
On the Effectiveness of CNF and DNF Representations in Contingent Planning

Son Thanh To and Enrico Pontelli and Tran Cao Son
New Mexico State University

Department of Computer Science
sto|epontell|tson@cs.nmsu.edu

Abstract
This paper investigates the effectiveness of two
state representations, CNF and DNF, in contingent
planning. To this end, we developed a new contin-
gent planner, called CNFct, using the AND/OR for-
ward search algorithm PrAO [To et al., 2011] and
an extension of the CNF representation of [To et
al., 2010] for conformant planning to handle non-
deterministic and sensing actions for contingent
planning. The study uses CNFct and DNFct [To et
al., 2011] and proposes a new heuristic function for
both planners. The experiments demonstrate that
both CNFct and DNFct offer very competitive per-
formance in a large range of benchmarks but nei-
ther of the two representations is a clear winner
over the other. The paper identifies properties of
the representation schemes that can affect their per-
formance on different problems.

1 Introduction
Contingent planning [Peot and Smith, 1992] is the task of
generating conditional plans in the presence of incomplete
information, uncertain action effects, and sensing actions.
A contingent plan guides the agent to act conditionally to
achieve the goal from every possible initial state of the world
and independent from the actual action effects. Contingent
planning has been known as one of the hardest problems in
planning [Baral et al., 2000; Rintanen 2004].

One of the most common and successful approaches to
contingent planning is to transform it into an AND/OR search
problem in the belief state space. Significant progress in this
direction has been made as state-of-the-art contingent plan-
ners (e.g., MBP [Bertoli et al., 2006], POND [Bryce et al.,
2006], and contingent-FF [Hoffmann and Brafman, 2005])
can solve problems of large size at different levels of hard-
ness. However, these planners cannot scale up well, mostly
due to the underlying belief state representation they em-
ployed. For example, the representation using binary de-
cision diagrams (BDDs) [Bryant, 1992], used in MBP and
POND, is usually very large and sensitive to the order of the
variables; furthermore, computing the successor belief state
in BDD representation is expensive as it requires interme-
diate formulae of exponential size. On the other hand, the

implicit representation of belief states used in contingent-FF
through the action sequences that lead to them from the initial
belief state incurs an excessive amount of repeated computa-
tion. Moreover, checking whether a proposition holds after
the execution of even one single action is co-NP complete.

Later, [Albore, Palacios, and Geffner, 2009] introduced a
new approach, that transforms a contingent problem into a
search problem in the state space, whose literals represent the
beliefs over the original problem, assuming that the uncer-
tainty lies only in the initial world. This method is more effi-
cient as their planner CLG is capable of solving harder prob-
lems of larger size. However, the number of literals in the
translated problem can be exponential in the number of un-
known literals in the original problem, making the state space
extremely large and preventing the planner to scale up. Fur-
thermore, CLG does not consider non-deterministic actions.

Recently, in [To et al., 2011], we introduced a new ap-
proach to contingent planning which relies on DNF, the
belief state representation developed in [To et al., 2009]
for conformant planning. We extended DNF to handle
non-deterministic and sensing actions and developed a new
AND/OR forward search algorithm, called PrAO, for con-
tingent planning. The resulting planner, called DNFct, out-
performs other state-of-the-art contingent planners on most
benchmarks in term of both execution time and scalability on
the size of problems. However, we observed that the perfor-
mance of DNFct is not as good on the problems where the size
of disjunctive formulae encoding the belief states is too large.
In some cases, the planner even hardly starts the search due
to large size of the formula encoding the initial belief state.
This raises the question of whether a CNF representation of
belief states would yield a planner with better scalability.

The goal of this paper is first to address the above ques-
tion. We begin with the development of a new contingent
planner, called CNFct, which employs the CNF representa-
tion of belief states for conformant planning [To et al., 2010].
This requires an extension of the transition function devel-
oped in that paper to handle non-deterministic and sensing
actions for contingent planning. To facilitate the comparisons
on belief state representation, we implement CNFct using the
same AND/OR forward search algorithm PrAO and propose
a new heuristic scheme to use in this paper for both CNFct and
DNFct. We also evaluate CNFct against other state-of-the-art
contingent planners besides DNFct. The experiments show

that CNFct performs reasonably well comparing to DNFct and
is better than other planners in many problems. Afterwards,
we investigate the effectiveness of the two representations of
belief states in contingent planning by identifying their prop-
erties and criteria that affect the performance over different
classes of problems. The results of this investigation support
our empirical evaluation which shows that neither of the two
representations dominates the other across all problems.

2 Background: Contingent Planning
A contingent planning problem is a tuple P =
〈F,A,Ω, I, G〉, where F is a set of propositions, A is a
set of actions, Ω is a set of observations (sensing actions), I
describes the initial state, and G describes the goal. A and Ω
are separate, i.e., A ∩ Ω = ∅. A literal is either a proposition
p ∈ F or its negation ¬p. ¯̀ denotes the complement of a
literal `—i.e., ¯̀ = ¬`, where ¬¬p=p for p∈F . For a set of
literals L, L = {¯̀ | ` ∈ L}. We will often use a set of literals
to represent a conjunction of literals.

