due to a newly created edge then PrAO
changes its connection state to be connected. For a node si in the search graph, we say that the connection
state of si is set correctly if connected(si) is true if si is connected and it is false otherwise. We have
similar definition for the state of a node.
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Algorithm 6 Plan(F,A,Ω, I, G) The main procedure of the PrAO search for contingent planning
1: Input: A contingent problem P = 〈F,A,Ω, I, G〉
2: Output: A solution for P if it has a solution or NULL otherwise
3: Let s0 be the initial belief state of P {The set of states satisfying I}
4: if s0 |= G then
5: return [] {Return the empty solution}
6: else
7: Set state(s0) = unexplored, connected(s0) = true
8: end if
9: Let S = {s0}, T = ∅ {Initialize the search graph with ({s0}, ∅, s0)}

10: while true do
11: if {s ∈ S | state(s) = unexplored ∧ connected(s) = true} = ∅ then
12: return NULL {No solutions}
13: end if
14: Let s be the connected unexplored node with the best heuristic in S
15: explore(s) {Expand and update the search graph by exploring the node s}
16: if state(s0) = goal then
17: return tree(S, T , s0) {Return a solution for the problem P}
18: end if
19: if state(s0) = dead then
20: return NULL {No solutions}
21: end if
22: end while

The main procedure Plan(F,A,Ω, I, G) of PrAO is implemented by Algorithm 6. This procedure is
similar to that for the standard search (Algorithm 1) with the following exceptions: Line 6 additionally
sets s0 to be connected and Lines 10 & 13 also consider the connected condition besides the unexplored
condition of nodes. It is briefly described as follows. Given a contingent problem P=〈F,A,Ω, I, G〉, PrAO
starts with the graph ({s0}, ∅, s0), where s0 is the initial DNF-state representing I , and iteratively constructs
a search graph (S, T , s0) until a solution has been found or it is determined that P has no solution. Initially,
s0 is set as unexplored and connected (Line 6) if s0 does not satisfy the goal G. At each iteration, PrAO
executes the following tasks:

• Select the connected unexplored node s with the best heuristic value in S for expansion. If no such
node exists then terminate the search with no solution (Lines 10-13);

• Expand and update the graph accordingly by exploring the node s (Line 14); and

• Check the state of the root node s0: if s0 becomes a goal node then extract and return the solution
(Lines 15-18). If s0 is a dead node then terminate the search with no solution (Lines 19-21).

The explore procedure is modified to incorporate the pruning techniques as shown in Algorithm 7 and
its sub-procedures. Observe that the extraction of a solution tree is not needed in this procedure.

In this new version of explore(s), one can see that Lines 5 & 18 preemptively apply Procedure 10 to not
add incoming edges to dead nodes or their dual and-edges to the graph. The pruning techniques, that rely on
Propositions 9 and 10, are also implemented in the goal_propagation and dead_propagation procedures to
remove the redundant transitions and isolate (change the connection state of) the relevant nodes accordingly
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Algorithm 7 explore(s) Expanding the search graph by exploring a connected unexplored node s
1: Input: (connected unexplored) node s ∈ S
2: for each action a ∈ A do
3: if s |= pre(a) then
4: Compute s′ = Φ(a, s) {Compute a successor (or-child) of s}
5: if not ((s′ ∈ S and state(s′) = dead) or (s′ = s)) then
6: expand(s, a, s′) {Extend the graph with (only new) node s′ and edge (s, a, s′), Algorithm 8}
7: if state(s′) = goal then
8: Set state(s) = goal
9: goal_propagation(s, a) {Algorithm 10}

10: return
11: end if
12: end if
13: end if
14: end for
15: for each observation ω ∈ Ω do
16: if s |= pre(ω) and s 6|= `(ω) and s 6|= `(ω) then
17: Compute s1 = s+

ω , s2 = s−ω {Compute a pair of dual and-children of s}
18: if not ((s1 ∈ S and state(s1) = dead) or (s2 ∈ S and state(s2) = dead)) then
19: expand(s, ω, s1) {Extend the graph with node s1, if it is a new node, & and-edge (s, ω, s1)}
20: expand(s, ω, s2) {Extend the graph with node s2, if it is a new node, & and-edge (s, ω, s2)}
21: if state(s1) = state(s2) = goal then
22: Set state(s) = goal
23: goal_propagation(s, ω) {Algorithm 10}
24: return
25: end if
26: end if
27: end if
28: end for
29: if ∃(s, t, s′) ∈ T then
30: Set state(s) = explored
31: else
32: Set state(s) = dead {The explored node s is dead if there are no outgoing transitions from s}
33: dead_propagation(s) {Algorithm 12}
34: end if

when each goal or dead node is detected during the recursive execution of the procedures. We will detail
this later after considering the (variant) expand procedure.

The variant expand(s) procedure, where s is a node being explored, is implemented in Algorithm
8. When a new edge from the node s to a successor s′ of s is added to the graph (Line 2), if s′ is
an existing node in the graph and it was isolated by (the pruning techniques in) goal_propagation or
dead_propsgation then it becomes connected again due to the newly added edge and so do the descendants
of s′. The reconnection_propagation(s′) (Line 4, Algorithm 9) recursively sets s′ and its descendants
as connected again if they were isolated. The correctness of the reconnection_propagation procedure
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Algorithm 8 expand(s, t, s′) Set the state of s′ and extend the graph with node s′ (if s′ is a new node) and
edge (s, t, s′)

1: Input: node s, t ∈ A ∪ Ω, node s′

2: T = T ∪ {(s, t, s′)} {Extend the graph with the edge (s, t, s′)}
3: if s′ ∈ S then
4: reconnection_propagation(s′) {Set s′ and all descendants of s′ as connected due to the new edge

(s, t, s′), if they were isolated, Algorithm 9}
5: else
6: Set connected(s′) = true
7: if s′ 6|= G then
8: Set state(s′) = unexplored
9: else

10: Set state(s′) = goal
11: end if
12: S = S ∪ {s′} {Extend the graph with the new node s′}
13: end if

Algorithm 9 reconnection_propagation(s) Set s and all descendants of s (recursively) as connected, if
they were isolated

1: Input: node s
2: if connected(s) = false then
3: Set connected(s) = true
4: for each (s, t, s′) ∈ T do
5: reconnection_propagation(s′)
6: end for
7: end if

(Algorithm 9) is validated in the following proposition.

Proposition 11. Let s be a node being explored, s′ be a child of s due to a transition (s, t, s′). If the con-
nection state of every node in the search graph is correctly set before adding the edge (s, t, s′) to the graph
(precondition) and s′ is an existing node in the graph, then after adding (s, t, s′) to the graph and executing
reconnection_propagation(s′) the connection state of every node in the search graph is correctly set.

Proof. Observe that both the addition of edge (s, t, s′) and the execution of reconnection_propagation(s′)
can affect only the connection state of node s′ and its descendants but they do not affect the other nodes.
Thus, the connection state of the nodes other than s′ and its descendants remains correct. Thus, we only
need to prove the proposition for s′ and its descendants. We consider the following two cases.

