
Contingent Planning as AND/OR forward Search with Disjunctive
Representation∗

Son Thanh To and Tran Cao Son and Enrico Pontelli
New Mexico State University
Dept. of Computer Science

sto@cs.nmsu.edu, tson@cs.nmsu.edu, epontell@cs.nmsu.edu

Abstract

This paper introduces a highly competitive contingent plan-
ner, that uses the novel idea of encoding belief states as
disjunctive normal form formulae (To et al. 2009), for the
search for solutions in the belief state space. In (To et al.
2009), a complete transition function for computing succes-
sor belief states in the presence of incomplete information
has been defined. This work extends the function to han-
dle non-deterministic and sensing actions in the AND/OR
forward search paradigm for contingent planning solutions.
The function allows one, under reasonable assumptions, to
compute successor belief states efficiently, i.e., in polynomial
time. The paper also presents a novel variant of an AND/OR
search algorithm, called PrAO (Pruning AND/OR search),
which allows the planner to significantly prune the search
space; furthermore, by the time a solution is found, the re-
maining search graph is also the solution tree for the con-
tingent planing problem. The strength of these techniques is
confirmed by the empirical results obtained from a large set
of benchmarks available in the literature.

Introduction
Contingent planning (Peot and Smith 1992) is the problem
of finding conditional plans given incomplete knowledge
about the initial world and uncertain action effects. The con-
tingent plan allows the agent to act, at execution time, condi-
tionally depending on the observed values of some uncertain
properties of the world; and guarantees to achieve the goal
no matter what the actual initial world the agent starts from
and which actual action effects occur. Contingent planning
is one of the hardest problems considered in the area (Baral
et al. 2000; Rintanen 2004).

One of the best-known and successful approaches to
contingent planning is to transform the problem into an
AND/OR search problem in the belief state space. Using the
notion of belief state is convenient for capturing the seman-
tic of the uncertain world and defining the transition function
for computing the successor (uncertain) world state. Yet it
is impractical to use belief states themselves in the imple-
mentation of a planner due to their exponential size. The
question is then how to represent belief states and, given a

∗The authors are partially supported by the NSF grant IIS-
0812267.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

representation, how to define a transition function for com-
puting successor belief states under conditional action ef-
fects. To address this, (Bertoli et al. 2001) proposed the
use of binary decision diagrams (BDDs) (Bryant 1992) to
represent belief states in a model checking based planner,
called MBP. Later, (Bryce et al. 2006) used BDDs to rep-
resent literals and actions in the planning graph for com-
putation of heuristics used to search for solutions in their
contingent planner, called POND. The use of the BDD rep-
resentation is advantageous since it is more compact than
the belief state itself and it allows one to check whether a
literal holds in a world state easily. Nevertheless, the size
of a BDD representation is still very large and sensitive to
the order of the variables. Moreover, computing successor
belief states in BDDs form during the search is very expen-
sive, requiring the generation of intermediate formulae of
exponential size. This explains why MBP and POND do
not scale well as shown in (Hoffmann and Brafman 2005;
Albore et al. 2009).

At the other extreme of belief state representation, the
proposal in (Brafman and Hoffmann 2004; Hoffmann and
Brafman 2005) represents belief states implicitly through
the action sequences that lead to them from the initial belief
state, and uses forward search in the belief space for solu-
tions. The advantage of the representation they use is easily
seen, as it requires very little memory, scaling up pretty well
on a number of problems. The trade-off is that it incurs a
great amount of repeated computation. Especially, checking
whether a proposition holds after the execution of even one
single action in the presence of incomplete information is
co-NP complete. We believe that this is one of the reasons
for their planners to hardly find a solution for even small
instances of harder problems, where the structure of the ac-
tions is complex or there exist unknown propositions in the
preconditions of the conditional effects as observed in (Al-
bore et al. 2009; To et al. 2010).

(Albore et al. 2009) proposed a different approach to con-
tingent planning by translating a contingent problem into
an AND/OR search problem in the state space whose lit-
erals represent the beliefs over the original problem, assum-
ing that the uncertainty lies in the initial world only and all
actions are deterministic. They showed that the translation
is polynomial under some assumptions. This approach is
more efficient, i.e., the planners can solve harder problems

of larger size, compared to the previous approaches. The
disadvantage is that the number of literals in the translated
problem can be exponential in the number of literals in the
original problem, making the state space extremely large and
prohibiting the planners to scale up.

Recently, we proposed a new approach to conformant
planning by using a special, compact form of disjunctive
formulae, called minimal DNF, to represent belief states and
defining a direct complete transition function which allows
computing the successor belief states encoded in this rep-
resentation in the presence of incomplete information effi-
ciently, i.e., polynomial under reasonable assumptions (To et
al. 2009). The advantage of this method is confirmed by the
fact that our planner DNF can solve much larger instances of
many benchmarks, including the hardest problems given in
the literature. The performance of DNF is not as good on the
problems where the size of disjunctive formulae encoding
the belief states is too large even in a very compact (dis-
junctive) form. To address this, we proposed some compact
conjunctive normal form (CNF) formulae and prime impli-
cate formulae as other representations of belief states (To et
al. 2010; 2010b).

This work proposes a new approach to contingent plan-
ning that uses the minimal-DNF representation introduced in
(To et al. 2009). To this end, we extend the transition func-
tion for computing the successor belief states in the pres-
ence of incomplete information defined in (To et al. 2009)
to also handle uncertain action effects and sensing actions.
On the other hand, we develop a novel variant of AND/OR
forward search algorithms, called PrAO, for contingent plan-
ning. Key to PrAO is a novel safe pruning technique which
can significantly reduce the search space in many cases. Fur-
thermore, solution extraction in PrAO is fairly simple, as the
remaining search graph, by the time a solution is found, is
also the solution tree due to the pruning technique. We im-
plement the algorithm in a planner, called DNFct, and com-
pare DNFct with other state-of-the-art contingent planners.
The experimental results validate the approach of this paper.

The paper is organized as follows. We next review the
background of contingent planning and minimal-DNF rep-
resentation of belief states. We then present PrAO, an
AND/OR search algorithm with a new pruning technique
implemented in DNFct and the experimental evaluation of
DNFct. We conclude with the directions of future work.

