
On Belief State Representation and Its Application in Conformant Planning

Son Thanh To and Tran Cao Son and Enrico Pontelli

Department of Computer Science
New Mexico State University

{sto | tson | epontell}@cs.nmsu.edu

Abstract

This paper proposes a general methodology for developing a complete transition function that can compute
exact successor belief states under an arbitrary representation after execution of actions, and its application
to conformant planning. The approach is built on an abstract notion of belief state representation, called
R-state, and a transition function ΦR for computing successor R-states after an action is performed. The
paper introduces a set of basic operations over R-states as components of ΦR, along with the correspond-
ing abstract algorithms for the implementation of ΦR. The paper then proposes the use of several compact
logical formula forms, including minimal-DNF, minimal-CNF, and prime implicates, as possible represen-
tations of belief states. For each of these representations, the paper investigates the instantiation of the
abstract function ΦR into a precise transition function, along with a discussion of the corresponding compu-
tational properties. Each of these representation method is deployed in a new separate conformant planner.
The paper provides an evaluation of the effectiveness of this approach, by comparing one of the resulting
planners—DNF, that employs minimal-DNF representation—against other state-of-the-art planners. The
experiments show that DNF is highly competitive with other planners, thus providing a validation of the
proposed approach. To emphasize the effectiveness of belief state representation, the paper proposes a new
set of problems, that are beyond the capability of DNF and other planners, yet they can be solved by some
of our planners using different representations, like minimal-CNF and prime implicates.

Keywords: Belief State Representation, Conformant Planning, Disjunctive Normal Form Formula,
Conjunctive Normal Form Formula, Prime Implicates, Transition Function.

1. Introduction

Conformant planning [9, 20] is the problem of generating a sequence of actions that can achieve a given
goal regardless of the fact that the knowledge about the initial state of the world is incomplete. As an
example, consider a robot that needs to clean two rooms r1 and r2. Initially, the robot knows that it is in
room r1 but it does not know whether its trash bag is empty or not. The robot can move between the rooms,
vacuum the room if its trash bag is empty, and empty the trash bag. Vacuuming a room results in the trash
bag being full. An obvious solution for the robot is to empty the bag, vacuum room r1, empty the bag, move
to room r2, and vacuum room r2.

Conformant planning has been known to be one of the most challenging problems in automated planning
[2, 10] due to conditional action effects in presence of incomplete information. Since its introduction, con-
formant planning has attracted the attention of several researchers—leading to the development of sophisti-
cated state-of-the-art conformant planners, such as Conformant-FF (CFF) [12], KACMBP [7], POND [5],

Preprint submitted to AIJ December 20, 2012

T0 [18, 19], T1 [1], CPA1 [29, 28], CPLS [15], and GC[LAMA] [16]. It is important to observe that most
of the best performing planners are best-first search and progression-based planners, whose development
starts with the selection of a representation language and the definition of a progression function that, given
a state and an action, computes the next state(s) of the world.

To deal with incomplete information about the world, the notion of a belief state—defined as the set of
possible states—has been introduced and is widely used in the literature for planning in presence of incom-
plete information [20, 3]. An advantage of this notion lies in its simplicity in representing and reasoning
about effects of actions in the presence of incomplete information about the initial state. Indeed, any formal-
ization of Reasoning about Action and Change (RAC) with complete information about the world state can
be straightforwardly generalized to deal with the incompleteness of the state by dealing with each individual
possible state in the belief state separately and maintaining the set of resulting states (belief state). More
precisely, given a transition function Φ that computes the resulting state after the execution of an action a
in a state s, denoted by Φ(a, s), the function Φ̂(a, S) = {Φ(a, s) | s ∈ S} characterizes the transitions
between belief states and can be used for reasoning with incomplete information.

A challenging aspect in the use of belief states in conformant planning is their size—which is exponential
in the number of propositions with unknown truth value. Different solutions for this problem have been
proposed. For instance:
• Conformant-FF (CFF) [12] uses an implicit representation of a belief state as a sequence of actions

from the initial state to the belief state;
• KACMBP [7] and POND [5] employ a BDD-based representation [4];
• CPA [29, 28] approximates a belief state by a set of subsets of states (partial states);
• T0 [18, 19] transforms the conformant planning problem to classical planning problem;
• Similar to CFF, T1 [1] represents a belief state by a subset of it with a set of literals, called tentative

literals, whose satisfaction in the belief state is verified in the same manner as CFF does.
This paper presents a novel approach to the aforementioned problem, by proposing different compact

propositional logical formulae as alternative belief state representations; we show that the use of a compact
belief state representation can significantly improve the planner’s performance and scalability. For each
representation, this work develops a transition function for efficiently computing the exact successor belief
states after the execution of actions. The paper presents a general methodology for developing a complete
transition function for an arbitrary propositional representation. It is worth noting that defining such a
transition function for even a concrete representation other than belief states is particularly challenging and
not explored by other works. It is inherently challenging due to context-dependent action effects in presence
of incomplete information, i.e., the effect of actions depends on the true state while the true state is uncertain
among the set of states represented in a formula.

We start with the development of a generic transition function, that can be used with different repre-
sentations, for computing successor belief states in the form of each representation. The new transition
function is defined over classes of formulae—calledR-states, representing belief states—and deals with the
incomplete information on a need-to-know basis. We devise an algorithm for the implementation of the tran-
sition function that can be modularly instantiated, depending on the concrete belief state representation. We
identify different features that affect the computation of the transition function and prove that the algorithm
is optimal in term of the minimum number of intermediate formulae necessarily defined in the function, a

1 Different versions of CPA have been developed. In this paper, whenever we refer to CPA, we will imply CPA(H), the version
used in IPC 2008, http://ippc-2008.loria.fr/wiki/index.php/Main_Page.

2

http://ippc-2008.loria.fr/wiki/index.php/Main_Page

factor that impacts the complexity of the function.
We illustrate the new proposal by instantiating it in three different concrete representations of belief

states:
• minimal-DNF, a compact form of disjunctive normal form formulae,
• minimal-CNF, a compact form of conjunctive normal form formulae, and
• prime implicates, a well-known, special form of minimal-CNF.

For each of these representations, we present the definition of the transition function. Furthermore, the
complexity of the transition function for each of these representations will also be investigated in this work.
We implement three heuristic conformant planning systems, called DNF, CNF, and PIP that employs the
minimal-DNF, minimal-CNF, and prime implicates representations, respectively. Each of these planners use
a heuristic function mostly based on the number of satisfied subgoals and the number of known literals. Let
us note that these representations have been preliminarily and independently introduced in the context of
conformant planning in our previous works [25, 26, 27].

To validate our approach, we compare our first planner, DNF, with other state-of-the-art conformant
planners on a large set of diverse benchmarks that contains most benchmarks available in the literature. For
a better evaluation of different approaches, we diversify the set of benchmarks with a new set of problems,
obtained by extending several problems from the literature. The new constraints incorporated in these prob-
lems capture some real-world needs, and make the problems harder. The experiments show that DNF is very
competitive with other planners.2

To emphasize the effectiveness of belief state representations, we also propose a new set of problems
that are beyond the capability of DNF and most other previously developed planners. We show that CNF and
PIP offer a superior performance on this set of problems because of representations based on conjunctive
formulae. We discuss the reason for the dramatic difference between the performance of DNF and the
performance of CNF and PIP. These results support the thesis that planners need to adapt the representation
of the belief state depending on the specific class of problems being considered.

The paper is organized as follows. Section 2 presents key notions used in planning and in the develop-
ment of the approach of this paper. Section 3 presents a novel methodology for development of a complete
transition function for an arbitrary belief state representation. Section 4 investigates the minimal-DNF rep-
resentation, the use of the methodology developed in Section 3 for a precise definition of the transition
function for this representation, and implements it in the conformant planner DNF. Similarly to Section 3,
section 5 and 6 investigate the minimal-CNF and prime implicate representations, respectively. Section 7
discusses state-of-the-art approaches to conformant planning. Section 8 discusses the experimental results,
the criteria for evaluation of a representation, and some guidances for selection of a representation among
the three representations investigated by this paper. Section 9 summarizes the main results of the paper.
Finally, the proofs for most results, except several trivial ones, are presented in the Appendix.

2. Background: Conformant Planning, Propositional Logic, and Belief State Representation

In this section, we review the key notions in conformant planning and belief state representation.
A conformant planning problem P is a tuple of the form P = 〈F,O, I,G〉 where:3

2The systems and the benchmarks used in our experiments can be downloaded from http://www.cs.nmsu.edu/~sto.
3 Propositions and actions with variables are viewed as shorthands of their ground instantiations.

3

http://www.cs.nmsu.edu/~sto

• F , referred to as the domain of P , is a finite set of propositions; a literal is either an element p ∈ F
or its negation ¬p.

• O is a finite set of actions. Each action a in O is associated with a precondition, denoted by pre(a),
and a set of conditional effects Ca of the form ψ → ` (also written as a : ψ → `), where pre(a)
is a set of literals that can be viewed as the conjunctions of the literals in the set, ψ is another set of
literals, and ` is a literal.

We refer to ψ as the condition of the effect ` of action a (or simply a e-condition of a). The set of
e-conditions of a is denoted by Ψ(a), i.e.,

Ψ(a) = {ψ | ∃(a : ψ → `)}

We often write a : ψ → η to denote the set of conditional effects of a with the same e-condition
ψ—from now on referred to as a combined conditional effect.

• I is a formula overF describing the initial situation. I is a finite conjunction of literals, oneof-clauses,
and or-clauses. Formally, a oneof-clause (resp. or-clause) is of the form oneof(ϕ1, . . . , ϕk) (resp.
or(ϕ1, . . . , ϕk)), where ϕi is a conjunction of literals for i = 1, . . . , k.

• G is a propositional formula over F defining the goal.

The complement of a literal `, denoted by ¯̀, is the negation of `—i.e., ¯̀= ¬`, where ¬p = p for every p
in F . For a set of literals L, L = {¯̀ | ` ∈ L}. In this paper, we often identified the conjunction `1 ∧ . . .∧ `k
with set of literals {`1, . . . , `k}. A set of literals X is said to be consistent if X does not contain a pair of
complementary literals, i.e., for every literal ` in X , ` 6∈ X . A set of literals X is said to be complete if for
each proposition p in F , {p,¬p} ∩X 6= ∅.

A set of literals X satisfies a literal `, denoted by X |= `, if ` ∈ X . X satisfies a conjunction of
literals Y = `1 ∧ . . . ∧ `k, denoted by X |= Y , if X |= `i for all 1 ≤ i ≤ k. X satisfies a oneof-clause
oneof(ϕ1, . . . , ϕk) if there exists j, 1 ≤ j ≤ k, such that X |= ϕj and X 6|= ϕi for every i 6= j. X satisfies
an or-clause or(ϕ1, . . . , ϕk) if there exists some j, 1 ≤ j ≤ k, such that X |= ϕj . A set of literals X
satisfies the initial situation I if it satisfies every literal, oneof-clause, and or-clause in I .

The satisfaction of a propositional formula ϕ w.r.t. a set of literals X , denoted by X |= ϕ, is defined
in the usual way. When X |= ϕ, we say that ϕ is true in X; when X |= ¬ϕ, we say that ϕ is false in X;
otherwise, we say that ϕ is unknown in X .

A state s is a consistent and complete set of literals. A belief state is a set of states. A belief state S
satisfies a formula ϕ, denoted by S |= ϕ if s |= ϕ for every s ∈ S. By SI we denote the set of all states
satisfying I; we will refer to SI as the initial belief state of P .

Given a state s, an action a is executable in s if s |= pre(a). The effect of executing a in s is

e(a, s) = {` | ∃(a : ψ → `). s |= ψ} (1)

e(a, s) is the set of literals that will become true in the successor state after executing a in s. The
transition function that returns the result of the execution of a in s, denoted by Φ(a, s), is defined by:

Φ(a, s) =

{
s \ e(a, s) ∪ e(a, s) s |= pre(a) and e(a, s) is consistent
undefined otherwise

(2)

Let S be a belief state and a be an action. We say that a is executable in S if it is executable in every
state belonging to S.

4

Let P be a planning problem. The transition function of P that maps each pair composed of an action a
and a belief state S to a belief state is defined as follows:

Φ(a, S) =

{
{Φ(a, s) | s ∈ S} a is executable in S and Φ(a, s) is defined for every s ∈ S
undefined otherwise

(3)

We can extend the function Φ to define Φ̂, an extended transition function which maps each pair com-
posed of a sequence of actions and a belief state to a belief state—necessary for reasoning about effects of
plans. Let αn = [a1, . . . , an] be a sequence of actions:

• If n = 0 then Φ̂([], S) = S;

• If n > 0 then

– if Φ̂(αn−1, S) is undefined then Φ̂(αn, S) is undefined;

– if Φ̂(αn−1, S) is defined then

Φ̂(αn, S) = Φ(an, Φ̂(αn−1, S))

where αn−1 = [a1, . . . , an−1].

A sequence of actions [a1, . . . , an] is a solution of P if Φ̂([a1, . . . , an], SI) satisfies the goal G. A confor-
mant planning problem P is said to be consistent if

1. The initial belief state SI is non-empty, and
2. For every pair of an action a and a state s such that a is executable in s, Φ(a, s) is defined.

In this work, we assume that any given problem is consistent.

Example 1. Consider a slightly different version of the planning problem discussed in the introduction. The
planning problem P = 〈F,O, I,G〉 is represented as follows:

• Domain F : F can be described using the following propositions:

– cleani: room ri is clean (i = 1, 2).

– ati: the robot is at room ri (i = 1, 2).

– bag_is_empty: the vacuum bag is empty.

Thus,
F = {clean1, clean2, at1, at2, bag_is_empty}

• Initial belief state I: Suppose that initially no room is clean, the vacuum bag is empty, and the robot
is in one of the two rooms but it does not know exactly which one. I is described by the following set:

{¬clean1,¬clean2, bag_is_empty, oneof(at1, at2)}

Observe that the uncertainty of the initial state lies in the location of the robot. Thus, the initial belief
state can be easily computed as SI = {s1, s2}, where

s1 = {¬clean1,¬clean2, at1,¬at2, bag_is_empty}
s2 = {¬clean1,¬clean2,¬at1, at2, bag_is_empty}

5

• Actions O: The robot can vacuum, move from a room to the other, and empty the vacuum bag. Then
O can be described by

O = {vacuum,move, empty_the_bag}

where

– pre(vacuum) = bag_is_empty
vacuum : at1 → {clean1,¬bag_is_empty}
vacuum : at2 → {clean2,¬bag_is_empty}

– pre(move) = True
move : at1 → {at2,¬at1}
move : at2 → {at1,¬at2}

– pre(empty_the_bag) = True
empty_the_bag : True→ bag_is_empty

One can easily compute that:

e(vacuum, s1) = {clean1 ¬bag_is_empty}
Φ(vacuum, s1) = {clean1,¬clean2, at1,¬at2,¬bag_is_empty}
e(vacuum, s2) = {clean2 ¬bag_is_empty}
Φ(vacuum, s2) = {¬clean1, clean2,¬at1, at2,¬bag_is_empty}

Hence,

Φ(vacuum,SI) =

{
{clean1,¬clean2, at1,¬at2,¬bag_is_empty},
{¬clean1, clean2,¬at1, at2,¬bag_is_empty}

}
• Goal G: The goal is that both rooms are clean. Thus, G = clean1 ∧ clean2.

It is easy to see that [vacuum,move, empty_the_bag, vacuum] is a solution of P .

The function Φ has been employed in the implementation of several heuristic conformant planners.
Algorithm 1 illustrates a generic heuristic forward search-based conformant planner. As evident in Algo-
rithm 1, a conformant planning system needs to adopt a representation for belief states. In the rest of this
paper, we will propose a general methodology for the development of planners based on Algorithm 1 by
using formulae for belief state representation. We will need the following notations.

Let ϕ be a formula. A state that satisfies ϕ is called a model of ϕ. The set of models of ϕ, denoted
by BS(ϕ), is the belief state form of ϕ, or belief state of ϕ for short. The belief state of a formula is
unique. A formula ϕ is satisfiable iff ϕ has a model (BS(ϕ) 6= ∅). A formula ψ is true (or false) in ϕ,
denoted by ϕ |= ψ (resp. ϕ |= ¬ψ), iff ψ is true (resp. false) in every model of ϕ. Note that ϕ |= ψ iff
BS(ϕ) ⊆ BS(ψ). ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, iff BS(ϕ) = BS(ψ) iff ϕ |= ψ and ψ |= ϕ.
ψ is tautological if it is true in every formula. A tautological formula is equivalent to true and its belief state
is the set of all possible states of the world. We have the following basic propositions that will be needed in
this paper.

Proposition 1. For a non-empty set of satisfiable formulae {ϕ1, . . . , ϕn} and a formula ϕ, we have the
following results:

1. BS(ϕ1 ∨ . . . ∨ ϕn) = BS(ϕ1) ∪ . . . ∪BS(ϕn)

6

2. ϕ1 ∨ . . . ∨ ϕn |= ϕ iff ∀ϕi ∈ {ϕ1, . . . , ϕn}. ϕi |= ϕ

Proposition 2. For a non-empty set of satisfiable formulae {ϕ1, . . . , ϕn}, the following holds

BS(ϕ1 ∧ . . . ∧ ϕn) = BS(ϕ1) ∩ . . . ∩BS(ϕn)

The above propositions are used regularly in this paper in the development of our theory for belief state
representation.

Algorithm 1 Plan(F,O, I,G) {Best First Search Planner}
1: Input: A planning problem 〈F,O, I,G〉
2: Output: Solution if exists; No solution otherwise
3: Create priority queue Q
4: Initialize Q with start node (SI , [])
5: Let Exist = {SI} {Set of belief states that have been generated}
6: while Q is not empty do
7: Extract the first element N = (S,CP) of Q {CP is the plan from SI to S}
8: if S satisfies G then
9: return CP {the plan reaching the goal G}

10: else
11: for each action a such that S |= pre(a) do
12: Compute S′ = Φ(a, S) {successor of S using a}
13: if S′ 6∈ Exist then
14: Insert (S′, CP ◦ [a]) in Q {heuristic of S′ as priority in Q}
15: Exist = Exist ∪ {S′}
16: end if
17: end for
18: end if
19: end while
20: return no solution

ψ is said to be known in ϕ if ψ is either true or false in ϕ. Otherwise, we say that ψ is unknown in ϕ.
Observe that, ψ is unknown in ϕ iff there exist s, s′ ∈ BS(ϕ) such that ψ is true in s and ψ is false in s′.

Let ϕ be a propositional formula over F . lit(ϕ) denotes the set of literals that appear in ϕ. prop(ϕ) =
{p ∈ F | {p,¬p} ∩ lit(ϕ) 6= ∅}. Two formulae ϕ and ψ are said to be dependent if iff prop(ϕ) ∩
prop(ψ) 6= ∅. Two formulae are said to be independent if they are not dependent. We also have the
following propositions.

Proposition 3. Let ϕ be a satisfiable formula and s be a model of ϕ. Let δ be the subset of s such that
prop(δ) = prop(ϕ). Then,

δ |= ϕ

Proposition 4. Let ϕ be a satisfiable formula and ϕ be a satisfiable non-tautological formula. If ϕ and ψ
are independent then ϕ 6|= ψ.

Definition 1. Let α and β be two formulae and ψ be a satisfiable formula. We say that

7

• α and β agree on ψ, denoted by α =|=ψ β, if either α |= ψ ∧ β |= ψ or α |= ¬ψ ∧ β |= ¬ψ holds.

• α and β disagree on ψ, denoted by α 6=|=ψ β, if either α |= ψ ∧ β |= ¬ψ or α |= ¬ψ ∧ β |= ψ holds.

Observe that α and β agree or disagree on ψ iff ψ is known in both α and β. In this paper, we will use
the following lemma, that generalizes the commutativity of a function, in several proofs.

Lemma 1. Let D and D′ be two domains. Let f : D ×D′ 7→ D be a function such that

∀x ∈ D.∀y, z ∈ D′. f(f(x, y), z) = f(f(x, z), y)

For every sequence Y = (y1, . . . , yn), y1, . . . , yn ∈ D′ and for every permutation Z = (z1, . . . , zn) of Y :

∀x ∈ D. f(. . . (f(x, y1), . . .), yn) = f(. . . (f(x, z1), . . .), zn)

3. An Abstract Transition Function for Arbitrary Belief State Representations

In this section, we will present a novel methodology for the development of a complete transition func-
tion for an arbitrary representation of belief states. To begin, we consider the following example.

Example 2. Let us consider a domain F = {f, g, h}, an action a with three conditional effects Ca = {f →
¬g, f ∧¬g → ¬f,¬f → f} and pre(a) = True, and a belief state S that contains all possible states of the
world but {¬f,¬g,¬h}.

f g h

BS() = S

f g

s’i = (a,si), S ‘ = (a,S)

a: {f} {g}
a: {f,g} {f}
a: {f} {f}

 ’

S = {s1,…,s7}

S’ = {s’1,…,s’6}

BS(‘) = S’

s1={f,g,h}

s2={f,g,h}

s3={f,g,h}

s4={f,g, h}

s5={f,g,h}

s6={f,g,h}

s7={f,g,h}

s’1={f,g,h}

s’2={f,g,h}

s’3={f,g,h}

s’4={f,g,h}

s’5={f,g,h}

s’6={f,g,h}

s’7={f, g,h}= s’1

e(a,s1)={g}

e(a,s2)={g}

e(a,s3)={f,g}

e(a,s4)={f,g}

e(a,s5)={f}

e(a,s6)={f}

e(a,s7)={f}

Figure 1: An example of computing successor belief states by using the function Φ

8

Figure 1 shows the belief state S = {s1, . . . , s7} and the computation of the successor belief state S′

after executing a in S using the function Φ (Equation 2).

Observe that S and S′ are the belief state forms of the CNF-formulae ϕ = f ∨ g ∨ h and ϕ′ = f ∨ ¬g
respectively. Since each formula has a unique belief state form, we want to use their compact encoding ϕ
and ϕ′ instead of the belief states S and S′ of exponential size.

Definition 2. A collection R of formulae is a representation of belief states (or representation, for short) if
for every belief state S there exists a formula ϕ ∈ R such that BS(ϕ) = S. R is said to be unique if for
every pair of α and β inR such that α ≡ β then α = β.

Given a representation R, a formula ϕ in R is called an R-state. We say that ϕ represents a belief
state S if S = BS(ϕ). For a set of R-states Γ and a set of belief states Λ, we say that Γ represents Λ if
Λ = {BS(ϕ) | ϕ ∈ Γ}.

Intuitively, a representation specifies the type of formulae that will be used in the encoding of belief
states. For example:

• The set of all formulae is trivially a representation;

• The class of binary decision diagram (BDD) [4] is a representation, since each belief state S can be
represented by the formula

∨
s∈S(

∧
`∈s `) and for each formula ϕ there exists a BDD equivalent to ϕ;

• The class of prime implicate formulae is a representation.

On the other hand, the set of all conjunctions between literals is not a representation since it is not expressive
enough for the encoding of disjunctive information.

We will next define a transition function ΦR betweenR-states that captures the function Φ (Equation 2)
for belief states.

Definition 3. Let R be a representation. A function ΦR that maps pairs composed of an action and a R-
state into R-states is said to be a transition function for R if for every R-state ϕ and for every action a,
ΦR(a, ϕ) represents the belief state Φ(a,BS(ϕ)), i.e.,

BS(ΦR(a, ϕ)) = Φ(a,BS(ϕ))

In this section, we will denote with R an arbitrary representation, with ϕ an arbitrary satisfiable R-
state, and with a an arbitrary action. Definition 3 indicates that if ΦR is a transition function for R and ϕ
represents a belief state S, then ΦR(a, ϕ) is aR-state ϕ′ that represents the belief state Φ(a, S). In this case,
ϕ′ is said to be a result of the execution of a in ϕ, or a successor of ϕ. Next, we will show how to construct
such a function ΦR for efficiently computing a successorR-state ϕ′ after executing a in ϕ without operating
over all the states in BS(ϕ) or BS(ϕ′), as the function Φ does.

Observe from Figure 1 that, to compute the result of execution of action a in state s1, for example, we
need to compute e(a, s1). This is the set of literals (in this case, e(a, s1) is the singleton set {¬g}) that must
be true in the successor state s′1. The other literals in s1, independent from e(a, s1), will remain the same
in s′1. This means that s′1 is obtained by making the minimum change to s1 such that the literals in e(a, s1)
become true in the new state s′1. We define the effect of executing an action in a formula as follows.

9

Definition 4. The effect of executing a in ϕ, denoted by e(a, ϕ), is the set of literals defined as

e(a, ϕ) = {` | ∃(a : ψ → `). ϕ |= ψ}

In general, the effect of executing a in ϕ does not capture the effects of executing a in all states in
BS(ϕ) (e.g., ϕ in Example 2). This is because the effects of executing an action in different states can
be different. For example, the effects of executing a in s1, s3, and s5 are all different as shown in Figure
1. However, one may observe that e(a, s1) = e(a, s2) = {¬g}, e(a, s3) = e(a, s4) = {¬f,¬g}, and
e(a, s5) = e(a, s6) = e(a, s7) = {f}. Thus, if we divide BS(ϕ) into three sets of states S1 = {s1, s2},
S2 = {s3, s4}, and S3 = {s5, s6, s7} (Figure 2) then the effects of executing a in the states in each of
these sets are identical. Observe also that S1, S2, and S3 can be represented by the CNF-states ϕ1 = f ∧ g,
ϕ2 = f ∧ ¬g, and ϕ3 = ¬f ∧ (g ∨ h) respectively. Moreover, one can check from Figure 2 that ∀s ∈
BS(ϕi). e(a, ϕi) = e(a, s), for i = 1, 2, 3. Let s′j = Φ(a, sj) (for j = 1, . . . , 7) and S′i = Φ(a, Si). Let ϕ′i
be the formula obtained by updating ϕi with the minimum change such that the literals in e(a, ϕi) become
true in the new formula ϕ′i. Intuitively, BS(ϕ′i) = S′i and hence BS(ϕ′1) ∪ BS(ϕ′2) ∪ BS(ϕ′3) = BS(ϕ′)
or ϕ′1 ∨ ϕ′2 ∨ ϕ′3 ≡ ϕ′. Indeed, it is easy to see that ϕ′1 = f ∧ ¬g, ϕ′2 = ¬f ∧ ¬g, ϕ3 = f ∧ (g ∨ h) and the
disjunction ϕ′1 ∨ϕ′2 ∨ϕ′3 can be simplified to the CNF-state ϕ′. On the other hand, since S = S1 ∪S2 ∪S3,
we have ϕ ≡ ϕ1 ∨ ϕ2 ∨ ϕ3. This result can also be easily verified . Thus, the computation of ϕ′ includes
three major steps as described in Figure 2.

f g h f g

 ’

1 = f g
S1= BS(1) = { {f,g,h},
 {f,g,h} }

e(a, 1) = e(a, S1) = {g}

2 = f g
S2 = BS(2) = { {f,g,h},
 {f,g,h} }

e(a, 2) = e(a, S2) = {f,g}

3 = f (g h)
S3 = BS(3) = { {f,g,h},
 {f,g,h},
 {f,g,h} }

e(a, 3) = e(a, S3) = {f}

’1 = f g
S’1= BS(’1) = { {f, g,h},
 {f,g,h} }

’2 = f g
S2 = BS(2) = { {f,g,h},
 {f,g,h} }

’3 = f (g h)
S3 = BS(3) = { {f,g,h},
 {f,g,h},
 {f,g,h} }

Compute 1, 2 , 3 , e(a,1), e(a,2), e(a,3)

Compute ’i (i = 1,2,3) by udating i s.t. e(a, i) is true in ’i

Compute ’ by simplifying ‘1 ’2 ’3

a: {f} {g}
a: {f,g} {f}
a: {f} {f}

Figure 2: Computing successor CNF-state ϕ′ after executing action a in CNF-state ϕ for Example 2

10

The transition function ΦR forR will be developed based on three similar computation steps as follows

• Step 1: Compute the set ofR-states {ϕi | i = 1, . . . , n} such that

BS(ϕ1) ∪ . . . ∪BS(ϕn) = BS(ϕ) and ∀s, s′ ∈ BS(ϕi). e(a, s) = e(a, s′) (4)

Compute e(a, ϕi) for i = 1, . . . , n;

• Step 2: For each R-state ϕi, compute ϕ′i by updating ϕi such that every literal in e(a, ϕi) is true in
ϕ′i;

• Step 3: Convert the disjunction ϕ′1 ∨ . . .∨ϕ′n into an equivalentR-state ϕ′, i.e., BS(ϕ′) = BS(ϕ′1 ∨
. . . ∨ ϕ′n)

We assume the existence of the following operations:

1. convR: is a function that maps a formula ϕ of the form ϕ′ ∧ ψ or ϕ′ ∧ ¬ψ, where ϕ′ is aR-state and
ψ is a consistent set of literals, into an equivalentR-state, i.e.

BS(ϕ) = BS(convR(ϕ)) (5)

2. updateR: R× 2F → R is a function that maps a pair of aR-state ϕ and a consistent set of literals e
to aR-state such that

BS(updateR(ϕ, e)) = {s \ e ∪ e | s ∈ BS(ϕ)} (6)

3. mergeR : 2R \ ∅ → R is a function that maps non-empty sets of R-states into equivalent R-states
satisfying the following properties: for all Γ ∈ 2R, Γ 6= ∅ we have that:

BS(mergeR(Γ)) =
⋃
γ∈Γ

BS(γ) (7)

Intuitively, the functions updateR and mergeR are introduced for the computation in the second and third
steps respectively. A precise definition of these two functions will be determined whenever R is given as a
concrete representation.

We need to show how to compute the set of R-states {ϕi | i = 1, . . . , n} (Step 1) that satisfies (4).
Observe that, for each R-state ϕi, the effect of executing a in every state in BS(ϕi) is the same if the truth
value of each e-condition ψ of a in every state in BS(ϕi) is the same, i.e., ψ is known in ϕi. For example,
in Figure 2, the effects of a in the two states s1 = {f, g, h} and s2 = {f, g,¬h} of BS(ϕ1) are the same
(e(a, s1) = e(a, s2) = ¬g) because the first e-condition of a (i.e., f) is true in both s1 and s2, while the other
two e-conditions of a (i.e., f ∧¬g and ¬f) are false in the both states. Similarly, all the three e-conditions of
a are known in ϕ2 as well as in ϕ3. On the other hand, e(a, s1) 6= e(a, s3) because the second e-condition
(f ∧ ¬g) is false in s1 but it is true in s3, making the literal ¬f included in e(a, s3) but not in e(a, s1). We
have the following definition.

Definition 5.

• We say that ϕ is enabling for a if every e-condition of a is known in ϕ, i.e., ∀ψ ∈ Ψ(a) either ϕ |= ψ
or ϕ |= ¬ψ holds.

11

• A set ofR-states Γ is said to be an enabling form of ϕ for a if

1. Every formula in Γ is enabling for a;
2.
⋃
ϕ′∈Γ BS(ϕ′) = BS(ϕ).

It is easy to see that the following proposition holds.

Proposition 5. If ϕ is enabling for a then

∀s ∈ BS(ϕ). e(a, s) = e(a, ϕ)

Proposition 5 shows that an enabling form of ϕ for a satisfies (4). Thus, our goal now is to compute an
enabling form of ϕ for a. The following proposition helps us to achieve this goal.

Proposition 6. Let ϕ and ψ be two satisfiable formulae such that ψ is unknown in ϕ. Then,

1. ϕ ∧ ψ is satisfiable and BS(ϕ ∧ ψ) = {s | s ∈ BS(ϕ), s |= ψ},
2. ϕ ∧ ¬ψ is satisfiable and BS(ϕ ∧ ¬ψ) = {s | s ∈ BS(ϕ), s |= ¬ψ}, and
3. BS(ϕ ∧ ψ) ∪BS(ϕ ∧ ¬ψ) = BS(ϕ).

Following Proposition 6, if ψ is an e-condition of a unknown in ϕ, we can replace ϕ with two formulae
ϕ ∧ ψ and ϕ ∧ ¬ψ, in which ψ is known. Since these two formulae may not be in R and we would like to
remain in the representation R, we need to convert them into an R-state. We call this process an extension
of ϕ on ψ underR and define it formally as follows.

Definition 6. Let ψ be a consistent set of literals. The extension of ϕ on ψ underR, denoted by ϕ⊕R ψ, is
defined by

ϕ⊕R ψ =

{
{ϕ} if ϕ |= ψ or ϕ |= ¬ψ
{convR(ϕ ∧ ψ), convR(ϕ ∧ ¬ψ)} otherwise

It is easy to see that if ψ is the only e-condition of action a, then the extension of ϕ on ψ is an enabling
form of ϕ for a. Since an action may have multiple e-conditions, we need to extend ϕ recursively on every
e-condition of the action. We generalize Definition 6 for a sequence of consistent sets of literals as follows.

Definition 7. Let Ψ = 〈ψ1, . . . , ψn〉 be a sequence of consistent sets of literals. The extension of ϕ on Ψ
underR, denoted by ϕ⊕R Ψ, is defined by

ϕ⊕R Ψ =

{
{ϕ} if Ψ is empty (n = 0)⋃
γ∈ϕ⊕R〈ψ1,...,ψn−1〉 (γ ⊕R ψn) otherwise (8)

Intuitively, if Ψ is an enumeration of Ψ(a) then ϕ⊕R Ψ is an enabling form of ϕ for a. This is proved
in the next proposition.

Proposition 7. Let 〈ψ1, . . . , ψn〉 be an enumeration of Ψ(a). If ϕ be a satisfiable then ϕ⊕R 〈ψ1, . . . , ψn〉
is an enabling form of ϕ for a and everyR-state in this set is satisfiable.

12

Proposition 7 allows us to compute an enabling form of an arbitraryR-state ϕ for an arbitrary action a.
Observe that the enabling form of a R-state ϕ is a set of R-states each of which represents a set of states
that agree on every e-condition of a and the union of those sets is equal to the belief state of ϕ. However, an
R-state may have multiple enabling forms of different sizes. For example, if we replace ϕ3 in Figure 2 with
two CNF-states ϕ4 = ¬f ∧ g, that represents the set of the first two states in S3, and ϕ5 = ¬f ∧ ¬g ∧ h,
that represents the singleton set of the last state in S3, then the set {ϕ1, ϕ2, ϕ4, ϕ5} is an enabling form of ϕ
for a. As another example, let ϕ6 = ¬f ∧ h, that represents the set of the first state and the last state in S3,
then {ϕ1, ϕ2, ϕ4, ϕ5, ϕ6} is another enabling form of ϕ for a.