• Case connected(s′) = true: the proof is trivial due to the precondition assumption and the fact that
the execution of reconnection_propagation(s′) does not really change anything in this case.

• Case connected(s′) = false: due to the precondition assumption, s is connected and hence so are s′

and its descendant after adding the edge (s, t, s′). Thus, Line 3 correctly sets s′ to be connected in the
execution of reconnection_propagation. This procedure will recursively set each descendant of s′
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as connected to (Lines 4-6) and terminates only when all descendants of s′ is set as connected or there
is such a node s” such that connected(s”) = true holds before reconnection_propagation(s”) may
set it. Due to the precondition assumption, connected(s”) = true means that s” is (really) connected
and so are its descendants. Thus the termination of the procedure at this node still assures that every
descendant of s′ is set connected.

In both cases, we showed that the connection state of s′ and its descendants is set correctly after adding
(s, t, s′) to the graph and executing reconnection_propagation(s′) (proof).

Similarly, we have the following proposition for the expand procedure (Algorithm 8).

Proposition 12. Let s be a node being explored, s′ be a child of s due to a transition (s, t, s′). If the
connection state of every node in the search graph is set correctly before the execution of expand(s, t, s′)
(precondition), then after executing expand(s, t, s′) the connection state of every node in the search graph
is correctly set.

Proof. If s′ is an existing node in the graph then the proof is trivial due to Proposition 11. Otherwise, the
connection state of all the nodes except s′ does not change and it is easy to see that expand(s, t, s′) sets
only the connection state of s′ as connected (Line 6) in this case. The correctness of the setting connection
state for all the nodes in the graph, hence, is obvious due to the precondition (proof).

Algorithm 10 goal_propagation(s, tg)

1: Input: Node s, tg ∈ A ∪ Ω
2: for each (s, t, s′) ∈ T such that t 6= tg do
3: T = T \ {(s, t, s′)} {Remove all transitions from s except the new one that makes s become goal}
4: isolation_propagation(s′) {Set s′ and its descendants as isolated if there are no more edges

connecting them to the graph after removing (s, t, s′), Algorithm 11}
5: end for
6: for each (s1, t, s) ∈ T do
7: if t ∈ A then
8: Set state(s1) = goal
9: goal_propagation(s1, t)

10: else
11: Let s1, t, s2 be the dual and-edge of (s1, t, s) in T
12: if state(s2) = goal then
13: Set state(s1) = goal
14: goal_propagation(s1, t)
15: end if
16: end if
17: end for

In the goal_propagation procedure (Algorithm 10) the pruning is implemented in Lines 2-5 aimed at re-
moving every transition (s, t, s′), different from the (first) transition (or pair of dual transitions) that makes s
goal-reachable, and setting the node s′ and its descendants as isolated (Procedure isolation_propagation(s′),
Line 4) if there does not exist another transition that connects them to the graph after the removal of edge
(s, t, s′). We have the following proposition for the correctness of the isolation_propagation (Algorithm
11)
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Algorithm 11 isolation_propagation(s) Set s as isolated and recursively set the descendants of s, that
cannot be reached from s0 by a path not via s, as isolated

1: Input: node s
2: if connected(s) = true and {(s1, t, s) ∈ T | connected(s1) = true} = ∅ then
3: Set connected(s) = false
4: for each (s, t, s2) ∈ T do
5: isolation_propagation(s2)
6: end for
7: end if

Proposition 13. Let (s, t, s′) be a transition in the search graph. If the connection state of every node in
the search graph is set correctly (precondition), then after removing (s, t, s′) from the graph and executing
isolation_propagation(s′) the connection state of every node in the search graph is set correctly.

Proof. It is easy to see that the removal of (s, t, s′) and the execution of isolation_propagation(s′) may
only change the connection state of s′ and its descendants from being connected to be isolated and they do
not affect the connection state of other nodes in the search graph. Hence, after removing (s, t, s′) from the
graph and executing isolation_propagation(s′), the connection state of other nodes in the search graph
is still set correctly due to the assumption of the precondition. Thus, we only need to consider the node s′

and its descendants. Consider the following two cases about the condition in Line 2 at the beginning of the
execution of isolation_propagation(s′).

• Case the condition is not satisfied: then the procedure terminates immediately without changing any-
thing. Due to the precondition, we have that ’connected(s′) = true’ holds and, hence, ’{(s1, t, s) ∈
T | connected(s1) = true = ∅’ does not hold. This means that there is an incoming edge to s′

from a connected node (after the removal of (s, t, s′)). Hence, s′ is still connected and so are its de-
scendants. The connection state of s′ and its descendants, hence, is obviously correctly set due to the
precondition and the early termination of the procedure.

• Case the condition is satisfied: then there does not exist an incoming edge to s′ from a connected
node. Hence, the setting at Line 3 for s′ to be isolated it correct. Lines 4-6 recursively execute the
same procedure for every child of s′, every child of each child of s′, and so on. For any child or
deeper descendant of s′, either the procedure early terminates (at Line 2) or not, the connection state
of the node and its descendants is always correctly set as proved for s′. Thus, after the completion of
recursively executing isolation_propagation(s′), the connection state of s′ and all of its descendant
is set correctly (proof).

The proposition has been proved in both cases.

The correctness of the goal_propagation procedure (Algorithm 10) is shown in the following proposi-
tion.

Proposition 14. Let s be a node being explored. Let tg be either an action in A or an observation in Ω such
that if tg ∈ A then there exists an or edge (s, tg, s

′) in T , where s′ is a goal node and if tg ∈ Ω then there
exist a pair of dual and-edges (s, tg, s1) and (s, tg, s2) in T , where both s1 and s2 are goal. We have the
following.
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1. If the state of every node in the graph but s before adding the transition(s) of t from s to the graph is
set correctly, then after adding the transition(s) and executing goal_propagation(s, tg) the state of
every node in the graph including s is set correctly.

2. If the connection state of every node in the graph before executing goal_propagation(s, tg) is set
correctly, then after the execution of goal_propagation(s, tg) the connection state of every node is
set correctly.

Proof. 1. Observe that this procedure changes the state of only goal nodes as goal and it does not affect
the state of other nodes. The proof is, hence, similar to that for Proposition 6.

2. This follows directly from Proposition 13

In the dead_propagation(s) procedure (Algorithm 12) the pruning is implemented in Lines 2-8. First, it
removes each incoming edge (s1, t, s) to a dead node s (Line 3) and if t is an observation then it also removes
its dual and-edge (s1, t, s2) (Line 6) and, since s2 and its descendants may become isolated due to the re-
moval of (s1, t, s2), it then executes the isolation_propagation(s2) (Line 7) to update the connection state
of s2 and its descendants. We have the following proposition for the correctness of the dead_propagation
procedure.

Proposition 15. Let s be a dead node in the search graph.

1. Suppose that the state of every node in the graph was set correctly before s becomes dead. Then after
the execution of dead_propagation(s), the state of every node in the graph is correctly set.

2. If the connection state of every node in the graph before executing dead_propagation(s) is set cor-
rectly, then after the execution of dead_propagation(s) the connection state of every node is set
correctly.