A set of literals X is consistent (resp. complete) if for ev-
ery p∈F , {p,¬p}6⊆X (resp. {p,¬p}∩X 6=∅). A state is a
consistent and complete set of literals. A belief state is a set
of states. We will often use lowercase (resp. uppercase) letter
to represent a state (resp. a belief state).

Each action a in A is a tuple 〈pre(a), O(a)〉, where pre(a)
is a set of literals indicating the preconditions of action a and
O(a) is a set of action outcomes. Each o(a) in O(a) is a
set of conditional effect of the form ψ → ` (also written as
oi : ψ → `), where ψ is a set of literals and ` is a literal. If
|O(a)| > 1 then a is non-deterministic. O(a) is mutual exclu-
sive, i.e., the execution of a makes one and only one outcome
in O(a) occurs. However, which outcome that occurs is un-
certain. Each observation ω in Ω is a tuple 〈pre(ω), `(ω)〉,
where pre(ω) is the preconditions of ω (a set of literals) and
`(ω) is a literal.

A state s satisfies a literal ` (s |= `) if ` ∈ s. s satisfies a
conjunction of literals X (s |= X) if X ⊆ s. The satisfaction
of a formula in a state is defined in the usual way. Likewise,
a belief state S satisfies a literal `, denoted by S |= `, if
s |= ` for every s ∈ S. S satisfies a conjunction of literals X ,
denoted by S |= X , if s |= X for every s ∈ S.

Given a state s, an action a is executable in s if s|=pre(a).
The effect of executing a in s w.r.t. an outcome oi is

e(oi, s) = {` | ∃(oi : ψ → `). s |= ψ}
Let res(oi, s) = s\e(oi, s)∪e(oi, s). The transition function
maps an action and a belief state to a belief state, defined as
Φ(a, S) = {res(oi, s) | s ∈ S, oi ∈ O(a)} if S 6= ∅ and
S |= pre(a); Φ(a, S) = undefined, otherwise.
Example 1. Consider a domain F = {alive}, a single-
ton belief state S = {{alive}}, an action shoot with
pre(shoot) = {true} andO(shoot) = {o1, o2}, where o1 =
{∅ → alive} and o2 = {∅ → ¬alive}. One can easily com-
pute: res(o1, {alive}) = {alive}, and res(o2, {alive}) =
{¬alive}. Hence, Φ(shoot, S) = {{alive}, {¬alive}}.

Observe that, in Example 1, the non-deterministic action
shoot causes the certain belief state S to become uncertain.

Let ω be an observation in Ω; we define S+
ω = {s | s ∈

S, s |= `(ω)} and S−ω = {s | s ∈ S, s |= `(ω)}.

¬safe
¬sameR(A,B)

N2

¬safe
sameR(A,B)

N1

safe
sameR(A,B)

N3 (goal)

¬safe
?sameR(A,B)

N0 (initial)
sense(B) sense(B)

disarm(B)

move

Figure 1: A contingent solution in AND/OR forward search
Given a contingent planning problem P , a structure T con-

structed from the actions and observations of P is said to be a
transition tree of P if
• T is empty, denoted by [], or T = a, where a ∈ A; or
• T = a ◦ T ′, where a ∈ A and T ′ is a non-empty transition

tree; or
• T = ω(T+|T−), where ω ∈ Ω and T+ and T− are transi-

tion trees.
Intuitively, a transition tree represents a conditional plan,
as defined in the literature, and can be represented as an
AND/OR graph whose nodes are belief states and links are
AND/OR-edges. A precise definition is given in the next sec-
tion. Let us denote undefined by ⊥. The result of the ex-
ecution of a transition tree T in a belief state S, denoted by
Φ̂(T, S), is a set of belief states defined as follows:
• If S = ⊥ or S = ∅ ∧ T 6= [] then Φ̂(T, S) = ⊥; else
• If S 6= ∅ then Φ̂([], S) = {S}, else Φ̂([], ∅) = ∅; else
• If T = a, a ∈ A, then Φ̂(a, S) = {Φ(a, S)}; else
• If T = a◦T ′, a ∈ A, then Φ̂(T, S) = Φ̂(T ′,Φ(a, S)); else
• If T = ω(T+|T−) then Φ̂(T, S) = Φ̂(T+, S+

ω) ∪
Φ̂(T−, S−ω) if S |= pre(ω), and Φ̂(T, S) = ⊥ otherwise.
Note that the definition of Φ̂ allows the application of an

observation ω in a belief state where `(ω) is known, if the
subtree of the resulting empty belief state is empty.

Let SI be the set of all possible states satisfying the initial
description I . A transition tree T is said to be a solution of P
if every belief state in Φ̂(T, SI) satisfies the goal G.
Example 2. We have an agent A and a bomb B, whose
location is unknown in a house with two rooms. A can move
around and disarm B if they are in the same room. A can
sense whether B is in the same room. The problem P is given
as F = {sameR(A,B), safe}, A = {move, disarm(B)},
Ω = {sense(B)}, I = ¬safe, and G = safe; where
move = (true, {sameR(A,B)→¬sameR(A,B),
¬sameR(A,B)→sameR(A,B)}), disarm(B) =
(sameR(A,B), {true→safe}), and `(sense(B)) =
sameR(A,B). A solution tree for the problem is
"sense(B)(disarm(B) | move ◦ disarm(B))". (Fig. 1).