However, it is easy to see that there does not exist an enabling form of ϕ for a in Example 2 that contains
less than three formulae; if an enabling form of ϕ for a contains three formulae, then each of those formulae
will represent a different belief state among S1, S2, and S3. This means that any enabling form of ϕ for a
that contains a minimum number of formulae represents the same set of belief state {S1, S2, S3}. Next we
will show that, among all enabling forms of ϕ for a, ϕ⊕RΨ (where Ψ is an arbitrary enumeration of Ψ(a))
contains the minimum number ofR-states.

Lemma 2. Let Ψ = 〈ψ1, . . . , ψn〉 be a sequence of consistent sets of literals. For every pair of two different
R-states (α, β) in ϕ⊕R Ψ, there exists ψ in Ψ such that α and β disagree on ψ.

Theorem 1. Let Ψ = 〈ψ1, . . . , ψn〉 be an enumeration of Ψ(a). Then, ϕ ⊕R Ψ contains the minimum
number of R-states among all the enabling forms of ϕ for a. If Γ is an enabling form of ϕ for a and
|Γ | = |ϕ⊕RΨ|, then ϕ⊕RΨ and Γ represent the same set of belief states, i.e., {BS(ϕ′ | ϕ′ ∈ ϕ⊕RΨ} =
{BS(γ) | γ ∈ Γ}.

Theorem 1 reveals that whatever enumeration Ψ of Ψ(a) is selected, ϕ ⊕R Ψ is a set of the minimum
number of R-states in all enabling forms of ϕ for a, and it represents the same set of belief states. We use
enbR(a, ϕ) to denote ϕ⊕R 〈ψ1, . . . , ψn〉 for some enumeration 〈ψ1, . . . , ψn〉 of Ψ(a), where the order ψi in
the enumeration is immaterial. We are now ready to define ΦR that will be proved to be a transition function
forR representation as follows.

Definition 8. The execution of a in ϕ results in aR-state, denoted by ΦR(a, ϕ), is defined as follows.

ΦR(a, ϕ) =

{
mergeR({updateR(γ, e(a, γ)) | γ ∈ enbR(a, ϕ)}) if ϕ |= pre(a)
undefined otherwise

Theorem 2. ΦR defined in Definition 8 is a transition function forR.

Similar to the manner in which the function Φ̂ is defined by extending the function Φ, we are going to
define an extension of ΦR to reason about the results of plans as follows.

Definition 9. The extension of ΦR (Definition 8), denoted by Φ̂R, is a function that maps pairs of an action
sequence and aR-state intoR-states, defined as follows.

For everyR-state ϕ and for every sequence of actions αn = [a1, . . . , an]:
• If n = 0 then Φ̂R([], ϕ) = ϕ;
• If n > 0 then

Φ̂R(αn, ϕ) = ΦR(an, Φ̂R(αn−1, ϕ))

where αn−1 = [a1, . . . , an−1] and ΦR(a, undefined) = undefined for every action a.

13

We have the following theorem.

Theorem 3. Let αn = [a1, . . . , an] be a sequence of actions. Then Φ̂R(αn, ϕ) represents the belief state
Φ̂(αn, BS(ϕ)):

BS(Φ̂R(αn, ϕ)) = Φ̂(αn, BS(ϕ))

Theorems 2 and 3 show that ΦR and Φ̂R capture correctly the functions Φ and Φ̂ respectively. Thus,
ΦR and Φ̂R can be used in the implementation of a conformant planner following Algorithm 1 over the
representationR. Observe that Algorithm 2 is built on Algorithm 1, where Φ is replaced with ΦR and each
belief state is replaced by aR-state representing it.

Algorithm 2 Plan(F,O, I,G) {Best First Search Planner Using RepresentationR}
1: Input: A planning problem 〈F,O, I,G〉
2: Output: Solution if exists; No solution otherwise
3: ComputeR-state ϕI such that BS(ϕI) = SI
4: Create priority queue Q
5: Initialize Q with start node (ϕI , [])
6: Let Exist = {ϕI} {Set ofR-states that have been generated}
7: while Q is not empty do
8: Extract the first element N = (ϕ,CP) of Q {CP is the plan from ϕI to ϕ}
9: if ϕ satisfies G then

10: return CP {the plan reaching the goal G}
11: else
12: for each action a such that S |= pre(a) do
13: Compute ϕ′ = ΦR(a, ϕ) {successor of ϕ using a}
14: if ϕ′ 6∈ Exist then
15: Insert (ϕ′, CP ◦ [a]) in Q {heuristic of ϕ′ as priority in Q}
16: Exist = Exist ∪ {ϕ′}
17: end if
18: end for
19: end if
20: end while
21: return no solution

We next present a generic way for computing ΦR for an arbitrary representationR. By Definition 8 and
Theorem 2, if a is executable in ϕ then ΦR(a, ϕ) can be computed using the following steps:

1. Compute enbR(a, ϕ) and e(a, γ) for each γ ∈ enbR(a, ϕ).
2. Compute updateR(γ, e(a, γ)) for each γ ∈ enbR(a, ϕ).
3. Merge updateR(γ, e(a, γ)) where γ ∈ enbR(a, ϕ) to create ΦR(a, ϕ).

The computations of updateR and mergeR operators depend on the representation and thus need to be
developed given a specific representation. The computation of enbR(a, ϕ) requires the computation of ⊕R
which is implemented in the procedure extendingR(ϕ, effect , ψ → η) (Algorithm 3). Specifically, the
procedure takes as input aR-state ϕ, a set of literals effect , and a combined conditional effect a : ψ → η. It
returns a set of pairs of the form 〈γ, e(γ)〉 where γ ∈ ϕ⊕R ψ and e(γ) is a set of literals associated with γ.

14

Intuitively, e(γ) is used to compute e(a, γ) for γ ∈ enb(a, ϕ). Observe that this procedure uses the operator
convR, that also needs to be developed when a concrete representation is given.

It is easy to see that the following proposition holds.

Proposition 8. For aR-state ϕ and a combined conditional effect a : ψ → η, extendingR(ϕ, effect , ψ →
η) returns {〈γ, effect ∪ {` | a : ψ → ` ∧ γ |= ψ}〉 | γ ∈ ϕ⊕R ψ}.

Algorithm 3 extendingR(ϕ, effect , ψ → η) Computing ϕ⊕R ψ
1: Input: R-state ϕ, set of literals effect , combined conditional effect ψ → η
2: Output: {〈γ, e(γ)〉 | γ ∈ ϕ⊕R ψ}
3: if ϕ |= ψ or ϕ |= ¬ψ then
4: if ϕ |= ψ then
5: e(ϕ) = e(ϕ) ∪ η {η is added to e(ϕ) only if ϕ |= ψ}
6: end if
7: return {〈ϕ, e(ϕ)〉}
8: else
9: Let ϕ1 = convR(ϕ ∧ ψ)

10: Set e(ϕ1) = e(ϕ) ∪ η {ϕ1 |= ψ so η is added to e(ϕ1)}
11: Let ϕ2 = convR(ϕ ∧ ¬ψ)
12: Set e(ϕ2) = e(ϕ) {ϕ2 |= ¬ψ so η is not added to e(ϕ2)}
13: return {〈ϕ1, e(ϕ1)〉, 〈ϕ2, e(ϕ2)〉}
14: end if

Algorithm 4 enabling(a, ϕ) Computing enbR(a, ϕ) and the effects of a in theseR-states
1: Input: R-state ϕ, action a
2: Output: {〈γ, e(a, γ)〉 | γ ∈ enbR(a, ϕ)}
3: Set e(ϕ) = ∅
4: Let Result = {〈ϕ, e(ϕ)〉}
5: Let {ψi → ηi | i = 1, . . . , n} be the set of combined conditional effects of a
6: for i = 1 to n do
7: Let X = ∅
8: for each 〈γ, e(γ)〉 ∈ Result do
9: X = X ∪ extendingR(γ, e(γ), ψi → ηi) {Algorithm 3}

10: end for
11: Set Result = X
12: end for
13: return Result

One can observe that the procedure enabling(a, ϕ) (Algorithm 4) is used to compute enbR(a, ϕ) and
e(a, γ) for γ ∈ enbR(a, ϕ) as shown in the following proposition.

Proposition 9. For aR-state ϕ and an action a, enabling(a, ϕ) returns {〈γ, e(a, γ)〉 | γ ∈ enbR(a, ϕ)}.

The transition function ΦR(a, ϕ) is implemented in the procedure phiR(a, ϕ) (Algorithm 5). The
correctness of the algorithm is a natural consequence of Proposition 9 and Definition 8.

15

Algorithm 5 phiR(a, ϕ) Computing ΦR(a, ϕ)

1: Input: R-state ϕ, action a.
2: Output: SuccessorR-state ΦR(a, ϕ)
3: if ϕ 6|= pre(a) then
4: return undefined
5: end if
6: Let X = enabling(a, ϕ) {Algorithm 4}
7: Let Y = ∅
8: for each 〈γ, effect〉 in X do
9: Compute γ′ = updateR(γ, effect) {updateR-states in the computed enabling form}

10: Let Y = Y ∪ {γ′}
11: end for
12: Compute ϕsucc = mergeR(Y)
13: return ϕsucc

Proposition 10. For aR-state ϕ and an action a, the procedure phiR(a, ϕ) returns ϕsucc = ΦR(a, ϕ).

Observe from Algorithm 5 that the number of calls to the updateR function, and hence the size of the set
Y fed to mergeR (line 12), depends on the number of elements in the enabling form of ϕ for a. After the
application of ⊕R on a R-state γ and an e-condition ψ of a, we obtain a set of at most two R-states if ψ is
unknown in γ. Hence, enbR(a, ϕ) contains at most 2k R-states if k is the number of e-conditions of a that
are unknown in ϕ. However, the number of R-states in enbR(a, ϕ) can be much less that 2k. The reason
is that an e-condition ψi of a unknown in ϕ can be known in some element(s) of ϕ ⊕R 〈ψ1, . . . , ψj〉 even
thought ψi is not in the sequence 〈ψ1, . . . , ψj〉.

For example, consider ϕ = f ∨ g, ψ1 = ¬f , and ψ2 = g. Clearly, ψ1 and ψ2 are both unknown in ϕ.
We have ϕ⊕R ψ1 = {convR((f ∨ g) ∧ ¬f), convR((f ∨ g) ∧ f)}. Observe that (f ∨ g) ∧ ¬f ≡ ¬f ∧ g
and (f ∨ g) ∧ f ≡ f . Since ψ2 = g is known (true) in ¬f ∧ g, it is known in one of the two elements in
ϕ⊕R ψ1. This implies that ϕ⊕R 〈ψ1, ψ2〉 contains only three elements instead of 22 elements. As another
example, in Figure 2, there are three e-conditions of a unknown in ϕ but an enabling form of ϕ for a contains
only three elements instead of 23 elements. In the worst case, nevertheless, enbR(a, ϕ) can have size 2k,
although it is the smallest in all enabling forms of ϕ for a as proved in Theorem 1. This means that the
cost of computing ΦR(a, ϕ) can be exponential in the number of unknown e-conditions of a (in the worst
case). This is understandable as the problem of checking whether a proposition holds after the execution of
an action in presence of incomplete information is a co-NP complete problem [2].

In the next sections, we will propose three different representations of belief states, that are collections of
DNF and CNF formulae satisfying certain properties, and the application of these representations in confor-
mant planning. We will show how the theory developed in this section can be instantiated in the development
of a complete transition function for each of the proposed representations. In particular, we will provide a
precise definition of each of the operators convR, updateR, and mergeR for each R representation being
considered.

4. Minimal-DNF Representation

In this section, we investigate the minimal-DNF representation, denoted by µDNF , which is a collection
of disjunctive normal form (DNF) formulae satisfying some minimality criteria. We introduce a conformant

16

planner, called DNF, that implements the µDNF representation and its transition function ΦµDNF for the
best-first search in belief state space for solutions.

4.1. The µDNF Representation and Its Operators

In this subsection, we define the µDNF representation and the necessary functions for computing
ΦµDNF . We start with some auxiliary notations. A set of literals δ is called a partial state if δ is consistent.
A set ∆ of sets of literals represents the DNF formula

∨
δ∈∆(

∧
`∈δ `). We often use upper and lower case

Greek letters to denote a DNF formula and a set of literals, respectively.

Definition 10. A DNF formula ∆ is said to be minimal if for every δ ∈ ∆, δ is a partial state (consistent)
and there exists no δ′ ∈ ∆ such that δ′ (δ.

It is easy to see that every belief state can be viewed as a minimal-DNF formula. This allows for the
following definition of the minimal-DNF representation.

Definition 11. The minimal-DNF representation, denoted by µDNF -representation, is the collection of
minimal-DNF formulae. A µDNF -state is a minimal-DNF formula.

The next example illustrates the above definitions.

Example 3. Let us consider a domain with three propositions f , g, and h. We consider the following.

• {f,¬g} is a partial state but {f, g,¬g} is not since {f, g,¬g} is inconsistent.

• ∆1 = {{f,¬g}, {f, g,¬g}} is a DNF-formula but it is not a µDNF -state since it contains the
element {f, g,¬g} which is not a partial state. Observe that, if we remove the inconsistent set from
∆1, then we obtain the µDNF -state {{f,¬g}} which is equivalent to ∆1.

• {{f}} is a µDNF -state but ∆2 = {{f}, {f,¬g}} is not as {f} ⊂ {f,¬g}. If we remove {f,¬g}
from ∆2, then we obtain the first µDNF -state equivalent to {{f}}.

The following function converts a DNF formula into an equivalent µDNF -state.

Definition 12. Let ∆ be a DNF formula. We define

µ(∆) = min(refine(∆))

where refine(∆) = {δ | δ ∈ ∆, δ is consistent} and min(∆) = {δ | δ ∈ ∆ ∧ @δ′ ∈ ∆. δ′ (δ}.

Proposition 11. For every DNF formula ∆, µ(∆) is a µDNF -state equivalent to ∆.

Example 4. For ∆ = {{f}, {f,¬g}, {f, g,¬g}}, we have that

refine(∆) = {{f}, {f,¬g}}

and
µ(∆) = min(refine(∆)) = min({{f}, {f,¬g}}) = {{f}}.

Clearly, {{f}} is a µDNF -state equivalent to ∆ but has a significantly smaller size.

17

In what follows we will show the relation of a partial state to its belief state.

Proposition 12. Let δ be a partial state. Then,

1. BS(δ) = {s | s is a state, and δ ⊆ s}.
2. δ contains the smallest number of literals among those that represent the belief state BS(δ).

To complete the instantiation of the representation and define ΦµDNF , we will need to define the functions
convµDNF , updateµDNF , and mergeµDNF .

For a µDNF -state ∆ and a set of literals ψ, convµDNF should map ∆∧γ, where γ is either ψ or ¬ψ, to
an equivalent µDNF -state (Definition 6). The idea is to transform ∆ ∧ γ into a DNF formula, then use the
function µ to convert it into a µDNF -state. Due to the distributivity of ∧ over ∨, ∆∧ γ ≡ {δ∧ γ | δ ∈ ∆}.
Hence, we need to convert each δ∧γ to some set(s) of literals. When γ = ψ, we have that δ∧ψ is equivalent
to δ ∪ ψ. When γ = ¬ψ, we observe that δ ∧ ¬ψ is equivalent to δ if δ |= ¬ψ, i.e., δ ∩ ψ 6= ∅, and δ ∧ ¬ψ
is equivalent to the DNF formula {δ ∧ ` | ` ∈ ψ} otherwise. Note that, if δ |= ψ, then ψ ⊆ δ and δ ∧ ¬ψ is
unsatisfiable but still equivalent to {δ ∧ ` | ` ∈ ψ}, as every δ ∧ ` in this DNF formula is inconsistent.

Definition 13. Let ∆ be a µDNF -state and ψ be a consistent set of literals. Then,

convµDNF (∆ ∧ ψ) = min({δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅})

convµDNF (∆ ∧ ¬ψ) = min({δ | δ ∈ ∆ ∧ δ ∩ ψ 6= ∅} ∪
⋃

δ∈∆∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ})

Proposition 13. Let ∆ be a µDNF -state and ψ be a consistent set of literals. Then,

1. convµDNF (∆ ∧ ψ) is a µDNF -state equivalent to ∆ ∧ ψ.
2. convµDNF (∆ ∧ ¬ψ) is a µDNF -state equivalent to ∆ ∧ ¬ψ.

Thus, convµDNF satisfies the conditions required in Equation (5).
Our next task is to define the function updateµDNF that satisfies the Equation (6). Intuitively, updating

a µDNF -state can be done by updating every partial state in it, as a µDNF -state is a disjunctive set of
partial states.

Definition 14. Let ∆ be a µDNF -state and e be a consistent set of literals. updateµDNF (∆, e) is defined
as follows:

updateµDNF (∆, e) = min({δ \ e ∪ e | δ ∈ ∆})

As expected, we have the following proposition which confirms that updateµDNF satisfies the condition (6).

Proposition 14. Let ∆ be a µDNF -state and e be a consistent set of literals. Then, updateµDNF (∆, e) is
a µDNF -state and

BS(updateµDNF (∆, e)) = {s \ e ∪ e | s ∈ BS(∆)}

Thanks to Proposition 1, merging a set of µDNF -states into a single µDNF -state can be easily defined as
follows.

18

Definition 15. Let Γ be a set of µDNF -states. Then mergeµDNF is define as

mergeµDNF (Γ) = min(
⋃

∆∈Γ

∆)

The following proposition shows that mergeµDNF satisfies condition (7).

Proposition 15. Let Γ be a set of µDNF -states. Then mergeµDNF (Γ) is a µDNF -state and

BS(mergeµDNF (Γ)) =
⋃

∆∈Γ

BS(∆)

With the introduction of Definitions 13, 14, and 15 along with the respective Propositions 13, 14, and 15,
we now have a complete precise definition of ΦµDNF whose correctness has been proved. For a better
understanding of how ΦµDNF works, we consider the following example.

Example 5. Let us consider a domain F = {f, g, h, k}, a µDNF -state ∆ = {{f, g}, {g,¬h}}, and an
action a = 〈∅, {f → ¬g, h→ f, f ∧ h→ k}〉. Let us compute ΦµDNF (a,∆).

First, we need to compute enbµDNF (a,∆) e(a,∆′) for ∆′ ∈ enbµDNF (a,∆) using Algorithm 4. We
have that Ψ(a) = {f, h, f ∧ h}. It is easy to see that none of the e-conditions in Ψ(a) is known in ∆
and the set of combined conditional effects of a is the same as the set of conditional effects of a. Suppose
that the (combined) conditional effects of a will be introduced in computing enbµDNF (a,∆) in the given
order. We start with the conditional effect a : f → ¬g and e(∆) is initialized with the empty set. Since f
is unknown in ∆, the first application of ⊕µDNF returns two µDNF -states ∆1 = convµDNF (∆ ∧ f) and
∆2 = convµDNF (∆ ∧ ¬f). Using Definition 13, we have

∆1 = convµDNF (∆ ∧ f)

= min({δ ∪ {f} | δ ∈ ∆ ∧ δ ∩ {¬f} = ∅})
= min({{f, g} ∪ {f}, {g,¬h} ∪ {f}})
= min({{f, g}, {f, g,¬h}})
= {{f, g}}

e(a,∆1) = e(a,∆) ∪ {¬g} = {¬g}

∆2 = convµDNF (∆ ∧ ¬f)

= min({δ | δ ∈ ∆ ∧ δ ∩ {¬f} 6= ∅}) ∪
⋃

δ∈∆∧δ∩{¬f}=∅

{δ ∪ {`} | ` ∈ {f} \ δ})

= min(∅ ∪ {{f, g} ∪ {`} | ` ∈ {f} \ {f, g}} ∪ {{g,¬h} ∪ {`} | ` ∈ {f} \ {g,¬h}})
= min{∅ ∪ ∅ ∪ {{¬f, g,¬h}}
= {{¬f, g,¬h}}

e(a,∆2) = e(a,∆) = ∅ (Note that, ∆2 does not satisfy f so ¬g is not added to e(a,∆2))

Now we obtain the set of two µDNF -states ∆1 = {{f, g}} and ∆2 = {{¬f, g,¬h}}. We continue with
the second conditional effect a : h→ f . Since h is unknown in ∆1, ∆1 ⊕µDNF h results in the following:

∆3 = convµDNF (∆1 ∧ h) = {{f, g, h}}
e(a,∆3) = e(a,∆1) ∪ {f} = {f,¬g}

∆4 = convµDNF (∆1 ∧ ¬h) = {{f, g,¬h}}
e(a,∆4) = e(a,∆1) = {¬g}

19

Since ∆2 |= ¬h, ∆2 ⊕µDNF ¬h = {∆2} and we obtain the set {∆2,∆3,∆4}.
We are left with the conditional effect f ∧h→ k. Observe that f ∧h is known in all three µDNF -states

∆2, ∆3, and ∆4. As such, the application of ⊕µDNF does not change the set of µDNF -state and we have
that enbµDNF (a,∆) = {∆2,∆3,∆4}. Observe that among these µDNF -state, only ∆3 satisfies f ∧ h.
Hence, e(a,∆3) = {f,¬g} ∪ {k} = {f,¬g, k} and e(a,∆2) and e(a,∆4) do not change.

Updating the obtained set of µDNF -states w.r.t. the corresponding effect of executing a, we have

updateµDNF (∆2, e(a,∆2)) = ∆2 = {{¬f, g,¬h}} (because e(a,∆2) = ∅)
updateµDNF (∆3, e(a,∆3)) = {{f, g, h} \ {¬f, g,¬k} ∪ {f,¬g, k}} = {{f,¬g, h, k}}
updateµDNF (∆4, e(a,∆4)) = {{f, g,¬h} \ {g} ∪ {¬g}} = {{f,¬g,¬h}}

Now, we are ready to compute ΦµDNF (a,∆) as

ΦµDNF (a,∆) = mergeµDNF (updateµDNF (∆2, e(a,∆2)) ∪ updateµDNF (∆3, e(a,∆3))∪
updateµDNF (∆4, e(a,∆4)))

= min(updateµDNF (∆2, e(a,∆2)) ∪ updateµDNF (∆3, e(a,∆3)∪
updateµDNF (∆4, e(a,∆4)))

= {{¬f, g,¬h}, {f,¬g, h, k}, {f,¬g,¬h}}

In Section 3, we proved that enbµDNF (a,∆) contains the minimum number of µDNF -states among the
enabling forms of ∆ for a. Thus, Algorithm 5 only needs to make a minimal number of calls to updateµDNF

as well as to pass the minimum number of µDNF -states to the mergeµDNF function. In turn, we observe
that updateµDNF and mergeµDNF also consider each partial state in each µDNF -state. Hence, the perfor-
mance of ΦµDNF also depends on the total number of partial states of all µDNF -states in enbµDNF (a,∆).
We have the following proposition.

Proposition 16. For a µDNF -state ∆ and an action a,
⋃

∆i∈enbµDNF (a,∆) ∆i is also a µDNF -state and
every δ in

⋃
∆i∈enbµDNF (a,∆) ∆i belongs to one and only one µDNF -state in enbµDNF (a,∆).

The above proposition shows that the union set of enbµDNF (a,∆) is also minimal and there is no partial
state that belongs to more than one µDNF -state in enbµDNF (a,∆). Next, we will analyze the computa-
tional properties of ΦµDNF as well as the running time of the algorithms for computing this function.

4.2. Computing Successor µDNF -States Using ΦµDNF

We will now present an instantiation of the procedure extendingR (Algorithm 3), extendingµDNF
(Algorithm 6), and an instantiation of the procedure phiR (Algorithm 5), phiµDNF (Algorithm 8). This is be-
cause these procedures involve the computation of the operators convµDNF , updateµDNF , andmergeµDNF .
For ease of following, we also present a slight variation of enabling (Algorithm 4), enablingµDNF (Algo-
rithm 7), where the procedure extendingµDNF is used in place of extendingR.

The procedure extendingµDNF(∆, e(a,∆), φ→ η) computes ∆⊕µDNF ψ by computing

∆1 = convµDNF (∆ ∧ ψ) and ∆2 = convµDNF (∆ ∧ ψ)

according to Definition 13 (Lines 4-5, 8-11). It starts by initializing ∆1 and ∆2 with the set of partial states
satisfying ψ and ¬ψ in ∆, respectively (Lines 4-5). The computation in the loop (Lines 8-11) updates ∆1

20

Algorithm 6 extendingµDNF(∆, effect , ψ → η) Computing ∆⊕µDNF ψ and the effects of a
1: Input: µDNF -state ∆, set of known effects effect , conditional effect ψ → η
2: Output: {〈∆i, e(a,∆i)〉 | ∆i ∈ ∆⊕µDNF ψ}
3: Initialize: ∆0, ∆1, ∆2, and Result
4: ∆1 = {δ | δ ∈ ∆, ψ ⊆ δ} {δ |= ψ}
5: ∆2 = {δ | δ ∈ ∆, δ ∩ ψ 6= ∅} {δ |= ¬ψ}
6: ∆0 = ∆ \ (∆1 ∪∆2) {∆0 = {δ | δ ∈ ∆, ψ is unknown in δ}}
7: Result = ∅
8: for each δ in ∆0 do
9: ∆1 = min(∆1 ∪ {δ ∪ ψ})

10: ∆2 = min(∆2 ∪ {δ ∪ {`} | ` ∈ ψ \ δ})
11: end for
12: if ∆1 6= ∅ then
13: Set e(∆1) = effect ∪ η {∆1 |= ψ so η is added to e(a,∆1)}
14: Set Result = Result ∪ {〈∆1, e(∆1)〉}
15: end if
16: if ∆2 6= ∅ then
17: Set e(∆2) = effect {∆2 |= ¬ψ so η is not added to e(a,∆2)}
18: Set Result = Result ∪ {〈∆2, e(∆2)〉}
19: end if
20: return Result

(resp. ∆2) by adding to it δ ∪ ψ (resp. {δ ∪ {`} | ` ∈ ψ \ δ}) for each partial state δ ∈ ∆ such that ψ is
unknown in δ and maintaining its minimality. η is added to e(∆1) but not added to e(∆2) (e(∆i) is used
to compute e(a,∆i) for ∆i ∈ enbµDNF (a,∆)) since ∆1 |= ψ and ∆2 |= ¬ψ. It is worth mentioning that
ψ |= δ is implemented by the test ψ ⊆ δ because both ψ and δ are conjunction of literals. For the same
reason, ψ |= ¬δ is implemented by the test δ ∩ ψ 6= ∅.

Algorithm 7 enablingµDNF(a, ϕ) Computing enbµDNF (a, ϕ) and the effects of a in these µDNF -states
1: Input: µDNF -state ∆, action a
2: Output: {〈∆′, e(a,∆′)〉 | ∆′ ∈ enbµDNF (a,∆)}
3: Set e(∆) = ∅
4: Let Result = {〈∆, e(∆)〉}
5: Let {ψi → ηi | i = 1, . . . , p} be the set of combined conditional effects of a
6: for i = 1 to p do
7: Let X = ∅
8: for each 〈∆′, e(∆′)〉 ∈ Result do
9: X = X ∪ extendingµDNF(∆′, e(∆′), ψi → ηi) {Algorithm 6}

10: end for
11: Set Result = X
12: end for
13: return Result

Proposition 17. For a µDNF -state ∆ and a combined conditional effect a : ψ → η,

21

extendingµDNF(∆, effects, ψ → η)
returns {〈∆i, effects ∪ {` | a : ψ → ` ∧∆i |= ψ}〉 | ∆i ∈ ∆⊕µDNF ψ}.

Since updateµDNF and mergeµDNF functions are simple and require only set operations, to avoid
duplicate checking for non-minimal partial states by both functions in Definitions 14 and 15, we implement
the two functions interspersedly in Algorithm 8 (Lines 7-13).

Algorithm 8 phiµDNF(a,∆) Computing ΦµDNF (a,∆)

1: Input: µDNF -state ∆, action a
2: Output: µDNF -state ΦµDNF (a,∆)
3: if ∆ 6|= pre(a) then
4: return undefined
5: end if
6: Let X = enabling(a,∆) {Algorithm 4}
7: Let ∆succ = ∅
8: for each 〈∆′, effect〉 in X do
9: for each δ in ∆′ do

10: Compute δ′ = δ \ effect ∪ effect
11: Set ∆succ = min(∆succ ∪ {δ′})
12: end for
13: end for
14: return ∆succ

One can easily see the correctness of Algorithm 8 for computing ΦµDNF (a,∆) as follows.

Proposition 18. For a µDNF -state ∆ and an action a, phiµDNF(a,∆) returns ΦµDNF (a,∆).

The computational cost of ΦµDNF (a,∆), denoted by T (ΦµDNF (a,∆)), is shown in the following the-
orem.

Theorem 4. Let n be the number of propositions in the domain, ∆ be a µDNF -state, and a be an action.
Let k be the number of e-conditions of a, that are unknown in ∆. Let r be the size of the largest e-condition
of a. Then the computational complexity of ΦµDNF (a,∆) is

T (ΦµDNF (a,∆)) = O(n|∆|2(1 + r)2k)

It is shown in the analysis (the proof of Theorem 4) that the cost of computing ΦµDNF (a,∆) lies mostly
in the cost of computing enbµDNF (a,∆) and the cost of merging, most of which, in turn, lie in the cost of
computing the min function—which is quadratic in the size of the µDNF -states.

Theorem 4 shows that the computation of a successor µDNF -state is exponential in k, the number of e-
conditions of the action that are unknown in the µDNF -state, with the base of r+ 1, where r is the number
of literals in the largest e-condition of the action. This is, however, true only in the worst case, where every
literals in every unknown e-condition introduced to the extension process is unknown in every partial state
of every µDNF -states in the set X and every unknown e-condition has the largest size r. In fact, the actual
cost of computing ΦµDNF and the size of µDNF -states in Result can be much smaller as each e-condition
ψ is usually unknown in a small portion of partial states in the µDNF -states in X and for each partial state

22

δ in which ψ is unknown, not all literals in ψ are always unknown in δ. On the other hand, as observed in
most benchmarks, the majority of e-conditions of an action have size 1 or 2, and very few of them have size
3 or greater—as a matter of fact, we did not encounter any e-condition with more than 3 literals. Hence,
ΦµDNF is polynomial for problems where the number of unknown e-conditions of the actions is small.

4.3. DNF Conformant Planner

In this subsection, we will introduce a progression-based conformant planner, called DNF, that employs
the µDNF representation along with the transition function ΦµDNF for computing successor µDNF -states
in a best-first search in the belief space for conformant solutions.

We implement the DNF planner by modifying the CPA system [22, 28]. This choice was motivated by
the fact that both CPA and DNF rely on disjunctive normal form formulae for representing belief states.
This also allows DNF to make use of several preprocessing techniques developed in the recent CPA [28],
including backward-chaining, forward-chaining, and one-of combination for reducing the size of the DNF
formula representing the initial belief state.

In this paper, we use two heuristic functions in parallel as follows. Given a µDNF -state ∆, the heuristic
function used in DNF is built on the following values:

• hgoal(∆): the number of subgoals satisfied by ∆.

• hcard(∆): the number of partial states contained in ∆ (cardinality of ∆).

• hlit(∆): the number of known literals in ∆.

• hdis(∆): the square distance from ∆ to the goal, defined by

hdis(∆) = Σδ∈∆(|G| − hgoal(δ))2

where G is the goal of the problem.

The first heuristic function used in DNF is defined by triples of the form 〈hgoal(∆), hcard(∆), hdis(∆)〉
in the lexicographical order. The second heuristic function has the form 〈hgoal(∆), hlit(∆), hdis(∆)〉.

While the first two values are inspired by CPA and other planners, the number of known literals helps in
reducing the uncertainty and the size of the µDNF -state. The last feature aims at promoting µDNF -states
in which the satisfaction of goals among its partial states is uniform.

5. Minimal-CNF Representation

In this section, we present our second representation, called minimal-CNF and denoted by µCNF ,
which is a set of conjunctive normal (CNF) formulae that satisfy certain compactness criteria. We will
show how to instantiate the function ΦR in the development of the transition function ΦµCNF for this
representation. We then discuss the computational aspects of ΦµCNF . We start with some basic notions and
preprocessing techniques for CNF formula.

23

5.1. Background: CNF Formulae and Preprocessing Techniques
A clause is a disjunction of literals. A CNF formula is a conjunction of clauses. A CNF formula is often

viewed as a set of clauses, while a clause can be viewed as a set of literals. A clause is said to be trivial if it
contains the set {`, `} for some literal `. Removing the trivial clause(s) from a CNF formula ϕ results in a
CNF formula equivalent to ϕ.

A unit clause is a singleton set, i.e., it contains only one literal. The literal in a unit clause is called a
unit literal.

Let α and β be two clauses. We say that α subsumes β if α ⊂ β. A clause is said to be subsumed by
a CNF formula if it is subsumed by some clause in the CNF formula. A CNF formula ϕ can be simplified
into an equivalent CNF formula by removing from ϕ the clause(s) subsumed by another clause in ϕ. This
technique is called subsumption. Given a CNF formula ϕ, by r(ϕ) we denote the CNF formula obtained by
removing from ϕ every clause that is trivial or subsumed by another clause in ϕ. We have ϕ ≡ r(ϕ). If
ϕ = r(ϕ) then ϕ is said to be a reduced CNF formula.

Proposition 19. Let ϕ be a CNF formula, α and β be two clauses. Then

1. r(ϕ ∪ {α}) = r(r(ϕ) ∪ {α})
2. r(r(r(ϕ) ∪ {α}) ∪ {β}) = r(r(r(ϕ) ∪ {β}) ∪ {α})

Let ϕ be a CNF formula and let α be a clause such that ϕ |= α. α is called an implicate of ϕ. If
there exists in ϕ some clause(s) subsumed by α then ϕ can be simplified into an equivalent CNF formula
by replacing the set {β | β ∈ ϕ ∧ α ⊂ β} in ϕ with α. Observe that if {`} is a unit clause of ϕ, then ϕ
can be simplified by removing from ϕ every clause α that contains ` since α is subsumed by `. On the other
hand, if a clause β in ϕ contains ¯̀ then β can be shortened to β′ = β \ {¯̀} because ¯̀ is false in ϕ. ϕ then
is simplified by replacing β with β′. If |β| = 2 then β′ is a unit clause. The formula now can be simplified
w.r.t. the new unit clause β′. This process is referred to as unit propagation.