Proof. 1. Observe that this procedure changes the state of only dead nodes as dead and it does not affect
the state of other nodes. The proof is, hence, similar to that for Proposition 7.

2. This follows directly from Proposition 13

Observe that, due to Proposition 15 and the execution of dead_propagation(s) for each dead node s in
the graph, every dead node in the search graph is disconnected and completely isolated from all the other
nodes. Hence, the isolation_propagation from an unexplored node cannot reach s to change the value
of connected(s) and thereby connected(s) can be true. However, this does not affect the correctness of
the search algorithm as PrAO never explores or creates a transition from or to a dead node. The purpose
of the pruning techniques is to avoid exploring (unexplored) disconnected nodes and an unexplored node
is disconnected because it does not have a connected ancestor, except the start node at the beginning of the
search. Observe that an ancestor of an unexplored node cannot be a dead node or a goal node as a goal
node can have only goal descendants due to the pruning so its state must be explored. Thus, the pruning
techniques and isolation_propagation and reconnection_propagation actually can affect only nodes
with unexplored or explored states.

Similar to Proposition 8, we have the following proposition for this search algorithm.
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Algorithm 12 dead_propagation(s)

1: Input: A dead node s ∈ S
2: for each (s1, t, s) ∈ T do
3: T = T \ {(s1, t, s)} {Remove every incoming edge to a dead node s, Proposition 10}
4: if t ∈ Ω then
5: Let (s1, t, s2) be the dual and-edge of (s1, t, s) from s1 in T {s2 6= s}
6: T = T \ {(s1, t, s2)} {Remove also the dual and-edge of (s1, t, s), Proposition 10}
7: isolation_propagation(s2) {Set s2 and its descendants as isolated if they are no longer

connected due to the removal of the edge (s1, t, s2)}
8: end if
9: if @(s1, t

′, s′) ∈ T then
10: Set state(s1) = dead {This is due to the removal of (s1, t, s) & (s1, t, s2) if t ∈ Ω}
11: dead_propagation(s1)
12: end if
13: end for

Proposition 16. If a node ever becomes a goal node or a dead node in the search graph then its state can
never change thereafter.

Proof. The proof is rather easy and similar to that for Proposition 8.

Due to the existence of disconnected nodes in this search, we relax the notion of solution tree as follows.

Definition 7. A search graph Ts = 〈S, T , s0〉 for a contingent planning problem P = 〈F,A,Ω, I, G〉 is
called a extended solution tree for P if:

1. Every connected leaf node in S satisfies the goal G,

2. From each connected non-leaf node s ∈ S there exists either exactly one outgoing or-edge (s, a, s′) ∈
T and s′ ∈ S or exactly a pair of outgoing dual and-edges (s, ω, s1), (s, ω, s2) ∈ T and s1, s2 ∈ S ,
and

3. The graph does not contain a loop, i.e., T does not contain a set of edges of the form

{(s1, t1, s2), (s2, t2, s3), . . . , (sn, tn, s1)}, where n ≥ 1 and s1, s2, . . . , sn are connected.

Observe that a solution tree is also an extended solution tree for the same problem. The converse is not
necessarily true since there may exist some leaf node s in an extended solution tree such that s does not
satisfy the goal if s is not connected. We have the following theorem.

Theorem 9. Let Ts = 〈S, T , s0〉 be an AND/OR search graph for a contingent planning problem P . If Ts
is an extended solution tree for P , then tree(S, T , s0) is a solution for P .

Proof. Observe that, by definition, tree(S, T , s0) is constructed from the start node s0 and based on only
connected nodes, i.e., nodes that can be reached from s0. Thus the isolated nodes in the graph do not affect
tree(S, T , s0). This means that if we remove all the isolated node from the graph to obtain Tg = 〈Sg, T , s0〉
then tree(Sg, T , s0) = tree(S, T , s0). By definition, Tg is a solution tree for P . Thus, tree(S, T , s0) is a
solution tree for P (proof)4.

4This theorem can be also proved exactly the same as that for the first statement of Theorem 1.
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Let Ts be an extended solution for a contingent planning problem P . Informally, Theorem 9 and the
proof for it show that if we ignore or remove all isolated nodes in the extended solution tree Ts, then Ts is
also a solution tree for P and a solution for P can be achieved by extracting from this extended solution tree
in the same manner as if it was a solution tree for P .

Lemma 3. Let P = 〈F,A,Ω, I, G〉 be a contingent planning problem, Ts = 〈S, T , s0〉 be a search graph
constructed by the Plan(F,A,Ω, I, G) procedure (Algorithm 6). Let Tc be the complete search graph
constructed by the Plan(F,A,Ω, I, G) without applying the pruning techniques. Then every goal node in
Tc is not a dead node in Ts.

Proof. By goal distance of s we call the maximum length (number of transitions) of a loop-free path from
s to a leaf node that satisfies the goal G. We will prove this lemma by induction on the goal distance of a
goal node s as follows.

• Base case the goal distance of a goal node s is 0: this means that s |= G. It it easy to see that s is
never be explored so it cannot become a dead node (by definition, a dead node must be a node that
has been explored, proof).

• Inductive step: suppose that the lemma is true for every goal node with a goal distance less than k,
for some k ≥ 1. We will prove that it is true for every goal node s with a goal distance k. Assume
the contrary, i.e., there exists such a node s that is a goal node in Tc with the goal distance k and s is
a dead node in Ts. This means that s has been explored and every child of s became dead (s has at
least a (goal) child as the goal distance of s is k, k ≥ 1, in Tc). This implies that the goal child of s in
Tc was a dead node, a contradiction with the conjunction of the inductive hypothesis and Proposition
16. We have the proof.

We have the following theorem for the PrAO search algorithm.

Theorem 10. Let P = 〈F,A,Ω, I, G〉 be a contingent planning problem and Ts = 〈S, T , s0〉 be a search
graph constructed by the Plan(F,A,Ω, I, G) procedure (Algorithm 6). It holds that

1. If state(s0) = goal then Ts is an extended solution tree for P and P has a solution.

2. If P has a solution then eventually s0 becomes a goal node.

3. Plan(F,A,Ω, I, G) returns NULL iff P does not have a solution.

Proof. Similarly to Theorem 8 and based on Propositions 14 and 15, one can prove that the state of every
node in the search graph is always set correctly after the execution of explore(s) (Line 14) in each iteration
of the while loop in Algorithm 6 and so is it before the execution of explore(s).

1. First we will prove that every connected node in Ts is a goal node. Indeed, due to the pruning
performed by goal_propagation for all the goal nodes, each goal node has exactly either one goal
or-child or one pair of goal and-children, if it is not a leaf node (the second property of a (extended)
solution tree is satisfied). This implies that each goal node can have only goal descendants and cannot
have a descendant that is not a goal node. Since state(s0) = goal, s0 is a goal node and, hence, it
can have only goal descendants. This means that every connected node in Ts is a goal node. Thus,
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every connected leaf node in Ts satisfy the goal G (the first property of an extended solution tree is
satisfied). Now we need to prove that Ts does not contain a loop within connected nodes. Assume the
contrary, that T contains a set of edges as follows:

{(s1, t1, s2), (s2, t2, s3), . . . , (sn, tn, s1)}, where n ≥ 1 and s1, s2, . . . , sn are connected.