3 CNF/DNF Representations of Belief States
We will first review several notions of the CNF representation
for conformant planning in [To et al., 2010]. We then extend
it to deal with non-deterministic actions and observations for
contingent planning, in addition to incomplete information.

A clause is a set of fluent literals. A clause is trivial if it
contains the set {f,¬f} for some fluent f . A CNF formula

is a set of clauses. A literal ` is in a CNF formula ϕ, denoted
by ` ∈ ϕ, if there exists a clause α ∈ ϕ such that ` ∈ α. A
unit clause is a singleton set, i.e. it contains only one literal
which is called unit literal. A clause α subsumes a clause β
if α ⊂ β. A clause is subsumed by a CNF formula if it is
subsumed by some clause in the formula. A CNF formula
can be simplified by removing the subsumed clauses from it.

A CNF-formula ϕ is called a CNF-state if
• ϕ does not contain a trivial clause;
• ϕ does not contain two clauses γ and δ such that γ sub-

sumes δ; and
• for every unit clause {`} in ϕ, ` 6∈ ϕ.
A set of CNF-states is called a CNF-belief state.

In this paper, by r(.), we denote a function that maps a
CNF-formula to an equivalent CNF-state. A literal ` (resp. a
set of literals γ) is true in a CNF-state ϕ if ϕ |= ` (resp. ϕ |= `
for every ` ∈ γ), where |= denotes the standard entailment
relation. Also, by ϕ` (resp. ϕ¯̀) we denote the set of clauses
in ϕ which contain ` (resp. ¯̀). Let ϕ be a CNF formula and
` be a literal. By ϕ− ` we denote the CNF formula obtained
by removing every occurrence of ` from ϕ.

For two CNF formulae ϕ = {α1, . . . , αn} and ψ =
{β1, . . . , βm}, the cross-product of ϕ and ψ, denoted by
ϕ×ψ, is the CNF-formula defined by {αi∪βj | αi ∈ ϕ, βj ∈
ψ}. The reduced-cross-product of ϕ and ψ, denoted by ϕ⊗ψ,
is the CNF-state defined by ϕ⊗ψ = r(ϕ×ψ). If either ϕ or
ψ is empty then ϕ× ψ = ϕ⊗ ψ = ∅.

Note that ϕ ⊗ ψ = ψ ⊗ ϕ ≡ ϕ ∨ ψ. For a set of CNF
formulae Ψ = {ϕ1, . . . , ϕn}, ⊗[Ψ] denotes ϕ1 ⊗ ϕ2 ⊗ . . .⊗
ϕn, a CNF-state equivalent to

∨n
i=1 ϕi.

Given a CNF-state ϕ, we define the function Update which
encodes the CNF-state after the execution of an action, that
causes a literal ` to be true, in ϕ as follows.

Let ϕ be a CNF-state and ` a literal. The update of ϕ by `,
denoted by Update(ϕ, `), is defined by:
• If ` is a unit clause in ϕ then Update(ϕ, `) = ϕ.
• If ¯̀ is a unit clause in ϕ, then Update(ϕ, `) = (ϕ− ¯̀) ∧ `.
• Otherwise

Update(ϕ, `) = r((ϕ\(ϕ`∪ϕ¯̀))∧`∧(ϕ`−`)×(ϕ¯̀− ¯̀))
Given a consistent set of literals L, we de-

note Update(ϕ, ∅) = ϕ and Update(ϕ,L) =
Update(Update(ϕ, `), L \ {`}) for any ` ∈ L if L 6= ∅.

Let ϕ be a CNF-state and γ a consistent set of literals. The
enabling form of ϕ w.r.t. γ, denoted by ϕ+ γ, is a set of CNF
formulae and is defined as

ϕ+ γ =

{
{ϕ} if ϕ |= γ or ϕ |= ¬γ
{r(ϕ ∧ γ), r(ϕ ∧ ¬γ)} otherwise

where ¬γ is the clause γ = {l̄ | l ∈ γ}, ϕ∧¬γ = ϕ∪{γ},
and ϕ ∧ γ = ϕ ∪ {{l} | l ∈ γ}.

For a CNF-belief state Ψ, let Ψ + γ =
⋃
ϕ∈Ψ(ϕ+ γ).

The extension starts from this point as follows:

Definition 1. Let oi be an outcome of action a. A CNF for-
mula ϕ is called enabling for oi if for every conditional effect
oi : ψ → `, either ϕ |= ψ or ϕ |= ¬ψ holds.

A set of CNF formulae Ψ is enabling for oi if every CNF
formula in Ψ is enabling for oi.