Let α and β be two clauses. α is said to be resolvable with β if there exists a literal ` such that ` ∈ α,
` ∈ β, and (α \ {`}) ∪ (β \ {¯̀}) is a nontrivial clause. In this case, we say that α is resolvable with β
on ` and (α \ {`}) ∪ (β \ {¯̀}) is called the resolvent of α and β, denoted by α|β. One can prove that
α∧β |= α|β. If α and β belong to a CNF formula ϕ then α|β is called a resolvent of ϕ. It is easy to see that
α|β is also an implicate of ϕ. If there exist in ϕ a clause that is subsumed by α|β then ϕ can be simplified to
an equivalent CNF formula by replacing from ϕ every clause subsumed by α|β. This technique is referred
to as subsumable resolution.

Given two CNF formulae ϕ = {α1, . . . , αn} and ψ = {β1, . . . , βm}. The cross-product of ϕ and ψ,
denoted by ϕ× ψ, is the CNF formula defined by

ϕ× ψ = {α ∪ β | α ∈ ϕ, β ∈ ψ}

Observe that × is nothing but a standard transformation of disjunction of CNF formulae into an equivalent
CNF formula. Since × is commutative and associative, we generalize the definition of × for a set of CNF
formulae Ψ = {ϕ1, . . . , ϕn}, called cross-product of Ψ and denoted by ×[Ψ], as follows

×[Ψ] = ϕ1 × ϕ2 × · · · × ϕn
We have that ×[Ψ] is a CNF formula and ×[Ψ] ≡

∨
ψi∈Ψ ψi.

The reduced-cross-product of ϕ and ψ, denoted by ϕ⊗ ψ, is the reduced CNF formula defined by

ϕ⊗ ψ = r(ϕ× ψ)

One can see that ⊗ is commutative as shown in the following proposition.

24

Proposition 20. Let ϕ, ψ1, and ψ2 be three CNF formulae. Then,

(ϕ⊗ ψ1)⊗ ψ2 = (ϕ⊗ ψ2)⊗ ψ1

Proposition 20 allows us to define the reduced-cross-product of a set of CNF formulae Ψ = {ϕ1, . . . , ϕn},
denoted by ⊗[Ψ], as follows

⊗[Ψ] = ϕ1 ⊗ ϕ2 ⊗ · · · ⊗ ϕn
One can easily prove the correctness of the following proposition.

Proposition 21. Let Ψ = {ϕ1, . . . , ϕn} be a set of CNF formulae. Then ⊗[Ψ] is a reduced CNF formula
and

⊗[Ψ] ≡ ϕ1 ∨ . . . ∨ ϕn

5.2. The µCNF Representation and Its Operators
Definition 16. A CNF formula ϕ is said to be minimal if ϕ is a reduced CNF formula and there is no
resolvent of ϕ that subsumes a clause in ϕ.

A minimal-CNF formula is a reduced CNF formula that cannot be simplified using the subsumable reso-
lution technique. The commutativity of the function r() (Proposition 19) allows us to define a recursive
function, denoted by µCNF , that maps a CNF formula to a minimal-CNF formula as follows.

Definition 17. Let ϕ be a CNF formula. By µCNF (ϕ) we denote the CNF formula defined as follows.

µCNF (ϕ) =

{
r(ϕ) if r(ϕ) is minimal
r(r(ϕ) ∪ {ρ}) for some resolvent ρ of r(ϕ) that subsumes at least a clause in r(ϕ)

Example 6. Given a CNF formula

ϕ = {{f, g,¬g}, {f,¬k, h}, {¬g, h, k}, {f,¬k}, {¬g, h}, {g, k}, {¬h, k}, {f, h, k}}

After removing trivial clauses from ϕ, the first clause {f, g,¬g}, we obtain

ϕ1 = {{f,¬k, h}, {¬g, h, k}, {f,¬k}, {¬g, h}, {g, k}, {¬h, k}, {f, h, k}}

After removing every subsumed clause from ϕ1, the first two clauses in ϕ1 are gone as they are subsumed
by the third and fourth clauses respectively. Hence,

ϕ2 = r(ϕ) = {{f,¬k}, {¬g, h}, {g, k}, {¬h, k}, {f, h, k}}

Observe that the second and the third clauses in ϕ2 are resolvable on g and their resolvent is {h, k}, which
subsumes the last clause in ϕ2. Hence, ϕ2 can be simplified to

{{f,¬k}, {¬g, h}, {g, k}, {¬h, k}, {h, k}}

by replacing {f, h, k} with {h, k}.
The last two clauses in the updated ϕ2 are resolvable on h and their resolvent is the unit clause {k}

which subsumes the last three clauses. Thus, the formula can be simplified further to

{{f,¬k}, {¬g, h}, {k}}

25

In this new CNF formula, {f,¬k} and {k} are resolvable on k and their resolvent is the unit clause {f}
which subsumes the first clause. Hence, the first clause is replaced with {f} to obtain

{{f}, {¬g, h}, {k}}

This formula does not contain a pair of resolvable clauses so the last formula is returned as the result of
µCNF (ϕ).

One can observe from the above example that unit propagation is a special case of the subsumable resolution
technique. It is easy to see that, after applying the aforementioned techniques for preprocessing a CNF
formula, we obtain a CNF formula satisfying the following properties.

Proposition 22. Let ϕ be a satisfiable CNF formula:

1. µCNF (ϕ) is a minimal-CNF formula equivalent to ϕ.
2. µCNF is idempotent. That is, if ϕ is minimal then µCNF (ϕ) = ϕ.

Proposition 22 shows that for each satisfiable CNF formula ϕ there exists a minimal-CNF formula
µCNF (ϕ) equivalent to ϕ. This allows the definition of minimal-CNF representation as follows.

Definition 18. The minimal-CNF representation, denoted by µCNF , is the set of minimal-CNF formulae.
A µCNF -state is a minimal-CNF formula.

To complete the definition of the function ΦµCNF for µCNF , we need to define the operators convµCNF ,
updateµCNF , andmergeµCNF . Recall that convµCNF converts the formulae of the forms ϕ∧ψ and ϕ∧¬ψ
into equivalent µCNF -states, where ϕ is a µCNF -state and ψ is a consistent set of literals. Observe that
ϕ ∧ ψ is a CNF formula, where ψ is the set of unit clauses {{`} | ` ∈ ψ}; and ϕ ∧ ¬ψ is also a CNF
formula where ¬ψ is the (nontrivial) clause ψ = {` | ` ∈ ψ}. Thus, we can simply use µCNF function for
transforming those CNF formulae into equivalent µCNF -states.

Definition 19. Let ϕ be a µCNF -state and ψ be a consistent set of literals. Then

convµCNF (ϕ ∧ ψ) = µCNF (ϕ ∪ {{`} | ` ∈ ψ})

convµCNF (ϕ ∧ ¬ψ) = µCNF (ϕ ∪ {ψ})

Proposition 23. Let ϕ be a µCNF -state and ψ be a consistent set of literals. Then,

1. convµCNF (ϕ ∧ ψ) is a µCNF -state equivalent to ϕ ∧ ψ
2. convµCNF (ϕ ∧ ¬ψ) is a µCNF -state equivalent to ϕ ∧ ¬ψ

For the definition of updateµCNF and mergeµCNF , we need the following notions. Let ϕ be a CNF
formula and ` be a literal.

• ϕ` denotes the set of clauses in ϕ which contain `.

• ϕ− ` denotes the CNF formula obtained from ϕ by removing every occurrence of literal `.

26

Example 7. Let ϕ = {{p,¬q}, {q,¬r}, {p, r}}, then
ϕp = {{p,¬q}, {p, r}}
ϕ¬q = {{p,¬q}}
ϕ− p = {{¬q}, {q,¬r}, {r}}

To define the update function updateµCNF for µCNF , first we need to define the update of a reduced
CNF formula by a literal as follows.

Definition 20. Let ϕ be a reduced CNF-formula and ` be a literal. The update of ϕ by `, denoted by
updater(ϕ, `), is the reduced CNF-formula defined as follows:

updater(ϕ, `) =

ϕ if {`} ∈ ϕ
r(ϕ \ {{`}} ∪ {{`}}) if {`} ∈ ϕ
r(ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}} ∪ (ϕ` − `)× (ϕ` − `)) otherwise

By this definition, updater(ϕ, `) represents the set of states obtained by updating the set of statesBS(ϕ)
so that ` becomes true in the new states as shown in the following.

Proposition 24. Let ϕ be a CNF formula and ` be a literal. Then,

updater(ϕ, `) ≡ {s \ {¯̀} ∪ {`} | s ∈ BS(ϕ)}

The definition is illustrated in the next few examples:
◦ updater({{f}, {g,¬p}}, p) = {{f}, {p}}
◦ updater({{f}, {h, p}}, p) = {{f}, {p}}
◦ updater({{f}, {g,¬p}, {h, p}}, p) = {{f}, {p}, {g, h}}

The following proposition shows that updater is commutative over the family of reduced CNF formulae.

Proposition 25. Let ϕ be a reduced CNF formula and `1 and `2 be two literals such that `1 6= ¯̀
2, then

updater(updater(ϕ, `1), `2) = updater(updater(ϕ, `2), `1)

This proposition (together with Lemma 1) shows that the result of updating a reduced CNF-formula ϕ
by a consistent set of literals is independent from the order in which the literals are introduced. This allows
us to define the function updateµCNF as follows.

Definition 21. Let ϕ be a µCNF -state and η be a consistent set of literals. Then updateµCNF (ϕ, η) is the
µCNF -state defined as

updateµCNF (ϕ, η) = µCNF (updater(ϕ, η))

where

updater(ϕ, η) =

{
ϕ if η = ∅
updater(updater(ϕ, η \ {`}), `) if ∃` ∈ η

Proposition 26. Let ϕ be a µCNF -state and η be a consistent set of literals. Then

BS(updateµCNF (ϕ, η)) = {s \ η ∪ η | s ∈ BS(ϕ)}

27

The mergeµCNF function for µCNF -states can be defined easily as follows.

Definition 22. Let Λ be a set of µCNF -states. Then, mergeµCNF (Λ) is defined as

mergeµCNF (Λ) = µCNF (⊗[Λ])

The next proposition is derived directly from the above definition and Proposition 21.

Proposition 27. Let Λ be a set of µCNF -states. Then, mergeµCNF (Λ) is a µCNF -state and

BS(mergeµCNF (Λ)) =
⋃
ϕ∈Λ

BS(ϕ)

Thus, the function ΦµCNF has been completely defined and its correctness proved. We next present the
computational aspects of this function.

5.3. Computational Aspects and Complexity of ΦµCNF

In this subsection we will discuss the aspects of computing ΦµCNF , the cost of computing its component
functions, and then the total cost of computing this function.

Let ϕ be a µCNF -state and a be an action executable in ϕ. Recall that, to compute ΦµCNF (a, ϕ), we
need to compute enbµCNF (a, ϕ) (Algorithm 4), updating the µCNF -states in this set, and then merging
them into the successor µCNF -state. All these three stages will generate intermediate CNF-formulae. For
simplicity of the investigation of this computational cost, we assume that the size and the number of clauses
of each intermediate CNF formula generated during the computation of ΦµCNF (a, ϕ) do not exceed those
of ϕ, where the size of a CNF formula ϕ′ is defined as Σα∈ϕ′ |α|. We will show during the discussion of the
computational cost of these stages later that, unlike the ΦµDNF function, this assumption, called size limit,
is reasonable.

For a complete computation of the µCNF -state ΦµCNF (a, ϕ), we need to instantiate Algorithm 5 by
providing an algorithm for µCNF , updateµCNF and mergeµCNF . The computation of r(.) is quite straight-
forward so we omit the algorithm for computing this function.

We will start with the problem of checking satisfaction of a formula in a µCNF -state. This problem,
unlike that for the minimal-DNF representation, has been known to be NP-hard and, hence, is worth to be
discussed.

5.3.1. Satisfaction Checking
In the computation of ΦµCNF (a, ϕ), we need to check whether a set of literals (e.g., pre(a) or an e-

condition of a) or a clause (e.g., the negation of an e-condition of a) is satisfied in the µCNF -state ϕ. Let ψ
be a satisfiable non-tautological formula. In general, to check whether ψ is satisfied in ϕ, we need to check
whether ϕ ∧ ¬ψ is unsatisfiable by using a SAT-solver. In the worst case, this computation is exponential
in the number of propositions in prop(ϕ ∧ ¬ψ). Thus, reducing the number of calls to the SAT-solver is
important. In what follows we will consider several cases where satisfaction checking can be performed in
an easier manner. To check whether ϕ satisfies ψ, we can avoid calling a SAT-solver if any of the following
quick checking cases is applicable:

• If ψ is independent from ϕ then ϕ 6|= ψ (by Proposition 4).

• If ψ is a consistent set of literals and there is a literal ` in ψ such that ` does not belong to any clause
in ϕ, then ϕ 6|= ψ. This is because ϕ 6|= ` (by Proposition 4) and ψ |= `.

28

• If ψ is a consistent set of literals and there exists ` in ψ such that ¯̀ is a unit literal of ϕ then ϕ |= ¬ψ.

• If ψ is a non-trivial clause and there exists a clause β in ϕ such that β ⊆ ψ then ϕ |= ψ.

If no quick checking case is applicable, we need to call a SAT-solver (ϕ |= ψ iff ϕ∧¬ψ is unsatisfiable). To
reduce the workload of the SAT-solver, we consider the relation between the literals in ϕ and ψ (excluding
the quick checking cases) as follows.

For every unit literal ` in ϕ, every occurrence of ` or ¯̀ in ψ can be replaced with true or false respec-
tively. For example, if ψ is a set of literals, to check whether ψ is satisfied in ϕ, we only need to reason about
the satisfiability of ϕ ∧ ¬ψ′ where ψ′ is obtained by removing every literal which is a unit literal in ϕ. On
the other hand, to check whether a clause ψ is satisfied in ϕ, we can check the satisfiability of ϕ′ ∧ψ′ where
ϕ′ obtained by removing every unit clause {`} from ϕ such that ¯̀∈ ψ and ψ′ is obtained by removing every
such unit literal ` from ψ.

For further simplification, we use the following technique. Let ϕ be a µCNF -state and ψ be a formula.
A clause α in ϕ is said to be relating to ψ if

• α is dependent on ψ, or

• α is dependent on a clause β in ϕ and β is relating to ψ.

The set of clauses in ϕ that are relating to ψ is denoted by Rel(ϕ,ψ). We have the following proposition.

Proposition 28. Let ϕ be a µCNF -state and ψ be a satisfiable non-tautological formula dependent on ϕ.

1. ϕ |= ψ iff Rel(ϕ,ψ) |= ψ.
2. ϕ ∧ ψ is satisfiable iff Rel(ϕ,ψ) ∧ ψ is satisfiable.

Proposition 28 shows that to check whether ψ is (not) true in a µCNF -state ϕ, we can check whether
ψ is (not) true in its subset Rel(ϕ,ψ). It is easy to see that the procedure Relation(ϕ,ψ) (Algorithm 9)
computes this set.

Algorithm 9 first computes the set of clauses in ϕ that depend on ψ (Lines 3-9). For each clause α in X
(whereX represents the set of clauses newly added toR, i.e.,Rel(ϕ,ψ)), it computes the set Y of clauses in
V (V = ϕ \R) that depends on α (Line 14), and updates R, X , and V according to Y (Line 16). Whenever
a clause α in X is taken to compute Y—the set of clauses in ϕ that are not (yet) in R and depend on α—it
is immediately removed from X (Line 13), since every possible clause in ϕ dependent on α is already in R.
The running time of Algorithm 9 is described in the following proposition.

Proposition 29. Let ϕ be a µCNF -state and ψ be a formula. Let m be the number of clauses in ϕ and n
be the number of propositions in the domain. Then Rel(ϕ,ψ) can be computed in O(nm2) time.

Thus, Rel(ϕ,ψ) can be computed quite quickly. For a literal ` dependent on a µCNF -state ϕ, we say that
` is possibly unknown in ϕ if neither {`} nor {¯̀} are unit clauses of ϕ; in this case, a call to a SAT-solver is
required to determine whether ` is known in ϕ. In conformant planning, ψ is usually a literal or a small set
of literals, among which even fewer (or no) literals are possibly unknown in ϕ. Hence, after applying the
simplification techniques presented earlier, the formula to be passed to the SAT-solver (Rel(ϕ′, ψ′) ∧ ¬ψ′)
is usually small—and, in particular, it can be significantly smaller than ϕ ∧ ¬ψ, the formula passed to the
SAT-solver if the above simplification techniques are not used.

29

Algorithm 9 Relation(ϕ,ψ) Computing Rel(ϕ,ψ)

1: Input: µCNF -state ϕ, a formula ψ
2: Output: Rel(ϕ,ψ)
3: Compute π = prop(ψ) ∪ prop(ψ)
4: Let R = ∅ {Initialize Rel(ϕ,ψ) with the empty set}
5: for each α in ϕ do
6: if α ∩ π 6= ∅ then
7: Set R = R ∪ {α}
8: end if
9: end for

10: Let X = R {X is the set of clauses in ϕ newly added to R}
11: Let V = ϕ \R {V is the set of clauses in ϕ that are not (yet) added to R}
12: while X 6= ∅ and V 6= ∅ do
13: Let α be a clause in X
14: Set X = X \ {α}
15: Compute Y = {β | β ∈ V and β depends on α}
16: if Y 6= ∅ then
17: Set R = R ∪ Y , X = X ∪ Y , V = V \ Y
18: end if
19: end while
20: return R

5.3.2. Computing µCNF

Let ϕ be a CNF formula. The µCNF -state µCNF (ϕ) is computed by the procedure CNFstate(ϕ)
(Algorithm 10). To avoid repeating computation of resolvents and subsumption checking, we use the set
treated initialized with the empty set (Line 4). Whenever a clause α of ϕ is taken to compute the resolvent
with every other clause in ϕ, α is added to treated. The algorithm terminates and returns the result when
every clause in the CNF formula being considered has been treated. One can verify the correctness of
Algorithm 10, i.e., the procedure CNFstate(ϕ) returns µCNF (ϕ).

The cost of computing µCNF (ϕ) using Algorithm 10 is analyzed in the following proposition.

Proposition 30. Let ϕ be a CNF formula, N be the size of ϕ, m be the number of clauses in ϕ, and n be
the number of propositions in the domain. Then µCNF (ϕ) can be computed in O(nm2N) time.

5.3.3. Computational Complexity of enbµCNF (a, ϕ) (Algorithm 4)
To investigate the cost of computing enbµCNF (a, ϕ), we first evaluate the running time of extendingR

(Algorithm 3) for computing γ ⊕µCNF ψ and the effect e(γ), where γ is a µCNF -state stored in the set X
in Algorithm 4 and ψ is an e-condition of a. We have the following proposition.

Proposition 31. Let ϕ be a µCNF -state, N be the size of ϕ, m be the number of clauses in ϕ, and n be the
number of propositions in the domain. Let ψ′ be the set of literals in ψ that are possibly unknown in ϕ and
u = |prop(Rel(ϕ,ψ′))|. Computing ϕ ⊕µCNF ψ (Algorithm 3) has time complexity O(2uN + nm2N), if
ψ is unknown in ϕ, and it requires O(2uN + n), otherwise.

One can observe (see the proof of Proposition 31) that most of the running time of Algorithm 4 for
computing enbµCNF (a, ϕ) lies in the execution of procedure extendingR (Line 9). After the execution

30

Algorithm 10 CNFstate(ϕ) Computing µCNF (ϕ)

1: Input: CNF-formula ϕ
2: Output: µCNF -state µCNF (ϕ)
3: Compute ϕ = r(ϕ)
4: Set treated = ∅
5: while ϕ \ treated 6= ∅ do
6: Let α be a clause in (ϕ \ treated)
7: Compute ϕ0 = {α|β | β ∈ ϕ, β is resolvable with α}
8: for each β in ϕ0 do
9: Compute ϕ′ = {β′ | β′ ∈ ϕ∧β ⊂ β′} {ϕ′ is the set of clauses in ϕ subsumed by the resolvent β}

10: if ϕ′ 6= ∅ then
11: Set ϕ = ϕ \ ϕ′ ∪ {β} {replaces the non-empty set of clauses subsumed by β in ϕ with β}
12: end if
13: end for
14: Set treated = treated ∪ {α}
15: end while
16: return ϕ

of this procedure for each µCNF -state ϕ′ in X , we obtain either the same µCNF -state ϕ′ (if ψ is known
in ϕ′) or the pair of two formulae convµCNF (ϕ′ ∧ ψ) and convµCNF (ϕ′ ∧ ¬ψ) (if ψ is unknown in ϕ′).
Observe from the second case that, in the former formula we add a set of unit clauses to ϕ′, and then use the
function µCNF to convert it into a µCNF -state. This new µCNF -state is usually smaller than ϕ′—since
the new unit clauses usually subsume or shorten a number of clauses in ϕ′. In the latter formula, we add
only a small clause, which is usually a clause with at most two literals; thus, there is a great chance that the
new clause (or its resolvent with a clause in ϕ′) will subsume some clause(s) in ϕ′ when applying µCNF .
This makes the assumption about the size limit for the formulae stored in the set X reasonable—i.e., their
size is not greater than that of ϕ.

In Proposition 31, we use the term u = |prop(Rel(ϕ′, ψ′))|. We need to determine an upper bound for
this value as follows:

maxprops(a, ϕ) = max
ψ∈Ψ(a)

(|prop(Rel(ϕ ∪Ψ′(a), ψ′))|)

where
ψ′ = {` ∈ ψ | ` is possibly unknown in ϕ} and Ψ′(a) = {ψ′ | ψ ∈ (Ψ(a))}

Intuitively, for each µCNF -state ϕ′ in X (Algorithm 4), |prop(Rel(ϕ′, ψ′′))| ≤ maxprops(a, ϕ),
where ψ′′ = {` ∈ ψ | ` is possibly unknown in ϕ′}, and ψ is an e-condition of a. The cost of computing
enbµCNF (a, ϕ) is shown in the following proposition.

Proposition 32. Let ϕ be a µCNF -state and a be an action. Let m be the number of clauses in ϕ, N be
the size of ϕ, p be the number of combined conditional effects of a, and k be the number of e-conditions of
a that are unknown in ϕ. Let u = maxprops(a, ϕ). If for each intermediate CNF formula ϕ′ generated
during the computation of enbµCNF (a, ϕ), the size of ϕ′ and the number of clauses in ϕ′ do not exceed the
size of ϕ and m, respectively, then

T (enbµCNF (a, ϕ)) = O(2k+uNp+ 2kNnm2)

31

5.3.4. Computing updateµCNF

The computation of updateµCNF is implemented by the procedure updateCNF(ϕ, η) (Algorithm 11).

Algorithm 11 updateCNF(ϕ, η) Computing updateµCNF (ϕ, η)

1: Input: µCNF -state ϕ, set of literals η
2: Output: µCNF -state updateµCNF (ϕ, η)
3: for each ` in η do
4: if {`} 6∈ ϕ then
5: if {`} ∈ ϕ then
6: Compute ϕ = r(ϕ \ {{`}} ∪ {{`}}) {updater(ϕ, `) = r(ϕ \ {{`}} ∪ {{`}})}
7: else
8: Set ϕ0 = {α | α ∈ ϕ ∧ α ∩ {`, `} = ∅} {compute ϕ0 = ϕ \ (ϕ` ∪ ϕ`)}
9: Set ϕ+ = {α \ {`} | α ∈ ϕ ∧ ` ∈ α} {compute ϕ+ = ϕ` − `}

10: Set ϕ− = {α \ {`} | α ∈ ϕ ∧ ` ∈ α} {compute ϕ− = ϕ` − `}
11: Compute ϕ = r(ϕ0 ∪ {{`}} ∪ (ϕ+ × ϕ−))
12: {updater(ϕ, `) = r(ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}} ∪ (ϕ` − `)× (ϕ` − `))}
13: end if
14: end if
15: end for
16: return CNFstate(ϕ) {Algorithm 10}

Proposition 33. For a µCNF -state ϕ and a consistent set of literals η, the procedure updateCNF(ϕ, η)
returns updateµCNF (ϕ, η).

The running time of Algorithm 11 for computing updateµCNF in the worst case is shown in the follow-
ing proposition.

Proposition 34. Let ϕ be a µCNF -state and a be an action. Let m be the number of clauses in ϕ, k be the
number of e-conditions of a that are unknown in ϕ, and n be the number of propositions in the domain. If
for each intermediate CNF formula ϕ′ generated during the computation of enbµCNF (a, ϕ), the size of ϕ′

and the number of clauses in ϕ′ do not exceed the size of ϕ and m, respectively, then the total running time
for updating every µCNF -state in enbµCNF (a, ϕ) is O(2kn2m3).

5.3.5. Computing mergeµCNF
For a set of µCNF -states Λ = {ϕ1, . . . , ϕn}, by definition, we have that

mergeµCNF (Λ) = µCNF (⊗[Λ]) = µCNF (r(. . . r(ϕ1 × ϕ2)× . . . ϕn−1)× ϕn)

Since for every CNF formula ϕ′, µCNF (ϕ′) ≡ r(ϕ′), if we replace r() with µCNF () in mergeµCNF (Λ)
then we will obtain a µCNF -state equivalent to mergeµCNF (Λ). Specifically,

µCNF (µCNF (. . . µCNF (ϕ1 × ϕ2)× . . . ϕn−1)× ϕn) ≡ mergeµCNF (Λ)

This allows us to apply µCNF () in place of r() in the implementation of mergeµCNF (Λ), in order to
maintain the size of the obtained CNF formulae as small as possible, as shown in Algorithm 12. The result
is a µCNF -state equivalent to mergeµCNF (Λ) so the condition 7 is still satisfied.

32

Algorithm 12 Computing mergeµCNF (Λ)

1: Input: Set of µCNF -states Λ
2: Output: (A µCNF -state equivalent to) mergeµCNF (Λ)
3: Let X be a µCNF -state in Λ. Remove X from Λ.
4: for each µCNF -state ϕ in Λ do
5: Compute X = µCNF (X × ϕ)
6: end for
7: return X

The next proposition shows how the size of cross-product of CNF-formulae and, hence, the time com-
plexity for this computation can be reduced.

Proposition 35. Let ϕ and ψ be two CNF formulae, α be a clause in ϕ, and β be a clause in ψ. It holds
that
• If α = β then r(ϕ× ψ) = r(((ϕ \ α)× (ψ \ β)) ∪ α)
• If α ⊂ β then r(ϕ× ψ) = r((ϕ× (ψ \ β)) ∪ β)

Observe that if |ϕ| = n (ϕ has n clauses) and |ψ| = m then the first item says that the size of the
cross-product can be reduced by n + m − 1 clauses. The second item indicates that it can be reduced by
n − 1 clauses. Since the µCNF -states that need to be merged are originated from the same µCNF -state,
they usually share a great number of common clauses. Hence, the use of Proposition 35 leads to a significant
reduction in computation time in most cases.

We are now going to evaluate the running time of Algorithm 12. Let Γ be the set of µCNF -states
obtained by updating every µCNF -state in the set enbµCNF (a, ϕ). As presented earlier, this set contains
at most 2k µCNF -states, where k is the number of e-conditions of a that are unknown in ϕ. Since the
µCNF -states in Γ are originated from the same µCNF -state ϕ, they usually share a number of common
clauses that help reduce the size of their cross-product (Proposition 35). In addition, the unit clauses added
to the formulae by the updateµCNF function usually reduce the size of the formulae significantly, through
the application of the µCNF function. Thus, the size limit assumption in this computation, i.e., at the end
of each iteration of the for loop X contains at most m clauses and its size is bounded by N , is reasonable.
Therefore, in each iteration, computing the cross-productX×ϕ requiresO(nm2) time, and applying µCNF

to the result requires (Onm2N) time (Line 5). Hence, the overall cost for each iteration is O(nm2N).
There are |Γ | − 1 iterations, and this number is bounded by 2k − 1; thus, the total time for computing
mergeµCNF (Γ) is O(2knm2N).

Proposition 36. Let ϕ be a µCNF -state and a be an action. Let m be the number of clauses in ϕ, N
be the size of ϕ, k be the number of e-conditions of a that are unknown in ϕ, and n be the number of
propositions in the domain. Let Γ be the set of µCNF -states obtained by updating every µCNF -state in
enbµCNF (a, ϕ): Γ = {updateµCNF (ϕ′, e(a, ϕ′)) | ϕ′ ∈ enbµCNF (a, ϕ)}. If for each intermediate CNF
formula ϕ′ generated during the computation of enbµCNF (a, ϕ) or the cross-product X in Algorithm 12,
the size of ϕ′ and the number of clauses in ϕ′ do not exceed the size of ϕ and m, respectively, then

T (mergeµCNF (Γ)) = O(2knm2N)

Now we are ready to evaluate the cost of computing ΦµCNF (a, ϕ) as shown the following theorem.

33

Theorem 5. Let ϕ be a µCNF -state and a be an action. Let m be the number of clauses in ϕ, N be
the size of ϕ, p be the number of combined conditional effects of a, k be the number of e-conditions of a
that are unknown in ϕ, and n be the number of propositions in the domain. Let u = maxprops(a, ϕ). If
for each intermediate CNF formula ϕ′ generated during the computation of enbµCNF (a, ϕ) or the cross-
product X in Algorithm 12, the size of ϕ′ and the number of clauses in ϕ′ do not exceed the size of ϕ and
m, respectively, then

T (ΦµCNF (a, ϕ)) = O(2k+uNp+ 2kn2m3)

Thus, besides k, the number of e-conditions of a that are unknown in ϕ, ΦµCNF (a, ϕ) is also exponential
in u. This is because of the complexity of satisfaction checking in this representation.

5.4. CNF Conformant Planner
Like DNF, CNF is a progression-based conformant planner, that is built on top of DNF. However, this

planner employs the µCNF representation and it does not use the one-of combination technique as this
technique works only for disjunctive representations.

The heuristic function used in CNF is similar to that used in DNF—except for the the cardinality and
square distance heuristics, that are not applicable to µCNF . The heuristic function for CNF, hence, is
defined by the pair 〈hgoal(ϕ), hlit(ϕ)〉 in the lexicographical order, where

• hgoal(ϕ): the number of subgoals satisfied by the µCNF -state ϕ.

• hlit(ϕ): the number of known literals in ϕ.

The second component of this heuristic function, again, prioritizes expansion of nodes that contain less
uncertainty and have a smaller size.

6. Prime Implicate Representation

This section investigates another conjunctive representation, which is the set of prime implicate formu-
lae. As we will see next, this representation has several desirable properties: it is a unique representation
that eliminates the possibility of multiple nodes in the search tree representing a same belief state, the satis-
faction of a clause or a set of literals in a prime implicate formula can be checked easily, and the update and
merge functions are simpler than those for the minimal-CNF representation.

Let ϕ be a satisfiable formula and α be a nontrivial clause. α is said to be a prime implicate of ϕ if α
is an implicate of ϕ and there does not exist another implicate β of ϕ that subsumes α. If a unit clause is
an implicate of ϕ then it is a prime implicate of ϕ. The set of prime implicates of ϕ is said to be the prime
implicate form of ϕ, also called PI-form of ϕ and denoted by PI(ϕ). A prime implicate formula is a prime
implicate form of some formula. The following proposition shows that checking whether a set of literals or
a clause is satisfied in a prime implicate formula is easy.

Proposition 37. Let ϕ be a prime implicate formula, m be the number of clauses in ϕ, and n be the number
of propositions in the domain. Then,

1. Checking whether a literal ` is satisfied in ϕ requires O(m) time.
2. Checking whether a nontrivial clause α is satisfied in ϕ requires O(nm) time.

Each satisfiable formula has a unique PI-form which is equivalent to the formula. This allows us to use
prime implicate formulae as unique representations of belief states.

34

Definition 23. The prime implicate representation, denoted by PI, is the set of prime implicate formulae. A
PI-state is a prime implicate formula.

One can observe that a PI-state is also a µCNF -state but the converse is not necessarily true.

Proposition 38. Every PI-state is a µCNF -state.

The above proposition suggests us to define the operators convPI , updatePI , and mergePI for the PI
representation based on the definition of the respective operators for the minimal-CNF representation.

As we know from the definition of convµCNF , ϕ ∧ ψ ≡ ϕ ∪ {{`} | ` ∈ ψ} and ϕ ∧ ¬ψ ≡ ϕ ∪ {ψ}.
Hence, convPI is defined as follows.

Definition 24. Let ϕ be a PI-state and ψ be a consistent set of literals. Then,

convPI(ϕ ∧ ψ) = PI(ϕ ∪ {{`} | ` ∈ ψ})

convPI(ϕ ∧ ¬ψ) = PI(ϕ ∪ {ψ})

It is easy to see that convPI satisfies Equation (5) as shown in the following proposition.

Proposition 39. Let ϕ be a PI-state and ψ be a consistent set of literals. Then,

1. convPI(ϕ ∧ ψ) is a PI-state equivalent to ϕ ∧ ψ
2. convPI(ϕ ∧ ¬ψ) is a PI-state equivalent to ϕ ∧ ¬ψ

Similarly to the definition of updateµCNF , in order to define the update of a PI-state ϕ by a set of
literal ψ updatePI(ϕ,ψ), first we need to define the update of ϕ by a literal ` updatePI(ϕ, `). Intuitively,
updatePI(ϕ, `) should be equivalent to updater(ϕ, `). Observe that, from the third case of Definition 20,
each clause α in the cross-product (ϕ` − `) × (ϕ` − `) is either a trivial clause or a resolvent (and thereby
an implicate) of ϕ. If α is non-trivial then either α is a prime implicate in ϕ or it is subsumed by a prime
implicate of ϕ. Moreover, α 6∈ ϕ` ∪ ϕ` since every clause in (ϕ` − `) × (ϕ` − `) (including α) does not
contain either ` or `. This implies that, for every α in (ϕ` − `) × (ϕ` − `), α is trivial, α is subsumed by a
clause in ϕ \ (ϕ`∪ϕ`), or α already exists in this set. Thus, adding (ϕ`− `)× (ϕ`− `) to the set in the third
case when ϕ is a PI-state becomes redundant. Definition 20 can be reduced to the definition of updatePI as
follows.