Background: Contingent Planning
The contingent planning problem is defined as a tuple P =
〈F,A,Ω, I, G〉, where F is a set of propositions, A is a set
of actions, Ω is a set of observations (sensing actions), I
describes the initial state, andG describes the goal. A and Ω
are separate, i.e., A∩Ω = ∅. A literal is either a proposition
p ∈ F or its negation ¬p. ¯̀ denotes the complement of a
literal `—i.e., ¯̀ = ¬`, where ¬¬p=p for p∈F . For a set of
literals L, L = {¯̀ | ` ∈ L}. A conjunction of literals is
often represented as the set of its conjuncts.

A set of literals X is consistent (resp. complete) if for
every p∈F , {p,¬p}6⊆X (resp. {p,¬p}∩X 6=∅). A state is
a consistent and complete set of literals. A belief state is a
set of states. We will often use lowercase (resp. uppercase)

letter to represent a state (resp. a belief state).
Each action a in A is a tuple 〈pre(a), O(a)〉, where

pre(a) is a set of literals indicating the precondition of ac-
tion a and O(a) is a set of action outcomes. Each outcome
o(a) in O(a) is a set of conditional effect of the form ψ → `
(also written as o(a) : ψ → `), where ψ is a set of lit-
erals and ` is a literal. Each observation ω in Ω is a tu-
ple 〈pre(ω), `(ω)〉, where pre(ω) is the precondition of ω
which is a set of literals, and `(ω) is a literal. If |O(a)| > 1
then a is non-deterministic. O(a) is mutual exclusive, i.e.,
the execution of a makes one and only one outcome in O(a)
occur. However, which outcome that occurs is uncertain.

A state s satisfies a literal ` (s |= `) if ` ∈ s. s satis-
fies a conjunction of literals X (s |= X) if X ⊆ s. The
satisfaction of a formula in a state is defined in the usual
way. Likewise, a belief state S satisfies a literal `, denoted
by S |= `, if s |= ` for every s ∈ S. S satisfies a conjunction
of literals X , denoted by S |= X , if s |= X for every s ∈ S.

Given a state s, an action a is executable in s if s|=pre(a).
The effect of executing a in s w.r.t an outcome o(a) is

e(o(a), s) = {` | ∃(o(a) : ψ → `). s |= ψ}
Let Φ(o(a), s) = s \ e(o(a), s) ∪ e(o(a), s). The transi-
tion function that maps pairs of actions and belief states into
a belief state in the planning domain of P is defined by
Φ(a, S) = {Φ(o(a), s) | s ∈ S, o(a) ∈ O(a)} if S 6= ∅
and S |= pre(a); Φ(a, S) = undefined, otherwise.
Example 1. Given a domain F = {head}, a belief state S
that contains one single state S = {{head}}, an action flip
with pre(flip) = {true} and O(flip) = {o1, o2}, where
o1 contains one effect o1 : true → head and o2 contains
another effect o2 : true → ¬head. Then one can easily
compute: Φ(o1, {head}) = {head}, and Φ(o2, {head}) =
{¬head}. Hence, Φ(flip, S) = {{head}, {¬head}}.

Observe that in Example 1, the non-deterministic action
flip causes the certain belief state S to become uncertain.

Let ω be an observation in Ω, we define S+
ω = {s | s ∈

S, s |= `(ω)} and S−ω = {s | s ∈ S, s |= `(ω)}.
Given a contingent planning problem P , a structure T

constructed from the actions and observations of P is said
to be a transition tree of P if
• T is empty, denoted by [], or T = a, where a ∈ A; or
• T = a◦T ′, where a ∈ A and T ′ is a non-empty transition

tree; or
• T = ω(T+|T−), where ω ∈ Ω and T+ and T− are tran-

sition trees.
Intuitively, a transition tree represents a conditional plan

as defined in the literature and can be represented as an
AND/OR graph whose nodes are belief states and links are
AND/OR-edges. A precise definition is given in the next
section. Let us denote undefined by ⊥. The result of the
execution of a transition tree T in a belief state S, denoted
by Φ̂(T, S), is a set of belief states defined as follows:
• If S = ⊥ or S = ∅ ∧ T 6= [] then Φ̂(T, S) = ⊥; else
• If T = [] ∧ S 6= ∅ then Φ̂([], S) = {S}, else Φ̂([], ∅) = ∅
• If T = a, a ∈ A, then Φ̂(a, S) = {Φ(a, S)}
• If T = a ◦ T ′, a ∈ A, then Φ̂(T, S) = Φ̂(T ′,Φ(a, S))

• If T = ω(T+|T−) then Φ̂(T, S) = Φ̂(T+, S+
ω) ∪

kill(B)

move

¬dead(B)

N0 (initial)

¬dead(B)
sameP(A,B)

N1

¬dead(B)
¬sameP(A,B)

N2

dead(B)
sameP(A,B)

N3 (goal)

sense(B) sense(B)

Figure 1: A contingent solution in an AND/OR forward search.
Φ̂(T−, S−ω) if S |= pre(ω), and Φ̂(T, S) = ⊥ otherwise.
Note that the definition of Φ̂ allows the application of an

observation ω in a belief state where `(ω) is known, if the
subtree of the resulting empty belief state is empty.

Let SI be the set of all possible states satisfying the initial
description I . A transition tree T is a solution of P if T is
finite and every belief state in Φ̂(T, SI) satisfies the goal G.
Example 2. Consider a simple problem P with an agent
A and a bug B in a house with two rooms. A can
move around and kill B if they are in the same room.
A can sense whether B is in the same room or not.
The problem P is given as F={sameP (A,B), dead(B)},
A ={move, kill(B)}, Ω={sense(B)}, I=true, and
G=dead(B); where move=(true, {sameP (A,B) →
¬sameP (A,B), ¬sameP (A,B) → sameP (A,B)}),
kill(B)=(sameP (A,B), {true → dead(B)}), and
`(sense(B))=sameP (A,B). A solution tree for P is:

”sense(B)(kill(B) | move ◦ kill(B))”(Figure 1).