Due to the conditions in Lines 5 & 16 of Algorithm 7, there cannot be a transition of the form (s, t, s)
in the graph. Hence, n > 1. Since s1, s2, . . . , sn are connected, they are all goal nodes as proved
previously. Let si be the node that became goal first among the n nodes, 1 ≤ i ≤ n. This means
that at the time si became goal, si+1 was not a goal node, where sn+1 denotes s1. We consider two
cases. si |= G, then si would have never been explored and, hence, there can not exist the edge from
si, ti, si+1, a contradiction. si 6|= G, then si became goal due to an or-edge or a pair of dual and-
edges from si to goal node(s). If si, ti, si+1 belong to the edge(s), then si+1 became goal before si, a
contradiction. Otherwise, si, ti, si+1 would be removed by goal_propagation(si, tg) and si, ti, si+1

would not be created again by the search, since si was a goal node and it would not be explored
again. This leads to another contradiction. Thus, T does not contain such a loop. Thus, all the three
properties of an extended solution tree are satisfied by Ts, i.e., Ts is an extended solution tree. By
Theorem 9, tree(S, T , s0) is a solution for P (proof).

2. Let Tc be the complete graph obtained after it has been fully expanded by the search without applying
the pruning techniques. Similar to the proof for the second statement of Theorem 1, one can prove
that Tc contains a solution tree for P . Due to the fact that the number of all possible belief states is
finite and there is a finite number of DNF-states equivalent to each belief state, Tc is finite. Similar to
the proof for the second statement of Theorem 8, the search will eventually terminate and s0 becomes
a goal node.

Now suppose the search removes all the edges from goal nodes and the edges to dead nodes as pre-
sented earlier but it explores every unexplored nodes including the isolated nodes. By Propositions 9
and 10, the complete graph Tch when it is fully expanded still contains a solution tree so eventually
s0 becomes a goal node.

Finally, we consider the search that fully applies the pruning techniques (PrAO), i.e., it only explores
connected unexplored nodes. Again, we consider the complete graph Tcp obtained after it is fully
expanded (by PrAO). We prove that the complete graph Tcp in this case also contains a solution tree
for P . Assume the contrary, i.e., Tcp does not contain a solution tree for P . The only possible reason
for this because PrAO never explores some isolated nodes to make them become goal nodes and part
of a solution tree and if each of these node is not explored, i.e., not a goal node later, then Tcp does
not contain a solution tree for P . Let s be such a node then s is a goal node in a solution tree Tg that
is a subgraph of Tch. Since Tg and Tcp share the common start node s0, which is connected in Tcp
and an ancestor of s, let s1 be the closest ancestor of s such that s1 is connected in Tcp, there exists
a transition s1, t, s2 in Tg such that s2 is isolated in Tcp, i.e., s1, t, s2 is not in Tcp, and s2 is either an
ancestor of s or s2 = s. Since s is a node that must be explored, s1 is not a goal node (otherwise,
exploring s is not necessary in the search by PrAO as an ancestor s1 of it can be goal-reachable without
exploring it). Since s1 is in Tcp and connected in Tcp and s1 6|= G (otherwise there does not exist the
transition s1, t, s2), s1 must be explored in Tcp as Tcp has been fully expanded by PrAO. This implies
that s1, t, s2 was created by PrAO and it is not in Tcp. This means that s1, t, s2 was removed by either
goal_propagation(s1) or dead_propagation(s2) (by PrAO). As s1 is not a goal node, this implies
that s2 is a dead node in Tcp. By Lemma 3, this is impossible as s2 is a goal node in Tch and, hence,
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it is also a goal node in Tc.

3. We prove that if Plan(F,A,Ω, I, G) returns NULL then P does not have a solution. Assume the
contrary, then s0 cannot be a dead node (Lemma 3) and will become goal (by the second statement of
this theorem). This implies that Plan(F,A,Ω, I, G) will return a solution, a contradiction.

Now we prove that if P does not have a solution then Plan(F,A,Ω, I, G) returns NULL. Since P
does not have a solution, s0 cannot become goal (otherwise the problem has a solution due to the first
statement of this theorem). Thus, Plan(F,A,Ω, I, G) terminates only when the start node s0 is dead,
i.e., P does not have a solution (Lemma 3), or the search graph is fully expanded and s0 is not goal,
i.e., P does not have a solution either due to the second statement of this theorem.

Theorem 10 shows that PrAO is sound and complete.
To illustrate the PrAO algorithm, we consider the following example.

Example 3. Let P = 〈{f, g, h}, {a, b, c, d, e, t, p1, p2}, {sg}, true, {f,¬g, h}〉 be a contingent problem.
The specification of the actions of P are as follows.

• pre(a) = ∅, O(a) = {∅ → f}; 5

• pre(b) = {f}, O(b) = {∅ → {¬f, g}};

• pre(c) = {f}, O(c) = {∅ → {f,¬g}};

• pre(d) = {¬f, g}, O(d) = {∅ → {f,¬g}};

• pre(e) = {g}, O(e) = {∅ → {¬f,¬g}};

• pre(t) = {¬g}, O(t) = {∅ → {¬f,¬g}};

• pre(p1) = {f,¬g}, O(p1) = {∅ → h};

• pre(p2) = {¬f,¬g}, O(p2) = {∅ → {f, h}};

• pre(sg) = ∅ and l(sg) = g.

Figure 2 shows a search graph for the problem P , where the pruning is not applied, i.e., all the outgoing
edges from every node, that has been explored, remain in the graph. In the figure, solid links represent
or-edges and dash links represent and-edges. Two dual and-edges are connected by an arc. It is easy to see
that the problem has different solutions, including the following transition trees:

1. a ◦ b ◦ d ◦ p1;

5We simplify the writing as O(a) contains only one outcome.

31



2 3 4

5 6

6

7 8

9

true

f ¬g

1

g

¬f ⋀ g f ⋀ ¬g f ⋀ g ¬f ⋀ ¬g

f ⋀ ¬g ⋀ h f ⋀ ¬g

a SgSg

b

c
Sg

Sg

d

e

a
p1

t

p2

a

a

a

ta

e

b

Figure 2: A search graph (without pruning) for the problem P

2. a ◦ c ◦ p1; or

3. sg(e ◦ p2 | t ◦ p2).