Definition 25. Let ϕ be a PI-state and ` be a literal. The update of ϕ by `, denoted by updatePI(ϕ, `), is
defined as

updatePI(ϕ, `) =

{
ϕ if {`} ∈ ϕ
ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}} otherwise

The following proposition shows that updatePI satisfies Equation (6).

Proposition 40. Let ϕ be a PI-state and ` be a literal. Then, updatePI(ϕ, `) is a PI-state and

BS(updatePI(ϕ, `)) = {s \ {¯̀} ∪ {`} | s ∈ BS(ϕ)}

Like updater, updatePI is commutative as shown in the following proposition.

35

Proposition 41. Let ϕ be a PI-state and `1 and `2 be two literals such that `1 6= ¯̀
2, then

updatePI(updatePI(ϕ, `1), `2) = updatePI(updatePI(ϕ, `2), `1)

Proposition 41 along with Lemma 1 allow us to define the function updatePI as follows.

Definition 26. Let ϕ be a PI-state and η be a consistent set of literals. Then updatePI (ϕ, η) is the PI-state
defined as

updatePI(ϕ, η) =

{
ϕ if η = ∅
updatePI(updatePI(ϕ, η \ {`}), `) if ∃` ∈ η

The following proposition confirms that updatePI satisfies Equation (6).

Proposition 42. Let ϕ be a PI-state and η be a consistent set of literals. Then

BS(updatePI (ϕ, η)) = {s \ η ∪ η | s ∈ BS(ϕ)}

To define mergePI , we use the following proposition.

Proposition 43. Let ϕ and ϕ′ be two prime implicate formulae. Then,

PI(ϕ× ϕ′) = ϕ⊗ ϕ′

Thus, the prime implicate form of the cross-product of two PI-states can be computed in polynomial
time by removing every trivial or subsumed clause from their cross-product. The mergePI operator for
PI-states then is defined as follows.

Definition 27. Let Λ be a set of PI-states. Then, mergePI(Λ) is defined as

mergePI(Λ) = ⊗[Λ]

The following proposition, that follows directly the above definition and Proposition 27, shows that
mergePI satisfies Equation (7).

Proposition 44. Let Λ be a set of PI-states. Then, mergePI(Λ) is a PI-state and

BS(mergePI(Λ)) =
⋃
ϕ∈Λ

BS(ϕ)

We now have a complete definition of ΦPI , a transition function for PI-states, whose correctness has
been proved. Next, we will present the computational aspects of this function.

36

6.1. Computing PI-states

Let us start by discussing how to compute the PI-form of a formula. Let us consider the problem of
computing the PI-form of a formula φ. We can start by first converting φ into an equivalent CNF formula
ϕ, followed by the computation of the PI-form of ϕ—which is also the PI-form of φ. In principle, PI(ϕ)
is computed by repeatedly resolving pairs of clauses in ϕ, adding to ϕ the resulting resolvents that are
not subsumed by ϕ, and removing from ϕ clauses subsumed by the newly added clauses—until no new
clauses can be added to ϕ. In order to avoid generating the same resolvents in distinct ways, in 1967 Tison
[24] introduced a technique to resolve clauses over the literals in order: for each literal `, we can generate
every possible resolvent of pairs of clauses which are resolvable on ` and never consider ` again even for
the new resulting resolvents until a new clause is added to the theory. In 1990, Kean and Tsiknis [14]
proposed an incremental algorithm, called IPIA, for updating a prime implicant/implicate formula when
adding new implicants/implicates to the formula. Later, de Kleer [8] improved this method by using a novel
data structure, called trie, that represents the set of clauses in an order of literals to facilitate subsumption
checking. In this paper, we will use the IPIA algorithm for computing PI formulae (PI-states).

The procedure IPIA(ϕ, α) (Algorithm 13) computes the PI-form of the conjunction of a PI-state (ϕ)
and a clause (α). The procedure IPIA(ϕ) (Algorithm 14) computes the PI-form of a CNF formula ϕ. First,
it removes every trivial clause from ϕ and then incrementally computes the PI-form of ϕ based on the
procedure IPIA(ϕ, α).

Algorithm 13 IPIA(ϕ, α) Computing PI(ϕ ∧ α), where ϕ is a PI-state, α is a clause
1: Input: A PI-state ϕ, a clause α
2: Output: The PI-state PI(ϕ ∪ {α})
3: if α is trivial in ϕ or subsumed by a clause in ϕ then
4: return ϕ
5: end if
6: Remove every clause from ϕ that is subsumed by α
7: Let X = {α}
8: for each literal ` in α do
9: Compute Y = {β|γ | β ∈ X`, γ ∈ ϕ¯̀, and γ is resolvable with β}

10: Set ϕ = {α ∈ ϕ | α is not subsumed by Y }
11: Set X = {α ∈ X | α is not subsumed by Y }
12: Set Y = {α ∈ Y | α is not subsumed by (ϕ ∪X)}
13: Set X = X ∪ Y
14: end for
15: return ϕ ∪X

We have following proposition about the running time of Algorithm 14 and the size of the resulting
PI-state.

Proposition 45. Let ϕ be a PI-state and α be a nontrivial clause. Let n be the number of propositions in the
domain, m be the number of clauses in ϕ, r be the number of literals in α, and u be the number of literals
in α that are unknown in ϕ. Then,

1. PI(ϕ ∪ {α}) can be computed in O(nm2r) time and PI(ϕ ∪ {α}) contains O(mr) clauses.
2. PI(ϕ ∪ {α}) can be computed in O(nm2u) time and PI(ϕ ∪ {α}) contains O(mu) clauses.

37

According to Proposition 45, updating a PI-state to keep it in PI-form, when adding to it a clause α,
requires polynomial time if |α| or the number of literals in |α| that are unknown in the PI-state is bounded
by a constant.

Algorithm 14 IPIA(ϕ) Computing PI-form of a CNF formula ϕ
1: Input: A CNF formula ϕ
2: Output: The PI-state PI(ϕ)
3: Remove every trivial clause from ϕ
4: if ϕ = ∅ then
5: return ϕ
6: end if
7: Let result = {α}, where α is a clause in ϕ
8: Remove α from ϕ
9: for each β in ϕ do

10: Compute result = IPIA(result, β) {Algorithm 13}
11: end for
12: return result

In conformant planning, the procedure IPIA(ϕ) is needed only for the computation of the PI-form of the
initial belief state. During the search for conformant solutions, only the incremental algorithm (Algorithm
13) is needed for the computation of the convPI operator. Specifically, given a PI-state ϕ and an e-condition
of an action ψ, according to Definition 24, convPI(ϕ∧ψ) is obtained by repeatedly applying the procedure
IPIA(ϕ, {`}) for each ` ∈ ψ (Algorithm 15), while convPI(ϕ ∧ ¬ψ) is returned directly by IPIA(ϕ,ψ).

Algorithm 15 convPI(ϕ,ψ) Computing convPI(ϕ ∧ ψ) = PI(ϕ ∪ {{`} | ` ∈ ψ})
1: Input: PI-state ϕ, consistent set of literals ψ
2: Output: The PI-state convPI(ϕ ∧ ψ)
3: for each ` in ψ do
4: Compute ϕ = IPIA(ϕ, {`}) {Algorithm 13}
5: end for
6: return ϕ

Given the correctness of the IPIA algorithm (Algorithm 13), that for a PI-state ϕ and a clause α the
procedure IPIA(ϕ, α) returns PI(ϕ ∪ {α}), it is easy to see that the following proposition holds.

Proposition 46. For a PI-state ϕ and a consistent set of literals, the procedure convPI(ϕ,ψ) returns
convPI(ϕ ∧ ψ) and the procedure IPIA(ϕ,ψ) returns convPI(ϕ ∧ ¬ψ).

The updatePI can be easily implemented by the procedure updatePI(ϕ, η) (Algorithm 16) according
to Definitions 25 and 26. Clearly, the following proposition holds.

Proposition 47. For a PI-state ϕ and a consistent set of literals η, the procedure updatePI(ϕ, η) returns
updatePI(ϕ, η).

Due to the simplicity of the mergePI operator (Definition ??), we omit its implementation in the paper.
Let us note that, like mergeµCNF , the computation of mergePI also makes use of Proposition 35 to reduce
the computational cost.

38

Algorithm 16 updatePI(ϕ, η) Computing updatePI(ϕ, η)

1: Input: PI-state ϕ, set of literals η
2: Output: PI-state updatePI(ϕ, η)
3: for each ` in η do
4: if {`} ∈ ϕ then
5: do nothing {updatePI(ϕ, `) = ϕ}
6: else
7: Compute ϕ = ϕ \ (ϕ` ∪ ϕ¯̀) ∪ {{`}}
8: end if
9: end for

10: return ϕ

Theorem 6. Let ϕ be a PI-state and a be an action. Letm be the number of clauses in ϕ, p be the number of
combined conditional effects of a, k be the number of e-conditions of a that are unknown in ϕ, and n be the
number of propositions in the domain. Let r be the maximum number of literals in an e-condition of a and
u be the maximum number of literals in an e-condition of a that are unknown in ϕ. Let e = max{e(a, s) |
s ∈ BS(ϕ)}. If the number of clauses in each intermediate formula ϕ′ generated during the computation
of ΦPI (a, ϕ) does not exceed the number of clauses m in ϕ, then

T (ΦPI (a, ϕ)) = O(2k(nm2r + nm2u + nmp+ nme+ nm3))

As mentioned earlier, u is very small (usually 0 or 1) in most problem so T (ΦPI (a, ϕ)) is exponential
only in k, the number of e-conditions of a unknown in ϕ, in the worst case. In turn, k is also rather small
in most problems so T (ΦPI (a, ϕ)) is polynomial in most problems. However, this is true only if the size
of the PI-states generated during the computation of T (ΦPI (a, ϕ)) is not greater than that of ϕ. This is not
always true. Moreover, even though T (ΦPI (a, ϕ)) is polynomial, the number of clauses in the PI-state ϕ
(m) can be very large, compared to an equivalent µCNF -state, so T (ΦPI (a, ϕ)) can be very large too. Our
experiments show that in many problems, the set of PI-states generated by the search is identical to the set of
µCNF -states. In those problems, since ΦPI is faster than ΦµCNF , the use of the PI representation appears
to be more efficient than the µCNF representation.

6.2. PIP Conformant Planner

The PI representation is employed in a conformant planner, called PIP, that is built on top of CNF and
uses the same heuristic scheme of CNF. It is worth noting that the implementation of PIP does not need a
SAT-solver software system. Instead, PIP implements the incremental IPIA algorithm (Algorithm 13) for
computing PI-states during the search, while Algorithm 14 is used to compute the initial PI-state from the
initial µCNF -state, as presented in Subsection 6.1.

7. Related Work

For a better understanding of the empirical study in the next section, in this section we will discuss
the approaches adopted in the state-of-the-art conformant planners, including KACMBP [7], POND [5],
Conformant-FF [12], T0 [18, 19], T1 [1], CPA [29, 28], and GC[LAMA] [16]. The performance of these
planners, except KACMBP, will be compared to the performance of our planners in the following section.

39

Note that all of these planners are heuristic search and progression-based. We will discuss the advantages
and disadvantages of the method each of these planners uses to deal with incomplete information.

The approach proposed by Cimatti, Roveri, and Bertoli [6, 7] represents belief states as binary decision
diagrams (BDDs) [4] and uses the model checking techniques for expanding the search space. Later, Bryce,
Kambhampati, and Smith employed BDDs to represent literals and actions in the planning graph for compu-
tation of heuristics used to search for solutions in their planner POND[5]. The use of BDDs is advantageous
for the following reasons. First, a BDD formula is usually more compact than the belief state it represents.
Second, checking whether a literal holds in a BDD formula representing a belief state can be done easily.
Finally, there are available libraries for creating and manipulating BDDs, that allow the developer to focus
only on the development of a heuristic function in the development of a planner. This approach, however,
has the main disadvantage that the size of the BDD representation is still very large and sensitive to ordering
of the variables. Furthermore, the manipulation of BDDs is very expensive as it requires intermediate for-
mulae of exponential size. This explains why KACMBP and POND do not scale well as shown in several
works [12, 19, 25] and in this paper (with POND).

At the other extreme of the use of belief states (that explicitly enumerates all possible states of the
world), Hoffmann and Brafman represent belief states indirectly through the action sequences that lead to
them from the initial belief state, and use forward search in the belief state space for solutions [12]. In this
approach, the resulting planner CFF does not store the knowledge about the state of the world in memory,
except the known literals and the corresponding action sequence. To determine whether a proposition holds
in the successor belief state after the execution of an action in a belief state, the planner has to reason about
a CNF formula that captures the semantic of the entire action sequence leading to the successor belief state
from the initial belief state. The advantage of this representation is that it requires very little memory,
scaling up pretty well on a number of problems. The trade-off is that it incurs a great amount of repeated
computations. Furthermore, checking whether a proposition holds after the execution of even one single
action in the presence of incomplete information is co-NP complete. We believe that this is one of the main
reasons why CFF has difficulties in finding a solution for even small instances of harder problems, where
the structure of the actions is complex or there are unknown propositions in the conditions of the conditional
effects as shown in several works [19, 28, 25].

An alternative, indirect, heuristic search and progression-based approach consists of transforming a
conformant planning problem into a classical planning problem, and then using the off-the-shelf classical
planner FF [13] to search in the corresponding state space for solutions. This method has been employed
by the planner T0 [18, 19] and its predecessor cf2cs(ff) [17]. This approach demonstrates a great im-
provement, i.e., the T0 planner can solve hard problems of large size, compared to the previous approaches.
However, the complete translation is exponential in the conformant width of the problem, and the number of
literals in the resulting problem can be exponential in the number of literals in the original problem, making
the state space extremely large and prohibiting the planners to scale up. To reduce the complexity of the
translation, T0 sacrifices the completeness of the translation in certain problems. This is the reason why T0
is unable to return a solution in several problems that have solutions (e.g., large instances of Corners-Square,
Push-to, and Look-and-Grab as shown in the experimental results later). The experiments also show that T0
fails during translation for large instances of several domains, e.g., Adder, Rao’s key, and Push-to.

Albore, Ramirez, and Geffner recently introduced a new translation-based approach to conformant plan-
ning [1]. This approach translates each conformant planning problem P into a new problem P ′ by simply
replacing the initial belief state in P by a subset of it. For each belief state in the original problem P , the
approach maintains a set of tentative literals that are satisfied in the corresponding belief state in P ′. The
translation is used for deriving heuristics and tentative literals for each belief state rather than for employing

40

a classical planner to find solutions. This translation is complete but not always sound. This means that
a solution for P is also a solution for P ′ and any literal satisfied in a belief state of P must belong to the
set of tentative literals for that belief state—but the converse is not necessarily true. As discussed in their
paper, the condition for the method to be sound is that the conformant width of the problem is bounded.
In their resulting planner T1, this condition is instantiated as being not greater than 1—which is satisfied
in many benchmarks. Therefore, T1 performs very well in a large number of domains. However, T1 still
encounters difficulties in other domains, especially those that have conformant width greater than 1, where
tentative literals need to be verified and T1 does that in the same manner as CFF does. Like CFF, T1 does
not handle problems with disjunctions in the goal.

The most recent conformant planner, that uses a classical planner to find conformant solutions, is
GC[LAMA] [16]. The approach in GC[LAMA] is based on the fact that, given a conformant problem
P = 〈F,O, I,G〉, every solution of P is also a solution for the classical planning problems of the form
P ′ = 〈F,O, s,G〉, where s is a state in the initial belief state SI of P . To solve P , GC[LAMA] tries to
find a solution for the sub-problem P = 〈F,O, s0, G〉, for some initial state s0 ∈ SI , using the competitive
classical planner LAMA [11], the winner of the Sequential Satisficing Track of the IPC 2008 and IPC 2011.
For each solution α of P ′ found by LAMA, if α is verified to be also a solution for P then GC[LAMA]
returns α as a solution for P . Otherwise, for each state s ∈ SI and s 6= s0, GC[LAMA] attempts to intro-
duce additional sequences of actions in α to ensure maintenance of preconditions and effects of the actions
in α—using smaller classical planning problems to determine the necessary sequence of actions to insert.
Observe that, after insertion of a sequence of action β into α, the new sequence may be no longer a solution
for P ′, as the execution of β can destroy some literals that are useful for the achievement of the goal for
P ′; this may require backtracking and repeating the process with different solutions of P ′. One can see that
this method is efficient on problems where the action effects are monotonic, i.e., useful actions create useful
literals without destroying other useful literals, so that the addition of supplementary sequences of useful ac-
tions into a solution for a sub-problem results in another solution for the sub-problem and it brings us closer
to a solution for the sub-problem being considered. The method has also some limitations; for example, the
method requires testing each subproblem derived from the initial belief state—thus, a large initial belief state
can prove challenging. This method is also potentially incomplete unless the underlying classical planner
can find all the solutions for any classical planning problem. This explains why GC[LAMA] is efficient only
on the problems in the first experimental test suite in the next section, while it falls short of expectations in
the other test suites.

The introduction of CPA [23] brought a different perspective to deal with incomplete information in
conformant planning. Instead of using the complete transition function in the search, CPA uses an approxi-
mation technique, first proposed by Son and Baral [21], which approximates a belief state by the intersection
of the states in it. The advantage of this approach lies in the low-complexity of the approximation: the suc-
cessor (approximated) belief state can be computed in polynomial time. The approximation is, however,
incomplete, and so are planners which employ this approximation. To address this issue, a complete con-
dition for the approximation has been identified along with corresponding techniques developed in CPA to
make the planner complete [22, 29]. These techniques require the system to deal with sets of approximated
states, which—in the worst case—are the same as the belief states. The advantage of this approach is that
the computation of successor belief states is very simple—i.e., can be performed in the same manner as that
for belief states—since the approximated formulae are in disjunctive normal form and they contain sufficient
information needed for the state computation. The drawback of this approach is that the approximated for-
mula explodes in many problems as observed in the experiments, preventing the planner to scale up or even
hardly to start the search. To address this issue, the authors of the recent CPA [28] developed preprocess-

41

ing techniques which help reduce the size of the initial disjunctive formula in a certain classes of problems.
These techniques enabled the planner to perform very well in several benchmarks and to win the conformant
planning category in the IPC-08 (http://ippc-2008.loria.fr/wiki/index.php/Main_Page).

8. Experimental Evaluation

8.1. Experimental Setup

In this paper, we compare our planners with seven state-of-the-art conformant planners: CPA, CFF,
GC[LAMA], POND, T0, and T1. These planners have been known as the most competitive conformant
planning systems. We do not use KACMBP [7] and MBP[6], whose performance is comparable to that of
some of the other planners discussed in this paper—due to the lack of translation of the input theory, as these
planners do not recognize theories encoded in the PDDL language. Moreover, they employs analogous state
representations as other systems being discussed—e.g., BDD as in POND. The comparison with KACMBP
and MBP, nonetheless, can be derived indirectly from the experimental results reported in [12, 19, 29].

In this paper, we use the most recent release of CPA [28]. This is an approximation-based planner, like
its predecessor [22, 29]. The version of CPA used in this paper outperforms its predecessor [22, 29] on most
benchmarks.

The version of GC[LAMA] used in this paper is newer than the one discussed in [16]. This newer
version performs differently than its predecessor on several problems.

We use the current public release of the CFF system [12].4 We apply CFF using the default setting on
most domains, except cornerscube and its variants, where the second heuristic option (-h 2) is used—as
this setting offers better results on these domains. The CFF planner does not handle disjunctions in the goal
(e.g., as required by the Sortnet and Adder problems) or conjunctions in one-of clauses in the description of
the initial belief state (e.g., as needed by the UTS-cycle problem).

There are several available versions of POND which, in conjunction with different parameter options,
return very different performance results. Nevertheless, no single version/parameter combination appears to
dominate the others; in the experiments reported in this paper we select POND version 2.0 with the default
execution settings, since this version of POND outperforms its latest version 2.2 on most problems. Yet, we
also use the results of POND version 2.2 on several domains, where its predecessor offers poor performance
(e.g., UTS-cycle and Corners-Cube and its variants).

We use the most recent version of T0, released on May, 11 2009.5 Let us recall that T0 was the winner
of the Conformant Track of the 2006 International Planning Competition (IPC5).

The T1 system [1] we use in our experiment has been obtained directly from the developers (emailed by
Alexander Albore on February, 14 2012) and it was the most recent version of the system at that time. T1 is
built on top of CFF and, hence, it does not support problems that contain disjunctive goals or conjunctions
inside one-of clauses in the description of the initial belief state.

We perform all the experiments using a dedicated Linux Intel Core 2 Dual 9400 2.66GHz workstation
with 4GB of memory. In our empirical study, we are interested in comparing the planners according to
performance—i.e., speed of computation—and scalability—ability to solve increasingly larger problem
instances. The execution times we report represent the average of two runs, expressed in seconds and
showing minimal variance. We use the Linux function time to measure the overall (elapsed) execution

4http://www.loria.fr/~hoffmanj/cff.html
5http://ldc.usb.ve/~hlp/

42

http://ippc-2008.loria.fr/wiki/index.php/Main_Page
http://www.loria.fr/~hoffmanj/cff.html
http://ldc.usb.ve/~hlp/

time for each experiment; we observed that the execution time reported by a planner sometimes significantly
differs from the actual execution time. This reported time can be significantly greater than the computation
time for some planners, e.g., T0, T1, CPA, GC[LAMA], and DNF, especially when the search time is
small—this is often due to the time spent by the planners in writing to/reading from files. For this reason,
we believe the results we report (especially for small instances) are more meaningful for evaluation of the
scalability of each planners. Due to the significant variations of execution times of a planner on the same
problem instance, the execution times are rounded up to the closest decimal if the total execution time is less
than 100 seconds and to the closest integer otherwise.

The results of the experiments are reported in terms of execution time in seconds (columns time) and
the length of the plan (columns len) (Tables 1-5); the execution time represents the overall execution time
for the problem. In particular, for DNF, CNF, PIP, CPA, GC[LAMA], and T0, the execution time includes
the translation time and the search time for the plan. In these tables, we use the following terminology:

• OM: Out-of-memory (if the execution exceeds 4 Gigabytes)

• TO: Time-out (if the execution time exceeds two hours)

• NA: The benchmark is non-applicable to the planner. This happens to CFF and T1, as these planners
do not support problems with a conjunction in an one-of clause or problems with a disjunction in the
goal

• NOP: The planner does not return a solution for the problem, due to its incompleteness.

• E: The planner reports an incorrect solution.

• AB: The planner terminates abnormally, e.g., T0 fails to translate the problem into classical planning,
CFF generates too many clauses to handle, or the length of the action sequence exceeds the maximum
length set by CFF.

• "-": The planner cannot solve the problem instance due to the same reason as indicated for a smaller
instance.

In our experiments, we use a large collection of conformant benchmarks, collected from the distributions of
CFF, KACMBP, POND, and T0 and from the Conformant Track of the International Planning Competi-
tions in 2006 and in 20086. Due to the similarity and simplicity of several conformant planning benchmarks
used in the literature, we further diversify the benchmark pool with a set of new problems, obtained from
our modifications of several problems in the literature.

For a better evaluation of the different approaches, we divide the set of benchmarks used in the exper-
iments into four distinct test suites. The first two test suites contain conformant problems available in the
literature based on their conformant width [19, 1]. The conformant width of a problem is related to the
maximum number of unknown literals in the initial belief state relevant to the precondition or e-conditions
of an action or the goal of the problem. This measure is critical to the performance of several systems,
such as T0 and T1. Specifically, the translation and the size of the resulting classical problem in T0 are
exponential in the width of the original problem. For T1, when the conformant width is greater than 1, the
planner has to verify whether a tentative literal holds in a belief state in the same manner as CFF does, i.e.,

6There was no Conformant Track in the last International Planning Competition in 2011

43

by reasoning on a CNF theory constructed from the initial belief state, the sequence of actions leading to the
current belief state from the initial belief state, and the action theory of the problem. The experiments reveal
that this feature also affects the performance of other planners as well. The last two test suites are the sets of
new problems created by our modifications of several problems from the literature. Due to the similarity in
the performance of DNF, CNF, and PIP on most problems in the first three test suites, we omit the results of
CNF and PIP on those test suites. However, we will report the results of CNF and PIP in the last test suite,
where the description of the initial belief state of each problem contains a large set of or-clauses, making the
size of the initial belief state, or the disjunctive formula representing it, particularly large.

8.2. Problems from Literature with a Constant Conformant Width

This test suite consists of conformant planning problems from the literature with a constant conformant
width (usually 1). The performance results of the planners on these problems are shown in Tables 1 and 2.

The first four domains in Table 1 come from the distribution of CFF: Bomb-b-t is the Bomb-in-the-toilet
domain, where b indicates the number of bombs and t denotes the number of toilets. Logistics-u-c-p is a
variant of the classical Logistics domain, where u denotes the uncertainty about the initial location of each
of p packages, i.e., each package can be initially in one of u different locations. Ring-n is the problem of
closing and locking windows in a ring of n rooms, given that the room where the agent is initially in and the
state of each window are unknown. Safe-n is the problem of opening a safe with n possible combinations.

The following four problems in the table belong to four grid domains included in the T0 distribution.
Cube-Center-n refers to the problem of reaching the center of a cube of n3 blocks from an unknown block.
Square-Center-n is a similar problem, that involves a square of n2 cells. Corners-Cube and Corners-Square
are variants of Cube-Center and Square-Center, respectively. In this variant problems, the initial location is
restricted to the corners of the cube or the square.

In Table 2, we report the results from the Coins, Comm, and the UTS domains, drawn from the 2006
International Planning Competition (IPC5), and the Forest and Dispose domains, used in the 2008 Inter-
national Planning Competition (IPC6). Coins-e-f -p-c is the problem of collecting c coins from different
locations on f different floors using e different elevators, where the initial location of each coin is unknown
among p locations on a given floor and the initial position (floor) of each elevator is unknown as well. UTS-
k-n is the problem of visiting 2n nodes from a completely unknown location, where every pair of nodes
is connected by two directed edges. UTS-l-n is a similar problem, where only each pair of two adjacent
nodes is connected by two directed edges. In UTS-r-n, from each node there are n directed edges to n
other random nodes. Dispose-n-m is a grid problem [17], concerned with moving around and picking up
m objects from n2 different locations, where the initial location of each object is unknown, and dropping
them in a designated location. Push-to is a variant of the Dispose domain, where objects need to be picked
up only at two designated locations to which all objects have to be pushed to. Pushing an object from a cell
to an adjacent cell moves it to the adjacent cell if the object is in the current cell.

The performance of DNF on most problems in this test suite is highly competitive with most of the other
planners, except for GC[LAMA], that is exceptionally efficient on most problems in this test suite. This
is because of the relative monotonicity of the action effects in these problems, as discussed in Section 7.
However, GC[LAMA] does not perform well on the Coins and Ring domains, since it needs to consider all
the state in the initial belief state of each problem—and the initial belief state of each instance contains an
exponential number of states. Several domains where DNF does not scale up well include Logistics, Ring,
Comm, and Forest. We believe that the reason for the poor performance of DNF on Logistics and Forest is
that the simple heuristic function used in this planner does not perform well in these two domains, because
of the large number of nodes generated and expanded by DNF. For example, on Logistics-4-3-10, DNF

44

Domain DNF GC[LAMA] CPA T0 T1 CFF POND

Instance Time Len Time Len Time Len Time Len Time Len Time Len Time Len
Bomb
50-10 2.5 90 0.7 90 21 90 0.9 90 0.6 90 1.2 90 1.5 90
50-50 3.5 50 1.2 50 OM 1.4 50 2.8 50 1.3 50 10.3 50
100-50 9.1 150 1.8 150 - 3.4 150 6.7 150 15.9 150 140 150

100-100 25.5 100 3.1 100 - 8.1 100 20.5 100 3.1 100 184 100
200-200 280 200 12.7 200 - 68.5 200 OM 12.7 200 OM
Logistics

4-2-2 1.1 43 0.6 31 1.3 39 0.0 19 0.4 25 0.0 18 0.3 21
4-2-4 1.8 123 0.7 106 3.4 65 0.1 40 0.4 58 0.0 40 1.8 45
4-3-3 3.5 160 0.7 87 7.1 201 0.1 36 0.5 41 0.0 37 21.7 37

4-3-10 1442 1055 1.3 504 OM 1.2 150 8.5 216 7.5 150 OM
4-10-10 TO 2.4 247 - 3.8 125 122 167 3.9 121 -

Ring
5 1 19 1.6 18 1.2 14 0.5 17 0.4 18 25.4 45 3.2 20
6 2.3 23 3.8 22 2.4 17 0.5 20 0.5 27 367 71 26.3 31
7 8.2 27 13.1 26 7.8 20 0.6 30 0.7 32 4251 105 257 34
8 32.2 31 50 28 30.2 23 0.6 39 0.9 38 TO 2138 39
30 OM OM OM 9.17 121 382 133 - TO

Safe
10 0.6 10 0.5 10 0.6 10 0.5 10 0.4 10 0.0 10 0.1 10
30 0.7 30 0.6 30 2.7 30 0.7 30 0.5 30 1.2 30 TO
50 1 50 0.7 50 19.8 50 1.0 50 1.0 50 27.1 50 -

100 3.2 100 1.3 100 387 100 1.8 100 12.3 100 934 100 -
Square-Center

16 0.8 191 0.6 62 0.8 118 0.9 44 0.4 46 121 136 2118 45
24 1.9 351 0.7 94 0.9 68 1.0 69 0.6 70 5943 300 -
56 39.2 1358 1.6 222 2.2 168 6.5 165 2.7 166 - -
96 295 2093 3.6 382 8.7 288 37.8 285 15.6 288 - -

100 353 2854 3.4 398 9.8 302 OM 17.7 298 - -
120 584 2813 5.7 478 17.6 388 - 34.0 358 - -

Corners-Square
16 0.7 91 0.6 46 0.7 60 0.7 102 1.05 102 13.9 136 1885 32
28 0.8 156 0.6 82 0.9 83 1.1 264 4.6 264 AB TO
40 1.7 277 0.6 118 1 117 2.4 498 19.3 498 - -

100 9.6 1145 2 298 4.3 315 77.6 2748 1099 2748 TO -
140 25.2 2162 3.4 418 9.9 431 257 3907 5306 4233 - -
142 21.8 1500 5.2 424 10.4 457 NOP 6245 5532 - -
148 22.2 1473 5.9 442 12 479 - TO - -
150 21.7 1207 3.9 448 12.9 538 - - - -

Cube-Center
13 1.3 198 0.6 75 1.3 115 0.8 54 0.7 54 4069 209 99.6 54
15 1.5 243 0.6 90 2.3 296 0.9 63 0.8 63 TO 1273 63
19 3.6 332 0.6 120 2.6 259 1.1 81 0.5 81 - TO
43 76.8 1156 1.3 300 59.5 490 6.0 189 2.3 189 - -
87 543 1939 4.7 630 1472 1095 85.1 387 24.5 387 - -
91 1644 2502 4.9 660 1655 1359 OM 28.6 405 - -

119 1617 4160 7.9 870 TO - 76.1 532 - -
Corners-Cube

15 0.8 117 0.5 63 0.9 103 1.2 147 3.0 159 435 279 2680 182
20 1.2 217 0.5 87 1.0 159 2.8 258 8.9 248 2492 332 OM
24 1.2 193 0.5 105 1.1 115 6.3 358 21.4 358 TO -
52 5.0 647 0.7 231 3.6 301 372 1506 651 1554 - -
54 8.5 655 0.7 240 3.7 298 OM 725 1591 - -
87 13.2 1249 1.8 387 12.8 613 - 6632 3999 - -
99 64.5 1142 2.5 441 22.5 669 - TO - -

199 136 4741 10.2 891 319 2343 - - - -
299 374 8833 23.2 1341 OM - - - -

Table 1: Execution times and plan lengths found by the planners for problems from literature with a constant conformant width

45

Domain DNF GC[LAMA] CPA T0 T1 CFF POND

Instance Time Len Time Len Time Len Time Len Time Len Time Len Time Len
Coins

10 (2-2-4-4) 0.7 27 1.9 62 0.9 67 0.7 26 0.6 34 0.1 38 0.5 46
15(2-2-8-6) 1.0 67 2449 150 6.1 362 0.8 79 0.8 78 2.8 89 10.5 124
20(2-3-8-6) 1.3 99 3430 146 17.5 586 0.8 107 1.9 197 17.5 143 97.3 153

21(5-10-10-10) OM TO OM OM 192 904 TO OM
Comm

10 1.3 80 0.6 77 1.9 65 0.7 75 1.1 77 0.1 65 0.7 65
15 3.2 125 0.7 107 4.6 95 0.8 110 1.6 114 0.2 95 11.7 95
20 117 296 1 247 169 239 1.2 278 43.9 295 5.0 239 -
25 1270 501 1.5 410 1762 389 2.3 453 340 478 39.9 389 -

Dispose
4-4 1.5 187 0.6 514 7.0 421 1.2 120 1.7 177 1.4 90 178 126
4-5 1.6 180 0.7 642 10.3 554 1.5 145 2.5 236 2.6 107 OM
7-3 14.9 393 2 1642 284 1749 35.6 486 38.6 491 2713 328 -
7-7 57 952 4.8 3826 1580 4997 OM 202 933 - -
7-10 82.3 1305 7.5 5464 2850 7433 - 491 1285 - -
10-1 150 218 2.6 1444 155 213 7.5 716 80 443 6410 449 -
10-3 209 680 9.6 4324 4633 5071 OM 746 1103 - -
10-5 261 1286 17.4 7204 OM - 2310 1601 - -

10-10 1101 2530 49.7 14404 - - - - -
Forest

2 2.3 55 0.7 22 251 39 0.7 16 0.6 12 0.1 18 1.2 13
3 566 16343 1.1 296 TO 1.2 45 4.4 223 TO TO
4 459 8207 1.2 212 - 1.5 78 14.0 74 - OM
5 TO 2.1 834 - 3.6 129 26.8 119 - -

Push-to
4_3 1.4 166 0.7 248 113 143 1.8 118 1.1 63 1.3 48 6682 120
5_3 2.6 523 0.9 367 2456 248 150 251 2.2 114 513 105 TO
5_4 4.9 314 1 480 TO NOP 3.2 139 TO -
5_5 9.2 472 1.2 591 - OM 2.93 108 TO -
8_1 27.6 163 1.4 463 30.1 184 82.8 464 253 538 - -
8_2 36.4 638 2.6 904 4210 2903 OM 47.2 336 - -
8_3 51.4 1060 4 1305 OM - 54.0 300 - -

8_10 1575 5948 24.2 4088 - - 282 430 - -
10_1 159 270 3.3 734 178 333 3518 1159 2289 908 - -
10_2 205 1722 7.6 1446 OM TO 1176 805 - -
10_5 1233 6146 31.5 3410 - - 2162 772 - -
12_5 3137 7744 95 5031 - - TO - -

UTS-k
10 1.9 66 1 91 16.5 80 1.5 59 1.4 72 14.6 58 14.2 68
20 15.9 136 2.6 151 1445 197 12.3 119 31.8 143 1458.9 118 OM
30 75.1 206 7.1 269 - 58.4 179 OM - -
40 233 276 26.7 415 - 215 239 - - -
50 565 346 43.9 533 - 563 299 - - -
55 855 381 47.9 453 - OM - - -

UTS-l
10 1.9 109 0.7 244 36.6 125 1.7 97 1.0 59 1.2 59 52.7 88
20 15.7 209 1.2 894 TO 39.0 214 2.6 156 106 119 TO
30 74.2 309 2.6 1944 - OM 7.6 178 1731 179 OM
40 242 409 6 3394 - - 26.4 239 TO -
50 584 509 10.8 5244 - - 70.5 299 - -

UTS-r
9 1.5 66 0.9 103 20.9 80 1.3 58 24.2 67 2.7 62 9.8 64

10 1.7 73 1.2 115 33.3 90 1.7 65 OM 7.8 66 19.7 68
20 14.5 139 2 187 1054 174 25.0 138 16.8 145 397 131 OM
30 60.2 214 7 355 TO OM 80.0 239 TO -
40 184 284 18 535 - - OM - -
50 443 352 34.2 549 - - - - -

Table 2: Results on more problems from literature with a constant conformant width

46

generates 9, 049, 609 nodes and expands 445, 326 nodes, while T1 generates 112, 100 nodes and expands
1, 092 nodes. T0 and CFF generate and expand even less nodes for this problem instance. For the Ring
problem, the initial µDNF -state is exponential in the size of the problem—n3n partial states in the initial
µDNF -state for the instance Ring-n. With the Comm domain, DNF (and CPA) spend most of the execution
time on translating and simplifying the input theory; e.g., DNF spends only 2.625 seconds on the search for
the solution of Comm-25, but after spending more than 1, 267 seconds on the translation phase. In terms of
overall performance on this test suite, CPA, T0, and T1 are comparable. These planners scale better than
CFF and POND, but they are not as good as DNF.