DNF Representation
We review the minimal-DNF representation of belief states
and present an extension of the transition function provided
in (To et al. 2009) which also handles non-deterministic ac-
tions and observations, required in contingent planning, in
addition to incomplete information.

A partial state is a consistent set of literals. A state s is a
completion of a partial state δ if δ ⊆ s. The extension of δ,
denoted by ext(δ), is the set of all completions of δ.

A DNF-state is a set of partial states that does not contain
a pair of δ1 and δ2 such that δ1 ⊂ δ2.

Let ∆ be a DNF-state. Let min(∆) = ∆ \ {δ |
∃δ′∈∆.δ′ ⊂ δ}. min(∆) is a DNF-state equivalent to ∆.
Let ext(∆) =

⋃
δ∈∆ ext(δ) be the extension of ∆. ext(∆)

is a belief state equivalent to ∆.
Given a partial state δ, a literal ` is true (resp. false) in δ

if ` ∈ δ (resp. ¯̀ ∈ δ), denoted by δ |= ` (resp. δ |= ¯̀). A
literal ` is said to be known in δ if it is true or false in δ.

For a set of literals γ, δ |= γ if γ ⊆ δ. For a DNF-state ∆
and a set of literals γ, ∆ |= γ if ∀δ ∈ ∆.δ |= γ.

Let δ be a partial state and γ be a consistent set of literals.
The partial extension δ + γ of δ w.r.t. γ is defined as

δ + γ =

{
{δ} if γ ⊆ δ or γ ∩ δ 6= ∅
{δ ∪ γ} ∪ {δ ∪ {l̄}|l ∈ γ\δ} otherwise (1)

δ+γ is a DNF-state satisfying δ in which γ is known. For
a DNF-state ∆, let ∆+γ= min(

⋃
δ∈∆(δ+γ)).

The definition of enabling notion is extended as follows

Definition 1. Let o(a) be an outcome of action a. A partial
state δ is called enabling for o(a) if for every conditional
effect o(a) : ψ → `, either δ |= ψ or δ |= ¬ψ holds. A
DNF-state ∆ is enabling for o(a) if every partial state in ∆
is enabling for o(a).

For an outcome o(a) of action a and a partial state δ, let
expo(a)(δ) = ((δ + ψ1) + . . .) + ψk where o(a) = {ψ1 →
`1, . . . , ψk → `k}. For a DNF-state ∆, expo(a)(∆) =⋃
δ∈∆ expo(a)(δ). One can prove the following:1

Proposition 1. For every partial state δ, DNF-state ∆, and
an outcome o(a) of action a:
• expo(a)(δ) is a DNF-state which is equivalent to δ and

enabling for o(a).
• If ∆ is a DNF-state, then expo(a)(∆) is a DNF-state

equivalent to ∆ and enabling for o(a).
For an action a and a partial state δ, the effect of a in δ

if the outcome o(a) occurs, denoted e(o(a), δ), is defined as
e(o(a), δ) = {l | ψ → l ∈ o(a), δ |= ψ}. The result of
execution a in δ if o(a) occurs is defined by res(o(a), δ) =

δ\e(o(a), δ) ∪ e(o(a), δ). We are now ready to define the
transition function ΦDNF which maps pairs of actions and
DNF-states into DNF-states as follows.
Definition 2. Let ∆ be a DNF-state and a be an ac-
tion. The execution of a in ∆ results in a DNF-state, de-
noted by ΦDNF (a,∆), defined as follows: ΦDNF (a,∆) =
min(

⋃
o(a)∈O(a){res(o(a), δ′) | δ′ ∈ expo(a)(∆)}) if ∆ |=

pre(a) and ΦDNF (a,∆) = undefined otherwise.
Proposition 2. Given a DNF-state ∆ and an action a. If
|O(a)| is bounded (by a constant); for each o(a) in O(a),
|o(a)| is bounded; and for each ψ → l in O(a), |ψ| is
bounded. Then ΦDNF (a,∆) is polynomial in |∆|.

When executing a sensing action ω in a DNF-state ∆, ∆
is split into two DNF-states, one satisfies `(ω) and the other
satisfies `(ω) and their union set is equivalent to ∆. To do so,
we need first to extend ∆ w.r.t. `(ω) so that `(ω) is known
in each partial state in the new DNF-state. Application of an
observation ω in a DNF-state ∆ results in the following two
DNF-states: ∆+

ω = {δ | δ ∈ ∆ + {`(ω)} ∧ δ |= `(ω)} and
∆−ω = {δ | δ ∈ ∆ + {`(ω)} ∧ δ |= `(ω)}.
Proposition 3. If ∆ is a DNF-state and ω is an observation
then ∆+

ω and ∆−ω are DNF-states.

Let Φ̂DNF be the extended transition function that maps
a pair composed of a transition tree and a DNF-state to a set
of DNF-states, defined in the same manner as Φ̂ is, where
Φ is replaced with ΦDNF and the belief state S is replaced
with the DNF-State ∆. The next theorem shows that Φ̂DNF

is equivalent to the complete semantics defined by Φ̂.
Theorem 1. Let ∆ be a DNF-state and T be a transition
tree. Then each belief state in Φ̂(T, ext(∆)) is an exten-
sion of a DNF-state in Φ̂DNF (T,∆), and each DNF-state in
Φ̂DNF (T,∆) has an extension in Φ̂(T, ext(∆)).

1A complete version of this paper with proofs and detailed al-
gorithms along with the system can be found at www.cs.nmsu.
edu/~sto.

This theorem together with Propositions 2 and 3 allows
DNFct to compute solutions of contingent planning prob-
lems efficiently by using a compact DNF form to represent
belief states. The next section describes a novel, efficient
AND/OR forward search algorithm, called PrAO, imple-
mented in DNFct for finding contingent solutions.

PrAO Algorithm for Contingent Planning
In this section, we describe an algorithm, called PrAO, for
contingent planning. PrAO is similar to a standard AND/OR
graph search algorithm in the way it generates and maintains
an AND/OR graph during the search. The key difference be-
tween PrAO and others lies in the way PrAO keeps track of
potential solutions and eliminates useless nodes of the graph.