For an outcome oi of action a and a CNF-state ϕ, let
enboi(ϕ) = ((ϕ + ψ1) + . . .) + ψk where oi = {ψ1 →
`1, . . . , ψk → `k}. The effect of a in ϕ if the outcome oi
occurs, denoted by e(oi, ϕ), is defined as follows:

e(oi, ϕ) = {` | ψ → ` ∈ oi, ϕ |= ψ}.
Definition 2. Let ϕ be a CNF-state and a be an action.
The transition function between CNF-states, denoted by
ΦCNF (a, ϕ), is defined as follows:
• ΦCNF (a, ϕ) = ⊗[

⋃
oi∈O(a){Update(φ, e(oi, φ)) | φ ∈

enboi(ϕ)}] if ϕ |= pre(a); and
• ΦCNF (a, ϕ) = ⊥ otherwise.

Given a CNF-state ϕ, by BS(ϕ) we denote the belief state
represented by ϕ. By definition, for a sensing action ω, the
execution of ω in BS(ϕ) results in two disjoint belief states
S1 and S2 such that S1 ∪ S2 = BS(ϕ), S1 |= `(ω), and
S2 |= `(ω). It is easy to see that S1 ≡ r(ϕ ∧ `(ω)) and
S2 ≡ r(ϕ ∧ `(ω)). Thus, the execution of ω in ϕ results in
two CNF-states: ϕ+

ω = r(ϕ ∧ `(ω)) and ϕ−ω = r(ϕ ∧ `(ω)).
Similarly to the definition of Φ̂, we can extend ΦCNF to de-

fine Φ̂CNF , an extended transition function that maps a transi-
tion tree and a CNF-state to a set of CNF-states, by replacing
each belief state S with its encoding CNF-state ϕ, where, for
each observation ω in Ω (last item), ϕ+

ω and ϕ−ω play the role
of S+

ω and S−ω , respectively.
Theorem 1. Let ϕ be a CNF-state and T be a transition
tree. Then each belief state in Φ̂(T,BS(ϕ)) is equiva-
lent to a CNF-state in Φ̂CNF (T, ϕ), and each CNF-state in
Φ̂CNF (T, ϕ) represents a belief state in Φ̂(T,BS(ϕ)).

The above theorem shows that Φ̂CNF is equivalent to the
complete semantics defined by Φ̂. Thus, any planner using
Φ̂CNF in its search for solutions will be sound and complete,
provided that the search algorithm is sound and complete.

Instead of using CNF-states to represent belief states, [To
et al., 2011] uses DNF-states in the development of DNFct. A
partial state is a consistent set of literals. A DNF-state is a set
of partial states that does not contain a pair of δ1 and δ2 such
that δ1 ⊂ δ2. In developing DNFct, we define the function
ΦDNF which is similar to ΦCNF . The definitions leading to
the definition of ΦDNF are similar to Definitions 1-2 and are
omitted to save space (details are in [To et al., 2011]).

4 Implementation of CNFct

This section describes the implementation of the CNFct. For
our comparison, we include a description of the implementa-
tion of DNFct. We focus on aspects that help understand bet-
ter the effectiveness of the CNF and DNF representations em-
ployed in CNFct and DNFct respectively. Moreover, DNFct is
modified to use the heuristic function implemented in CNFct.
Search Algorithm: As mentioned earlier, CNFct employs the
same AND/OR forward search algorithm PrAO [To et al.,
2011] as DNFct does. We built CNFct on top of CNF [To
et al., 2010]. We modified the implementation of the repre-
sentation in CNF for non-deterministic and sensing actions.
Heuristics: Both planners employs the same new heuristic
function which is based on the number of satisfied subgoals

and the number of known literals in the belief state. Let us
note that the second component of the heuristic function helps
select nodes (CNF-states/DNF-states) of less uncertainty and
smaller size in both representations for expansion.

Observe that the use of the same search algorithm and
the same heuristic function allows both planners to ex-
pand/generate the same sets of nodes (belief states) in the
search graph, making the comparison and evaluation of the
two representations more accurate.
Data Structure: In DNFct, a partial state is encoded as a dy-
namic bitset available in the standard library of C++. The size
of the bitset is the number of literals in the domain. This en-
coding usually requires less memory for storing partial states
and DNF-states, since each literal in a partial state is repre-
sented by one bit. Furthermore, the library contains several
efficient bitwise operators necessary for the computation of
ΦDNF . DNFct also reduces memory consumption by creat-
ing each distinct partial state, needed during the search for
solutions, only once, i.e., all identical partial states in differ-
ent DNF-states are represented by the same dynamic bitset
stored in the memory.

In CNFct, since most non-unit clauses contain only two lit-
erals as observed in the experiments, each non-unit clause is
encoded by a set of integers each of which represents a literal.
However, the set of unit literals in each CNF-state is still rep-
resented as a bitset. As for DNFct, only distinct clauses (resp.
set of unit literals) are created and stored in the memory.

We believe that this data structure scheme is optimal for
each representation, making the comparison of the two meth-
ods meaningful.