Observe that the quality of the solutions found by DNF, in terms of length of the plans, is comparable
with the solutions found by other planners on most problems, except for the Logistics and Forest domains;
in these two domains, DNF finds solutions that are much longer than those found by the other planners.
There are several domains where the solutions found by GC[LAMA] are much longer than those found by
other planners, e.g., Dispose, Push-to, and UTS-l. While the reason for the long solutions found by DNF is
due to the simplistic heuristics used, the reason for GC[LAMA] is due to the approach of this planner, that
inserts action sequences into the solution for a sub-problem, as discussed earlier.

8.3. Harder Problems from Literature with Conformant Width Increasing on the Problem’s Size

This test suite contains problems where the conformant width increases with the problem’s size. The
experimental results for these problems are summarized in Table 3. The two Adder domains used in IPC5
and IPC6 encode circuits for a given logical formula—the IPC6 version includes more propositions and
more complex goals. The Adder problems are difficult due to the complex action effects and the large
number of actions, most of them frequently executable, making the search space extremely large. These
problems are difficult for all the planners. CFF and T1 cannot handle these problems due to disjunctions in
the goal of the problems. We will discuss the reason a disjunctive goal makes a problem more difficult for
GC[LAMA] later. Only DNF, CPA, and POND can solve the smallest instances of these two domains.

The Blocks domain, used in the both IPC5 and IPC6 competitions, is the problem of stacking blocks
in a certain order, where the initial positions are unknown. Rao’s key and UTS-cycle were used in IPC6.
The problem UTS-cycle-n is to follow two labels for visiting n nodes from an unknown node, where each
edge is assigned either (but not both) of the two labels, and each node is connected to other two nodes by
two directed edges that are uncertain among four given directed edges. Sortnet-n [3], used in IPC5, is the
problem of sorting n bits in a network. The last two domains in this table are variants of a family of grid
problems [17]. Look-and-Grab-n-r-m is the problem of picking up objects from sufficiently close locations
and, after each pickup, deposit the objects being held into a designated location before performing any other
pickup. In this problem, the initial location of each of m objects is unknown among n2 locations, and the
second parameter r indicates the radius of the influential extent of the actions. For example, when a pickup
action is executed, all the objects in the 8 surrounding locations will be picked up if r = 1; the number of
such locations increases to 15 if r = 2. The 1-Dispose domain is a variant of Dispose where the e-condition
for the pickup actions requires the robot’s hand to be empty. A solution for 1-Dispose must scan the grid,
perform pickups in every cells and deposit into the trash can. These problems are hard not only for T0 and
T1, due to their conformant width that increases with the size of the problem instance, but they are also hard
for all the other planners, as confirmed by the experimental results in Table 3.

It is easy to see that DNF outperforms all of the other planners on most domains of this test suite, with
the exception of Sortnet, where POND is the fastest planner in all the instances, and UTS-cycle, where
GC[LAMA] scales up better with the problem’s size. DNF is the only planner that is able to solve all of the
instances, including the largest instances of each domain.

47

Domain DNF GC[LAMA] CPA T0 T1 CFF POND

Instance Time Len Time Len Time Len Time Len Time Len Time Len Time Len
Adder (IPC5)

1 6.3 4 AB 6.6 8 AB NA NA 555 3
Adder (IPC6)

1 7.6 3 AB 10.5 3 AB NA NA 839 3
Blocks

1 0.5 7 0.6 8 0.7 7 1.1 5 0.8 6 0.0 6 0.0 4
2 0.6 29 0.7 35 0.8 41 1.1 23 1.1 21 TO 0.1 30
3 1.6 146 1.8 158 OM 49.4 80 TO - 3.2 78
4 OM OM - AB - - TO

Rao’s key
2 0.5 26 0.7 41 0.5 11 0.8 16 3.94 28 0.1 34 E
3 0.8 125 0.9 472 2.3 78 1.1 53 TO 11.9 102 -
4 TO OM TO AB TO TO -

Sortnet
8 1.5 36 0.9 36 0.9 26 32.2 36 NA NA 0.1 26
9 1.0 45 2.6 45 1.7 31 276 45 - - 0.1 31

10 1.0 55 3.4 55 3.1 39 OM - - 0.1 38
13 2.3 91 31.5 90 40.3 57 - - - 0.1 55
15 8.1 120 166 119 245 65 - - - 0.2 65

UTS-cycle
5 0.6 10 0.7 14 1.2 12 3.3 10 NA NA 17.5 10
6 0.7 17 1 22 1.2 22 10.4 19 - - 3208 15
7 1.3 32 2.8 29 2.0 37 58.2 26 - - TO
8 3.2 41 6.4 47 4.7 47 OM - - -
9 7.5 58 20.2 70 13.5 77 - - - -

10 29.2 89 26.6 93 33.7 77 - - - -
12 250 134 234 152 6798 127 - - - -
13 604 156 421 211 OM - - - -
14 2241 225 825 285 - - - - -

1-Dispose
2_1 0.5 14 OM 0.5 12 0.7 16 0.8 14 6.7 113 0.1 14
2_3 0.5 14 - 0.5 12 1.6 14 0.9 16 TO 0.6 14
2_5 0.9 14 - 0.9 12 OM 1.0 16 - 48 14
2_7 10.4 14 - 13.8 12 - 1.0 16 - 2583 10
2_8 42.0 14 - 44.8 12 - 1.0 - OM
2_9 188 14 - OM - 1.1 16 - -

2_10 1835 14 - - - 1.1 16 - -
5_1 1.4 98 - 1.6 98 1209 304 1.9 167 - -
5_2 4.2 122 - 11.1 102 210 126 TO - -
5_3 81.1 122 - 263 102 OM - - -
5_4 1732 536 - OM - - - -
7_2 34.7 286 - 138 240 - TO - -
7_3 1351 286 - OM - - - -

10_2 457 536 - - - - - -
12_1 693 654 - 735 658 - 3056 1463 - -
12_2 1942 502 - - - - - -

Look&Grab
4-1-1 0.8 16 1.32 52 1.1 22 1.1 14 0.7 18 0.4 37 670 26
4-2-2 1.3 4 1 18 1.4 4 32.2 4 1.0 4 AB -
4-1-3 1.8 18 5.1 46 3.9 32 OM TO TO -
4-2-3 9.1 4 5.2 18 4.2 4 137 4 1.1 4 - -
4-3-3 9.7 4 11.1 4 4.6 4 OM 1.0 4 - -
8-1-1 27.4 99 2.1 793 28.5 94 305 140 8.3 118 - -
8-1-2 47.3 144 22.4 356 86.1 125 NOP TO - -
8-1-3 1018 141 1133.28 426 OM - - - -
8-2-3 363 73 647.27 250 - - - - -
8-3-3 167 32 393.15 98 - - - - -
9-2-3 1178 69 2240.36 364 - - - - -
9-3-3 327 53 1366.27 190 - - - - -

Table 3: Results on hard problems from the literature with conformant width increasing on the problem’s size.

48

For this test suite, GC[LAMA] does not perform as well as in the previously discussed benchmarks.
This planner is not able to solve any instance of 1-Dispose and the two Adder problems. The only domain
that GC[LAMA] outperforms DNF and other planners is UTS-cycle. It is worth nothing that the UTS-cycle
problem is harder than its predecessors, due to the uncertainty about the edges connecting the nodes. Yet,
like its predecessors and other problems in the first test suite, this problem still satisfies the monotonic
property discussed previously for GC[LAMA]. More specifically, following more edges in order to reach
a desired node can only increase the number of nodes visited but cannot make any visited node become
unvisited. This is, however, not the case for most of other problems in this test suite. Let us consider, for
example, the 1-Dispose domain. The hardness of 1-Dispose lies in the pickup action, that contains a number
of conditional effects linear in the number of objects in the problem, and their e-conditions are all unknown.
Moreover, some e-conditions are contradictory (the hand is empty and an object is being held) and the action
can causes opposite effects depending on the satisfaction of the e-conditions. For example, the execution of
pickup may result in an object being held and no longer at the location, if the hand is empty and the object
is at the location, but may also drop the object at the location to empty the hand if the object is held by the
hand. We suspect that the contradictory e-conditions of the pickup action result in contradictory goals for
the supplementary classical planning problems generated by GC[LAMA], making it unable to solve even
the smallest instance of this domain.

8.4. New Hard Problems, Extensions of Traditional Problems

In this test suite, we introduce a new set of problems, including New-Ring, New-UTS-k, New-UTS-
cycle, New-Push, and New-Dispose obtained respectively as extensions of the Ring, UTS-k, UTS-cycle,
Push, and Dispose problems; the extensions incorporate new features, that describe the real-life applications
better but also make the problems harder. We will observe that these new problems worsen the performance
of most existing planners, but they do not seem to affect the performance of our approach in DNF. This is
confirmed by the experimental results in Table 4.

In the New-Ring problem, a lock can be damaged; the status of each window is unknown (either “open”
or “closed”) and the goal is to have every window closed, and if the lock is not damaged then the window
should be locked. The goal contains a set of or-clauses, of the form or(locked(i), lock_damaged(i)),
where the predicates locked(i) and lock_damaged(i) indicate that the window i is locked and the lock of
the window i is damaged, respectively.

In New-UTS-k, each node needs to be visited exactly once, except for the root node that can be encoun-
tered several times. We introduce a new action, return, to allow the agent to return to the root node from a
node that is connected to it. A plan for this new problem is also a plan for the original problem, where the
return action is replaced with the corresponding travel action, but with the added constraint preventing
repeated visits of non-root nodes. In the New-UTS-cycle domain, half of edges that have been followed will
be dropped in order to reduce the repetition of following the same edges.

In the New-Push domain, for each cell i we add a new predicate cleared(i), to indicate that the cell i is
clear as result of executing the action push(i, j); the adjacent cell j of i becomes not clear if there is any
object in i. We add to the precondition of each action move(i, j) the literal ¬cleared(j), to forbid moving
to cell j if it is clear. Any solution for the new problem is also a solution for the corresponding original
Push-to problem, without the redundant moves to the cleared cells; a solution of the original problem may
not be a solution for the new problem, as it may contain such redundant actions.

In the new version of Dispose, the goal is relaxed by accepting n − 1 objects disposed instead of all n
objects disposed. This is reasonable as in real life we cannot always expect all the goals or criteria to be
satisfied and sometimes we need to give up one of them. Thus, the goal of the new problem is described

49

Domain DNF GC[LAMA] CPA T0 T1 CFF POND

Instance Time Len Time Len Time Len Time Len Time Len Time Len Time Len
New-Ring

2 0.5 6 0.5 10 0.6 6 0.7 7 NA NA 0 5
3 0.6 10 0.6 18 0.7 10 1.5 10 - - OM
4 0.6 14 1.7 277 1 14 OM - - -
5 0.6 18 4.7 46 1.9 20 - - - -
6 0.8 22 24.4 48 7.6 24 - - - -
7 1.1 31 146 111 39 31 - - - -
8 2.9 30 TO OM - - - -
9 9.6 37 - - - - - -
10 35 38 - - - - - -
11 125 47 - - - - - -
12 458 56 - - - - - -

New-UTS-k
2 0.5 11 OM E 0.6 11 0.4 11 AB OM
5 0.7 29 - - 3.6 29 0.4 29 - -
7 1.1 41 - - 211 41 0.5 41 - -
8 1.4 47 - - OM TO - -
10 2.3 59 - - - 0.7 59 - -
20 22.6 119 - - - 5.6 119 - -
30 93.6 179 - - - 26.6 179 - -
40 286 239 - - - 88.6 239 - -
45 447 269 - - - TO - -
50 672 299 - - - - - -

New-UTS-cycle
3 0.6 3 0.5 5 0.7 3 1 3 NA NA OM
4 0.6 7 OM 0.7 8 1.5 7 - - -
5 0.6 13 - 0.8 13 3.6 11 - - -
6 0.8 18 - 1.1 19 14.4 15 - - -
7 1.2 22 - 1.7 22 OM - - -
8 2.5 27 - 3.6 30 - - - -
9 6.9 36 - 9 38 - - - -
10 22.4 48 - 22.4 41 - - - -
11 69.8 62 - 69.3 56 - - - -
12 204 71 - OM - - - -
13 608 90 - - - - - -
14 1573 96 - - - - - -

New-Push
4_2 1.1 37 OM 73.5 37 2.8 32 1.5 46 1.8 38 OM
4_3 3 37 - 682 37 4.9 32 2.1 46 12.7 38 -
4_4 37.1 37 - OM 8 32 2.8 46 265 38 -
4_5 OM - - 11.8 32 3.9 46 6133 38 -
6_2 7.2 73 - - 190 96 TO 359 94 -
6_3 83.8 73 - - 419 96 - TO -
8_1 30 129 - TO OM 16 207 - -
8_2 50.4 129 - OM - TO - -
9_1 74.4 177 - TO - 76.6 258 - -
9_2 120 177 - OM - TO - -

New-Dispose
4-4 1.4 148 342 500 10.2 311 1.5 109 NA NA 452 114
4-5 1.5 189 TO 9.8 295 2.4 122 - - OM
7-5 28.6 683 - 715 2645 877 504 - - -
7-7 53.7 904 - TO OM - - -

10-5 277 1265 - - - - - -
10-10 1114 2476 - - - - - -

Table 4: Results on new hard problems, our extensions of several problems from the literature.

50

by a set (conjunction) of or-clauses of the form (or(disposed(oi), (disposed(oj)) for every pair of objects
(oi, oj).

Table 4 highlights the superior performance of DNF in all these domains, compared to all the other
planners; the other planners can solve none or only a few small instances of each domain in this test suite.
Observe that the performance of DNF on New-UTS-k, New-UTS-cycle, and New-Dispose is comparable
with that of the original domains, while most of other planners perform significantly worse on these new
domains. It is worth noting that DNF scales up better on New-Ring than it does on Ring, due to the fact that
the initial µDNF -state in the new domain contains much less partial states than the initial µDNF -state of
the original domain.

The new constraints incorporated in the New-UTS-k, New-UTS-cycle, and New-Push domains are ob-
stacles to GC[LAMA], as they prohibit multiple executions of the same actions, while the approach of
GC[LAMA] tends to repeat the execution of the same actions when extending the solution of one sub-
problem. In the New-Dispose and New-Ring domains, GC[LAMA] performs significantly worse than in the
corresponding original domains, due to the disjunctions in the goal of the new problems. We hypothesize
that the presence of disjunctive goals leads to a large number of solutions for each sub-problem explored
by GC[LAMA], and many of such solutions are far from a solution to the main planning problem. As a
result, GC[LAMA] spends a significant amount of time trying to (unnecessarily) repair such solutions. As
mentioned earlier, CFF and T1 do not handle problems with disjunctive goals or conjunctions in one-of
clauses. CPA returns no solutions for any instance of New-UTS-k. We suspect that this is because of the
incompleteness of the goal-splitting technique employed by this planner.

8.5. Problems with High Uncertainty in The Initial State

In order to test the effectiveness of different representations in conformant planning, we introduce an-
other set of domains obtained by modifying several domains from the previously described test suites. Un-
like the extensions in the previous test suite, this modification is simply obtained by replacing the one-of
clauses in the original problems with a set of or-clauses. By doing this, the uncertainty in the initial state,
i.e., the number of possible states in the initial belief state, increases dramatically. Interestingly, while this
change makes the domains fall beyond the capabilities of DNF and several other planners, CNF and PIP
perform exceptionally well on this class of problems, thanks to their use of conjunctive representations. The
modification is applied to the Coins, Dispose, 1-Dispose, Push, and New-Push domains, resulting in a set of
new problems with “or-” prefix in their name, as shown in Table 5.

Let us consider Dispose, 1-Dispose, Push, and New-Push first. In these problems, each instance is given
by two numbers: n denotes the size of the grid of n × n cells (locations) and m is the number of objects
given in the problem. For example, in the instance Dispose-2-3, there are 2 × 2 = 4 cells in the grid and 3
objects given in this problem instance. In these problems, predicates of the form at(pi,j) indicate that the
robot is at the cell (i, j) of the grid (location pi,j) and predicates of the form obj_at(ok, pi,j) indicate that
the object ok is at the location pi,j , for i, j ≤ n and k ≤ m. Initially, the location of each object is unknown
among the n× n locations. Hence, in the description of the initial world, there is a set of m one-of clauses
of the form one-of(obj_at(oi, p1,1), . . . , obj_at(oi, pn,n)), for i = 1, . . . ,m.

In the new problems, each oi represents an object type, e.g., pens, books, etc. The predicate obj_at(oi, pk,j)
now means “there exists an object of type oi at location pk,j .” Likewise, the predicate holding(oi) means
“holding some object(s) of type oi.” The action pickup(oi, pk,j) in the Dispose problem allows the robot to
pick up all the objects of type oi at location pk,j and hold them. Similarly, in 1-Dispose, Push, and New-
Push, the action pickup(pk,j) allows the robot to pick up every object at location pk,j if certain conditions

51

are satisfied.7 Let us assume, initially, that all we know about the objects is that for each object type oi there
exists at least an instance of oi somewhere among the n2 given locations. Thus, the set of one-of clauses
one-of(obj_at(oi, p1,1), . . . , obj_at(oi, pn,n)) in the description of the initial world should now be replaced
by the set of or-clauses or(obj_at(oi, p1,1), . . . , obj_at(oi, pn,n)). Observe that, with regard to each object
type oi, there are 2n

2
different possible situations about the initial world in the new domains (an object of

type oi may or may not exist in any of the n2 locations), while this number is n2 in the original problems.
Thus, while the number of possible states in the initial belief state in the original problems is Ω((n2)m), the
size of the initial belief state in the new problems is Ω((2n

2
)m), i.e., exponential with an exponential base.

The modification in the Coins problem is similar, where a coin now is interpreted as a coin type, e.g.,
dim, nickel, quarter, etc. The action collect(C,F, P) allows the robot to collect all the coins of type C at
location P on floor F . The goal is to have some coin(s) of each type. In an instance with c coins (fourth
dimension) and p locations on each floor (third dimension), the size of the initial belief state in the original
problem is Ω(pc), while in this new domain such size is Ω((2p)c), i.e., exponential with an exponential base
too.

The results in Table 5 demonstrate the superior performance of CNF and PIP for this set of domains.
Both planners scale up very well on all dimensions, and no other planner has comparable performance on
any of these domains—with the only exception of T1 on or-Coins. Observe that, while CNF and PIP offer
superior performance for these new domains, DNF performs much worse compared to itself on the corre-
sponding unmodified domains. The reason is that the size of the initial µDNF -state increases drastically
like the size of the initial belief state in the new domains. Moreover, the one-of combination technique
used in DNF does not help in these problems. In contrast, the number of clauses in the initial µCNF -state
or in the initial PI-state about the location of objects is only m and even smaller than that in the original
problems, which is m × n2(n2 + 1)/2. PIP is faster than CNF for the or-Coins, or-Dispose, and or-Push
domains. Let us note that, in each problem instance of these domains, the set of generated (resp. explored)
PI-states is identical to the corresponding set of µCNF -states, as observed from the experiments. On the
other hand, CNF scales better than PIP in the or-1-Dispose and or-New-Dispose domains. This is because,
in these domains, the size of the PI-states is significantly larger than the size of the µCNF -states. For
example, for the problem instance or-1-Dispose-2-5, the average numbers of clauses in a µCNF -state and
in a PI-state are 19.317 and 373.907, respectively. This explains why CNF is much faster than PIP on this
problem.

CPA performs poorly in this test suite for the same reason as for DNF, since they both rely on a disjunc-
tive representation. However, DNF is still significantly better. GC[LAMA] is not able to solve any domain
instance in this test suite. In the original domains, the one-of combination technique helps in reducing the
number of states in the initial belief state to a number that GC[LAMA] can manage. In these new domains,
the number of states in the initial belief state is extremely large—beyond the capabilities of GC[LAMA].

Let us observe that there is no noticeable difference between the performance of T0, T1, and POND
on these new domains and their performance on the original domains. CFF performs better on these new
domains in comparison with its performance on the original ones. This is because the approach in CFF
relies on reasoning about the CNF formulae partly constructed from the initial information. The size of
these formulae in the new domains should be smaller than that in the original ones.

7In 1-Dispose, the e-condition includes handempty, i.e., the robot hand is empty. On the other hand, in the Push and New-Push
domains, pickup(pk,j) is executable only if pk,j is a “pickup” location

52

Domain CNF PIP DNF GC[LAMA] CPA T0 T1 CFF POND

Instance Time (Len) Time (Len) Time (Len) Time (Len) Time (Len) Time (Len) Time (Len) Time (Len) Time (Len)
or-Coins

10 (2-2-4-4) 0.6 (35) 0.6 (39) 2.4 (44) OM 5.5 (59) 1.6 (26) 0.4 (34) 0.2 (38) 0.5 (46)
15 (2-2-8-6) 0.9 (83) 0.9 (91) OM - OM 0.7 (79) 0.5 (78) 2.6 (88) 10.2 (124)
20 (2-3-8-6) 1.2 (115) 1 (134) - - - 0.8 (107) 2 (197) 16.6 (142) 83.6 (121)

22 (5-10-10-12) 415 (2755) 151 (2732) - - - OM 92.2 (888) TO OM
24 (5-10-10-14) 369 (2771) 148 (2795) - - - - 443 (1148) - -
25 (5-10-10-15) 218 (1864) 92 (2061) - - - - 1616 (2003) - -
29 (5-10-10-19) 635 (5399) 226 (5854) - - - - 648 (1430) - -

or-Dispose
3-3 0.6 (58) 0.6 (58) 4.6 (66) OM 28.5 (111) 0.6 (67) 0.4 (60) 0.1 (44) 0.8 (44)
3-4 0.7 (74) 0.7 (74) 87 (97) - OM 0.7 (60) 0.5 (100) 0.2 (54) 2.1 (60)
3-5 0.8 (102) 0.7 (106) OM - - 0.7 (7) 0.7 (110) 0.3 (64) 28.5 (74)
5-2 1.5 (123) 1.4 (121) 12.3 (25) - - 1 (179) 3.1 (189) 7.2 (124) OM
5-3 1.6 (170) 1.5 (166) TO - - 1.9 (201) 5.8 (229) 27.4 (162) -
5-5 2.3 (265) 2 (277) - - - 12.7 (239) 20.2 (402) 208 (238) -
10-1 145 (215) 139(221) 146 (229) - - 9.3 (716) 163 (512) 6234 (449) -
10-3 168 (549) 157 (531) OM - - OM 1756 (1115) - -
10-5 175 (866) 171 (850) - - - OM 4202 (1535) - -

10-10 251 (1820) 229 (1824) - - - - - - -
15-15 5947 (4477) 5659 (4493) - - - - - - -

or-1-Dispose
2-2 0.6 (12) 0.6 (16) 0.6 (10) OM 0.7 (10) 1.7 (12) TO 2310 (169) 0.4 (14)
2-3 0.6 (12) 0.7 (24) 0.7 (14) - 2.3 (10) OM - TO 0.7 (14)
2-5 0.9 (12) 51.4 (16) 26.8 (14) - OM - - - 54.6 (14)
5-1 3.2 (410) 2.1 (478) 1.8 (100) - - - 3.7 (161) - OM
5-2 4.4 (434) 5.8 (460) 35.5 (88) - - - TO - -
5-5 21.7 (606) 707 (1762) OM - - - - - -
5-7 144 (756) TO - - - - - - -
5-10 3140 (676) - - - - - - - -
10-1 278 (8380) 190 (9716) 345 (336) - - - 1870 (1151) - -
10-2 346 (7852) 640 (10.3k) OM - - - OM - -
10-5 768 (12.2k) 4272 (14.8k) - - - - - - -
10-7 3119 (15.7k) TO - - - - - - -

or-Push
4-3 0.9 (105) 0.9 (105) 94.4 (147) OM OM 12.7 (189) 0.9 (74) 1 (48) OM
4-4 1 (132) 1 (132) TO - - 17.2 (210) 1 (107) 1.2 (49) -
7-1 3.8 (138) 3.7 (156) 9.9 (130) - - 210 (252) TO 1505 (185) -
7-2 4.4 (146) 4.2 (146) 355 (251) - - OM - 2968 (186) -
7-20 295 (2699) 217 (2905) OM - - - - TO -
7-40 3578 (5569) 2541 (5851) - - - - - - -
12-1 200 (986) 190 (1262) 686 (466) - - AB - - -

12-10 1086 (7130) 694 (8066) OM - - - - - -
15-1 1318 (2123) 1244 (2493) 4428 (926) - - - - - -

15-14 6562 (15.4k) 4099 (18k) OM - - - - - -
15-15 TO 5210 (22.9k) - - - - - - -

or-New-Push
4-1 0.7 (37) 0.7 (41) 50 (40) OM 75.6 (37) 1.2 (32) 0.5 (48) 0.6 (38) OM
4-3 0.8 (37) 0.9 (41) TO - OM 5.4 (32) 2.6 (46) 2 (38) -
4-5 1.1 (37) 1.3 (41) - - - 13.5 (32) 5.3 (46) 4.3 (38) -
7-1 5 (111) 4.6 (115) 4.6 (99) - - 547 (131) 6.7 (167) 1075 (139) -
7-3 19 (111) 29.3 (127) TO - TO 4851 (131) TO 4211 (139) -
7-5 98 (123) 550 (127) - - - OM - TO -
9-1 21.8(185) 21.7 (185) - - - - 38.4 (279) - -
9-2 24.4 (197) 24.4 (185) - - - - TO - -
9-5 35.7 (177) 39.5 (177) - - - - - - -
9-8 90 (193) 2178 (189) - - - - - - -
9-10 282 (189) TO - - - - - - -

Table 5: Results on new problems of high uncertainty about the initial state, obtained by modifying those from previous test suites.

53

8.6. On Selection of Belief State Representation

The empirical study in the previous section shows that DNF, CNF, and PIP offer very different perfor-
mances across various problems even though they employ the same (between CNF and PIP) or very similar
(DNF v.s. CNF and PIP) heuristic schemes, that are mostly based on the number of satisfied subgoal and
the number of known literals in the belief state. This suggests that there is no winner-take-all representa-
tion. Furthermore, for a conformant planner to exploit the strengths of different representations, it should be
able to adapt its representation to each given concrete problem. This raises the question of when should a
particular representation be selected. This subsection discusses some criteria for evaluating a representation
and then provides some discussion on this issue with respect to the three concrete representations, µDNF ,
µCNF , and PI .

8.6.1. General Criteria for Evaluating a Belief State RepresentationR
Since an implementation of a progression based planner relies on a transition function, the computa-

tional cost of ΦR will be an important criterion for evaluating a representation R. As shown in the general
methodology (Section 3), the computational cost of ΦR depends on the cost of computing enbR, updateR,
and mergeR. The computation cost of enbR, in turn, depends on the cost of computing convR and the
cost of satisfaction checking in R (Algorithms 3 and 4). Thus, to evaluate a representation R, we need to
consider the costs of computing all these components: convR, satisfaction checking in R, updateR, and
mergeR. Theorems 4, 5, and 6 clearly indicate that these costs depend on the representation. For example,
the satisfaction checking in the µDNF and prime implicate representations is polynomial in the size of the
formula while it is NP-hard in general for the µCNF representation; the computation of updateµDNF and
mergeµDNF is simpler than that of updatePI and mergePI , which is less expensive than the computation
of updateµCNF and mergeµCNF .

Although the computational cost of ΦR is an important criteria for evaluating a representation R, it
is not the only factor that influences the performance of a planner using R. This is because a complete
planner, in searching for a solution, will need to maintain the queue of unexploredR-states and also the set
of explored R-states to avoid repeating the exploration of the same node. As such, the compactness of an
R representation is another crucial criterium for evaluating R. Since the number of possible belief states is
exponential to the size of the problem, the compactness of the R-states is essential to the performance and
the scalability of the planner (e.g., for avoiding out-of-memory error).

8.6.2. Minimal-DNF, Minimal-CNF, or Prime Implicates?
The previous discussion provides two general criteria for the selection of an arbitrary representation.

We will now discuss a possible way to decide between the three concrete representations developed in this
paper, µDNF , µCNF , and prime implicate.

Observe that µCNF and PI representations rely on a specific type of conjunctive normal form while
µDNF uses disjunctive normal form. Furthermore, the experimental results show that the planners CNF

and PIP behave similarly in most instances but significantly different from that of the planner DNF. Thus,
given a problem or a class of problems, we can start by determining whether or not µDNF is suitable. If
µDNF is not suitable, then a decision between the µCNF and prime implicate representations needs to be
made. We will next discuss how this could be done.

From the analysis of the computational cost of the transition functions, we have that ΦµDNF depends
on the size of the µDNF -states (Theorem 4), the number of unknown e-conditions of each action (k), and
the number of propositions in the domain. Moreover, the general methodology (Section 3) shows that the
transition function ΦR for any representation R is exponential in k. Thus, if the size of the µDNF -states

54

is not very large then ΦµDNF can be computed efficiently—compared with not only ΦµCNF and ΦPI but
also to the transition function for any representation—and thus, the minimal-DNF representation can be a
good choice for problems whose µDNF -states has a small size. In fact, most of the earlier benchmarks
exhibit this property and the experimental results in the first three test suites confirm that the size of the
initial µDNF -states is a reasonable indicator for the usefulness of µDNF .

When the size of the µDNF -states is extremely large, µDNF is likely unsuitable. This is exempli-
fied by the experimental results on the problems in the last test suite. In this test suite, the size of the
µDNF -states is extremely large and the size of the µCNF -states and PI-states is exponentially smaller
(polynomial). This leads to a poor performance of DNF comparing to the exceptional performance of CNF

and PIP. The different performance of CNF and PIP can also be attributed to the size of the µCNF -states
and the PI-states generated by the planners (Theorem 5 and 6) and can be observed in the last test suite
as well. In domains where the size of the PI-states and the µCNF -states are comparable (e.g., or-Coins,
or-Dispose, and or-Push), PIP is faster than CNF. On the other hand, when the size of the PI-states is sig-
nificantly larger than that of the µCNF -states (e.g., or-1-Dispose, and or-New-Push), CNF performs better
than PIP.

In summary, we can conclude that the minimal-DNF representation can be a good choice on problems
where the size of the µDNF -states is not very large. Otherwise (i.e., for problems where the size of the
µDNF -states is much larger than equivalent CNF formulae), if the size of the PI-states is comparable to
the size of the µCNF -states then the prime implicate representation is a good choice. If the size of the
PI-states is significantly larger the size of the µCNF -states then the minimal-CNF representation should
be used.

9. Summary

In this paper, we presented a general methodology for the development of a complete transition function
ΦR for an arbitrary belief state representation R. We proved that the function is optimal with respect to
the number of intermediate formulae necessarily generated in the ΦR function, a factor that impacts the
complexity of this function. We showed how to use the methodology in the development of heuristic search
and progression-based conformant planners. We investigated three different representations, minimal-DNF,
minimal-CNF, and prime implicates, and illustrated the general methodology by instantiating the definition
of ΦR in these three representations. We studied the computational complexity of each function. We imple-
mented the minimal-DNF, minimal-CNF, and prime implicates representations in the conformant planners
DNF, CNF, and PIP, respectively. We employed a simple heuristic scheme in these planners based on the
number of satisfied subgoals and the number of known literals in the belief state. DNF also implemented the
cardinality of the µDNF -state in its combined heuristic function.

We compared our approach with the state-of-the-art approaches, using a large and diverse set of bench-
marks; these include most commonly used conformant planning benchmarks available in the literature. For
a better understanding of the effectiveness of belief state representations, we diversified the test set, in-
troducing a new set of conformant planning problems obtained as extensions and modifications of several
conformant planning domains studied in the literature. These new problems are harder than their predeces-
sors, due to the additional features incorporated in them. The experiments showed that our approach is very
competitive compared with the others, especially on the hard problems. Moreover, while the performance of
the existing conformant planners deteriorates in presence of these additional features, none of these features
seems to affect the performance of our approach.