We start by introducing the notion of a search graph, that
is similar to the notion of AND/OR graph in the literature
(Martelli and Montanari 1973) and more convenience for
use with the DNF-representation.
Definition 3. Given a contingent planning problem P =
〈F,A,Ω, I, G〉, a search graph is a labeled transition graph
(S, T , s0) where
• S is a set of DNF-states, each DNF-state is referred to

as a node;
• s0 is the initial DNF-state representing I , s0 ∈ S; and
• T is a set of transitions, T ⊆ S × (A ∪ Ω) × S , such

that
◦ for every ω ∈ Ω, if (s, ω, s1) ∈ T then s |= pre(ω),

and there exists a unique, dual to (s, ω, s1), (s, ω, s2) ∈
T such that {s1, s2} = {s+

ω , s
−
ω }; and

◦ for every a ∈ A, if (s, a, s1) ∈ T then s |= pre(a) and
s1 = ΦDNF (a, s).

Intuitively, a search graph represents the transition graph
that we have explored so far during the search. Each node
encodes a DNF-state, the initial DNF-state s0 is the root
node, and T is the set of transitions between nodes (belief
states). Observe that the search graph is in general not a tree
as a node may have multiple incoming edges.

A transition (s, t, s′) is called an or-edge (resp. and-edge)
if t ∈ A (resp. t ∈ Ω). For convenience, we often refer
to a transition (s, t, s′) ∈ T as an outgoing edge from s
(or incoming edge to s′). For a DNF-state ∆ and an action
a ∈ A, we refer to ΦDNF (a,∆) as the successor state of ∆
after the execution of a; similarly, for ω ∈ Ω, ∆+

ω and ∆−ω
are called successor states of ∆ after the execution of ω.

The description of PrAO needs the following notations:
Definition 4. A node s is goal-reachable, or goal for short, if
(i) s |= G; or (ii) there is an or-edge (s, a, s′) in T and s′ is
goal-reachable; or (iii) there exist dual and-edges (s, ω, s1)
and (s, ω, s2) in T and both s1 and s2 are goal-reachable.

During the search, a node s in S can be in one of the fol-
lowing states. When s is a new node added to S, it is marked
as unexplored. If s is selected for expansion, it becomes an
explored node. Furthermore, s can be a goal node (Defini-
tion 4) or a dead node, defined as follows:
Definition 5. An explored node s is a dead node if
• s 6|= G and there is no outgoing edges from s; or
• for every or-edge (s, a, s′) in T , s′ is dead; and for every

pair of and-edges (s, ω, s1) and (s, ω, s2) in T at least

one of the two nodes s1 and s2 is dead.

Intuitively, if the root s0 becomes a goal node then a so-
lution is detected. If s0 becomes dead then the problem has
no solution. When a node is being expanded, the state of the
nodes in S is updated by some propagation procedures, as
presented later, based on Definitions 4-5 and a pruning tech-
nique, which is built based on the following observations:
• If a node s becomes goal via an or-edge (s, a, s′) or via

two dual and-edges (s, ω, s1) and (s, ω, s2), then all the
other outgoing edges from s can be removed from T .

• If s is dead, then every (s′, t, s) in T , and its dual
(s′, t, s”) if t∈Ω, become(s) useless and can be removed.

• When a transition (s′, t, s) is removed from T , s and
the nodes that can be reached from s may no longer be
reached from s′ and thereby from the root s0. For expan-
sion, hence, we consider only the unexplored nodes that
are active, defined as follows:

Definition 6. A node s in S is said to be active if
• s is the root node; or
• there exists an edge (s′, t, s) in T and s′ is active.

A node that is not active is said to be disabled.

Clearly, only active nodes can be reached from s0 and
dead nodes are not active due to the second observation.

Given a contingent problem P=〈F,A,Ω, I, G〉, PrAO
starts with the graph ({s0}, ∅, s0), where s0 is the root node
representing I , and iteratively constructs a search graph
(S, T , s0) until a solution has been found or it is determined
that P has no solution. Initially, s0 is marked as unexplored.

At each iteration, PrAO executes the following tasks:
• Select an active unexplored node s with the best heuris-

tic value in S for expansion. If no such node exists then
terminate the search with no solution;

• Expand node s and update the graph accordingly; and
• Check the state of the root node s0: if s0 becomes a goal

node then extract and return the solution. If s0 is a dead
node then terminate the search with no solution.

The expansion phase is as follows:
◦ For each action a in A such that s |= pre(a): compute
s′ = ΦDNF (a, s). If s′ already exists in S and s′ is dead
then ignore this transition. Otherwise, if s′ is not in S
then: extend S with s′ and mark s′ as active, unexplored
(resp. goal) if s′ 6|= G (resp. s′ |= G). Add (s, a, s′) to T .
If s′ is a goal node (either new or existing) then: mark s as
a goal node, execute goal_propagation(s, a), and return.
Otherwise, execute reactivation_propagation(s′).

◦ For each observation ω in Ω such that s |= pre(ω), s 6|=
`(ω), and s 6|= `(ω): compute s1 = s+

ω and s2 = s−ω . If
either s1 or s2 exists in S and it is a dead node then ignore
this transition. Otherwise, for i = 1, 2, if si is not in S
then mark si as active, unexplored (resp. goal) if si 6|= G
(resp. si |= G). Extend T with (s, ω, si).
If both s1 and s2 are goal then: mark s as a goal node and
execute goal_propagation(s, ω), and return. Otherwise,
execute reactivation_propagation(si), for i = 1, 2.

◦ After the first two steps, if there does not exist such
(s, t, s′) in T then mark s as a dead node and execute
dead_propagation(s). Otherwise, mark s as explored.

The procedures used in the expansion phase are as follows:
� goal_propagation(s, t0): For every edge (s, t, s′) in
T such that t 6=t0, remove (s, t, s′) from T and exe-
cute isolation_propagation(s′). For each edge (s1, t, s)
in T : if t ∈ A then mark s1 as goal and execute
goal_propagation(s1, t). Otherwise (t∈Ω), let (s1, t, s2)
be the other and-edge in T (s2 6=s), if s2 is also goal then
mark s1 as goal and execute goal_propagation(s1, t).