5 Experimental Evaluation
Planners: We compare CNFct with DNFct, CLG, contingent-
FF, and POND 2.2 on a broad set of benchmarks. These
planners are known to be among the best available contingent
planners. We also considered MBP planner but it does not
perform better than the other planners on most benchmarks.
Moreover, due to the limit of the column width of the paper,
we do not use MBP in this paper. We executed contingent-FF
with both available options (with and without helpful actions)
and report the best result for each instance. POND was ex-
ecuted with AO* search algorithm (aostar option). The ex-
periments show that the translation time of CLG can vary in a
very wide range (from few to hundreds of seconds) for a same
instance. Hence, for CLG, we report the best result from sev-
eral executions of the planner for each instance.
Benchmarks: Among the benchmarks, btcs, btnd, ebtcs,
ebtnd, ebts, elogistic, grid, logistics, and unix come from
the contingent-FF distribution, while cball, doors, localize,
and wumpus are from the CLG distribution. The other do-
mains, including e1d, ecc, edisp, and epush, are variants
of the challenging conformant domains 1-dispose, corner-
cube, dispose, and push, respectively. These domains are
modified by us to force planners to generate conditional plans
as they do not have a conformant plan.

All the experiments have been performed on a Linux Intel
Core 2 Dual 9400 2.66GHz workstation with 4GB of mem-
ory. The time-out limit was set to two hours.

Problem CNFct/ DNFct CLG cont-FF Pond
btcs-70 113.2/ 2.76 (139/70) 13.7 (140/140) 123.6 (139/70) 74.04 (139)
btcs-90 347/ 5.63 (179/90) 40.7 (180/180) 476.8 (179/90) TO
btnd-70 40.3/ 1.47 (209/72) NA 536.6 (140/72) TO
btnd-90 119.8/ 2.28 (369/92) NA 2070 (180/92) TO
cball-3-2 0.84/ 0.86 (607/34) 2.91 (2641/34) TO 2.2 (597)
cball-3-4 65.2/ 346 (93.8k/71) 761 (1.3M/61) TO 572 (34.8k)
cball-9-1 32/ 23.5 (365/193) 112.7 (3385/197) TO OM
cball-9-2 580/ OM (43.4k/374) TO TO OM
doors-7 5.64/ 5.27 (2193/53) 7.6 (2153/51) E 17.99 (2159)
doors-9 63.3/ 58.6 (45k/89) 585 (46k/95) E 1262 (44k)
doors-11 1429/ OM (1.1M/124) TO E TO
e1d-3-1 0.55/ 0.54 (33/20) 2.71 (50/20) E TO
e1d-3-5 118/ 191 (296k/183) TO TO TO
e1d-9-1 34/ 22 (324/184) TO TO TO
e1d-9-2 594/ 166 (32.4k/744) TO TO TO
ebtcs-70 30.47/ 1.04 (139/70) 24.79 (209/71) 63 (139/70) 24.69 (139)
ebtcs-90 100/ 1.56 (179/90) 69.99 (269/91) 255.5 (179/90) TO
ebtnd-70 32.11/ 1.28 (209/72) NA 16.3 (208/72) TO
ebtnd-90 99.7/ 1.91 (269/92) NA 53.15 (268/92) TO
ebts-70 30.3/ 1.47 (139/70) 16.5 (139/70) 57.9 (139/70) TO
ebts-90 94.4/ 3.01 (179/90) 44.2 (179/90) 220 (179/90) TO
ecc-40-20 1.15/ 1.15 (466/70) 2089 (275/75) 37.1 (288/63) TO
ecc-75-37 3.04/ 3.23 (903/202) TO 999 (529/114) TO
ecc-99-49 5.58/ 6.11 (1.1k/184) TO 5307 (697/150) TO
ecc-119-59 8.25/ 9.18 (1.4k/290) TO TO TO
edisp-3-3 1.88/ 1.61 (3.9k/57) 5.77 (8552/52) E TO
edisp-3-5 134/ 194 (335.6k/90) TO E TO
edisp-10-1 72.3/ 47.2 (400/231) 140 (1051/237) E TO
edisp-10-2 1479/ 307 (31.8k/404) TO E TO
elogistics-7 0.98/ 0.9 (416/126) 0.11 (210/22) 0.04 (223/23) 0.95 (212)
elogistics-L TO/ OM 90 (36152/73) TO OM
epush-3-1 0.53/ 0.52 (39/31) 0.39 (50/24) 0.6 (61/37) TO
epush-3-5 38.9/ 123 (33.3k/149) TO TO TO
epush-3-6 504/ OM (262.4k/179) TO TO TO
epush-10-1 80/ 54.7 (864/345) 342 (1983/446) TO TO
epush-10-2 1168/ 399 (65k/834) TO TO TO
grid-3 2.24/ 1.74 (383/67) 0.94 (114/30) 0.06 (23/23) 104 (178)
grid-4 3.57/ 2.88 (865/69) 4.64 (872/51) 0.14 (49/49) OM
localize-5 0.64/ 0.54 (48/31) 1.86 (112/24) 42 (53/53) TO
localize-7 1.21/ 0.71 (80/48) 6.89 (231/37) MC TO
localize-13 47/ 2.1 (289/186) OM MC TO
logistics-7 1.21/ 1.16 (388/123) 0.25 (31/31) 0.17 (35/35) 0.97 (178)
logistics-L TO/ OM 14.34 (96/96) 7.75 (77/77) OM
unix-2 0.68/ 0.65 (48/37) 0.64 (50/39) 0.13 (48/37) 1.71 (48)
unix-3 2.34/ 1.87 (111/84) 5.88 (113/86) 3.84 (111/84) OM
unix-4 22.36/ 17 (238/179) 84.4 (240/181) 143 (238/179) OM
wumpus-5 2.34/ 1.99 (1.3k/43) 1.13 (754/41) E 4.65 (587)
wumpus-7 61.1/ 56.4 (38k/86) 9.57 (6552/57) E TO