55

To further study the effectiveness of belief state representation, we introduced another new set of prob-
lems, obtained by replacing the set of one-of clauses in several existing conformant planning problem with
the set of corresponding or-clauses. These problems are beyond the capabilities of several competitive plan-
ners, including DNF, CPA, and GC[LAMA], due to the huge number of states in the initial belief state. Yet,
CNF and PIP offer a superior performance on these problems. The reason lies in the use of a conjunctive
representation, that is very compact for these problems compared with other representations, e.g., those in
DNF and CPA. The experiments also showed that PIP is faster than CNF on problems where the size of PI-
states is comparable to that of µCNF -states, while CNF scales better on those where the size of PI-states is
much larger. This confirms the importance of the study of alternative belief state representations and, hence,
the significance of the general methodology.

We then discussed the major criteria for the evaluation of a representation, that are the computational
complexity of the transition function and its components for the representation and its compactness. We
provided some preliminary results on how to select a suitable representation among the three proposed
representations with regard to problems.

In this paper, we focused on the problem of representation of belief states—we did not address the study
of effective heuristics in the development of heuristic-search conformant planners. The investigation of
more effective heuristics for conformant planners developed using the methodology proposed in this paper
will be our focus in the immediate future.

Acknowledgments

We would like to thank the developers of the planner CPA, who kindly provided us with the source code
that was used as the starting point for the implementation of our planners. A special thank goes to Alexandre
Albore, the author of T1, for helping us understand the planner T1 as well as perform some experiments.

The research has been partially supported by NSF grant IIS-0812267.

References

[1] Alexandre Albore, Miquel Ramírez, and Hector Geffner. Effective heuristics and belief tracking for
planning with incomplete information. In Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp, and
Malte Helmert, editors, Proceedings of the 21st International Conference on Automated Planning and
Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011. AAAI Press, 2011.

[2] C. Baral, V. Kreinovich, and R. Trejo. Computational complexity of planning and approximate plan-
ning in the presence of incompleteness. Artificial Intelligence, 122:241–267, 2000.

[3] Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic search in belief
space. pages 52–61. AAAI Press, 2000.

[4] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM Computing
Surveys, 24(3):293–318, September 1992.

[5] D. Bryce, S. Kambhampati, and D. Smith. Planning Graph Heuristics for Belief Space Search. Journal
of Artificial Intelligence Research, 26:35–99, 2006.

[6] A. Cimatti and M. Roveri. Conformant Planning via Symbolic Model Checking. Journal of Artificial
Intelligence Research, 13:305–338, 2000.

56

[7] A. Cimatti, M. Roveri, and P. Bertoli. Conformant Planning via Symbolic Model Checking and Heuris-
tic Search. Artificial Intelligence Journal, 159:127–206, 2004.

[8] J. de Kleer. An improved incremental algorithm for computing prime implicates. In AAAI, pages
780–785, 1992.

[9] R. Goldman and M. Boddy. Expressive planning and explicit knowledge. In Proceedings of 3rd
International Conference on AI Planning Systems, pages 110–117, 1996.

[10] P. Haslum and P. Jonsson. Some results on the complexity of planning with incomplete information.
In Proc. of ECP-99, Lecture Notes in AI Vol 1809. Springer, 1999.

[11] Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[12] Jörg Hoffmann and Ronen I. Brafman. Conformant planning via heuristic forward search: A new
approach. Artificial Intelligence, 170(6-7):507–541, 2006.

[13] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research (JAIR), 14:253–302, 2001.

[14] A. Kean and G. Tsiknis. An incremental method for generating prime implicants/implicates. pages
185–206, 1990.

[15] H-K. Nguyen, D-V. Tran, T.C. Son, and E. Pontelli. On improving conformant planners by analyzing
domain-structures. In Wolfram Burgard and Dan Roth, editors, Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011.
AAAI Press, 2011.

[16] H-K. Nguyen, D-V. Tran, T.C. Son, and E. Pontelli. On computing conformant plans using classical
planners: A generate-and-complete approach. In Proceedings of the 22st International Conference
on Automated Planning and Scheduling (ICAPS-2012), Atibaia, Sao Paulo Brazil, June 25-29. AAAI
Press, 2012.

[17] H. Palacios and H. Geffner. Compiling Uncertainty Away: Solving Conformant Planning Problems
Using a Classical Planner (Sometimes). In Proceedings of the the Twenty-First National Conference
on Artificial Intelligence, pages 900–905, 2006.

[18] H. Palacios and H. Geffner. From Conformant into Classical Planning: Efficient Translations that may
be Complete Too. In Proceedings of the 17th International Conference on Planning and Scheduling,
pages 264–271, 2007.

[19] H. Palacios and H. Geffner. Compiling Uncertainty Away in Conformant Planning Problems with
Bounded Width. Journal of Artificial Intelligence Research, 35:623–675, 2009.

[20] D.E. Smith and D.S. Weld. Conformant Graphplan. In AAAI, pages 889–896, 1998.

[21] Tran Cao Son and Chitta Baral. Formalizing sensing actions - a transition function based approach.
Artificial Intelligence, 125(1-2):19–91, January 2001.

57

[22] Tran Cao Son and Phan Huy Tu. On the Completeness of Approximation Based Reasoning and Plan-
ning in Action Theories with Incomplete Information. In Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning, pages 481–491, 2006.

[23] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and Ricardo Morales. Conformant Planning for Do-
mains with Constraints — A New Approach. In Proceedings of the the Twentieth National Conference
on Artificial Intelligence, pages 1211–1216, 2005.

[24] Pierre Tison. Generalized consensus theory and application to the minimization of boolean functions.
In IEEE Transactions on Computers, pages 446–456, 1967.

[25] S.T. To, E. Pontelli, and T.C. Son. A Conformant Planner with Explicit Disjunctive Representation
of Belief States. In Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and Ioannis Refanidis, editors,
Proceedings of the 19th International Conference on Automated Planning and Scheduling, ICAPS
2009, Thessaloniki, Greece, September 19-23, 2009, pages 305–312. AAAI, 2009.

[26] S.T. To, T.C. Son, and E. Pontelli. A New Approach to Conformant Planning using CNF. In Pro-
ceedings of the 20th International Conference on Planning and Scheduling (ICAPS), pages 169–176,
2010.

[27] S.T. To, T.C. Son, and E. Pontelli. On the Use of Prime Implicates in Conformant Planning. In
Maria Fox and David Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010.

[28] D-V. Tran, H-K. Nguyen, E. Pontelli, and T.C. Son. Improving performance of conformant planners:
Static analysis of declarative planning domain specifications. In Andy Gill and Terrance Swift, editors,
Practical Aspects of Declarative Languages, 11th International Symposium, PADL 2009, Savannah,
GA, USA, January 19-20, 2009. Proceedings, volume 5418 of Lecture Notes in Computer Science,
pages 239–253. Springer, 2009.

[29] P.H. Tu, T.C. Son, M. Gelfond, and R. Morales. Approximation of action theories and its application
to conformant planning. Artificial Intelligence Journal, 175(1):79–119, January 2011.

Appendix. Proofs

The proof of a proposition or theorem in the body of the paper will be specified by the proposition or
theorem. The proof of a new proposition or lemma in the appendix will be provided next to the proposition
or lemma.

Proof of Proposition 1.

1. The two sets are equal iff every element (state) s in the first set belongs to the second set and vice
versa. Indeed,

s ∈ BS(ϕ1 ∨ . . . ∨ ϕn) iff s |= ϕ1 ∨ . . . ∨ ϕn
iff (s |= ϕ1) ∨ . . . ∨ (s |= ϕn)

iff s ∈ BS(ϕ1) ∨ . . . ∨ s ∈ BS(ϕn)

iff s ∈ BS(ϕ1) ∪ . . . ∪BS(ϕn)

58

2. This is a corollary of the previous result using the following fact: for every formula ϕ′,

ϕ′ |= ϕ iff ∀s ∈ BS(ϕ′). s |= ϕ

Proof of Proposition 2. Observe that

BS(ϕ1 ∧ . . . ∧ ϕn) = {s | s |= (ϕ1 ∧ . . . ∧ ϕn)}
= {s | s |= ϕ1 ∧ . . . ∧ s |= ϕn)}
= {s | s |= ϕ1} ∩ . . . ∩ {s | s |= ϕn}
= BS(ϕ1) ∩ . . . ∩BS(ϕn)

Proof of Proposition 3. Since s is a model of ϕ, ϕ is evaluated to be true by the literals in s. That is, for
each literal ` in ϕ, if ` ∈ s then ` is replaced with true in ϕ. Otherwise (` 6∈ s ∧ ¯̀∈ s), ` is replaced with
false in ϕ. Then the formula becomes true following the rules in the truth table. Observe that the literals
in δ are sufficient for the evaluation of the truth value of ϕ and the other literals in s, which is s \ δ, do not
affect the evaluation of ϕ because they or their negations are not part of ϕ. Hence, the literals in s \ δ do not
affect the truth value of ϕ. This means that if we replace any literals in s \ δ with their negations, the new
state is also a model of ϕ. This implies that every state that is a superset of δ is also a model of ϕ. In other
words, every model of δ is a model of ϕ. By definition, this implies that δ |= ϕ.

Proof of Proposition 4. Proof by contradiction. Assume that ϕ |= ψ. Then ϕ ∧ ¬ψ is unsatisfiable (P4).
On the other hand, since ϕ is satisfiable, there exists a consistent set of literals δ such that prop(δ) =

prop(ϕ) and δ |= ϕ (by Proposition 3). Since ψ is non-tautological, ¬ψ is satisfiable. By Proposition 3,
there exists a consistent set of literals δ′ such that prop(δ′) = prop(¬ψ) = prop(ψ) and δ′ |= ¬ψ′. Because
ϕ and ψ are independent, prop(δ′) ∩ prop(δ) = ∅. This implies that δ ∪ δ′ is a consistent set of literals.
Thus, δ ∪ δ′ |= ϕ and δ ∪ δ′ |= ¬ψ. This means that δ ∪ δ′ |= ϕ ∧ ¬ψ. Let s be a state which is a superset
of δ ∪ δ′, clearly s is a model of ϕ ∧ ¬ψ. This means that ϕ ∧ ¬ψ is satisfiable. This contradicts (P4). As a
consequence, ϕ 6|= ψ.

Proof of Lemma 1. Let α = (t1, . . . , tm) be an arbitrary sequence ofm elements inD′. By αk, 0 < k ≤ m,
we denote the sequence

αk = (t1, . . . , tk)

which is the prefix of the first k elements of α. By f(x, αk) we denote

f(x, αk) = f(. . . (f(x, t1), . . .), tk)

Thus, we need to prove
f(x, Yn) = f(x, Zn)

The proof is by induction on the length n of Y (and Z).

• Base case n = 1: it is trivial

• Base case n = 2: it is given

59

• Inductive step: Suppose that the theorem is true for every k < n, for some n ≥ 3, we will prove that
it is also true for k = n. We consider the following two cases

– Case yn = zn: then Zn−1 = (z1, . . . , zn−1) is a permutation of Yn−1 = (y1, . . . , yn−1). Hence,

f(x, Yn) = f(f(x, Yn−1), yn)

= f(f(x, Zn−1), yn) (inductive hypothesis)

= f(f(x, Zn−1), zn) (zn = yn)

= f(x, Zn) (proof)

– Case yn 6= zn: let Y ′ be the sequence obtained from Y by swapping the position of zn with
yn−1 in Y :

Y ′ = (y′1, . . . , y
′
n−2, zn, yn)

Similarly, let
Z ′ = (z′1, . . . , z

′
n−2, yn, zn)

be the sequence obtained from Z by swapping the two elements zn−1 and yn in Z. Observe that
Y ′n−1 is a permutation of Yn−1, Z ′n−1 is a permutation of Zn−1, and Z ′n−2 is a permutation of
Y ′n−2. We have

f(x, Yn) = f(f(x, Yn−1), yn)

= f(f(x, Y ′n−1), yn) (inductive hypothesis on n− 1)

= f(f(f(x, Y ′n−2), zn), yn) (y′n−1 = zn)

= f(f(f(x, Z ′n−2), zn), yn) (inductive hypothesis on n− 2)

= f(f(f(x, Z ′n−2), yn), zn) (given)

= f(f(x, Z ′n−1), zn) (z′n−1 = yn)

= f(f(x, Zn−1), zn) (inductive hypothesis on n− 1)

= f(x, Zn) (proof)

Proof of Proposition 5. Let s be an arbitrary state in BS(ϕ). It suffices to prove that e(a, s) = e(a, ϕ).
(1) Let ` be an arbitrary literal in e(a, ϕ), we will show that ` ∈ e(a, s): by Definition 4, there exists an

effect a : ψ → ` such that ϕ |= ψ. This implies s |= ψ since s is a state in BS(ϕ), i.e., a model of ϕ. By
the definition of e(a, s), we also have ` ∈ e(a, s)

(2) Now let `′ be an arbitrary literal in e(a, s), we prove that `′ ∈ e(a, ϕ): Assume that `′ 6∈ e(a, ϕ).
Since `′ ∈ e(a, s), there exists an effect a : ψ′ → `′ such that s |= ψ′. On the other hand, `′ 6∈ e(a, ϕ) so
ϕ 6|= ψ′. This means that ϕ |= ¬ψ′ (because ϕ is enabling for action a, either ϕ |= ψ′ or ϕ |= ¬ψ′ holds).
Consequently, s |= ¬ψ′ (a contradiction).

The proof has been obtained by (1) and (2).

Proof of Proposition 6.

1. Since ϕ 6|= ¬ψ and ϕ is satisfiable, we have that ϕ ∧ ψ is satisfiable. Let s be an arbitrary state in
BS(ϕ) that satisfies ψ, clearly s |= ϕ ∧ ψ or s ∈ BS(ϕ ∧ ψ). On the other hand, every state in
BS(ϕ ∧ ψ) satisfies both ϕ and ψ, i.e., it belongs to BS(ϕ) and satisfies ψ. Thus, BS(ϕ ∧ ψ) is the
set of states in BS(ϕ) that satisfy ψ.

60

2. Similarly, we have ϕ ∧ ¬ψ is satisfiable and BS(ϕ ∧ ¬ψ) is the set of states in BS(ϕ) that satisfy
¬ψ. In addition, since a formula is always known in a state, it is easy to see that every state s in
BS(ϕ) \ BS(ϕ ∧ ψ) satisfies ¬ψ, i.e., s ∈ BS(ϕ ∧ ¬ψ). In the other words, BS(ϕ ∧ ¬ψ) =
BS(ϕ) \BS(ϕ ∧ ψ).

3. The second result implies thatBS(ϕ∧ψ)∪BS(ϕ∧¬ψ) = BS(ϕ). Hence, (ϕ∧ψ)∨ (ϕ∧¬ψ) ≡ ϕ.

Proof of Proposition 7. Let Ψ = 〈ψ1, . . . , ψn〉 be an enumeration of Ψ(a). By Definition 5, to prove that
ϕ⊕R Ψ is an enabling form of ϕ for a, we prove that ϕ⊕R Ψ is a set ofR-states enabling for a, i.e., every
ψi in Ψ(a) is known in every R-state in ϕ⊕R Ψ, and

⋃
γ∈ϕ⊕RΨBS(γ) = BS(ϕ). We also need to prove

that everyR-state in ϕ⊕R Ψ is satisfiable. The proof is by induction on |Ψ(a)| as follows.

• Base case |Ψ(a)| = 0: The proof is trivial as ϕ⊕R Ψ = {ϕ}.

• Base case |Ψ(a)| = 1: Let Ψ(a) = {ψ}. Then Ψ = 〈ψ〉 and ϕ⊕RΨ = ϕ⊕R ψ. By Definition 6 and
Proposition 6, clearly this is an enabling form of ϕ for a and everyR-state in ϕ⊕R Ψ is satisfiable.

• Inductive step: Suppose that the proposition holds for 0 ≤ |Ψ(a)| ≤ n, for some n ≥ 1. We will
prove that it also holds for |Ψ(a)| = n + 1. Consider an enumeration Ψ = 〈ψ1, . . . , ψn, ψn+1〉 of
Ψ(a). We have

ϕ⊕R Ψ = ϕ⊕R 〈ψ1, . . . , ψn, ψn+1〉 =
⋃

γ∈(ϕ⊕R〈ψ1,...,ψn〉)

(γ ⊕R ψn+1) (by Definition 7)

By inductive hypothesis, ϕ⊕R 〈ψ1, . . . , ψn〉 is a set of satisfiableR-states and for everyR-state γ in
ϕ⊕R 〈ψ1, . . . , ψn〉 either γ |= ψi or γ |= ¬ψi holds for i = 1, . . . , n. Let γ be an arbitraryR-state in
ϕ⊕R 〈ψ1, . . . , ψn〉. By Definition 6 and Proposition 6, we have that γ ⊕R ψn+1 is a set of satisfiable
R-states satisfying γ. This implies that, for every η in γ ⊕R ψn+1 either η |= ψi or η |= ¬ψi holds
for i = 1, . . . , n. Furthermore, for every η in γ ⊕R ψn+1 either η |= ψn+1 or η |= ¬ψn+1 holds. This
implies that every ψi in Ψ(a) is known in everyR-state in γ ⊕R ψn+1. In other words, γ ⊕R ψn+1 is
a set of satisfiable R-states enabling for a. Since γ is an arbitrary R-state in ϕ ⊕R 〈ψ1, . . . , ψn〉, by
definition we have that ϕ⊕R Ψ is a set of satisfiableR-states enabling for a.

To prove
⋃
ϕ′∈ϕ⊕RΨBS(ϕ′) = BS(ϕ), we need to prove that for every R-state γ and every consis-

tent set of literals ψ,
⋃
γ′∈γ⊕Rψ BS(γ′) = BS(γ). We consider the following two cases.

– γ |= ψ or γ |= ¬ψ. By definition, γ ⊕R ψ = {γ}. Hence,
⋃
γ′∈γ⊕Rψ BS(γ′) = BS(γ)

– ψ is unknown in γ. Then, by definition we have γ ⊕R ψ = {convR(γ ∧ ψ), convR(γ ∧ ¬ψ)}.
Hence,⋃

γ′∈γ⊕Rψ
BS(γ′) = BS(convR(γ ∧ ψ)) ∪BS(convR(γ ∧ ¬ψ))

= BS(γ ∧ ψ) ∪BS(γ ∧ ¬ψ)

= BS(γ) (by Proposition 6)

In both cases, we have
⋃
γ′∈γ⊕Rψ BS(γ′) = BS(γ). Applying this result in the following derivation,

we have

61

⋃
ϕ′∈ϕ⊕RΨ

BS(ϕ′) =
⋃

γ∈(ϕ⊕R〈ψ1,...,ψn〉)

(
⋃

γ′∈γ⊕Rψn+1

BS(γ′))

=
⋃

γ∈(ϕ⊕R〈ψ1,...,ψn〉)

BS(γ)

= BS(ϕ) (inductive hypothesis)

The proposition has been proved.

Proof of Lemma 2. The proof is by induction on n as follows.

• Base case n = 0: the proof is trivial.

• Inductive step: Suppose that the proposition holds for some n ≥ 0, we will prove that the propo-
sition also holds for n + 1 by contradiction. Consider a sequence of consistent sets of literals
Ψ = 〈ψ1, . . . , ψn, ψn+1〉. Assume that there exist two different formulae α and β in ϕ ⊕R Ψ such
that α and β agree on very ψi in {ψ1, . . . , ψn+1}. By definition, we have

ϕ⊕R Ψ =
⋃

γ∈(ϕ⊕R〈ψ1,...,ψn〉)

γ ⊕R ψn+1

Thus, there exist αn and βn in ϕ⊕ 〈ψ1, . . . , ψn〉 such that α ∈ αn ⊕R ψn+1 and β ∈ βn ⊕R ψn+1.

We will prove that αn = βn by contradiction: Assume that αn 6= βn. By induction, there exists ψi in
{ψ1, . . . , ψn} such that αn and βn disagree on ψi. By Definition 9, it is easy to see that α |= αn and
β |= βn. This implies that α and β disagree on ψi too, a contradiction.

Thus αn = βn. Hence, α, β ∈ αn⊕Rψn+1. Because α 6= β, this implies that {α, β} = {convR(αn∧
ψn+1), convR(αn ∧ ¬ψn+1)} . This means that α and β disagree on ψn+1, a contradiction.

Proof of Theorem 1. Consider an arbitrary enabling form Γ of ϕ for a. First, we will prove that |Γ | ≥
ϕ⊕RΨ. Let {ϕ1, . . . , ϕn} = ϕ⊕RΨ. Since ϕ is satisfiable, every formula in ϕ⊕RΨ is satisfiable. For each
ϕi in {ϕ1, . . . , ϕn}, we consider a model of ϕi, denoted by si (i.e., si ∈ BS(ϕi) and hence si ∈ BS(ϕ)).
Since

⋃
γ∈Γ BS(γ) = BS(ϕ1) ∪ . . . ∪ BS(ϕn) = BS(ϕ), each si must be a model of some formula in

Γ . Moreover, since each pair of different R-states (ϕi, ϕj) in {ϕ1, . . . , ϕn} disagree on some ψ in Ψ(a)
(Lemma 2), their models si and sj also disagree on ψ. This implies that si and sj can not be the models of
a same formula in Γ . Thus, Γ contains at least n different formulae, each of which shares (at least) a model
with a formula in {ϕ1, . . . , ϕn}. Hence |Γ | ≥ |ϕ⊕R Ψ|. This implies that ϕ⊕R Ψ contains the minimum
number ofR-states among all the enabling form of ϕ for a.

Now we consider the case that |Γ | = ϕ ⊕R Ψ = n. Let {γ1, . . . , γn} = Γ . Without lost of generality,
assume that γi and ϕi share a same model si, for i = 1, . . . , n. We prove that BS(γi) = BS(ϕi). We
assume the contrary, i.e., BS(γi) 6= BS(ϕi) for some 1 ≤ i ≤ n. We consider the following two cases:

• Case ∃s ∈ BS(γi).s 6∈ BS(ϕi): SinceBS(ϕ1)∪. . .∪BS(ϕn) = BS(γ1)∪. . .∪BS(γn) = BS(ϕ),
there exists ϕj , 1 ≤ j ≤ n and j 6= i, such that s ∈ BS(ϕj). This means that γi is not enabling for a
as BS(γi) contains two states that disagree on some e-condition of a, a contradiction.

62

• Case ∃s ∈ BS(ϕi). s 6∈ BS(γi): Then there exists γj , 1 ≤ j ≤ n and j 6= i, such that s ∈ BS(γj).
Thus γj has two models s and sj that disagree on some e-condition of a and hence γj is not enabling
for a, a contradiction.

Both cases lead to a contradiction. Hence BS(γi) = BS(ϕi) for i = 1, . . . , n. In other words, ϕ⊕R Ψ
and Γ represent the same set of belief states.

Proof of Theorem 2. Let a be an action and ϕ be aR-state. By Definition 3, to prove that ΦR is a transition
function forR, we need to prove that BS(ΦR(a, ϕ)) = Φ(a,BS(ϕ)). We have two cases as follows.

1. ϕ |= pre(a): by definition,

ΦR(a, ϕ) = mergeR({updateR(γ, e(a, γ)) | γ ∈ enbR(a, ϕ)})

Hence,

BS(ΦR(a, ϕ)) = BS(mergeR({updateR(γ, e(a, γ)) | γ ∈ enbR(a, ϕ)}))

=
⋃

γ∈enbR(a,ϕ)

BS(updateR(γ, e(a, γ))) (by Equation 7)

=
⋃

γ∈enbR(a,ϕ)

{s \ e(a, γ) ∪ e(a, γ) | s ∈ BS(γ)} (by Equation 6)

=
⋃

γ∈enbR(a,ϕ)

{s \ e(a, s) ∪ e(a, s) | s ∈ BS(γ)} (by Proposition 5)

= {s \ e(a, s) ∪ e(a, s) | s ∈
⋃

γ∈enbR(a,ϕ)

BS(γ)}

= {s \ e(a, s) ∪ e(a, s) | s ∈ BS(ϕ)} (by Definition 5)

Because ϕ |= pre(a) iff BS(ϕ) |= pre(a), by definition we have Φ(a,BS(ϕ)) = {s \ e(a, s) ∪
e(a, s) | s ∈ BS(ϕ)}. Thus, BS(ΦR(a, ϕ)) = Φ(a,BS(ϕ)).

2. ϕ 6|= pre(a): by definition, ΦR(a, ϕ) is undefined. Hence, BS(ΦR(a, ϕ)) is undefined. Since
ϕ 6|= pre(a) iff BS(ϕ) 6|= pre(a), we have that Φ(a,BS(ϕ)) is undefined. Thus, BS(ΦR(a, ϕ)) =
Φ(a,BS(ϕ)).

In both cases, we have BS(ΦR(a, ϕ)) = Φ(a,BS(ϕ)) (proof).

Proof of Theorem 3. The proof is by induction on the length n of αn.

• Base case n = 0: by definition, BS(Φ̂R([], ϕ)) = Φ̂([], BS(ϕ)) = BS(ϕ).

• Inductive step: suppose that the proposition holds for every sequence of length less or equal to n− 1,
for some n > 0. We will show that it holds for every sequence of length n. We have

BS(Φ̂R(αn, ϕ)) = BS(ΦR(an, Φ̂R(αn−1, ϕ))) (by Definition 9)

= BS(ΦR(an, Φ̂(αn−1, BS(ϕ)))) (inductive hypothesis)

= Φ(an, Φ̂(αn−1, BS(ϕ))) (by Definition 3)

= Φ̂(αn, BS(ϕ)) (by definition of Φ̂)

63

Proof of Proposition 9. Let {ψi → ηi | i = 1, . . . , n} be the set of combined conditional effects of
a. Clearly, Ψ(a) = {ψ1, . . . , ψn} and Ψ = 〈ψ1, . . . , ψn〉 is an enumeration of Ψ(a). To prove that the
proposition holds, we use the following loop invariant for the outer for loop (lines 6-12 of Algorithm 4):

At the beginning of each iteration of the for loop, we have Result = {〈γ, ei(γ)〉 | γ ∈ ϕ ⊕R
〈ψ1, . . . , ψi−1〉}, where ei(γ) = {` | a : ψj → `, γ |= ψj , j < i}.

We need to show that this invariant is true prior to the first (outer) loop iteration, that each iteration of
the loop maintains the invariant, and that the invariant provides useful properties to show correctness when
the loop terminates.

• Initialization: Prior to the first iteration of the loop, i = 1 and Result = {〈ϕ, ∅〉} (lines 3-4).
The sequence 〈ψ1, . . . , ψi−1〉 is empty so, by definition, ϕ ⊕R 〈ψ1, . . . , ψi−1〉 = {ϕ}. Furthermore,
e1(γ) = {` | a : ψj → `, j < 1} = ∅ since 1 ≤ j ≤ n for every a : ψj → `. Thus, the invariant
holds.

• Maintenance: For each 〈γ, effect〉 ∈ Result, by Proposition 8, extendingR(γ, effect , ψi → ηi) =
{〈γ′, effect ∪ {` | a : ψi → ` ∧ γ′ |= ψi}〉 | γ′ ∈ γ ⊕R ψi} (line 9). It is easy to see that at the end of
the inner for loop (lines 8-10), we have

X =
⋃

〈γ,effect〉∈Result

extendingR(γ, effect , ψi → ηi) (Lines 7-10)

=
⋃

〈γ,effect〉∈Result

{〈γ′, effect ∪ {` | a : ψi → ` ∧ γ′ |= ψi}〉 | γ′ ∈ γ ⊕R ψi} (Proposition 8)

By the loop invariant, we have that for each 〈γ, effect〉 ∈ Result (line 8), effect = ei(γ) = {` | a :
ψj → `, γ |= ψj , j < i}. Consider γ′ ∈ γ ⊕R ψi. Since γ′ |= γ, we have γ′ |= ψj if γ |= ψj and
γ′ |= ¬ψj if γ |= ¬ψj for j < i. This implies effect = {` | a : ψj → `, γ′ |= ψj , j < i} = ei(γ

′).
Hence, effect ∪ {` | a : ψi → ` ∧ γ′ |= ψi} = ei(γ

′) ∪ {` | a : ψi → ` ∧ γ′ |= ψi} = {` | a : ψj →
`, γ′ |= ψj , j < i+ 1} = ei+1(γ′). Hence,

X =
⋃

〈γ,ei(γ)〉∈Result

{〈γ′, ei+1(γ′)〉 | γ′ ∈ γ ⊕R ψi}

Since ei(γ) does not appear in {〈γ′, ei+1(γ′)〉 | γ′ ∈ γ ⊕R ψi}, we have

X =
⋃

γ∈first(Result)

{〈γ′, ei+1(γ′)〉 | γ′ ∈ γ ⊕R ψi}

Where first(Result) = {γ | 〈γ, ei(γ)〉 ∈ Result}. By the loop invariant, we have Result =
{〈γ, ei(γ)〉 | γ ∈ ϕ ⊕R 〈ψ1, . . . , ψi−1〉}. Hence, first(Result) = ϕ ⊕R 〈ψ1, . . . , ψi−1〉. This
implies that

X =
⋃

γ∈ϕ⊕R〈ψ1,...,ψi−1〉

{〈γ′, ei+1(γ′)〉 | γ′ ∈ γ ⊕R ψi}

By Definition 7, it is easy to see that

X = {〈γ′, ei+1(γ′)〉 | γ′ ∈ ϕ⊕R 〈ψ1, . . . , ψi〉}

Thus, the next iteration maintains the loop invariant.

64

• Termination: At termination of the loop, i = n + 1. We have Result = {〈γ, en+1(γ)〉 | γ ∈
ϕ ⊕R 〈ψ1, . . . , ψn〉}. Since 〈ψ1, . . . , ψn〉 is an enumeration of Ψ(a), by definition, we have ϕ ⊕R
〈ψ1, . . . , ψn〉 = enbR(a, ϕ). Moreover, en+1(γ) = {` | a : ψj → `, γ |= ψj , j < n + 1} = {` | a :
ψj → `, γ |= ψj} = e(a, γ). Hence, Result = {〈γ, e(a, γ)〉 | γ ∈ enbR(a, ϕ)} that the procedure
returns (proof).

Proof of Proposition 11. Observe that refine(∆) is obtained by removing every inconsistent set of lit-
erals from ∆, by definition, clearly refine(∆) is a set of partial states. Moreover, by Proposition 1,
BS(∆) =

⋃
δ∈∆BS(δ) =

⋃
δ∈∆∧δ is consistent BS(δ) ∪

⋃
δ∈∆∧δ is inconsistent BS(δ) = BS(refine(∆)) ∪⋃

δ∈∆∧δ is inconsistent BS(δ). Since every inconsistent set of literals δ is unsatisfiable and BS(δ) = ∅, we
have

⋃
δ∈∆∧δ is inconsistent BS(δ) = ∅. This implies that BS(∆) = BS(refine(∆) or ∆ ≡ refine(∆).

On the other hand, by definition, clearly µ(∆) = min(refine(∆)) is a µDNF -state. By definition,
min(refine(∆)) = {δ | δ ∈ refine(∆) ∧ @δ′ ∈ refine(∆). δ′ (δ} and hence min(refine(∆)) is a
subset of refine(∆). Let ∆sup = refine(∆)\min(refine(∆)). Then ∆sup is a subset of refine(∆) and,
by proposition 1,BS(refine(∆)) = BS(min(refine(∆)))∪BS(∆sup). Consider an arbitrary δ ∈ ∆sup.
Then there exists δ′ ∈ min(refine(∆)) such that δ′ (δ (otherwise, δ ∈ min(refine(∆)) and hence δ 6∈
∆sup). Hence, δ |= δ′ or BS(δ) ⊆ BS(δ′). This implies that BS(∆sup) ⊆ BS(min(refine(∆))), since δ
is an arbitrary element in ∆sup. Thus, BS(min(refine(∆))) ∪ BS(∆sup) = BS(min(refine(∆))) and
hence BS(refine(∆)) = BS(min(refine(∆))), i.e., refine(∆) ≡ min(refine(∆)) = µ(∆). Thus,
µ(∆) ≡ ∆ (proof).

Proof of Proposition 12.

1. By definition, the belief state of δ is the set of states that satisfy δ. Since δ is a consistent set of
literals, a state s that satisfies δ iff s satisfies every literal in δ, i.e., δ ⊆ s. Thus, BS(δ) = {s |
s is a state, and δ ⊆ s}

2. Let ϕ be an arbitrary formula that represents BS(δ). Then, ϕ ≡ δ. This implies that ϕ entails every
literal in δ. Thus, ϕ must also contain every literal in δ. As a consequence, |ϕ| ≥ |δ|.

Proof of Proposition 13.

1. First, we will prove that convµDNF (∆ ∧ ψ) = min({δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅}) is a R-state.
Since δ and ψ are consistent set of literals and one does not contain the negation of a literal in the
other set (δ∩ψ = ∅), δ∪ψ is a consistent set of literals. By, Definition 12 and Proposition 11, clearly
convµDNF (∆∧ψ) is a µDNF -state. Now we need to prove convµDNF (∆∧ψ) ≡ ∆∧ψ. We have

∆ ∧ ψ ≡ {δ ∧ ψ | δ ∈ ∆} (distributivity of ∧ over ∨)
= {δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅}∪
{δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ 6= ∅}

≡ µ({δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅}∪
{δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ 6= ∅}) (Proposition 11)

= min(refine({δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅}∪
{δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ 6= ∅}))

= min({δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅}) (δ ∪ ψ is inconsistent when δ ∩ ψ 6= ∅)
= convµDNF (∆ ∧ ψ) (by definition)

65

2. Let ∆1 = {δ | δ ∈ ∆ ∧ δ ∩ ψ 6= ∅} and ∆2 =
⋃
δ∈∆∧δ∩ψ=∅{δ ∪ {`} | ` ∈ ψ \ δ}. By Definition

13, we have convµDNF (∆ ∧ ¬ψ) = min(∆1 ∪ ∆2). Since every δ in ∆ is a consistent set of
literals, every δ ∪ {¯̀} in ∆2 is a consistent set of literals because ` 6∈ δ. Hence, ∆1 ∪ ∆2 is a DNF
formula that contains only consistent sets of literals. Similar to the previous proof, min(∆1 ∪∆2) is
a µDNF -state. The proof for equivalency between convµDNF (∆ ∧ ¬ψ) and ∆ ∧ ¬ψ is as follows.