� dead_propagation(s): For every edge (s1, t, s) in T : (i)
remove (s1, t, s) from T ; (ii) if t ∈ Ω then remove also
its dual and-edge (s1, t, s2) from T (s2 6= s) and execute
isolation_propagation(s2). If there is no more outgo-
ing edges from s1 in T then mark s1 as a dead node and
execute dead_propagation(s1).

� isolation_propagation(s): If s is a goal node then re-
turn. T does not contain an incoming edge to s from an
active node then (i) mark s as disabled, and (ii) for each
(s, t, s”) in T execute isolation_propagation(s”).

� reactivation_propagation(s): If s is active then return.
Otherwise, mark s as active and, for each (s, t, s′) in T ,
execute reactivation_propagation(s′).

Observe that isolation_propagation(s) temporarily dis-
ables the subgraph each node on which is discon-
nected from the main graph by goal_propagation or
dead_propagation, and prevents the expansion of the un-
explored nodes on this subgraph. In contrast, reactivation_
propagation(s) enables the node s and every node that can
be reached from s, if they are disabled, whenever a new edge
connects them to the main graph again. This makes the prun-
ing technique safe and thereby PrAO complete.
Proposition 4. For each goal node s in the search graph
(S, T , s0), one of the following conditions holds:
• there exists no outgoing edge, if s |= G; or
• there exists a unique edge (s, a,ΦDNF (a, s)) in T ,

where a ∈ A and ΦDNF (a, s) is a goal node; or
• there exists a pair of edges (s, ω, s+

ω) and (s, ω, s−ω) in
T , where ω ∈ Ω and both s+

ω and s−ω are goal nodes.
Thanks to Proposition 4, if we ignore the incoming edges

to the active goal nodes from disabled nodes, then the re-
maining graph becomes the solution tree of the contingent
problem P . Formally, given a contingent planning problem
P and a search graph (S, T , s0) constructed by PrAO and a
goal node s ∈ S, by tree(s) we denote the following transi-
tion tree:
• tree(s) = [] if s |= G;
• tree(s) = a ◦ tree(s1) if (s, a, s1) ∈ T and a ∈ A; and
• tree(s) = ω(tree(s1)|tree(s2)) if (s, ω, s1) and

(s, ω, s2) belong to T and ω ∈ Ω.
We can prove the following property of PrAO:
Proposition 5. Given a contingent planning problem P and
a search graph (S, T , s0) constructed by PrAO, it holds that
• If s0 is a goal node then tree(s0) is a solution of P .
• If s0 is a dead-end node, or s0 is not a goal node and
there exists no unexplored node in S, then P does not
have a solution.

To illustrate the algorithm, let us consider the problem
P = 〈{f, g, h}, {a, b, c, d, e, t, p1, p2}, {sg}, true, {f,¬g, h}〉.
The specification of the actions are given by

2 3 4

5 6

6

7 8

9

true

f ¬g

1

g

¬f ⋀ g f ⋀ ¬g f ⋀ g ¬f ⋀ ¬g

f ⋀ ¬g ⋀ h f ⋀ ¬g

a SgSg

b

c
Sg

Sg

d

e

a
p1

t

p2

a

a

a

ta

e

b

Figure 2: Search Graph for P
• pre(a) = ∅, O(a) = {∅ → f}; 2

• pre(b) = {f}, O(b) = {∅ → {¬f, g}};
• pre(c) = {f}, O(c) = {∅ → {f,¬g}};
• pre(d) = {¬f, g}, O(d) = {∅ → {f,¬g}};
• pre(e) = {g}, O(e) = {∅ → {¬f,¬g}};
• pre(t) = {¬g}, O(t) = {∅ → {¬f,¬g}};
• pre(p1) = {f,¬g}, O(p1) = {∅ → h};
• pre(p2) = {¬f,¬g}, O(p2) = {∅ → {f, h}};
• pre(sg) = ∅ and l(sg) = g.
It is easy to see that the problem has different solutions.
Among them are the following transition trees: (i) a ◦ b ◦
d ◦ p1; (ii) a ◦ c ◦ p1; or (iii) sg(e ◦ p2 | t ◦ p2).

The search graph constructed by PrAO for obtaining the
above transition trees is given in Figure 2. Depending on the
order of nodes selected during its execution, PrAO would re-
turn different solutions. For illustrative purpose, let us look
at this in more details. For simplicity, we will refer to a node
by its number. In the figure, solid links represent or-edges
and dash links represent and-edges.

Initially, node 1 is created. The expansion of 1 leads to
the creation of nodes 2, 3, and 4 (and their addition to S).
Node 1 becomes explored. None of the new nodes satisfies
the goal, so goal-propagation is not triggered. Node 1 has
some outgoing edges, so no dead-end propagation is called.
Hence, no isolation propagation is executed either. Since no
successor node of 1 exists in S, no reactivation-propagation
is called. We consider two orders of expansion by PrAO:
• Assume that we expand nodes 2, 5, 6 in this order, and

each expansion is executed in the order the actions are
given. Expanding 2 results in the creation of 5, 6, 7 with
the corresponding edges. No propagation is executed.
Expanding 5 creates (5, a, 7), (5, d, 6), and (8, (5, e, 8)).
Reactivation-propagations at 6 and 7 do not change any-
thing since they are not disabled.
Expanding 6 creates (6, b, 5), (6, t, 8), and (9, (6, p1, 9)).
Since 9 satisfies the goal, it is marked as goal and so is
6 as p1 is an or-edge. Then goal_propagation(6, p1) is
executed, which removes (6, b, 5), (6, t, 8). 5 and 8 still
have another incoming edge so they are not disabled by
isolation-propagation at this point. If 5 is considered be-
fore 2 then 5 becomes goal first, the edge (5, d, 6) is re-

2We simplify the writing as O(a) contains only one outcome.