Table 1: Overall performance of CNFct/DNFct compared with
other planners. TO: time-out; OM: out-of-memory; NA: not sup-
ported (CLG does not support non-deterministic actions); E: incor-
rect report; MC: too many clauses (for contingent-FF to handle).
Overall Evaluation: The performance of CNFct in compari-
son with the other state-of-the-art contingent planners is sum-
marized in Table 1. Because of their implementation, CNFct
and DNFct return the same solution. We therefore report
their performance in a single column (2nd column). This
column—in the format t1/t2(s/d)—reports the total run-
time in seconds for CNFct (t1), DNFct (t2), the number of
actions in the solution (s), and the depth of the solution tree
(d). The other columns—-written as t(s/d)—report the total
run-time in seconds (t), the number of actions in the solu-
tion (s), and the depth of the solution tree (d) for the other
planners, whenever this information is available. Observe
that s and d are the same for CNFct and DNFct, as they use
the same search algorithm and the same heuristic function.
POND does not report the depth information. Usually, d and
s are criteria to evaluate the quality of a solution. However,
we consider d to be more important, as it is the maximum

number of actions the agent needs to execute to achieve the
goal.

We observe that there are several problems for which the
experimental results differ from those reported in the litera-
ture. We suspect that the discrepancy occurs due to the dif-
ferent versions of the other planners and/or the environments
for conducting the experiments are different (e.g., different
hardware/OS).

As observed from Table 1, CNFct and DNFct perform bet-
ter than other planners

From the experimental results in Table 1 one can observe
that CNFct, like DNFct, outperforms the other planners while
CLG is better than the rest planners in the tested domains.
The quality of the solutions found by CNFct, which is the
same as that of DNFct, is in general not as good as contingent-
FF but is better than CLG or Pond in some cases. We believe
that the heuristic scheme used in CNFct plays an important
role in this issue. The simplicity of the heuristic function
could also be the reason that CNFct and DNFct are not as com-
petitive in the domains elogistics, logistics, and wumpus.

6 Effectiveness of CNF/DNF Representations
In this section, we analyze the effectiveness of the CNF and
DNF representations on the performance of the respective
planners. In particular, we are interested in what features
affect the scalability and performance of a planner. From
Table 1 one can observe that CNFct scales best, as it can
solve most problem instances on the table, while DNFct is the
fastest planner that solves most instances with shortest time.

Before we get into the details, let us discuss the strength
and weakness of each method using the following domains.

Consider cball-n-m, e1d-n-m, edis-n-m, and epush-n-
m, where n denotes the number of locations and m is the
number of objects. Initially, the location of each object oi
(i = 1, . . . ,m) is unknown among n given locations pj
(j = 1, . . . , n), and described by the literal at(oi, pj). Thus,
the number of states in the initial belief state is linear in nm,
i.e., exponential inm. On the other hand, the size of the initial
CNF-state is linear inm×n2. This, we believe, explains why
CNFct scales best when m increases, provided that n is not
too large. On the other hand, DNFct can outperform CNFct if
n ≥ 9 and m ≤ 2, e.g., e1d-9-1, e1d-9-2, epush-10-1, etc...
The reason is that the CNF-states in these cases is not much
smaller or even larger in comparison with the DNF-states,
whereas ΦDNF can be computed much faster than ΦCNF due
to the difference in their complexity, as analyzed later. Fur-
thermore, the nature of the DNF representation allows to use
the bitset encoding compactly along with bitwise operations
for computing ΦDNF efficiently.

The above discussion shows that two important issues that
can affect a planner’s performance and scalability are: (i) the
size of the formula representing the initial belief state and
(ii) the efficiency of computing the transition function. For a
better understanding of the second factor, let us analyze the
complexity of the two transition functions in the worst case.

Let S be a belief state and a be an action. For simplicity,
assume that a contains only one outcome oi.
Complexity of ΦCNF : Let ϕ be the CNF-state representing

S, n be the number of clauses in ϕ, and m be the length of
the largest clause in ϕ. For simplicity, we assume that n and
m are the same for the intermediate CNF-states in the com-
putation of ΦCNF . Let k be the number of non-unit literals
in the antecedents of the conditional effects of a and u be
the number of the antecedents of the conditional effects of a
which are unknown in ϕ. The computation of ΦCNF incurs
the following costs:

1. Satisfaction checking: k × f(n,m), where f(n,m) is
the cost of checking satisfaction of a literal in ϕ. Note
that f(n,m) is exponential in n.