Depending on the order of nodes selected during its execution, PrAO would return different solutions.
For illustrative purpose, let us look at this in more details. For simplicity, we will refer to a node by its
number. Initially, node 1 is created. The expansion of node 1 leads to the creation of nodes 2, 3, and 4 (and
the addition of these nodes to S). Node 1 becomes explored. None of the new nodes satisfies the goal, so
goal propagation is not triggered. Node 1 has some outgoing edges, so no dead-end propagation is called
and, hence, no isolation propagation is executed either. Since no successor node of node 1 exists in S, no
reconnection propagation is performed. We consider two orders of expansion by PrAO:

• Assume that we expand nodes 2, 5, and 6 in this order and each expansion is executed in the order
the actions are given. Expanding 2 results in the creation of nodes 5, 6, and 7 with the corresponding
edges. No propagation is executed.
Expanding node 5 creates the edges (5, a, 7), (5, d, 6) to the already existing nodes 7 and 6 and the
pair of a new node 8 and a new edge (5, e, 8), denoted by (8, (5, e, 8)). The reconnection propagations
at nodes 6 and 7 do not change anything since they are not isolated.
Expanding nodes 6 creates the edges (6, b, 5), (6, t, 8), and the pair (9, (6, p1, 9)). Since node 9 sat-
isfies the goal G, it is marked as goal and so is 6 as p1 is an or-edge. Then goal_propagation(6, p1)
is executed, which removes (6, b, 5), (6, t, 8). Nodes 5 and 8 still have another incoming edge so
they are not isolated by isolation-propagation at this point. If node 5 is considered before node 2
then node 5 becomes goal first, the edge (5, d, 6) is retained and the edges (5, a, 7) and (5, e, 8) are
removed. Node 8 is isolated by the isolation-propagation as it does not have an incoming edge. Then
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goal_propagation(2, b) removes every outgoing edges from node 2 but (2, b, 5). Node 7 now is iso-
lated. Then node 1 becomes goal and nodes 3 and 4 are isolated with no incoming edges. The first
solution is found with the remaining graph illustrated in Figure 3.
Similarly, if node 2 is considered before node 5 (inside goal_propagation(6)), then the second solu-
tion is returned with the remaining graph as in Figure 4.
• Suppose that the order of expansion is node 3 and node 8. The expansion of node 3 creates nodes 7
and 8. Expanding node 8 creates nodes 6 and 9 and edges from node 8 to them. Node 9 becomes goal
and, hence, so does node 8. The goal propagation removes (8, a, 6), isolates 6, set node 3 as goal,
removes (3, a, 7), and isolates 7. Suppose that node 4 is better than node 2 and worse than node 6
and node 7, in terms of heuristic. Then PrAO selects node 4 to expand next, since nodes 6 and 7 are
isolated. Expanding node 4 creates two edges from node 4 to nodes 6 and 8, reconnecting node 6 and
setting node 4 as a goal node. The goal propagation results in the graph 5 and the third solution is
achieved.

6. The Contingent Planner DNFct and Empirical Evaluation

6.1. The DNFct Planner
DNFct is a progression-based contingent planner that employs the PrAO search in belief space under the

minimal-DNF representation extended in this paper for contingent planning solutions. DNFct is built on top
of the conformant planner DNF [18]. In this paper, DNFct uses the heuristic function defined by the pair
〈hgoal(∆), hlit(∆)〉 in the lexicographical order, where

• hgoal(∆): the number of subgoals satisfied by the DNF-state ∆.

33



true

f

¬f ∧ g

g

f ∧ ¬g

¬g

f ∧ g ¬ f∧ ¬g

f ∧ ¬g ∧ h

1

2 3

5 6 7 8

9

4

a

c

p1

d

Figure 4: Second solution: a ◦ c ◦ p1

• hlit(∆): the number of known literals in ∆.

The first component of this heuristic function is the same as that for DNF [18]. The second component—
the number of known literals in the DNF-state—prioritizes expansion of nodes that contain less uncertainty
and have a smaller size, as the more known literals in the DNF-state the less partial states the DNF-state
contains in general. Note that this heuristic function differs than that used by DNFct in the preliminary work
[18]. As a consequence, one may observe a slight difference between the results DNFct performed reported
in the two papers. This work has tried with the heuristic function similar to that proposed by Hoffmann
and Brafman [5, 10] but the performance did not improve. This is due to the incomplete information—that
makes the estimated distance to the goal even less accurately, besides the relaxation of the problem.

6.2. Other Planners and Experimental Setup

This work compares DNFct with CLG [1], contingent-FF [10], and POND 2.2 [7] obtained from their
websites. These planners are known to be among the best currently available contingent planners. In the
experiments, contingent-FF was executed with both options—i.e., with and without helpful actions—and
only the best result for each instance is reported in this paper. POND was executed using the AO* search
algorithm (aostar). As observed from the experiments, the execution time of CLG can vary in a very wide
range (e.g., from a few to hundreds of seconds) for a same instance. Hence, for CLG, the best result of
several execution times for each instance is reported.

All the experiments have been performed on a Linux Intel Core 2 Dual 2.66GHz workstation with 4GB
of memory. The time-out limit was set to two hours.

In the result tables, time, size, and depth denote the overall execution time, the number of actions in the
solution, and the longest path from the start node to a leaf node of the solution tree, respectively. The results
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of POND omit the depth of each solution, since POND does not report this value. Usually, the depth and
the size of a solution tree are criteria for evaluation of the quality of the solution6.

In the result tables, OM denotes out-of-memory, TO means time-out, E indicates incorrect report, MC
stands for "too many clauses" of large instances for contingent-FF to handle, NA refers to the instances that
are non-applicable for the planner (e.g., NA is in CLG’s column on btnd because CLG does not consider
non-deterministic actions).

Observe that even though DNFct employs a greedy best first search in AND/OR graph for solutions, not
an AO* search as contingent-FF and POND use7, the quality of the solutions found by DNFct is not worse
than those found by the other planners, in general. I suspect that this is because contingent-FF and POND
use an inadmissible heuristic function. Moreover, the heuristic based on the number of actions in a solution
of a relaxed problem can be very inaccurate in the presence of incomplete information.

One may observe that there are several problems for which our experimental results differ from those
reported by the others. A possible reason for this is that the downloaded versions of the other planners
perform differently than their predecessors, and/or the environments for conducting the experiments are
different (e.g., different hardware/OS).

6We consider the depth to be more important, as it is the maximum number of actions the agent needs to execute to obtain the
goal.

7POND supports several options for search algorithms, this work selected AO* search option in the experiments.
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6.3. Benchmarks

The benchmarks used in the experiments for this paper come from:

1. the distributions of contingent-FF and POND, including btcs, btnd, bts, ebtcs, and ebtnd—which
are different variants of the bomb in the toilet—and the variants of block, logistic, grid, medpks,
and unix (Table 1);

2. the distribution of CLG, including cballs-n-m, doors-n, localize-n, and wumpus-n—which are
variants of the respective grid domains (Table 2);

3. a modification of several challenging conformant domains, including edispose, e1d, ecc, and epush
(Table 3).