∆ ∧ ¬ψ ≡ {δ ∧ ¬ψ | δ ∈ ∆} (distributivity of ∧ over ∨)
= {δ ∧ ¬ψ | δ ∈ ∆ ∧ δ |= ¬ψ} ∪
{δ ∧ ¬ψ | δ ∈ ∆ ∧ δ 6|= ¬ψ}

≡ { δ | δ ∈ ∆ ∧ δ |= ¬ψ} ∪
{δ ∧ ¬ψ | δ ∈ ∆ ∧ δ 6|= ¬ψ}

= ∆1 ∪ {δ ∧ ¬ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅} (δ |= ¬ψ iff δ ∩ ψ 6= ∅)
≡ ∆1 ∪

⋃
δ∈∆ ∧δ∩ψ=∅{δ ∪ {`} | ` ∈ ψ}

≡ ∆1 ∪
⋃
δ∈∆ ∧δ∩ψ=∅{δ ∪ {`} | ` ∈ ψ \ δ} (δ ∪ {`} is inconsistent if ` ∈ δ)

= ∆1 ∪∆2

≡ min(∆1 ∪∆2)
= convµDNF (∆ ∧ ¬ψ)

Proof of Proposition 14. First we will prove that, for every partial state δ,

δ \ ē ∪ e ≡ {s \ e ∪ e | s ∈ BS(δ)} (14a)

For every state s in BS(δ), s is a superset of δ (by Proposition 12). Hence, δ \ ē ∪ e ⊆ s \ e ∪ e, i.e.,
s \ e ∪ e |= δ \ ē ∪ e or s \ e ∪ e ∈ BS(δ \ ē ∪ e) (it is easy to see that s \ e ∪ e is a state). This means that

{s \ e ∪ e | s ∈ BS(δ)} ⊆ BS(δ \ ē ∪ e) (14b)

Now we need to prove that BS(δ \ ē ∪ e) ⊆ {s \ e ∪ e | s ∈ BS(δ)}.
Let s1 be an arbitrary state inBS(δ\ ē∪e), we will prove that s1 also belongs to {s\e∪e | s ∈ BS(δ)}.

Since s1 ∈ BS(δ \ ē ∪ e), s1 |= (δ \ ē ∪ e) or (δ \ ē ∪ e) ⊆ s1. Let γ = s1 \ (δ \ ē ∪ e). Observe that γ is
a consistent set of literals that are independent from δ \ ē ∪ e. That means prop(γ) = F \ prop(δ \ ē ∪ e),
where F is the set of propositions in the domain. Let e− = δ ∩ ē, e+ = e \ e−, and δ0 = δ \ e−. Observe
that, s1 = δ \ ē ∪ e ∪ γ = (δ0 ∪ e−) \ (e− ∪ e+) ∪ (e− ∪ e+) ∪ γ = δ0 ∪ e− ∪ e+ ∪ γ. Now consider
s2 = δ0∪e−∪e+∪γ = δ∪e+∪γ. Furthermore, every partition set in s2: δ0, e−, e+, and γ are consistent;
e− and γ are independent from all the other sets while δ0 ∪ e+ is consistent. Therefore, s2 is consistent
and thereby it is a state (because prop(s2) = prop(s1) = F). Since δ ⊆ s2 so s2 ∈ BS(δ). Observe that
s2 \ ē ∪ e = δ ∪ e+ ∪ γ \ ē ∪ e = δ \ ē ∪ e ∪ γ = s1 (because γ is independent from ē and e+ ⊆ e). This
means that s1 ∈ {s \ e ∪ e | s ∈ BS(δ)}. This implies that

BS(δ \ ē ∪ e) ⊆ {s \ e ∪ e | s ∈ BS(δ)} (14c)

66

Together (14b) and (14c) we have the proof for (14a). Now we have

updateµDNF (∆, e) = min({δ \ e ∪ e | δ ∈ ∆})
≡ {δ \ e ∪ e | δ ∈ ∆}

≡
⋃
δ∈∆

{s \ e ∪ e | s ∈ δ} (by (14a))

= {s \ e ∪ e | s ∈
⋃
δ∈∆

BS(δ)}

= {s \ e ∪ e | s ∈ BS(∆)} (by Proposition 1)

Proof of Proposition 15. Obviously, (
⋃

∆∈Γ ∆) is a set of partial states (consistent sets of literals). Hence,
mergeµDNF (Γ) = min(

⋃
∆∈Γ ∆) = µ(

⋃
∆∈Γ ∆). By Proposition 11, this is a µDNF -state equivalent

to (
⋃

∆∈Γ ∆). Moreover, due to associativity of ∨, we have
⋃

∆∈Γ ∆ ≡
∨

∆∈Γ ∆. Thus, mergeµDNF (Γ)
is a µDNF -state equivalent to

∨
∆∈Γ ∆. Hence, BS(mergeµDNF (Γ)) = BS(

∨
∆∈Γ ∆). By Proposition

1, we have BS(
∨

∆∈Γ ∆) =
⋃

∆∈Γ BS(∆). Thus, BS(mergeµDNF (Γ)) =
⋃

∆∈Γ BS(∆) (proof).

Proof of Proposition 16. First we prove that there does not exist a pair of different µDNF -states ∆1,∆2 ∈
enbµDNF (a,∆) such that ∃δ1 ∈ ∆1∃δ2 ∈ ∆2. δ1 ⊆ δ2 (Proposition 16*). Assume the contrary, that there
exists a pair of different µDNF -states ∆1,∆2 ∈ enbµDNF (a,∆) such that ∃δ1 ∈ ∆1∃δ2 ∈ ∆2. δ1 ⊆ δ2.
By Lemma 2, there exists an e-condition ψ of a such that ∆1 and ∆2 disagree on ψ. Without lost of
generality, assume that ∆1 |= ψ and ∆2 |= ¬ψ. This means that δ1 |= ψ and δ2 |= ¬ψ (by Proposition
1). On the other hand, since δ1 ⊆ δ2, we have δ2 |= δ1 and, hence, δ2 |= ψ, a contradiction. Since a
µDNF -state does not contains a pair of partial states such that one is a proper subset of the other, (16*)
implies that

⋃
∆i∈enbµDNF (a,∆) ∆i is a µDNF -state and every δ in

⋃
∆i∈enbµDNF (a,∆) ∆i belongs to one

and only one µDNF -state in enbµDNF (a,∆) (proof).

Proof of Proposition 17. First we prove that for δ ∈ ∆, if ψ ⊆ δ then δ ∩ ψ = ∅ (17a). Assume the
contrary, that ∃δ ∈ ∆ such that ψ ⊆ δ and δ ∩ ψ 6= ∅. Consider ` ∈ δ ∩ ψ. Then ` ∈ ψ and hence ` ∈ δ
(because ψ ⊆ δ). Thus, δ is not consistent since it contains {`, `}, a contradiction. To prove the proposition,
we consider the following three cases.

1. ∆ |= ψ: By Proposition 1, we have that ∀δ ∈ ∆. δ |= ψ, i.e., ∀δ ∈ ∆. ψ ⊆ δ. This implies that, after
the execution of Line 4 and before the execution of Line 8, ∆1 = ∆. By (17a), after the execution
of Line 5, we have ∆2 = ∅. After the execution Line 6, we have ∆0 = ∅. Hence, ∆1 and ∆2 do
not change after the for loop (Lines 8-10). It is easy to see that Result = {〈∆1, effect ∪ η〉} =
{〈∆, effect ∪{` | a : ψ → `∧∆ |= ψ}〉}. By definition, we have that ∆⊕µDNF ψ = {∆} if ∆ |= ψ.
This implies that Result = {〈∆i, effect ∪ {` | a : ψ → ` ∧∆i |= ψ}〉 | ∆i ∈ ∆⊕µDNF ψ} (proof).

2. ∆ |= ψ: this case can be proved similarly to the first case.
3. ψ is unknown in δ: This implies that ∆0 6= ∅ and hence ∆1 6= ∅, ∆2 6= ∅. We need to prove that

67

∆1 = convµDNF (∆ ∧ ψ) and ∆2 = convµDNF (∆ ∧ ¬ψ). From Lines 4,6,8,9,11 we have

∆1 = min({δ | δ ∈ ∆, ψ ⊆ δ} ∪ {δ ∪ ψ | δ ∈ ∆0})
= min({δ | δ ∈ ∆, ψ ⊆ δ} ∪ {δ ∪ ψ | δ ∈ ∆ ∧ ψ 6⊆ δ ∧ δ ∩ ψ = ∅}) (Lines 4-6)

= min({δ ∪ ψ | δ ∈ ∆, ψ ⊆ δ} ∪ {δ ∪ ψ | δ ∈ ∆ ∧ ψ 6⊆ δ ∧ δ ∩ ψ = ∅}) (δ ∪ ψ = δ if ψ ⊆ δ)

= min({δ ∪ ψ | δ ∈ ∆, ψ ⊆ δ ∧ δ ∩ ψ = ∅}∪
{δ ∪ ψ | δ ∈ ∆ ∧ ψ 6⊆ δ ∧ δ ∩ ψ = ∅}) (by (17a))

= min({δ ∪ ψ | δ ∈ ∆ ∧ δ ∩ ψ = ∅}
= convµDNF (δ ∧ ψ) (by definition)

Thus ∆1 = convµDNF (δ ∧ ψ). Now we will prove that ∆2 = convµDNF (∆ ∧ ¬ψ). For brevity, let
∆add =

⋃
δ∈∆0
{δ∪{`} | ` ∈ ψ \δ}. It is easy to see that ∆2 = min({δ | δ ∈ ∆, δ∩ψ 6= ∅}∪∆add)

(Lines 5,6,8,10,11). Consider ∆add, we have

∆add =
⋃
δ∈∆0

{δ ∪ {`} | ` ∈ ψ \ δ}

=
⋃

δ∈∆∧ψ 6⊆δ∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ}

=
⋃

δ∈∆∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ} \
⋃

δ∈∆∧ψ⊆δ∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ}

=
⋃

δ∈∆∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ} \ ∅ (ψ \ δ = ∅ if ψ ⊆ δ)

=
⋃

δ∈∆∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ}

Thus,
∆2 = min({δ | δ ∈ ∆, δ ∩ ψ 6= ∅} ∪

⋃
δ∈∆∧δ∩ψ=∅

{δ ∪ {`} | ` ∈ ψ \ δ})

By definition, we have ∆2 = convµDNF (∆ ∧ ¬ψ). It is easy to see that Result = {〈∆1, effect ∪
η〉, 〈∆2, effect〉} = {〈∆, effect ∪ {` | a : ψ → ` ∧∆ |= ψ}〉, 〈∆2, effect〉}. By definition, we have
that ∆⊕µDNF ψ = {convµDNF (∆ ∧ ψ), convµDNF (∆ ∧ ¬ψ)} = {∆1,∆2} if ψ is unknown in ∆.
This implies that Result = {〈∆i, effect ∪ {` | a : ψ → ` ∧∆i |= ψ}〉 | ∆i ∈ ∆⊕µDNF ψ} (proof).

In conclusion, the proposition has been proved in all cases.

Proof of Proposition 48. Following Algorithm 6 for the computation of ∆⊕µDNF ψ, we have

• Checking whether ψ is true or false in δ (Lines 4 and 5) is O(|δ|+ |ψ|) = O(n). Hence, the total cost
of computation of ∆1, ∆2, and ∆0 from Line 4 to line 6 is O(n|∆|).

• Computing min(∆1 ∪ {δ ∪ ψ}) (Line 9) is O(n+ n) +O(n|∆1|) = O(n|∆|) (|∆1| ≤ |∆|).

• Computingmin(∆2∪{δ∪{`} | ` ∈ ψ\δ}) (Line 10) isO(nr+nr|∆2|) = O(nr2|∆|) (|∆2| ≤ r|∆|).

68

• Computing ∆1 and ∆2 from Line 8 to Line 11 is, hence, O(nr2|∆||∆0|) = O(nr2|∆|2) (only when
ψ is unknown in ∆).

• The computation from Line 12 to Line 19 is O(n).

In summary, computing ∆⊕µDNF ψ is T (∆⊕µDNF ψ) = O(n|∆|) if ψ is known in ∆, and T (∆⊕µDNF
ψ) = O(nr2|∆|2) otherwise (proof).

Proof of Theorem 4. The proof of this theorem is a consequence of a number of intermediate propositions.
Let n be the number of propositions in the domain, p be the number of combined conditional effects of

a, and k be the number of e-conditions of action a that are unknown in ∆. Let r be the maximum number
of unknown literals in an e-condition of a and m be the maximum number of literals in an effect of a. By
|∆| we denote the number of partial states in µDNF -state ∆. For convenience, we say that the size of ∆ is
ϑ(N) if |∆| is exactlyN or it can be proved to be at mostN . Furthermore, for a function f(.), by T (f(.)) we
denote the running time for computing f(.). We will investigate the features that affect T (ΦµDNF (a,∆)),
the cost of computation of ΦµDNF , in the worst case as follows.

Proposition 48. Let ∆ be a µDNF -state and ψ be a consistent set of literals. Computing ∆ ⊕µDNF ψ
(Algorithm 6) is T (∆ ⊕µDNF ψ) = O(n|∆|) if ψ is known in ∆, and T (∆ ⊕µDNF ψ) = O(nr2|∆|2)
otherwise.

Proof. The proof is by induction on k.

• Base case k = 0: the proposition is trivial.

• Base case k = 1: this means that the outer for loop (lines 6-10) in Algorithm 4 executes only the
first iteration. It starts with the singleton set Result = {〈∆, e(∆)} and at the end of this iteration
(Line 9), Result contains at most two µDNF -states ∆1 and/or ∆2 of the size ϑ(|∆|) and ϑ(r|∆|)
respectively. The cost of computing Result in this iteration is O(nr2|∆|2) = O(n|∆|2(1 + r2)).

• Inductive step: Assume that the proposition is true for some k = i, i ≥ 1. We will show that it is also
true for k = i+1. Let ai be the action whose set of combined conditional effects is the first i combined
conditional effects of a that are fed to the computation of enbµDNF (ai,∆) (the first i iterations of the
outer for loop of Algorithm 4). LetXi be the set of µDNF -states obtained after performing the first i
iterations of the outer for loop of Algorithm 4. Observe that each of these iterations is to extend the set
X (initialized with {∆}) on a combined conditional effect of ai and a. Clearly,Xi = enbµDNF (ai,∆)
and enbµDNF (a,∆) is obtained by extending the set Xi = enbµDNF (a,∆) on the last conditional
effect of a in the last iteration (iteration i+ 1). Hence, T (enbµDNF (a,∆)) = T (enbµDNF (ai,∆)) +
Ti+1, where Ti+1 is the running time for the last iteration. Since ϑ(rj |∆|) ≤ rj |∆|, for j = 0, . . . , i,
we have,

Σ∆′∈Xi |∆
′|2 ≤

(
i

0

)
(r0|∆|)2 +

(
i

1

)
(r1|∆|)2 + . . .+

(
i

i

)
(ri|∆|)2 (inductive hypothesis)

= |∆|2(

(
i

0

)
(r2)0 +

(
i

1

)
(r2)1 +

(
i

2

)
(r2)2 + . . .+

(
i

j

)
(r2)i)

= |∆|2(1 + r2)i (1)

69

Hence, the running time for the iteration i+ 1, as presented in the body of the paper, is

Ti+1 = O(nr2(Σ∆′∈Xi |∆
′|2))

= O(nr2|∆|2(1 + r2)i) (2)

Thus, computing enbµDNF (a,∆) in the worst case is

T (enbµDNF (a,∆)) = T (enbµDNF (ai,∆)) + Ti+1

= O(n|∆|2(1 + r2)i) + Ti+1 (inductive hypothesis)

= O(n|∆|2(1 + r2)i) +O(nr2|∆|2(1 + r2)i) (by (2))

= O(n|∆|2(1 + r2)i+1)

= O(n|∆|2(1 + r2)k) (3) (k = i+ 1)

Let ∆′ be a µDNF -state of the size ϑ(m). We know that extending ∆′ on a conditional effect of
a produces at most two µDNF -states of the size ϑ(|∆′|) = ϑ(ϑ(m)) = ϑ(m) and ϑ(r|∆′|) =
ϑ(rϑ(m)) = ϑ(rm) respectively. Hence, extending Xi on the last e-condition of the conditional
effect in the iteration i+ 1 produces at most

(
i
j

)
µDNF -states of the size ϑ(rj |∆|) and

(
i
j

)
µDNF -

states of the size ϑ(rj+1|∆|) for each j = 0, . . . i. This means that, the number of µDNF -states of
the size ϑ(rj |∆|) is at most(

i

j−1

)
+

(
i

j

)
=

i!

(i− j + 1)!(j − 1)!
+

i!

(i− j)!(j)!
=

(i+ 1)!

(i+ 1− j)!j!
=

(
i+1

j

)
for j = 1, . . . , i and it is at most

(
i
0

)
=
(
i+1

0

)
=1 for j = 0 and

(
i
i

)
=
(
i+1
i+1

)
=1 for j = i+ 1 (4)

Together (3) and (4) we have the proof for k = i+ 1 and, hence, the proof for the proposition.

The computation of enbµDNF (a,∆) and effects of a (Algorithm 4) requires:

• Computing X = X ∪ extendingµDNF (∆′, effects, ψi → ηi) (Line 9): this includes computing
∆′ ⊕µDNF ψi, which is O(n|∆′|) if ψi is known in ∆′ and O(nr2|∆′|2) otherwise, and adding the
new set of (at most two) elements to X which is constant time.

• Computing X for each combined conditional effect ψi → ηi (lines 7-10) is{
O(n(Σ〈∆′,effect〉∈Result|∆′|)) if ∀〈∆′, effect〉 ∈ Result, ψi is known in ∆′

O(nr2(Σ〈∆′,effect〉∈Result|∆′|2)) otherwise

Observe that this computation depends on both the number of µDNF -states in Result and the num-
ber of partial states in each of the µDNF -states.

To evaluate the cost of computing Result from Line 4 to Line 12—which is also T (enbµDNF (a,∆)), since
the other computation is negligible—we consider the outer for loop (lines 6-10) and obtain the following
proposition.

Proposition 49.

70

1. Computing enbµDNF (a,∆) (Algorithm 4) is

T (enbµDNF (a,∆)) = O(n|∆|2(1 + r2)k)

2. enbµDNF (a,∆) contains at most
(
k
i

)
µDNF -states of the size ϑ(ri|∆|) for i = 0, . . . , k.

For a better evaluation of T (enbµDNF (a,∆)), we observe that for each iteration, if ψi is known in ∆′ for
every 〈∆′, e(∆′)〉 ∈ Result, then the extendingµDNF procedure does not change any µDNF -state ∆′ but
it might only update e(∆′), that does not affect the computational cost of the next iterations. It is easy to see
that if ψi is known in ∆ then it is known in ∆′ for every 〈∆′, e(∆′)〉 ∈ Result, since BS(∆′) ⊆ BS(∆).
This implies that the introduction of a combined conditional effect, whose e-condition is known in ∆, to
the for loop does not affect the the computational cost of the next iterations. However, because the number
of µDNF -states stored in Results and their size may increase after an iteration if ψi is unknown in some
of them, the sooner a combined conditional effect, whose e-condition is known in ∆, is introduced to the
for loop, the less computational cost for the iteration. Since we evaluate the computational cost of ΦµDNF

in the worst case, we need to consider the (worst) case where the set of combined conditional effects of a,
whose e-conditions are known in ∆, will be fed to the for loop in its last iterations. This means that in the
first k iterations, each ψi (i ≤ k) is unknown in ∆ and it might be (but it is not necessarily) unknown in
some µDNF -state(s) stored inResult. In the last p−k iterations, the set if µDNF -states stored inResult
does not change. We have the following proposition.

Proposition 50. Let ∆ be a µDNF -state, a be an action, p be the number of combined conditional effects
of a, and k be the number of e-conditions of action a that are unknown in ∆. Let r be the maximum number
of literals in an e-condition of a and n be the number of propositions in the domain. Then,

1. For enbµDNF (a,∆) we have

T (enbµDNF (a,∆)) = O(n|∆|2(1 + r2)k + n(p− k)|∆|(1 + r)k)

2. enbµDNF (a,∆) contains at most
(
k
i

)
µDNF -states of the size ϑ(ri|∆|) for i = 0, . . . , k.

Proof.

1. Let ak be the action that has the k combined conditional effects of a, whose e-conditions are unknown
in ∆. We have T (enbµDNF (a,∆)) = Σp

i=1Ti, where Ti denotes the computational cost for iteration
i. As discussed earlier, we have T (enbµDNF (a,∆)) ≤ Σk

i=1Ti + Σp
i=k+1Ti, where ψi is unknown in

∆ for 1 ≤ i ≤ k and it is known in ∆ for k + 1 ≤ i ≤ p. This implies that T (enbµDNF (a,∆)) =
O(T (enbµDNF (ak,∆)) + Σp

i=k+1Ti), where ψi is known in ∆ for k + 1 ≤ i ≤ p. By Proposition
49, we have T (enbµDNF (ak,∆)) = O(n|∆|2(1 + r2)k). On the other hand, for k + 1 ≤ i ≤ p,
ψi is known in every µDNF -state in enbµDNF (ak,∆). This is the set of µDNF -states stored in
Result after the first k iterations and they remains unchanged in the last p − k iterations. Hence,
Ti = O(n(Σ∆′∈enbµDNF (ak,∆)|∆′|)), where

Σ∆′∈enbµDNF (ak,∆)|∆′| ≤
(
k

0

)
(r0|∆|) +

(
k

1

)
(r1|∆|) + . . .+

(
k

k

)
(rk|∆|) (by Proposition 49)

= |∆|(
(
k

0

)
r0 +

(
k

1

)
r1 +

(
k

2

)
r2 + . . .+

(
k

k

)
rk)

= |∆|(1 + r)k

71

The computation cost for the last p− k iterations, hence, is O(n(p− k)|∆|(1 + r)k). Thus,

T (enbµDNF (a,∆)) = O(n|∆|2(1 + r2)k) +O(n(p− k)|∆|(1 + r)k)

= O(n|∆|2(1 + r2)k + n(p− k)|∆|(1 + r)k).

2. After the first k iterations, the set of µDNF -states stored inResult is enbµDNF (ak,∆) and it remains
unchanged in the last p − k iterations. This implies that enbµDNF (a,∆) = enbµDNF (ak,∆). The
proof is then trivial by Proposition 49.

Finally, one can observe that for updateµDNF and mergeµDNF (Algorithm 8):

• Updating each partial state δ′ = δ \ e(a,∆′) ∪ e(a,∆′) (Line 10) requires time O(n+m) = O(n).

• Computing min(∆succ∪{δ′}) (Line 11) has cost O(n|∆succ|), where |∆succ| increases from 0 to the
total number of partial states in all the µDNF -state(s) of enbµDNF (a,∆).

• Let N be the total number of partial states in all the µDNF -state(s) of enbµDNF (a,∆): N =
Σ∆′∈enbµDNF (a,∆)|∆′|. The running time for both updating and merging is O(Nn) + O(ΣN

i=1ni) =

O(nN2), where

N = Σ∆′∈enbµDNF (a,∆)|∆′| ≤ Σk
i=0

(
k

i

)
ri|∆| (by Proposition 50)

= |∆|(1 + r)k

Hence, the running time for Algorithm 8 to compute both updateµDNF and mergeµDNF functions in the
computation of ΦµDNF (a,∆) is O(n|∆|2(1 + r)2k).

Altogether, the running time of computing ΦµDNF (a,∆) is the total of running time for computing
enbµDNF (a,∆) and updating and merging the µDNF -states:

T (ΦµDNF (a,∆)) = O(n|∆|2(1+r2)k+n(p−k)|∆|(1+r)k)+O(n|∆|2(1+r)2k) = O(n|∆|2(1+r)2k)

Proof of Proposition 19. Two sets are equal iff every element in one set belongs to the other set and vice
versa (iff an arbitrary element in one set is also an element in the other set and vice versa).

1. Consider an arbitrary clause γ in r(ϕ∪{α}). Then γ is nontrivial and there does not exists in ϕ∪{α}
a clause that subsumes γ. Since ϕ ⊆ ϕ ∪ {α}, ϕ does not subsumes γ. If γ ∈ ϕ then γ ∈ r(ϕ),
otherwise γ = α. This implies that γ ∈ (r(ϕ) ∪ {α}). Observe that (r(ϕ) ∪ {α}) ⊆ (ϕ ∪ {α})
so (r(ϕ) ∪ {α}) does not subsume γ. Hence, γ ∈ r(r(ϕ) ∪ {α}). Now we consider an arbitrary
clause ρ in r(r(ϕ)∪{α}). Then ρ is nontrivial and there does not exists in (r(ϕ)∪{α}) a clause that
subsumes ρ. Assume that ρ 6∈ r(ϕ ∪ {α}). Then there exists in ϕ ∪ {α} a clause λ that subsumes ρ
and λ 6∈ (r(ϕ) ∪ {α}). This implies that λ ∈ (ϕ ∪ {α}) \ (r(ϕ) ∪ {α}) or λ ∈ ϕ \ r(ϕ). This means
that λ is subsumed by a clause in r(ϕ) and hence ρ is subsumed by the same clause in r(ϕ). Thus, ρ
is subsumed by a clause in r(ϕ) ∪ {α}, a contradiction. Hence, ρ ∈ r(ϕ ∪ {α}) (proof).

2. Using the first result of this proposition, one can easily prove that

r(r(r(ϕ) ∪ {α}) ∪ {β}) = r(r(r(ϕ) ∪ {β}) ∪ {α}) = r(ϕ ∪ {α, β})

The proof is similar to the above proof.

72

Proof of Proposition 20. To prove that (ϕ⊗ ψ1)⊗ ψ2 = (ϕ⊗ ψ2)⊗ ψ1 we first prove that

(ϕ⊗ ψ1)⊗ ψ2 = r(ϕ× ψ1 × ψ2) (20A)

By definition, we have that (ϕ ⊗ ψ1) ⊗ ψ2 = r(r(ϕ × ψ1) × ψ2). Since r(ϕ × ψ1) ⊆ ϕ × ψ1, by
definition we have r(ϕ × ψ1) × ψ2 ⊆ ϕ × ψ1 × ψ2. Hence, r(r(ϕ × ψ1) × ψ2) ⊆ r(ϕ × ψ1 × ψ2), i.e.,
(ϕ⊗ ψ1)⊗ ψ2 ⊆ r(ϕ× ψ1 × ψ2) (20a).

Now consider an arbitrary clause α in r(ϕ×ψ1×ψ2). Then α is a nontrivial clause in ϕ×ψ1×ψ2 and
there does not exist in ϕ×ψ1×ψ2 a clause that subsumes α. We will prove that α ∈ r(r(ϕ×ψ1)×ψ2). By
definition, we have that ∃β ∈ ϕ∃γ1 ∈ ψ1∃γ2 ∈ ψ2. α = β ∪ γ1 ∪ γ2. We prove that β ∪ γ1 is not subsumed
by ϕ × ψ1. Assume the contrary that ∃β′ ∈ ϕ∃γ3 ∈ ψ1 such that β′ ∪ γ3 subsumes β ∪ γ1. This implies
that β′ ∪ γ3 ∪ γ2 subsumes β ∪ γ1 ∪ γ2 = α, a contradiction. Hence, β ∪ γ1 is not subsumed by ϕ×ψ1 and
thereby β∪γ1 ∈ r(ϕ×ψ1). By definition, we have β∪γ1∪γ2 ∈ r(ϕ×ψ1)×ψ2, i.e., α ∈ r(ϕ×ψ1)×ψ2.
Moreover, since r(ϕ× ψ1)× ψ2 ⊆ ϕ× ψ1 × ψ2 and ϕ× ψ1 × ψ2 does not subsume α so r(ϕ× ψ1)× ψ2

does not subsume α either. In addition, α is nontrivial so α ∈ r(r(ϕ× ψ1)× ψ2), i.e., α ∈ (ϕ⊗ ψ1)⊗ ψ2.
Since α is an arbitrary clause in r(ϕ× ψ1 × ψ2), we have that r(ϕ× ψ1 × ψ2) ⊆ (ϕ⊗ ψ1)⊗ ψ2 (20b).

(20a) and (20b) yields the proof for (20A).
Similarly, one can prove that

(ϕ⊗ ψ2)⊗ ψ1 = r(ϕ× ψ1 × ψ2) (20B)

(20A) and (20B) results in

(ϕ⊗ ψ1)⊗ ψ2 = (ϕ⊗ ψ2)⊗ ψ1 (proof)

Proof of Proposition 24. We will prove for the case that ϕ` 6= ∅, ϕ¯̀ 6= ∅, and neither of ` or ¯̀is a unit literal
of ϕ. For the other cases, e.g., either ϕ` = ∅ or ϕ¯̀ = ∅, the proof can be obtained similarly but simpler so
we omit it here.

Let ϕ0 = ϕ \ (ϕ` ∪ϕ¯̀). Then ϕ = ϕ0 ∪ϕ` ∪ϕ¯̀. Observe that ϕ` ≡ (ϕ` − `)∨ `. Let θ = ϕ` − `, then
ϕ` ≡ θ ∨ `. Similarly, ϕ¯̀≡ ϑ ∨ ¯̀, where ϑ = ϕ¯̀− ¯̀. Thus,

ϕ≡ ϕ0 ∧ (θ ∨ `) ∧ (ϑ ∨ ¯̀)
≡ (ϕ0 ∧ θ ∧ ϑ) ∨ (ϕ0 ∧ θ ∧ ¯̀) ∨ (ϕ0 ∧ ϑ ∧ `)

Hence,
BS(ϕ) =BS((ϕ0 ∧ θ ∧ ϑ) ∨ (ϕ0 ∧ θ ∧ ¯̀) ∨ (ϕ0 ∧ ϑ ∧ `))

=BS(ϕ0 ∧ θ ∧ ϑ) ∪BS(ϕ0 ∧ θ ∧ ¯̀) ∪BS(ϕ0 ∧ ϑ ∧ `)

This implies the following

{s \ {¯̀} ∪ {`}| s ∈ BS(ϕ)} ={s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ϑ)} ∪
{s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ¯̀)} ∪
{s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ ϑ ∧ `)}

(9)

Observe that, ϕ0, θ, and ϑ do not contain either ` or ¯̀. Hence, {s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ϑ)}
is a set of states that entail both ϕ0 ∧ θ ∧ ϑ and `, i.e. they entail ϕ0 ∧ θ ∧ ϑ ∧ `. In the other words,
{s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ϑ)} ⊆ BS(ϕ0 ∧ θ ∧ ϑ ∧ `). On the other hand, let s′ be an arbitrary state
in BS(ϕ0 ∧ θ ∧ϑ∧ `). Then s′ |= ϕ0 ∧ θ ∧ϑ and s′ |= `, i.e., s′ ∈ BS(ϕ0 ∧ θ ∧ϑ) and s′ \ {¯̀}∪ {`} = s′.

73

This implies that s′ ∈ {s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ϑ)}. Thus, {s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ϑ)} =
BS(ϕ0 ∧ θ ∧ ϑ ∧ `).

Now we consider the second set in the right side of Equation 9. Since ϕ0 ∧ θ does not contain either `
or ¯̀, it is easy to see that {s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ¯̀)} is a set of states that entail both ϕ0 ∧ θ and
`. Similarly, we have {s \ {¯̀} ∪ {`}| s ∈ BS(ϕ0 ∧ θ ∧ ¯̀)} = BS(ϕ0 ∧ θ ∧ `)}. Finally, the third set in the
right side of Equation 9 is obviously equal to BS(ϕ0 ∧ ϑ ∧ `). By Equation 9, we obtain the following

{s \ {¯̀} ∪ {`}| s ∈ BS(ϕ)} =BS(ϕ0 ∧ θ ∧ ϑ ∧ `) ∪
BS(ϕ0 ∧ θ ∧ `) ∪
BS(ϕ0 ∧ ϑ ∧ `)

Observe that, the first set in the right side of the above equation is a subset of the second set (and also a
subset of the third set). Hence,

{s \ {¯̀} ∪ {`}| s ∈ BS(ϕ)} = BS(ϕ0 ∧ θ ∧ `) ∪BS(ϕ0 ∧ ϑ ∧ `)
≡ (ϕ0 ∧ θ ∧ `) ∨ (ϕ0 ∧ ϑ ∧ `)
≡ ϕ0 ∧ ` ∧ (θ ∨ ϑ)

= ϕ \ (ϕ` ∪ ϕ¯̀) ∧ ` ∧ ((ϕ` − `) ∨ (ϕ¯̀− ¯̀))

≡ µCNF (ϕ \ (ϕ` ∪ ϕ¯̀) ∪ {`} ∪ (ϕ` − `)× (ϕ¯̀− ¯̀))

= updater(ϕ, `) (by Definition 20)

Proof of Proposition 25. To prove this proposition, we use the following two lemmas.

Lemma 3. Given two CNF formulae ϕ and ψ, then

1. r(r(ϕ)) = r(ϕ)

2. r(ϕ ∪ r(ψ)) = r(ϕ ∪ ψ)

3. r(ϕ× ϕ) = r(ϕ)

4. r(ϕ ∪ (ϕ× ψ)) = r(ϕ)

Proof 1. 1. trivial
2. Observe that (ϕ ∪ r(ψ)) ⊆ r(ϕ ∪ ψ) (because r(ψ) ⊆ ψ). Let α be an arbitrary clause in r(ϕ ∪ ψ).

Then α is nontrivial and there exists no clause in ϕ ∪ ψ that subsumes α. Hence, there exists no
clause in ϕ ∪ r(ψ) that subsumes α. Thus, α ∈ ϕ ∪ r(ψ) and thereby (ϕ ∪ ψ) ⊆ r(ϕ ∪ r(ψ)). As a
consequence, r(ϕ ∪ r(ψ)) = r(ϕ ∪ ψ).