2. Enabling conversion enboi : 2u × f1(n,m). Let ψ be
one of those antecedents; the conversion of ϕ to enabling
form splits it into ϕ∧ψ and ϕ∧¬ψ. f1(n,m) is the cost
of conversion of ϕ ∧ ψ or ϕ ∧ ¬ψ to a CNF-state (r(.)),
which is polynomial in n and m. There are u of such
antecedents, so there will be at most 2u CNF-states at
the end of this process.

3. Update: 2u × f2(n,m, e), where e = max{|e(oi, φ)| |
φ ∈ enboi(ϕ)} and f2 is polynomial in n, m, and e.

4. Reduced-cross-product: 2u × f3(n,m), where f3 is
polynomial in n and m.

The complexity of ΦCNF is k× f(n,m) + 2u× (f1(n,m) +
f2(n,m, e) + f3(n,m)) which is exponential in n and u.

Complexity of ΦDNF : Let ∆ be the DNF-state representing
S. The main difference in the complexity of ΦDNF is that
checking satisfaction of a literal in ∆ is linear in |∆| and there
is no reduced-cross-product phase, which is often expensive.
Moreover, conversion of a DNF-formula to the DNF-state is
much simpler than that of a CNF-formula to the CNF-state. In
summary, ΦDNF is exponential only in u with much smaller
hidden cost compared with ΦCNF .

Empirical Comparison and Discussion: Table 2 presents
several features of CNFct and DNFct obtained from our ex-
periments. In all columns, cls and p-states stand for clauses
(in CNFct) and partial states (in DNFct) respectively. The
table contains, beside the size of the formulae representing
the initial belief state (3rd column); the average number of
clauses, partial states, and unknown antecedents (u) in an ex-
panded CNF-state or DNF-state respectively (4th column);
the average size of all clauses/partial states appearing in the
expanded CNF-states/DNF-states (5th column); and the num-
ber of distinct clauses, partial states and nodes generated by
the planners (6th column). We believe that these numbers
help explain the scalability and performance of both planners
in different domains. Note that, since all the unit literals in a
CNF-state are encoded in a bitset and the experiments show
that the computation cost of ΦCNF depends mostly on the
non-unit clauses in the CNF-state, only non-unit clauses are
accounted for in Table 2.

As analyzed earlier, the cost of ΦCNF depends on the num-
ber of unknown antecedents u and (non-unit) clauses in the
CNF-state and the size of the clauses. The last column re-
veals that most non-unit clauses in the expanded CNF-states
have size two. Hence, the cost of ΦCNF depends mainly on
u and the number of clauses in each CNF-state. Observe that
(the average of) u is very small (< 10−10) in most domains,
partly due to the heuristic scheme used in the planners, except

btcs, btnd, and localize in which DNFct performs much bet-
ter than CNFct. The reason is that although both ΦCNF and
ΦDNF are exponential in u but ΦDNF does not incur the com-
putation of the reduced-cross-product phase, which is expo-
nential in u, while ΦCNF does; and the enabling conversion
of ΦDNF is also much simpler.

The performance of the planners also depends on the mem-
ory consumption, which is reflected in the last column. Con-
sider the cases of ebtcs and ebts, where DNFct performs
much better than CNFct. The reasons are not only that the
average number of clauses of the expanded CNF-states is
much bigger than the average number of partial states in an
expanded DNF-state, but also the number of distinct clauses
generated by CNFct is much larger than the number of dis-
tinct partial states generated by DNFct for each instance. Now
consider the case of cball-3-4: even though the average num-
ber of partial states of the expanded DNF-states (48.34) is not
much larger than the number of clauses (9.71) (remember that
ΦCNF is exponential in this number), DNFct performs much
worse than CNFct, because it generates a very large number
of distinct partial states (3,643,961), while CNFct generates
only 132 distinct clauses. Observe also that both planners
fail to find a solution for wumpus-10. While the reason for
the failure of CNFct is only the unsuitable heuristic function,
as it generates successor CNF-states quite fast, the failure
of DNFct is mainly due to the large size of the initial DNF-
state—DNFct spends 3230 seconds for the computation of the
initial DNF-state from the description of the initial informa-
tion and produces out of memory during the expansion of the
first node. If a better heuristic function for this domain was
used, DNFct would still fail but CNFct would probably find a
solution for wumpus-10.
Problem search time initial ave. # of ave. size of # of generated