The contingent problems in the last set are variants of the following conformant domains in the grid
family: dispose, 1-dispose, corner-cube, and push, respectively. These problems are modified by mov-
ing out some e-conditions of actions as the preconditions of the actions in the new problems and adding
the corresponding sensing actions. This enforces the planners to perform sensing actions in order to ob-
tain solutions for the problems. For example, in the dispose domain, the action pickup(o, p) is given
by ({at(p)}, {obj_at(o, p) → holding(o) ∧ ¬obj_at(o, p)}); in its variant edispose, the sensing action
sense(o, p) with `(sense(o, p)) = obj_at(o, p) and pickup(o, p) is changed to ({at(p), obj_at(o, p)}, {true→
holding(o)∧¬obj_at(o, p)}), meaning that pickup(o, p) is applicable only if both the agent and the object
o are at location p. Thus, without sensing, the agent cannot perform the actions and, hence, a solution for the
problem cannot be achievable. The modifications in the domains e1d, ecc, and epush have done similarly.

6.4. Results on Problems from contingent-FF and POND Distributions

Table 1 reports the experimental results on the problems from contingent-FF and POND distributions.
As one can see, DNFct outperforms all the other planners on seven out of twelve domains, including btcs,
btnd, bts, ebtcs, ebtnd, medpks, and unix. DNFct also scales up very well on these domains as it can
solve the largest instances within a small total run-time, while the other planners cannot solve or spent much
longer time for a solution for those instances. The sizes of solution trees for these problems found by DNFct
are comparable to those found by the other planners. Observe that DNFct lost to the other planners on the
smallest instance of unix, a domain it is strong at. This is due to the overhead of the translation process
of the input theory incurred in DNFct. For most small instances, DNFct spent most time on the translation
and preprocessing phase, e.g., for unix-2 DNFct spent only 0.025 second for the search while it spent 0.62
second for the translation and preprocessing phase. In this group, DNFct does not perform well on block,
clogistic, elogistic, and grid. This is because the heuristic function mostly based on the number of satisfied
subgoals, that DNFct uses, is misleading on these problems.

POND is the best at block-3 and able to solve several small instances, but its overall performance is poor.
contingent-FF outperforms the other planners on all instances of grid domain and several small instances
of some other domains; including block-7, elogistic-5, and elogistic-7, and unix-2. This planner is also
the second best, behind DNFct, on btnd and ebtnd. Overall, CLG is the second best planner as it is the only
one that can solve the largest instances of block, clogistics, and elogistics, and performs second best on
most of other domains, except btnd and ebtnd.
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Problem DNFct CLG contingent-FF Pond
Time Size Depth Time Size Depth Time Size Depth Time Size

block-3 0.48 5 4 0.09 6 4 0.02 6 4 0.01 5
block-7 11.6 69 28 4.88 55 9 0.46 49 12 OM
block-11 OM 36.27 115 18 TO -

btcs-70 2.76 139 70 14.61 140 140 123.64 139 70 74.04 139
btcs-90 5.63 179 90 41.35 180 180 476.8 179 90 TO
btcs-150 27.5 299 150 379 300 300 MC -

btnd-70 1.47 209 72 NA 536.6 140 72 TO
btnd-90 2.28 369 92 - 2070 180 92 -
btnd-150 7.47 449 152 - TO -

bts-70 1.53 139 70 11.69 70 70 1672 70 70 TO
bts-90 2.6 179 90 29.83 90 90 TO -
bts-150 9.73 299 150 251 150 150 - -

clogistics-7 0.77 428 136 0.16 210 22 E 9.76 193
clogistics-L OM 148 37718 73 - OM

ebtcs-70 1.04 139 70 25.49 209 71 63 139 70 24.69 139
ebtcs-90 1.56 179 90 71.19 269 91 255.5 179 90 TO
ebtcs-150 4.57 299 150 658 449 150 MC -

ebtnd-70 1.28 276 72 NA 16.3 208 72 TO
ebtnd-90 1.91 356 92 - 53.15 268 92 -
ebtnd-150 5.95 596 152 NA MC -

egrid-3 1.78 350 47 0.75 111 28 943 58 41 105 148
egrid-4 3.06 849 54 4.75 884 48 TO OM
egrid-5 10.1 1469 136 1.65 208 40 - -

elogistics-5 0.78 301 179 0.1 147 21 0.02 156 23 0.67 143
elogistics-7 0.9 428 136 0.14 210 22 0.04 223 23 0.95 212
elogistics-L OM 90.3 36152 73 TO OM

grid-3 1.74 381 67 0.74 114 30 0.06 23 23 104 178
grid-4 2.9 849 63 4.62 872 51 0.14 49 49 OM
grid-5 12.34 1337 81 1.55 212 40 0.15 46 46 -

medpks-70 1.49 141 72 8.12 141 71 968.6 140 71 TO
medpks-99 4.57 199 101 25.6 199 101 TO -
medpks-150 9.93 599 152 106.4 299 151 - -

unix-2 0.65 48 37 0.41 50 39 0.13 48 37 1.71 48
unix-3 1.87 111 84 5.39 113 86 3.84 111 84 OM
unix-4 16.1 238 179 79.8 240 181 142.8 238 179 -

Table 1: The performance of DNFct and other planners on problems from contingent-FF and POND distributions
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6.5. Results on Challenging Problems from CLG Distribution and Modification of Conformant Problems

Tables 2 and 3 contains the experimental results on the two set of challenging problems proposed by the
authors of CLG and by this work, respectively.

Problem DNFct CLG contingent-FF Pond
Time Size Depth Time Size Depth Time Size Depth Time Size

cball-3-2 0.86 609 40 2.71 2641 34 TO 2.2 597
cball-3-3 10.5 8030 57 49.1 60924 48 - 39.7 4808
cball-5-1 1.09 119 68 14.7 586 65 - 527 199
cball-5-2 21.5 5165 107 289 72817 107 - OM
cball-8-1 10.42 307 162 540 2411 171 - -
cball-8-2 780 27k 281 TO - -
cball-8-3 OM - - -
doors-7 4.92 2193 53 7.93 2153 51 E 17.99 2159
doors-9 44.3 45k 89 594 46024 95 - 1262 44082
doors-11 OM TO - TO
localize-5 0.54 48 31 0.6 112 24 42 53 53 TO
localize-7 0.69 80 48 3.07 231 37 MC -
localize-9 0.82 110 61 13.49 386 50 - -
localize-11 1.33 177 90 49.9 577 63 - -
localize-13 2.31 216 136 OM - -
wumpus-5 2 1227 35 0.58 754 41 E 4.65 587
wumpus-7 56.4 30319 69 8.65 6552 57 - TO
wumpus-10 OM 1370 280k 100 - -