2 3 4

5 6 7 8

9

true

f ¬g

1

g

¬f ⋀ g f ⋀ ¬g f ⋀ g ¬f ⋀ ¬g

f ⋀ ¬g ⋀ h

a

b

d

p1

Figure 3: First solution: a ◦ b ◦ d ◦ p1

true

f

¬f ∧ g

g

f ∧ ¬g

¬g

f ∧ g ¬ f∧ ¬g

f ∧ ¬g ∧ h

1

2 3

5 6 7 8

9

4

a

c

p1

d

Figure 4: Second solution: a ◦ c ◦ p1
tained and the edges (5, a, 7) and (5, e, 8) are removed.
8 is disabled by the isolation-propagation as it does not
have an incoming edge. Then goal_propagation(2, b)
removes every outgoing edges from 2 but (2, b, 5). 7 now
is disabled. Then 1 becomes goal and 3 and 4 are disabled
with no incoming edges. The first solution is found with
the remaining graph illustrated in Figure 3.
Similarly, if 2 is considered before 5 (inside
goal_propagation(6)), then the second solution is
returned with the remaining graph as in Figure 4.

• Suppose that the order of expansion is 3 and 8. The ex-
pansion of 3 creates 7 and 8. Expanding 8 creates 6 and 9
and edges from 8 to them. 9 and 8 become goals. Goal-
propagation removes (8, a, 6), disables 6, marks 3 as goal,
removes (3, a, 7), and disables 7. Suppose that 4 is better
than 2 and worse than 6 and 7, in terms of heuristic. PrAO
selects 4 to expand next, since 6 and 7 are disabled. Ex-
panding 4 creates two edges from 4 to 6 and 8, activating
6 and making 4 a goal node. The goal propagation results
in the graph 5 and the third solution is achieved.

2 3 4

6 7 8

9

true

f ¬g

1

g

f ⋀ ¬g f ⋀ g ¬f ⋀ ¬g

f ⋀ ¬g ⋀ h

SgSg

p2

e
t

Figure 5: Third solution: sg(e ◦ p2 | t ◦ p2)

DNFct Planner and Empirical Evaluation
Implementation of DNFct: DNFct implements PrAO on top
of DNF (To et al. 2009). The heuristic function used in
DNFct for the experiments is same as that used in DNF, i.e.,
a combination of the number of satisfied subgoals and the
number of partial states in the DNF-state. We did try with
the heuristic function similar to that described in (Hoffmann
and Brafman 2005) but the results did not improve.
Planners: We compare DNFct with CLG (Albore et al.
2009), contingent-FF (Hoffmann and Brafman 2005), and
POND 2.2 (Bryce et al. 2006) obtained from their websites.
These planners are known to be among the best currently
available contingent planners. We executed contingent-FF
with both options, i.e., with and without helpful actions, and
report here the best result for each instance. POND was
executed using the AO* search algorithm (aostar). We ob-
serve that the translation time of CLG can vary in a very
wide range (from few to hundreds of seconds) for a same in-
stance. Hence, for CLG, we report the best result of several
execution times for each instance.

All the experiments have been performed on a Linux Intel
Core 2 Dual 2.66GHz workstation with 4GB of memory.
The time-out limit was set to two hours.
Benchmarks: We tested the planners with (i) different vari-
ants of the following domains: bomb in the toilet (e.g.,
bts, btnd), block, logistic, grid, and unix; (ii) variants of
the grid domains such as cballs-n-m, doors-n, localize-
n, and wumpus-n. The first group of domains is from
the distributions of contingent-FF and POND, while the
second comes from the CLG distribution. We add to the
second group some of our own by modifying some chal-
lenging conformant domains to force planners to generate
conditional plans. Those domains are edispose, e1d, and
epush, modified from dispose, 1-dispose, and push re-
spectively. The modifications are as follows. For example,
in the dispose domain, the action pickup(o, p) is given by
({at(p)}, {obj_at(o, p) → holding(o) ∧ ¬obj_at(o, p)});
in its variant edispose, the sensing action sense(o, p)
with `(sense(o, p)) = obj_at(o, p) and pickup(o, p) is
changed to ({at(p), obj_at(o, p)}, {true → holding(o) ∧
¬obj_at(o, p)}), meaning that pickup(o, p) is applicable
only if both the agent and the object o are at location p.
Summary of Experimental Results: Tables 1-2 report the
experimental results in the form of t(s/d), where t, s, and d
denote the overall execution time, the number of actions in
the solution, and the depth of the solution tree respectively.
Since POND does not report the depth of a solution (d), we
omit that in the results of POND. Usually, d and s are cri-
teria for evaluation of the quality of a solution3. In these
tables, OM denotes out-of-memory, TO means time-out, E
indicates incorrect report, MC stands for "too many clauses"
of large instances for contingent-FF to handle, NA refers to
the instances that are non-applicable for the planner (e.g.,
NA is in CLG’s column on btnd because CLG does not con-
sider non-deterministic actions).

3We consider d to be more important, as it is the maximum
number of actions the agent needs to execute to obtain the goal.

We observe that even though DNFct employs a best first
search in AND/OR graph for solutions, not an AO* search
as contingent-FF and POND use4, the quality of the so-
lutions found by DNFct is not worse than those found by
the other planners, in general. We suspect that this is be-
cause contingent-FF and POND use an inadmissible heuris-
tic function. Moreover, the heuristic based on the number of
actions in a solution of a relaxed problem may be very inac-
curate in the presence of incomplete information.

We observe that there are several problems for which our
experimental results differ from those reported by the others.
We suspect that the versions of the other planners we down-
loaded perform differently than their predecessors, and/or
the environments for conducting the experiments are differ-
ent (e.g., different hardware/OS).