CNFct/DNFct cls/p-states cls/p-states (u) cls/p-states cls/p-states (nodes)
btcs-90 346/4.9 4006/90 679/23.4 (.34) 2.03/93 12462/270 (8544)
btnd-90 118.4/1.42 3917/89 351/12.5 (.02) 2.03/183.9 8275/712 (4896)
cc119.59 7.15/8.08 6/8 0.00/1.00 (ε) 2.00/357 6/39747 (39787)
cball-3-2 0.286/0.31 36/400 6.33/9.66 (ε) 2.27/40 65/5602 (1932)
cball-3-4 64.5/345.6 72/160k 9.71/48.34 (ε) 2.27/70 132/3.64M (298k)
cball-9-2 580.8/OM 5868/94.8k 121.33/? (ε) 2.07/? 7084/? (202k)
edis-3-2 0.15/0.08 74/81 3.34/2.91 (ε) 2.24/32 94/985 (1374)
edis-3-5 133.1/193 185/59k 1.82/5.37 (ε) 2.23/65 259/1.05M (1.22M)
edis-10-2 1431/258.7 9.9k/10k 320/29.83 (ε) 2.04/305 11.9k/731.8k (166k)
e1d-3-1 0.025/0.013 37/9 5.25/2.61 (ε) 2.23/31 44/85 (105)
e1d-3-5 117.6/190.2 185/59k 2.18/6.35 (ε) 2.23/61 241/821k (1.05M)
e1d-9-2 570.3/142.7 6482/6561 158.3/17.3 (ε) 2.05/493 7.7k/439.5k (166k)
doors-9 39.5/34.94 148/6561 5.62/5.27 (ε) 2.2/162 279/249.4k (131.7k)
doors-11 1324/OM 280/161k 7.76/? (ε) 2.18/? 516/? (3.1M)
ebtcs-70 29.77/0.39 2416/70 283/12.8 (ε) 2.04/70.92 4898/210 (2692)
ebts-90 91.74/0.74 4006/90 679/23.37 (ε) 2.03/92 8098/180 (4273)
epush-3-1 0.024/0.011 37/9 4.62/2.41 (ε) 2.23/20 44/77 (106)
epush-3-5 38.2/123 185/59k 1.91/12.32 (ε) 2.24/60 224/715.4k (377.3k)
epush10.2 1099/330 9.9k/10k 74.26/9.44 (ε) 2.04/303 11.4k/740.5k (394k)
local.13 46.54/1.16 5254/103 207/10.3 (5.8) 2.08/109 6527/341 (877)
unix-4 6.05/0.76 1771/60 460/24.38 (ε) 2.05/127 1829/2284 (630)
wump.7 53.27/48.52 149/7276 7.39/7.08 (ε) 2.17/179.8 330/299k (134140)
wump.10 TO/OM 238/2.56M

Table 2: The properties of CNF/DNF representations that affect the
performance of CNFct/DNFct. ε < 10−10, 1k ≈ 1000, 1M ≈ 106.

7 Summary
This paper presented a new approach to contingent planning
using CNF representation of belief states and implemented
it in the planner CNFct. It investigated the effectiveness of

CNF and DNF representations by means of CNFct and DNFct
[To et al., 2011] using a same new heuristic function. The
empirical study showed that both methods are very efficient
but neither of them dominates the other and their performance
can vary significantly on different classes of problems. The
paper identified key aspects of each representation that affect
the performance of the corresponding planner.

In summary, CNFct scales better with the size of the prob-
lem and requires less memory, while DNFct can find a so-
lution faster. In addition, we showed that the performance
is significantly affected by the total amount of consumed
memory, which is determined mainly by the number of dis-
tinct clauses/partial states generated, rather than the number
of generated CNF-states/DNF-states and the total number of
clauses/partial states contained in them.

Acknowledgments
We are grateful to the reviewers for their helpful comments.
We also thank Alexandre Albore (one of the authors of CLG
planner) for his assistance with the experiments.

The authors are partially supported by NSF grant IIS-
0812267.

References
[Albore, Palacios, and Geffner, 2009] A. Albore, H. Pala-

cios, and H. Geffner. A Translation-based Approach to
Contingent Planning. In IJCAI, 2009.

[Baral et al., 2000] C. Baral et al. Computational complexity
of planning and approximate planning in the presence of
incompleteness. AIJ, 122:241–267, 2000.

[Bertoli et al., 2006] P. Bertoli et al. Strong planning under
partial observability. Artificial Intelligence, 170(4-5):337-
384, 2006.

[Hoffmann and Brafman, 2005] J. Hoffmann and R. Braf-
man. Contingent planning via heuristic forward search
with implicit belief states. In ICAPS, 2005.

[Bryant, 1992] R. E. Bryant. Symbolic boolean manipula-
tion with ordered binary decision diagrams. ACM Com-
puting Surveys, 24(3):293–318, September 1992.

[Bryce et al., 2006] D. Bryce, S. Kambhampati, and D. E.
Smith. Planning Graph Heuristics for Belief Space Search.
JAIR, 26:35–99, 2006.

[Peot and Smith, 1992] M. Peot and D.E. Smith. Conditional
nonlinear planning. AIPS, 1992.

[Rintanen 2004] J. Rintanen. 2004. Complexity of planning
with partial observability. In ICAPS, 2004.

[To et al., 2009] S. T. To, E. Pontelli, and T. C. Son. A Con-
formant Planner with Explicit Disjunctive Representation
of Belief States. In ICAPS, 2009.

[To et al., 2010] S. T. To, T. C. Son, and E. Pontelli. A New
Approach to Conformant Planning using CNF. In ICAPS,
2010.

[To et al., 2011] S. T. To, T. C. Son, and E. Pontelli. Contin-
gent Planning as AND/OR forward Search with Disjunc-
tive Representation. In ICAPS, 2011.