3. We have

ϕ× ϕ = {α ∪ β | α, β ∈ ϕ} (by definition)

= {α ∪ α | α ∈ ϕ} ∪ {α ∪ β | α, β ∈ ϕ ∧ α 6= β}
= {α | α ∈ ϕ} ∪ {α ∪ β | α, β ∈ ϕ ∧ α 6= β}

Observe that each clause in the later subset of ϕ × ϕ is subsumed by a clause in the former subset
which is ϕ. Hence, r(ϕ× ϕ) = r(ϕ)

4. This is trivial as every clause in ϕ× ψ is a superset of a clause in ϕ.

Lemma 4. If ϕ and ψ are two CNF formulae and ` and `′ are not a unit literal in ϕ or ψ, then

74

1. If ` 6∈ lit(ϕ) then ϕ× (ψ − `) = ϕ× ψ − `
2. If ` 6∈ lit(ψ) and `′ 6∈ lit(ϕ) then (ϕ− `)× (ψ − `′) = ϕ× ψ − `− `′

Proof 2. 1. We have

ϕ× (ψ − `) = {α ∪ β | α ∈ ϕ, β ∈ (ψ − `)}
= {α ∪ (β − `) | α ∈ ϕ, β ∈ ψ} (note that {`} 6∈ ψ)

= {α ∪ β − ` | α ∈ ϕ, β ∈ ψ} (note that ∀α ∈ ϕ. ` 6∈ α)

= ϕ× ψ − `

2. Using the previous result, we have

(ϕ− `)× (ψ − `′) = (ϕ− `)× ψ − `′ = ϕ× ψ − `− `′

To prove Proposition 25, we partition ϕ as follows

ϕ = ϕ0 ∪ ϕ`1 ∪ ϕ ¯̀
1
∪ ϕ`2 ∪ ϕ ¯̀

2
∪ ϕ`1`2 ∪ ϕ`1 ¯̀

2
∪ ϕ ¯̀

1`2
∪ ϕ ¯̀

1
¯̀
2

where ϕ0 = {α | α ∈ ϕ ∧ `1, ¯̀
1,`2, ¯̀

2 6∈ α}, ϕ`1 = {α | α ∈ ϕ ∧ `1 ∈ α ∧ `2, ¯̀
2 6∈ α}, and

ϕ`1`2 = {α | α ∈ ϕ ∧ `1 ∈ α ∧ `2 ∈ α}.
The other components are defined similarly. Using Lemmas 3 and 4, one can verifies that the following

holds.

updater(updater(ϕ, `1), `2) = updater(updater(ϕ, `2), `1)

=r(ϕ0 ∪ {{`1}} ∪ {{`2}} ∪ (ϕ`1 × ϕ ¯̀
1
− `1 − ¯̀

1) ∪ (ϕ`2 × ϕ ¯̀
2
− `2 − ¯̀

2)∪
(ϕ`1 × ϕ`2 × ϕ ¯̀

1
¯̀
2
− `1 − ¯̀

1 − `2 − ¯̀
2) ∪ (ϕ`1 × ϕ ¯̀

2
× ϕ ¯̀

1`2
− `1 − ¯̀

1 − `2 − ¯̀
2)∪

(ϕ ¯̀
1
× ϕ`2 × ϕ`1 ¯̀

2
− `1 − ¯̀

1 − `2 − ¯̀
2) ∪ (ϕ ¯̀

1
× ϕ ¯̀

2
× ϕ`1`2 − `1 − ¯̀

1 − `2 − ¯̀
2)∪

(ϕ`1 × ϕ ¯̀
1`2
× ϕ ¯̀

1
¯̀
2
− `1 − ¯̀

1 − `2 − ¯̀
2) ∪ (ϕ`2 × ϕ`1 ¯̀

2
× ϕ ¯̀

1
¯̀
2
− `1 − ¯̀

1 − `2 − ¯̀
2)∪

(ϕ ¯̀
1
× ϕ`1`2 × ϕ`1 ¯̀

2
− `1 − ¯̀

1 − `2 − ¯̀
2) ∪ (ϕ ¯̀

2
× ϕ`1`2 × ϕ ¯̀

1`2
− `1 − ¯̀

1 − `2 − ¯̀
2)∪

(ϕ`1`2 × ϕ`1 ¯̀
2
× ϕ ¯̀

1`2
× ϕ ¯̀

1
¯̀
2
− `1 − ¯̀

1 − `2 − ¯̀
2))

Proof of Proposition 26. Observe that updateµCNF (ϕ, η) ≡ updater(ϕ, η). Hence, to prove the proposi-
tion, it suffices to prove the following

BS(updater(ϕ, η)) = {s \ η ∪ η | s ∈ BS(ϕ)} (P26)

The proof is by induction on |η|.

• Base case |η| = 0 iff η = ∅: (P26) becomes BS(ϕ) = {s | s ∈ BS(ϕ)}. This is obviously true.

• Inductive step: suppose (P26) holds for every consistent set of n literals, n ≥ 0. We will prove that it
also holds for every consistent set of n+ 1 literals. Indeed,

BS(updater(ϕ, η)) = BS(updater(updater(ϕ, η \ {`}), `)) for some ` ∈ η
= {s \ {`} ∪ {`} | s ∈ BS(updater(ϕ, η \ {`}))} (Proposition 24)

= {s \ (η \ {`}) ∪ (η \ {`}) \ {`} ∪ {`} | s ∈ BS(ϕ)} (inductive hypothesis)

= {s \ η ∪ η | s ∈ BS(ϕ)} (` ∈ η)

75

Thus, (P26) holds for every consistent set of literals (proof).

Proof of Proposition 28.

1. Observe that Rel(ϕ,ψ) is a subset of the µCNF -state ϕ. We have ϕ |= Rel(ϕ,ψ), hence if
Rel(ϕ,ψ) |= ψ then ϕ |= ψ.
Now we need to prove that if ϕ |= ψ then Rel(ϕ,ψ) |= ψ. Assume the contrary that ϕ |= ψ and
Rel(ϕ,ψ) 6|= ψ. This implies that Rel(ϕ,ψ) ∧ ¬ψ is satisfiable. By Proposition 3, there exists a
consistent set of literals δ such that δ |= Rel(ϕ,ψ) ∧ ¬ψ and prop(δ) = prop(Rel(ϕ,ψ) ∧ ¬ψ).
On the other hand, becauseRel(ϕ,ψ) 6|= ψ andϕ |= ψ,Rel(ϕ,ψ) 6= ϕ. This means thatRel(ϕ,ψ) ⊂
ϕ, hence ϕ \ Rel(ϕ,ψ) 6= ∅. Therefore, ϕ \ Rel(ϕ,ψ) is satisfiable (otherwise ϕ is unsatisfiable, a
contradiction). By Proposition 3, there exists a consistent set of literals δ′ such that δ′ |= ϕ\Rel(ϕ,ψ)
and prop(δ′) = prop(ϕ \ Rel(ϕ,ψ)). Since ϕ \ Rel(ϕ,ψ) is independent from ψ and Rel(ϕ,ψ),
clearly ϕ\Rel(ϕ,ψ) is independent fromRel(ϕ,ψ)∧¬ψ. Hence, prop(Rel(ϕ,ψ)∧¬ψ)∩prop(ϕ\
Rel(ϕ,ψ)) = ∅ , i.e., prop(δ) ∩ prop(δ′) = ∅. Hence, δ ∪ δ′ is a consistent set of literals. This
implies that δ ∪ δ′ |= Rel(ϕ,ψ) ∧ ¬ψ and δ ∪ δ′ |= ϕ \ Rel(ϕ,ψ). This implies that δ ∪ δ′ |=
(Rel(ϕ,ψ) ∧ ¬ψ) ∧ (ϕ \Rel(ϕ,ψ)) or δ ∪ δ′ |= ϕ ∧ ¬ψ. Let s be a state such that δ ∪ δ′ ⊆ s then s
is a model of ϕ ∧ ¬ψ. This means that ϕ ∧ ¬ψ is satisfiable or ϕ 6|= ψ, a contradiction.

2. ϕ ∧ ψ is satisfiable iff ϕ 6|= ¬ψ iff Rel(ϕ,ψ) 6|= ¬ψ (note that Rel(ϕ,ψ) = Rel(ϕ,¬ψ)) iff
Rel(ϕ,ψ) ∧ ψ is satisfiable.

Proof of Proposition 29. We will investigate the running time of Algorithm 9 for computing Rel(ϕ,ψ) in
the worst case as follows.

• Computing the set π = prop(ψ) ∪ prop(ψ) (line 3) is linear in the size of ψ. Since ψ is usually very
small so this is negligible.

• Computing the set of clauses in ϕ that depend on ψ (lines 4-9) is O(nm)

• Computing Y , the set of clauses in V that depend on a clause newly added to R, in the while loop
(line 14) is O(n|V |) = O(nm). The computation in line 16 is O(|Y |) = O(m). Hence, the running
time for each iteration of the while loop is O(nm). Since each clause α is taken once to compute the
set Y in an iteration when V is not empty, the maximum number of iterations of the while loop is
m− 1. Hence, the running time for the while loop is O(nm2).

• The running time of other computations is negligible.

In summary, using Algorithm 9, Rel(ϕ,ψ) can be computed in O(nm2) time (in the worst case).

Proof of Proposition 30. We will analyze the cost of computing µCNF by Algorithm 10 in the worst case
as follows.

• Computing r(ϕ) (Line 3): r(ϕ) is computed by

– removing trivial clauses: Checking whether a clause is trivial is linear in the size of the clause,
i.e., O(n). Removing a clause takes O(lgm) time. Thus, this computation (for m clauses in ϕ)
is O(mn+m lgm).

76

– removing subsumed clauses: checking whether a clause is subsumed by a given clause is O(n+
n) = O(n). Checking subsumption for all m clauses in ϕ takes O(m2n). Hence, this computa-
tion is O(nm2 +m lgm) = O(nm2).

The overall running time for r(ϕ), hence, is O(nm2).

• Computing the resolvents of a clause α with other clauses in ϕ (Line 7): checking whether α is
resolvable with a clause β isO(n) and computing a resolvent of two clauses isO(n). At the beginning,
ϕ contains m clauses. Thereafter, each time a new clause is added to ϕ, at least one clause is removed
from ϕ (Lines 10-12). Thus, the number of clauses in ϕ is at most m during the computation of the
algorithm. Hence, computing every possible resolvents of α with other clauses in ϕ is O(nm) and ϕ0

contains at most m− 1 clauses (resolvents).

• Computation of for loop (Lines 8-13): Computing ϕ′ = {β′ | β′ ∈ ϕ ∧ β ⊂ β′} is O(nm). The
computation of the if command (Lines 10-12) in each iteration is O(m). There are O(m) clauses in
ϕ0 so the computation of the for loop is O(nm2).

• Computing the while loop (Lines 5-15): The computation in one iteration is O(nm) + O(nm2) =
O(nm2). The number of iterations is at most the number of clauses in ϕ before entering the while
loop plus the number of clauses added to ϕ during the computation in this loop. When a new clause
is added to ϕ, the size of ϕ (initially it is N) reduces at least by 1 because at least a clause of larger
size is removed from ϕ.

Let M be the largest possible number of clauses that can be added to ϕ with the only condition that
each time a clause is added to ϕ, at least one clause in ϕ of larger size is removed from ϕ and the size
of each clause is at least 1. We will prove that M ≤ N −m. Observe that M is obtained if each time
a new clause α is added to ϕ, exactly one clause of the size greater |α| is removed from ϕ. Otherwise,
assume that there exists k clauses, k > 1, that are removed at once when adding a new clause α to
ϕ. Since every removed clause is larger than the new clause that replaces it, there exists a scheme
that can add more than M clauses to ϕ as follows: remove only one among k clauses and add α to
ϕ. Then the process of adding clauses to and removing clauses from ϕ is exactly same as the scheme
that obtains M . When the process is done, there are still k− 1 clause(s) (k > 0) whose size is greater
than some clause in ϕ then we can replace them with at least one more possible new clause in ϕ. This
implies that the number of clauses added to ϕ is at least M + 1, a contradiction. Observe that each
time a clause is added, the size of ϕ reduces at least by 1. At the end, ϕ still contain m clauses so its
size is at least m. Thus, M ≤ N −m.

Obviously, the number of new clauses added to ϕ during the while loop cannot exceed M . Hence, the
total number of clauses that ever exist in ϕ is at most m + M ≤ m + N −m = N . Therefore, the
number of iterations of the while loop is at most N . As a consequence, the computation cost for the
while loop is O(nm2N).

In summary, the overall running time for µCNF is O(nm2 + nm2N) = O(nm2N).

Proof of Proposition 31. Recall that extendingR(ϕ, ϕ ⊕µCNF ψ is computed by Algorithm 3. We
consider the following:

• Checking satisfaction (Lines 3 and 4): If a quick checking case is detected, e.g., there exists a literal
` in ψ such that {¯̀} ∈ ϕ then ϕ |= ¬ψ and ϕ 6|= ψ, checking satisfaction of ψ (or ¬ψ) in ϕ is easy

77

and there is no need a call to the SAT-solver. In the other case, usually ψ contains a small number of
possibly unknown literals, mostly 1 or 2, and thereby the set of clauses in ϕ that are relating to the
literal(s) is rather small. Let v be the size of Rel(ϕ,ψ′) ∧ ¬ψ. Then checking the satisfiability of
Rel(ϕ,ψ′))∧¬ψ in the worst case incurs 2u different combinations of assignments of the truth value
(either true or false) to u variables in the formula. The time for checking each such assignment
combination is linear in the size v of the formula. Hence, in the worst case, this computation is
O(2uv) = O(2uN) (observe that v ≤ N).

• Since ψ is a set of few literals and ¬ψ is a clause of few literals, the size of (ϕ ∧ ψ) and (ϕ ∧ ¬ψ) is
almost the same as the size of ϕ. Hence, by Proposition 30, computing convµCNF (ϕ ∧ ψ) (Line 9)
and convµCNF (ϕ ∧ ¬ψ) (Line 11) is O(nm2N).

• The computational cost in Lines 5, 10, and 12 is O(n).

In summary, computing extendingR(ϕ, ϕ⊕µCNF ψ is O(2uN + nm2N), if ψ is unknown in ϕ, and it is
O(2uN + n), otherwise.

Proof of Proposition 32. Consider an arbitrary µCNF -state ϕ′ in the set X and an arbitrary e-condition ψ
of a. Let u′ = |prop(Rel(ϕ′, ψ′′))|, where ψ′′ = {` ∈ ψ | ` is possibly unknown in ϕ′}.

First, we provide a sketch proof for the fact u′ ≤ u. Observe that each µCNF -state in X is gener-
ated by adding clauses to another µCNF -state in X , initialized with ϕ, and simplifying by µCNF . Thus,
the set of unit clauses in ϕ′ is a superset of unit clauses in ϕ as an unit clause is never removed by a
simplification. Hence, ψ′′ ⊆ ψ′, where ψ′ = {` ∈ ψ | ` is possibly unknown in ϕ}. This implies that
u′ = |prop(Rel(ϕ′, ψ′′))| ≤ |prop(Rel(ϕ′, ψ′))|. Observe that ϕ′ is obtained by simplifying a sub-
set of ϕ ∪ Ψ′(a) possibly with some added unit clauses and Rel(ϕ′, ψ′) does not contain unit clauses.
One can prove that, for each set of clauses ϕ1, |prop(Rel(µCNF (ϕ1), ψ′))| ≤ |prop(Rel(ϕ1, ψ

′))| and
if ϕ2 ⊆ ϕ1 then |prop(Rel(ϕ2, ψ

′)) ≤ |prop(Rel(ϕ1, ψ
′))|. This implies that |prop(Rel(ϕ′, ψ′))| ≤

|prop(Rel(ϕ ∪Ψ′(a), ψ′))| ≤ u. Thus, we have

u′ = |prop(Rel(ϕ′, ψ′′))| ≤ u (32a)

Similar to the analysis of enbµDNF , the cost of computing enbµCNF (a, ϕ) is maximum when the k
combined conditional effects of these k e-conditions are introduced to the outer for loop (Lines 6-12 of
Algorithm 4) first. By Proposition 31, (32a), and the size limit assumption, the running time of the inner
for loop (Lines 8-10) is O((2uN + nm2N)|X|) for each of the first k iterations (ψ is unknown in ϕ) and it
is O((2uN + n)|X|) for each of the last p − k iterations (ψ is known in ϕ). Consider the first k iterations
of the outer for loop. In the beginning of first iteration, X contains one formula which is ϕ. After each
iteration, the number of formulae inX increases at most twice. Hence, in the beginning of iteration i, i ≤ k,
X contains at most 2i−1 formulae. The running time of the first k iterations is

O((2uN + nm2N)(1 + 2 + . . .+ 2k−1)) = O(2k(2uN + nm2N)).

The running time of the last p− k iterations, where X stores at most 2k µCNF -states and this set does not
change, is

O(2k(2uN + n)(p− k)).

The overall running time of Algorithm 4 for computing enbµCNF (a, ϕ) is then

T (enbµCNF (a, ϕ)) = O(2k(2uN + nm2N) + 2k(2uN + n)(p− k))

78

Simplifying this formula by ignoring the terms of lower complexity, we obtain

T (enbµCNF (a, ϕ)) = O(2k+uNp+ 2kNnm2)

Proof of Proposition 34. We again make the size limit assumption in this computation. First, we consider
the computation of each iteration of the for loop in Algorithm 11 for each ` in e(a, ϕ). It is easy to see that
the computation in the first two cases (when either ` or ¯̀ is a unit clause of ϕ′) is simpler than that in the
third case. Since we want to evaluate the running time in the worst case, we will evaluate the running time
of the computation in the third case (lines 7-21).

• One can see that computing ϕ0, ϕ+, and ϕ− all together (Lines 10-12) is O(nm).

• Computing the updated formula w.r.t. ` in Line 13 includes:

– Computing (ϕ+ × ϕ−) is O(n|ϕ+||ϕ−|). Observe that

|ϕ+||ϕ−| ≤
(
|ϕ+|+ |ϕ−|

2

)2

≤ (|ϕ|/2)2 ≤ m2/4

Hence, the running time for this computation is O(nm2).

– Computing the reduced CNF formula ϕ = r(ϕ0 ∪ {{`}} ∪ (ϕ+ × ϕ−)): Usually the set of
resolvents on a non-unit literal is very small and they may be subsumed by a clause in ϕ0.
Furthermore, the new unit clause {`} can subsume a great number of clauses in the formula
(The experiments show that the size of the updated formula is usually smaller than the formula
before updating). For this reason, we assume that the size of the reduced CNF formula r(ϕ0 ∪
{{`}} ∪ (ϕ+ × ϕ−)) does not exceed the size of ϕ before the update. To compute this formula,
first we remove every clause in ϕ0 that is subsumed by {`} and add {`} to it. Then, for every
clause α in (ϕ+ × ϕ−), before adding α to the formula, we check subsumption between α
and the other clauses in the formula. This checking is O(nm). Since the number of clauses
in (ϕ+ × ϕ−) is bounded by m2/4, adding every clause in this set to the formula is O(nm3).
Hence, the time for updating the formula on each literal ` is O(nm3).

There are at most n literals in the set e(a, ϕ′), hence, computing updateµCNF (a, ϕ′) is O(n2m3). Since
enbµCNF (a, ϕ) contains at most 2k µCNF -states, the total running time for updating every µCNF -states
in this set is O(2kn2m3).

Proof of Theorem 5. The cost of computing ΦµCNF (a, ϕ) is the summation of the costs of computing
enbµCNF (a, ϕ) (O(2k+uNp + 2kNnm2)), updating the µCNF -states in enbµCNF (a, ϕ) (O(2kn2m3)),
and merging the set of updated µCNF -states (O(2knm2N)). Observe that N ≤ nm. Thus,

T (ΦµCNF (a, ϕ)) = O((2k+uNp+ 2kNnm2) + (2kn2m3) + (2knm2N)) = O(2k+uNp+ 2kn2m3)

Proof of Proposition 37.

1. Since ϕ is a PI-state, a literal ` is satisfied in ϕ iff {`} ∈ ϕ. Checking whether ` is satisfied in ϕ
is equivalent to checking whether {`} belongs to ϕ that is linear in the number of clauses in ϕ, i.e.,
linear in m.

79

2. The nontrivial clause α is satisfied in ϕ iff α is an implicate of ϕ. If α is a prime implicate of ϕ then
α ∈ ϕ. Otherwise, there exists a clause β in ϕ that subsumes α. Thus, checking whether α is satisfied
in ϕ is equivalent to check whether there exists a clause β in ϕ such that β ⊆ α, which is linear in
nm (assuming that the literals in each clause are sorted).

Proof of Proposition 38. Let ϕ be a PI-state. Since every clause in ϕ is a prime implicate of ϕ so it is
a nontrivial clause and no clauses in ϕ subsumes another. Hence, r(ϕ) = ϕ. Furthermore, no clause in
ϕ is subsumed by a resolvent of ϕ, which is an implicate of ϕ. Therefore, µCNF (ϕ) = ϕ. Thus, ϕ is a
µCNF -state.

Proof of Proposition 40.

• Prove updatePI(ϕ, `) is a PI-state: If {`} ∈ ϕ then, by definition, updatePI(ϕ, `) = ϕ, a PI-state.
We now consider the case {`} 6∈ ϕ, i.e., updatePI(ϕ, `) = ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}}. We need to prove
that every clause in updatePI(ϕ, `) is a prime implicate of this formula and every prime implicate of
updatePI(ϕ, `) already exists in it as follows.

– Let α be an arbitrary clause in updatePI(ϕ, `). If α is the unit clause {`} then obviously α is
a prime implicate of updatePI(ϕ, `). Otherwise, α is a clause of ϕ \ (ϕ` ∪ ϕ`, and thereby, a
prime implicate of ϕ. Hence there does not exist an implicate of ϕ that subsumes α. Since the
set of implicates of ϕ \ (ϕ` ∪ϕ` is a subset of the set of implicates of ϕ, there does not exists an
implicate of ϕ \ (ϕ` ∪ϕ` that subsumes α. Moreover, since ` is independent from ϕ \ (ϕ` ∪ϕ`,
no clauses in this set is subsumed by or resolvable with {`}. This implies that α is a prime
implicate of ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}} = updatePI(ϕ, `).

– Assume that there exists a prime implicate α of updatePI(ϕ, `) such that α 6∈ updatePI(ϕ, `).
Since ` is independent from ϕ \ (ϕ` ∪ ϕ`), α is a prime implicate of this set and `, ` 6∈ α. This
also implies that α is an implicate of ϕ and it is subsumed by a clause β in ϕ. Because α cannot
be subsumed by a clause in ϕ` ∪ ϕ` (`, ` 6∈ α), β ∈ ϕ \ (ϕ` ∪ ϕ`). Thus, α is not a prime
implicate of ϕ\ (ϕ`∪ϕ`), a contradiction. Thus updatePI(ϕ, `) contains every prime implicate
of it.

• Prove BS(updatePI(ϕ, `)) = {s \ {¯̀} ∪ {`} | s ∈ BS(ϕ)}: Since BS(updater(ϕ, `)) = {s \
{¯̀} ∪ {`} | s ∈ BS(ϕ)} (Proposition 24), it suffices to prove updatePI(ϕ, `) ≡ updater(ϕ, `). We
consider the following three cases:

– {`} ∈ ϕ: the proof is trivial as updatePI(ϕ, `) = updater(ϕ, `) = ϕ

– {¯̀} ∈ ϕ: Since ϕ is a PI-state, no clauses in ϕ subsumes ¯̀, i.e., ϕ` = {{¯̀}}. Now we prove
that ϕ` = ∅. Assume that there exists α ∈ ϕ`. Then α is resolvable with ¯̀ and their resolvent
is α \ {`}, that subsumes α, a contradiction. Thus, ϕ` = ∅ and ϕ` = {{¯̀}}. This implies that
ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}} = ϕ \ {{`}} ∪ {{`}}. Hence, updatePI(ϕ, `) ≡ updater(ϕ, `) in this
case.

– {`}, {¯̀} 6∈ ϕ: As discussed earlier, every clause in the cross-product (ϕ`−`)×(ϕ`−`) is trivial,
subsumed by a clause in ϕ\(ϕ`∪ϕ`), or already exists in this set. Hence ϕ\(ϕ`∪ϕ`)∪{{`}}∪
(ϕ` − `)× (ϕ` − `) ≡ ϕ \ (ϕ` ∪ ϕ`) ∪ {{`}}. This means updatePI(ϕ, `) ≡ updater(ϕ, `).

In all cases, we have updatePI(ϕ, `) ≡ updater(ϕ, `) (proof).

80

Proof of Proposition 41. By Proposition 40, we have

BS(updatePI(updatePI(ϕ, `1), `2)) = {s′ \ {`2} ∪ {`2} | s′ ∈ BS(updatePI(ϕ, `1))}
= {s′ \ {`2} ∪ {`2} | s′ ∈ {s \ {`1} ∪ {`1} | s ∈ BS(ϕ)}
= {s \ {`1, `2} ∪ {`1, `2} | s ∈ BS(ϕ)} (`1 6= `2)

Similarly, we have

BS(updatePI(updatePI(ϕ, `2), `1)) = {s \ {`1, `2} ∪ {`1, `2} | s ∈ BS(ϕ)}

Thus,
BS(updatePI(updatePI(ϕ, `1), `2)) = BS(updatePI(updatePI(ϕ, `2), `1)).

Two PI-states updatePI(updatePI(ϕ, `1), `2) and updatePI(updatePI(ϕ, `2), `1) are equivalent so they
are identical, i.e., updatePI(updatePI(ϕ, `1), `2) = updatePI(updatePI(ϕ, `2), `1) (proof).

Proof of Proposition 42. The proof is similar to that for Proposition 26 (by induction on |η|) based on
Proposition 40.

Proof of Proposition 45.

1. We will evaluate the cost of computing PI(ϕ∪{α}) and the size of the obtained formula in the worst
case based on Algorithm 13. It is easy to see that the worst case occurs in the for loop (lines 8-13).
First, we will prove by induction on the size of α that the number of clauses in X at the end of the for
loop is O(mr) (1).

• Base case n = 1: the set X` contains only one clause which is α. The set ϕ¯̀ is a subset of ϕ so
it contains at most m clauses. Hence, there are at most m new resolvents generated in Y . At the
end of the for loop, therefore, X will contain at most m+ 1 = O(m) clauses.

• Inductive step: suppose that (1) is true for every such clause of the size r − 1, for some r > 1.
Let β be the clause that contains the first r − 1 literals in α in the order that the literals are
introduced to the for loop. Clearly, computing PI(ϕ ∪ {α}) (by Algorithm 13) is done by
computing PI(ϕ ∪ {β}) and executing one more iteration of the for loop for the last literal ` in
α and ` 6∈ β. By induction, at the beginning of the last iteration, X contains O(mr−1) clauses
and so does X`. If X contains one clause then clearly at the end of the iteration, the number of
clauses inX isO(m) and therebyO(mr). Otherwise, there is at least a clause β in ϕ that already
resolved with α in an earlier iteration on some literal `′. That clause cannot be resolvable with α
on ` (otherwise, the resolvent computed earlier α|β is trivial as it contain both ` and ¯̀). Hence,
in this iteration, at mostm−1 resolvents of α and other clauses inX` can be generated. Observe
that, every clause in X is a resolvent of a clause in ϕ but α and a resolvent of a clause cannot
be resolvable with that clause again (otherwise, the resolvent contains a pair of complementary
literals and thereby it is trivial). Hence, at most O(mr−1) × (m − 1) = O(mr−1(m − 1))
new resolvents are generated in Y . Thus, at the end of the last iteration, X will contain at most
O(mr−1) +O(mr−1(m− 1)) = O(mr) clauses.

Now we will consider the computational cost of each iteration i of the for loop:

• Computing Y (line 9) is O(nmi−1m) = O(nmi).

81

• The computation for subsumption (lines 10-11): X and Y contains at mostO(mi−1) andO(mi)
clauses respectively. Hence, this computation is O(n(m+mi−1)mi) = O(nm2i−1)8.

• Computing X in line 12 is O(mi).

In summary, the computational cost of each iteration i is O(nm2i−1). The computation cost for the
for loop, hence, is

O(Σr
i=1nm

2i−1) = O(Σr
i=1

n

m
(m2)i) = O(

n

m

(m2)r+1 − 1

m2 − 1
) = O(nm2r)

The number of clauses in the resulting formula is O(mr +m) = O(mr).
2. Let ` be a literal in α that is known in ϕ. Since ϕ is a prime implicate formula, there are two

possibilities:

• ` is a unit literal in ϕ. In this case, α is subsumed by the unit clause {`} of ϕ so PI(ϕ∪{α}) = ϕ
and the algorithm will returns ϕ immediately in line 4. The proof in this case, hence, is trivial.

• ¯̀ is a unit literal in ϕ. In this case, α can be replaced with the clause α \ {`}.
In the second case, every literal in α that is known in ϕ can be removed from it before computing
the prime implicate form. This operation is easy in prime implicate formula and it does not affect the
order of the computational cost of computing the prime implicate form. Let α′ be the resulting clause
after removing from α every literal that is known in ϕ. It is easy to see that ϕ ∪ {α} ≡ ϕ ∪ {α′}.
Hence, computing PI(ϕ ∪ {α}) can be replaced with computing PI(ϕ ∪ {α′}). Observe that the
number of literals in α′ is u so we obtain the proof.

Proof of Theorem 6. Let ϕ be a PI-state and a be an action. Let m be the number of clauses in ϕ, p be
the number of combined conditional effects of a, k be the number of e-conditions of a that are unknown
in ϕ, and n be the number of propositions in the domain. Let r be the maximum number of literals in an
e-condition of a and u be the maximum number of literals in an e-condition of a that are unknown in ϕ. Let
e = max{e(a, s) | s ∈ BS(ϕ)}. We will discuss the cost of computing the components of ΦPI and then
the cost of computing this function in the worst case, with the assumption that the number of clauses in each
intermediate formula generated during the computation of ΦPI does not exceed m, the number of clauses in
ϕ.

Proposition 51. Let ϕ be a PI-state, m be the number of clauses in ϕ, ψ be a consistent set of literals, ψ′

be the set of literals in ψ that are possibly unknown in ϕ, and u = |ψ′|. Computing ϕ⊕PI ψ (Algorithm 3)
is O(nm) if ψ is known in ϕ and O(nm2r + nm2u) otherwise.

Proof. Recall that ϕ ⊕PI ψ is computed by the procedure extendingPI(ϕ, e(ϕ), ψ → η) (Algorithm 3).
We have:

• Checking satisfaction of ψ and ¬ψ in ϕ (Lines 3-4 in Algorithm 3) is O(|ψ|m) +O(nm) = O(nm)
(Proposition 37)

• Updating the effects of executing a (Lines 5,10, and 12) is O(n)

8There is an exception for the case i = 1 where this should be O(nm2). However, it is easy to see that this simplification does
not affect the order of the analysis result.

82

• Computing convPI(ϕ∧ψ) by the convPI(ϕ,ψ) procedure (Algorithm 15) isO(|ψ|nm2) = O(nm2r)
(Proposition 45)

• Computing convPI(ϕ∧¬ψ) by the convPI(ϕ,ψ) procedure (Algorithm 13) isO(nm2u) (Proposition
45)

In summary, the total cost of computing ϕ⊕PIψ is thenO(nm) if ψ is known in ϕ andO(nm2r+nm2u)
otherwise.

Proposition 52. Let ϕ be a PI-state and ψ be a consistent set of literals.

1. If the number of literals in ψ is bounded by a constant, then ϕ⊕PI ψ can be computed in polynomial
time.

2. If the number of literals in ψ that are unknown in ϕ is bounded by a constant, then ϕ ⊕PI ψ can be
computed in polynomial time.

As an e-condition of an action of most problems contains a few literals (r is usually smaller than 3), and
among them the number of literals unknown in ϕ (u) is even smaller, then this computation is polynomial
time in practice.

As seen for the µDNF and µCNF representations, the running time of enabling(a, ϕ) is maximal
when the k combined conditional effects whose e-conditions are unknown in ϕ are introduced in the first
k iterations of the outer for loop (Lines 6-12). Similar to the analysis for µCNF , in the worst case, the
running time of the first k iterations is

O((nm2r + nm2u)(1 + 2 + . . .+ 2k−1)) = O(2k(nm2r + nm2u))

and the running time of the last p− k iterations is

O((nm)2k(p− k))) = O(2knmp)

The overall running time of computing enbPI(a, ϕ) is shown in the following proposition.

Proposition 53. Let ϕ be a PI-state and a be an action. Let m be the number of clauses in ϕ, p be the
number of combined conditional effects of a, k be the number of e-conditions of a that are unknown in
ϕ, and n be the number of propositions in the domain. Let r be the maximum number of literals in an
e-condition of a and u be the maximum number of literals in an e-condition of a that are unknown in ϕ. If
the number of clauses in each intermediate formula ϕ′ generated during the computation of enbPI(a, ϕ)
does not exceed the number of clauses m in ϕ, then

T (enbPI(a, ϕ)) = O(2k(rnm2 + nm2u + nmp))

Updating a PI-state in enbPI (a, ϕ) by a literal (Line 7) takes O(nm) time. There are at most e literals in
η, so updating a PI-state takes O(nme) time. Hence, updating all the PI-states in enbPI (a, ϕ), that contains
at most 2k PI-states, takes O(2knme).

Computing ⊕ of two PI-states in enbPI (a, ϕ) includes:

• computing their cross-product and checking for the trivial clauses costs O(nm2).

• checking for subsumed clauses in the set costs O(nm3).

Hence, computing the PI-form of the cross-product of two PI-states in enbPI (a, ϕ) requires O(nm3) time.
Since there are at most 2k PI-states in enbPI (a, ϕ), then the computation of mergePI(enbPI (a, ϕ)) will
need to apply ⊕ 2k − 1 times and, hence, it takes O(2knm3) time.

83

	Introduction
	Background: Conformant Planning, Propositional Logic, and Belief State Representation
	An Abstract Transition Function for Arbitrary Belief State Representations
	Minimal-DNF Representation
	The DNF Representation and Its Operators
	Computing Successor DNF-States Using DNF
	Dnf Conformant Planner

	Minimal-CNF Representation
	Background: CNF Formulae and Preprocessing Techniques
	The CNF Representation and Its Operators
	Computational Aspects and Complexity of CNF
	Satisfaction Checking
	Computing CNF
	Computational Complexity of enbCNF(a,) (Algorithm 4)
	Computing updateCNF
	Computing mergeCNF

	Cnf Conformant Planner

	Prime Implicate Representation
	Computing PI-states
	PIP Conformant Planner

	Related Work
	Experimental Evaluation
	Experimental Setup
	Problems from Literature with a Constant Conformant Width
	Harder Problems from Literature with Conformant Width Increasing on the Problem's Size
	New Hard Problems, Extensions of Traditional Problems
	Problems with High Uncertainty in The Initial State
	On Selection of Belief State Representation
	General Criteria for Evaluating a Belief State Representation R
	Minimal-DNF, Minimal-CNF, or Prime Implicates?

	Summary