Problem DNFct CLG contingent-FF Pond

block-3 0.58 (5/4) 0.08 (6/4) 0.02 (6/4) 0.01 (5/4)
block-7 11.6 (69/28) 4.58 (55/9) 0.46 (49/12) OM
block-11 OM 35.68 (115/18) TO OM
btcs-70 2.77 (139/70) 13.7 (140/140) 123.64 (139/70) 74.04 (139)
btcs-90 5.4 (179/90) 40.71 (180/180) 476.8 (179/90) TO
btcs-150 27.5 (299/150) 379 (300/300) MC TO
btnd-70 1.71 (276/72) NA 536.6 (140/72) TO
btnd-90 2.78 (356/92) NA 2070 (180/92) TO
btnd-150 7.47 (596/152) NA TO TO
bts-70 2.25 (139/70) 6.43 (70/70) 1672 (70/70) TO
bts-90 3.21 (179/90) 18.96 (90/90) TO TO
bts-150 8.15 (299/150) 200 (150/150) TO TO
ebtcs-70 1.21 (139/70) 24.79 (209/71) 63 (139/70) 24.69 (139)
ebtcs-90 1.57 (179/90) 69.99 (269/91) 255.5 (179/90) TO
ebtcs-150 4.19 (299/150) 603.3 (449/150) MC TO
ebtnd-70 1.49 (276/72) NA 16.3 (208/72) TO
ebtnd-90 3.19 (356/92) NA 53.15 (268/92) TO
ebtnd-150 6.25 (596/152) NA MC TO
elogistics-5 0.92 (301/179) 0.08 (147/21) 0.02 (156/23) 0.67 (143)
elogistics-7 1.31 (422/126) 0.11 (210/22) 0.04 (223/23) 0.95 (212)
elogistics-L OM 90.3 (36152/73) TO OM
grid-3 1.97 (313/51) 0.94 (114/30) 0.06 (23/23) 104 (178)
grid-4 2.9 (982/71) 4.64 (872/51) 0.14 (49/49) OM
grid-5 12.59 (1337/81) 1.87 (212/40) 0.15 (46/46) OM
medpks-70 1.49 (141/72) 7.51 (141/71) 968.6 (140/71) TO
medpks-90 2.69 (199/101) 24.35 (199/101) TO TO
medpks-150 6.49 (299/151) 103.94 (299/151) TO TO
unix-2 0.78 (48/37) 0.64 (50/39) 0.13 (48/37) 1.71 (48)
unix-3 2.02 (111/84) 5.88 (113/86) 3.84 (111/84) OM
unix-4 16.26 (238/179) 84.42 (240/181) 142.8 (238/179) OM

Table 1: Problems from contingent-FF and POND distributions.

Domains in contingent-FF and POND Distributions: Ta-
ble 1 reports the results of our experiments from the domains
in contingent-FF and POND distributions. As one can see,
DNFct outperforms all the other planners on seven out of ten
domains. DNFct also scales up very well on these domains
as it can solve the largest instances within a small total run-
time, while the other planners cannot solve or spent much
longer time for a solution for those instances. The solution
trees for these problems found by DNFct are comparable to
those found by the other planners. Observe that DNFct lost

4POND supports several options for search algorithms, we se-
lected AO* search option in our experiments.

Problem DNFct CLG cont-FF Pond

cball-3-2 0.99 (609/40) 2.91 (2641/34) TO 2.2 (597)
cball-3-3 10.5 (8042/57) 62.5 (60924/48) TO 39.7 (4808)
cball-5-1 1.1 (117/68) 1.3 (586/65) TO 527 (199)
cball-5-2 21.5 (5132/113) 167 (72817/107) TO OM
cball-8-1 10.42 (279/148) 43.1 (2411/171) TO OM
cball-8-2 768.7 (27472/292) TO TO OM
edisp-3-2 0.64 (397/36) 0.46 (752/39) E TO
edisp-3-3 1.58 (3891/57) 5.77 (8552/52) E TO
edisp-5-1 0.99 (98/60) 3.1 (177/60) E TO
edisp-5-2 3.45 (2753/97) 27.4 (7993/87) E TO
edisp-10-1 46.9 (400/233) 140 (1051/237) E TO
edisp-10-2 298.3 (31357/402) TO E TO
e1d-3-1 1.15 (33/20) 2.71 (50/20) E TO
e1d-3-3 1.74 (3557/88) 202 (15294/62) TO TO
e1d-5-1 1.57 (99/59) 52.25 (200/58) TO TO
e1d-5-3 88.5 (76088/417) TO TO TO
e1d-10-1 164 (399/233) TO TO TO
e1d-10-2 461 (47652/665) TO TO TO
doors-7 4.28 (2193/53) 7.6 (2153/51) E 17.99 (2159)
doors-9 57.6 (44998/89) 585 (46024/95) E 1262 (44082)
localize-5 0.57 (49/23) 1.86 (112/24) 42 (53/53) TO
localize-7 0.72 (80/36) 6.89 (231/37) MC TO
localize-9 0.84 (113/53) 21.2 (386/50) MC TO
localize-11 1.2 (144/62) 63.72 (577/63) MC TO
localize-13 1.56 (176/75) E MC TO
epush-3-1 0.53 (39/29) 0.39 (50/24) 0.6 (61/37) TO
epush-3-3 1.32 (1249/87) 7.04 (6196/44) TO TO
epush-6-2 9.76 (5001/241) 447 (24523/148) TO TO
epush-6-3 88 (103065/383) TO TO TO
epush-10-1 55.2 (731/268) 341 (1983/446) TO TO
epush-10-2 392 (64808/845) TO TO TO
wumpus-5 2.47 (1083/34) 1.13 (754/41) E 4.65 (587)
wumpus-7 55.15 (29853/74) 9.57 (6552/57) E TO
wumpus-10 OM 2954 (280k/100) E TO

Table 2: Challenging problems from CLG distribution and modi-
fication of conformant problems
to the other planners on the smallest instance of unix, a do-
main it is strong at. This is due to the overhead of the trans-
lation process of the input theory incurred in DNFct. For
most small instances, DNFct spent most time on the transla-
tion process, e.g., for unix-2 DNFct spent only 0.025 second
for the search while 0.75 second for the translation. In this
group, DNFct does not perform well on block, elogistic,
and grid. One of the reasons is that the heuristic function
based on the number of satisfied subgoals, that DNFct uses,
is misleading on these problems.

POND is the best at block-3 and able to solve sev-
eral small instances, but its overall performance is poor.
Contingent-FF outperforms the other planners on all in-
stances of grid domain and several small instances of
some other domains; including block-7, elogistic-5, and
elogistic-7, and unix-2. This planner is also the second
best, behind DNFct, on btnd and ebtnd. Overall, CLG is the
second best planner as it is the only one that can solve the
largest instances of block and elogistics, and performs sec-
ond best on most of other domains, except btnd and ebtnd.