Table 2: The results on challenging problems from CLG distribution

Most of these problems are harder than those reported in Table 1 due to the higher uncertainty in the
initial belief state and, more importantly, in the e-conditions of the actions in the problems. contingent-FF
and POND can only solve a few small instances, except those of the ecc domain on which contingent-FF
scales up better than CLG and POND. Again, CLG is the only competitor of DNFct on most problems
in these two sets. Out of all four domains proposed by the authors of CLG, DNFct outperforms all the
other planners on three (cball-n-m, doors-n, and localize-n). On the other hand, CLG performs best in
wumpus-n. DNFct also offers the best performance on the modifications of conformant problems: edis-
n-m, e1d-n-m, ecc-n-m and epush-n-m. Observe that, CLG scales up well on the first dimension (n) of
cball-n-m, edis-n-m, e1d-n-m, and epush-n-m but it has trouble with the second dimension (m), on which
DNFct scales much better. In these problems, n denotes the size of the grid of n×n cells (locations) andm is
the number of objects given in the problem. For example, in the instance epush-2-3, there are 2×2 = 4 cells
in the grid and 3 objects given in this problem instance. In these problems, predicates of the form at(pi,j)
indicate that the robot is at the cell (i, j) of the grid (location pi,j) and predicates of the form obj_at(ok, pi,j)
indicate that the object ok is at the location pi,j , for i, j ≤ n and k ≤ m. Initially, the location of each object
is unknown among the n×n locations. Hence, in the description of the initial world there is a set ofm one-of
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Problem DNFct CLG contingent-FF Pond
Time Size Depth Time Size Depth Time Size Depth Time Size

edisp-3-2 0.64 397 36 0.59 752 39 E TO
edisp-3-3 1.58 3891 57 6.45 8552 52 - -
edisp-5-1 0.99 98 60 2.85 177 60 - -
edisp-5-2 3.45 2753 97 31.3 7993 87 - -
edisp-10-1 46.9 400 233 140 1051 237 - -
edisp-10-2 298.3 31357 402 TO - -
edisp-10-3 OM - - -
e1d-3-1 1.15 33 20 19.7 50 20 E TO
e1d-3-3 1.74 3557 88 392 15294 62 TO -
e1d-5-1 1.57 99 59 2061 200 58 - -
e1d-5-3 88.5 76088 417 TO - -
e1d-10-1 164 399 233 - - -
e1d-10-2 461 47652 665 - - -
e1d-10-3 OM - - -
ecc-40-20 1.15 466 83 2089 275 75 37.1 288 63 TO
ecc-75-37 3.24 903 204 TO 999 529 114 -
ecc-99-49 6.11 1.1k 184 - 5.3k 697 150 -
ecc-119-59 9.18 1.4k 292 - TO -
epush-3-1 0.53 39 29 0.23 50 24 0.6 61 37 TO
epush-3-3 1.32 1249 87 5.71 6196 44 TO -
epush-6-2 9.76 5001 241 571 24197 148 - -
epush-6-3 88 103k 383 TO - -
epush-10-1 55.2 731 268 MC - -
epush-10-2 392 64808 845 - - -
epush-10-3 OM - - -

Table 3: The results on challenging problems modified from conformant problems

clauses of the form one-of(obj_at(oi, p1,1), . . . , obj_at(oi, pn,n)), for i = 1, . . . ,m. This implies that the
number of possible states in the initial belief state is linear in (n× n)m, i.e., exponential in m—the number
of objects—with the base n2—the number of locations. This explains why all the planners, including CLG
and DNFct, scale poorly on m when n is pretty large. In general, however, the scalability of DNFct on these
domains is significantly better than the others thanks to the efficiency of the minimal-DNF representation
and the PrAO search algorithm employed by DNFct. On the other hand, DNFct underperforms CLG on
wumpus-n. This can be explained as follows. First, the goal of each instance of this domain contains only
one subgoal that needs to be obtained (the other subgoal already exists in the initial belief state and never
disappears). Thus, the heuristic function based mostly on the number of subgoals used in DNFct does not
help much for the search to find a solution. Second, each problem instance of this domain contains a large
number of disjunctive clauses (or-clauses), making the size of the initial DNF-state very large. For example,
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the initial DNF-state of wumpus-10 contains 2,567,504 partial states.

6.6. Effectiveness of the Pruning

This subsection investigates the effectiveness of the pruning techniques (implemented by the isola-
tion/reconnection propagation procedures) incorporated in PrAO.

Tables 4 and 5 report the detailed results of the performance of DNFct on a large representative set
of problems with/without using the pruning technique. In these tables, columns 2-6 compare the results
obtained with the use of the pruning techniques (PrAO left) to those without the use of the pruning (NoPr,
right). If the two compared values are equal then the right one is omitted (blank) for simplicity. The question
mark represents the unknown value due to time-out or out-of-memory the planner encountered during the
search for a solution of the problem. The second column reports, for each problem instance, the search time
of DNFct, with the two options, instead of the overall execution time. The reason is that the translation and
preprocessing process on each problem instance is independent on the use of the pruning techniques. The
last three columns represent the number of reconnected nodes—i.e., the isolated nodes become connected
again by the execution of the reconnection propagation procedure—in the solution tree (rgoal), the number
of (unexplored) reconnected nodes having chosen to be explored, and the number of nodes ever isolated by
the isolation propagation procedure, respectively.

It is easy to see that, for most problems, the application of the pruning results in a significant improve-
ment in the performance of DNFct, e.g., the number of generated and explored nodes (columns 5-6) is
smaller and, hence, the execution time (column 2) is shorter. There is a number of large problem instances
which DNFct can solve only with the use of the pruning, e.g., cball-3-4, edisp-3-5, epush-3-5, epush-6-3,
and epush-10-2.

Observe that ebtcs-150 is the only problem where the application of the pruning reduces slightly the
performance of DNFct. For this problem, the pruning does not help as neither of the two versions of DNFct
(with or without pruning) explored a node among the 11,323 nodes isolated by the pruning and, hence, the
two versions of DNFct generated (resp. explored) the same set of nodes. The time difference (0.06 second),
however, is insignificant and one can see that it is also the overhead of the pruning applied in DNFct. This
means that the overhead of the pruning is rather small (17.4% of the search time and 13.1% of the overall
execution time for the ebtcs-150 problem).

The difference in the quality of the solutions (columns 3-4) found by the two versions of DNFct depends
on the domain. However, the difference is insignificant for most problems.

One can see that, for most problems, the isolated nodes form a large portion of the generated nodes (see
the last column and the left sub-column of column 5) while the number of reconnected nodes chosen to
be explored (column 8) is rather small compared with the number of isolated nodes. This implies that the
pruning eliminates a large portion of the search space for most problems. Column 7 indicates that, for most
problems, there is a number of reconnected nodes in the solution tree. This confirms the necessity of the
reconnection propagation procedure that assures the completeness of the PrAO algorithm.