Challenging Problems: Table 2 contains the results of our
experiments with the set of challenging problems, which are
proposed by the authors of CLG and by us. As it can be seen,

these problems are much harder than those reported in Ta-
ble 1. contingent-FF and POND can only solve few small
instances and POND is a little better than contingent-FF
in this group of problems. Again, CLG is the only com-
petitor of DNFct on these problems. Out of all four do-
mains proposed by the authors of CLG, DNFct outperforms
all the other planners on three (cball-n-m, doors-n, and
localize-n). On the other hand, CLG is best in wumpus-n.
DNFct also has the best performance on the modifications
of challenging conformant problems: edis-n-m, e1d-n-m,
and epush-n-m. Observe that, CLG scales up well on the
first dimension (n) of cball-n-m, edis-n-m, and epush-n-
m but it has trouble with the second dimension, for which
DNFct does much better. Note that on these domains, n and
m denote the number of locations and the number of ob-
jects, respectively. Initially, the location of each object oi
(i = 1, . . . ,m) is uncertain among n given places and de-
scribed by the literal at(oi, pj) (j = 1, . . . , n). Thus the size
of the problem is at least linear in n×m and the number of
states in the initial belief state is linear in nm, i.e., exponen-
tial in m. This explains why the other planners, including
CLG, scale poorly on m. This also confirms the superior
scalability of DNFct compared to the others, in general. We
believe that DNFct underperforms CLG on wumpus-n be-
cause of two reasons. First, the goal of each instance of this
domain contains only one subgoal that needs to be obtained
(the other subgoal already exists in the initial belief state
and never disappears). Thus, the heuristic function based
mostly on the number of subgoals used in DNFct does not
help much for the search to find a solution. Second, each
problem instance of this domain contains a large number of
disjunctive clauses (or-clauses), making the size of the ini-
tial DNF-state very large. For example, the initial DNF-state
of wumpus-10 contains 2,567,504 partial states.
Effectiveness of the Pruning Technique: We would like
to conclude this section with a discussion of the effective-
ness of the pruning technique (implemented by the iso-
lation/reactivation propagation procedures) incorporated in
PrAO. Table 3 reports the results of the performance of
DNFct on several problems with/without using the pruning
technique. On most problems, using the pruning technique
results in a better performance of DNFct, i.e., it spends less
time searching for a solution (the translation time is the same
so it is not included) as it generates and expands less nodes.
In addition, the solution tree is better when the pruning tech-
nique is used, in general. We also observe that there are
few problem instances on which application of the prun-
ing technique makes the performance of DNFct worse, e.g.,
wumpus-7. Nevertheless, this technique contributes signif-
icantly to the good overall performance of DNFct, besides
the DNF-representation.

Conclusion
This paper presented a new approach to contingent plan-
ning using a DNF representation of belief states, along with
PrAO, a novel variant of AND/OR search algorithms which
includes techniques for pruning the search space. While the
DNF-representation provides a compact encoding of belief
states and fast state computation, PrAO’s goal is to minimize

problem search_t s/d gen./exp. search_t s/d gen./exp.

block-7 10.7 69/28 42.7k/42.1k 11.75 948/733 55.4k/45.6k
btnd-150 5.88 596/152 12.8k/713 80.48 893/153 24.5k/893
cball-8-2 735.7 27.4k/292 123k/61.9k 1683 15.7k/272 264.7k/264k
doors-9 34 445k/89 131.7k/93.5k 67.4 45k/89 248.6k/242k
push-6-2 6.83 4991/241 25.4k/14.4k 77.94 7625/338 265k/263.8k
wumpus-7 47.27 29.8k/74 134k/96.3k 28.5 26.8k/109 61k/34k

Table 3: Results of DNFct: with pruning (left) v.s. without prun-
ing (right). search_t: search time, s/d: size/depth of the solution,
gen./exp.: number of generated/expanded nodes
the number of nodes generated during the search. We devel-
oped a new planner DNFct using these techniques and ex-
perimentally evaluated it against state-of-the-art contingent
planners. The results showed that DNFct is very competitive
with other planners and scales up better in many domains.

Although DNFct exhibits good performance and scalabil-
ity, several open questions remain. For example, we ob-
serve that there are a few problems on which disjunctive
representation appears to be unsuitable (e.g., wumpus-n),
or the pruning technique has negative effectiveness, e.g.,
wumpus-7. As such, for problems rich in disjunctive infor-
mation, another representation might be needed (e.g., con-
junctive normal form). Furthermore, the effectiveness of the
pruning technique may need to be investigated further.

References
A. Albore, H. Palacios, and H. Geffner. A Translation-based
Approach to Contingent Planning. In IJCAI, 2009.
C. Baral, V. Kreinovich, and R. Trejo. Computational com-
plexity of planning and approximate planning in the pres-
ence of incompleteness. AIJ, 122:241–267, 2000.
P. Bertoli et al. MBP: a model based planner. Workshop on
Planning under Uncert. and Incomplete Inf., 2001.
R. Brafman, J. Hoffmann. Conformant planning via heuris-
tic forward search: A new approach. ICAPS, 2004.
R. Bryant. Symbolic boolean manipulation with ordered bi-
nary decision diagrams. ACM Comp. Surv., 24(3), 1992.
D. Bryce et al. Planning Graph Heuristics for Belief Space
Search. JAIR, 26:35–99, 2006.
J. Hoffmann and R. Brafman. Contingent planning via
heuristic forward search with implicit belief states. In
ICAPS, 2005.
A. Martelli and U. Montanari. Additive and/or graphs. In
IJCAI, 1973.
M. Peot and D.E. Smith. Conditional nonlinear planning. In
Proc. of 1st Int. Conf. on AIPS, 1992.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In ICAPS, 2004.
S. T. To, E. Pontelli, and T. C. Son. A Conformant Planner
with Explicit Disjunctive Representation of Belief States. In
ICAPS, 2009.
S. T. To, T. C. Son, and E. Pontelli. A New Approach to
Conformant Planning using CNF. In ICAPS, 2010.
S. T. To, T. C. Son, and E. Pontelli. On the Use of Prime
Implicates in Conformant Planning. In AAAI, 2010.