7. Conclusion

This paper presented the underpinnings of contingent planning along with a standard AND/OR forward
search algorithm for contingent planning solutions. The paper extended the minimal-DNF representation
of belief states introduced in conformant planning to handle non-deterministic and sensing actions for con-
tingent planning. It then developed the new AND/OR forward search algorithm PrAO, extended from the

40



Problem search time solution size sol. depth generated nodes explored nodes rgoal rexp isolated

PrAO NoPr PrAO NoPr PrAO NoPr PrAO NoPr PrAO NoPr

block-7 10.7 11.7 69 74 28 43 42.7k 52.5k 42.1k 52.5k 1 47 704

btcs-150 27.4 27.5 299 150 23.2k 299 448 0 0 22.8k

btnd-150 5.88 5.98 449 152 12.8k 12.8k 595 895 0 0 12k

bts-150 8.56 8.564 299 150 22947 299 0 0 22.5k

ebtcs-150 3.45 3.44 299 150 11.7k 299 0 0 11.3k

ebtnd-150 4.41 4.54 449 152 12.6k 12.7k 597 972 0 0 11.9k

grid-3 0.69 1.05 381 394 67 53 8658 14.4k 5910 14k 1 71 4408

grid-5 11.1 19.9 1337 1327 81 108 142.4k 267.3k 77.6k 266.7k 0 798 88.6k

egrid-3 0.4 0.84 350 392 47 45 5044 11k 3428 10.6k 0 10 2471

egrid-5 8.3 16.3 1469 1195 136 74 112k 245.9k 61k 245.4k 0 580 69.9k

clogistics-5 0.17 0.295 302 312 180 195 4552 6908 1243 6738 6 6 3608

clogistics-7 0.225 0.35 419 233 123 66 6293 8267 1657 8209 8 8 5066

elog.-5 0.21 0.34 301 310 179 193 4552 6908 1243 6738 6 6 3608

elog.-7 0.29 0.41 428 233 136 66 6293 8267 1657 8209 8 8 5061

medpk-99 2.6 26.7 399 102 10.3k 10.4k 399 5347 0 0 9703

medpk-150 8.8 134.3 599 152 22.9k 23.1k 599 11.8k 0 0 22k

unix-4 0.73 0.74 238 179 630 807 294 586 0 0 317

doors-7 0.88 1.45 2193 53 6289 10.7k 4385 10.3k 0 0 2651

doors-9 34.6 69.9 44998 45k 89 131.8k 248.6k 93.6k 242k 0 0 53952

wumpus-5 0.57 0.9 1227 1231 35 41 4106 6431 2930 6213 0 0 1725

wumpus-7 47.6 112.4 30.3k 30.6k 69 74 134.8k 302.3k 96.6k 298.2k 0 0 56365

Table 4: Detailed experimental results for DNFct: with pruning (PrAO, left) v.s. without pruning (NoPr, right)
(columns 2-6). The omitted value (right) is the same as that compared with it (left). sol. depth: the depth
of the solution; generated nodes (explored nodes): number of generated (explored) nodes. rgoal: number
of reconnected nodes in the solution tree; rexp: number of reconnected nodes that were explored later; isol:
number of nodes ever isolated.
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Problem search time solution size sol. depth generated nodes explored nodes rgoal rexp isolated

PrAO NoPr PrAO NoPr PrAO NoPr PrAO NoPr PrAO NoPr

localize-9 0.17 0.36 110 61 372 1037 295 1006 0 1 142

localize-13 1.14 1.93 216 136 877 2066 768 2019 0 0 232

cball-3-3 10 35.8 8030 6324 57 55 25.2k 58.6k 11.6k 58.4k 442 442 18.3k

cball-3-4 340 OM 93.4k ? 73 ? 298.4k ? 132.3k ? 5.6k 5.6k 222k

cball-5-2 21 36.7 5165 2999 107 105 18.4k 26.9k 9474 26.7k 417 417 13.1k

cball-8-2 761 1702 27k 15.7k 281 272 123k 265k 61.9k 264k 1.6k 1.6k 87.3k

e1d-3-3 1.07 1.87 3555 3588 88 98 11.8k 14.8k 6023 14.7k 469 472 8940

e1d-5-2 2.51 4.42 2874 2795 128 175 12.1k 20.8k 6064 20.6k 292 292 8846

e1d-5-3 89.6 230 76.1k 73.2k 411 308 314.4k 594.3k 150.9k 593.9k 8.8k 8.8k 238k

e1d-9-2 138 412 31.6k 29.8k 748 682 166.1k 557.2k 81.3k 556.3k 2.2k 2.2k 119k

ecc-40-20 0.55 7.07 466 596 83 190 6746 66k 2255 65.9k 3 3 4815

ecc-75-37 2.43 63.9 903 873 204 196 18k 373k 5979 371k 4 4 12.8k

ecc-119-59 7.96 373 1465 1619 292 310 39.8k 1457k 13k 1449k 5 5 28.5k

edisp.3-3 1.05 2.59 3891 1870 57 57 12.7k 16.4k 6684 16.3k 459 450 9k

edisp.3-5 193 OM 334.5k ? 90 ? 1224k ? 590.6k ? 47.5k 49k 940.9k

edisp.5-3 82.3 291 72.4k 14.5k 143 148 300.3k 359.5k 144.4k 359.2k 8.1k 8k 223.4k

edisp.9-2 118 340 22.7k 7029 311 408 121k 260k 59.3k 259k 1.4k 1.4k 85.2k

epush-3-3 0.72 5.99 1249 2605 87 80 6344 54.5k 2830 54.4k 111 172 5143

epush-3-5 120 OM 33.3k ? 149 ? 377.4k ? 147.6k ? 3.4k 11.5k 329k

epush-6-2 7 79.1 5030 7644 241 338 25.4k 265.2k 14.4k 264.9k 250 390 15.7K

epush-6-3 354 TO 103k ? 395 ? 793.9k ? 413.4k ? 6.3k 13.8k 544k

epush-10-2 319 TO 64.3k ? 845 ? 394.2k ? 245.6k ? 2027 3.7k 201k

Table 5: sol. size (sol. depth): size (depth) of the solution; generated nodes (explored nodes): number of
generated (explored) nodes. rgoal: number of reconnected nodes in the solution tree; rexp: number of
reconnected nodes that were explored later; isolated: number of nodes ever isolated.
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presented standard algorithm by incorporating the minimal-DNF representation and novel pruning tech-
niques for contingent solutions. While the minimal-DNF-representation provides a compact encoding of
belief states and fast state computation, PrAO’s goal is to minimize the number of nodes generated and ex-
plored during the search. Both the minimal-DNF-representation and the pruning allow for the development
of a complete contingent planner. The correctness of most theoretical results, except several trivial ones, has
been provided in the paper.

The presented techniques have been implemented in a new contingent planner, called DNFct, which was
experimentally evaluated against state-of-the-art contingent planners. The results showed that DNFct is very
competitive with other planners and scales up better in many domains.

For a better understanding of the effectiveness of the pruning technique incorporated in PrAO, the work
furthered the empirical study by comparing the performance of DNFct with a variant of it where the pruning
techniques were not applied. The experimental results showed that the pruning eliminates a large portion of
the search space and improves the performance significantly on most problems. There are also a number of
large problem instances which only the DNFct with the use of the pruning techniques can solve.

Although DNFct exhibits great performance and scalability, several open questions still remain. For ex-
ample, there are a few problems on which disjunctive representation appears to be unsuitable (e.g.,wumpus,
dispose,...) or the heuristic function employed in DNFct does not work well (e.g., block, the variants of
logistics, and grid). As such, for problems rich in disjunctive information, another representation might
be needed (e.g., conjunctive normal form). Furthermore, the study of more sophisticated effective heuris-
tic schemes would enhance the performance of DNFct or any contingent planners—that employ the PrAO
search with an efficient representation method—greatly such that they would be able to solve a wide range
of real-life applications.
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