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Abstract

This paper describes a novel and competitive complete con-
formant planner. Key to the enhanced performance is an effi-
cient encoding of belief states as disjunctive normal form for-
mulae and an efficient procedure for computing the successor
belief state. We provide experimental comparative evaluation
on a large pool of benchmarks. The novel design provides
great efficiency and enhanced scalability, along with the intu-
itive structure of disjunctive normal form representations.

Introduction
Conformant planning is the problem of finding a sequence
of actions that achieves a goal from every possible initial
state of the world. Typically, conformant planning arises in
presence of incomplete knowledge about the initial state of
the world. Since its introduction in (Smith and Weld 1998),
conformant planning has attracted the attention of several
researchers. A number of efficient and sophisticated confor-
mant planners have been developed, and a conformant track
has been a part of the bi-annual international planning com-
petition for several years.

The development of a best-first search and progression-
based planner begins with the selection of a representation
language and the definition of a progression function that,
given a state and an action, computes the next state of the
world. To deal with incomplete knowledge about the ini-
tial state of the world, the notion of belief state has been
introduced—defined as a set of states. The progression func-
tion is accordingly extended to define a transition function
between belief states.

The majority of progression-based planners use PDDL
(Ghallab et al. 1998) as the input representation language,
extended with features for representing incomplete informa-
tion about the initial state (e.g., oneof clauses). The advan-
tage of using PDDL is twofold. First, there are several con-
formant planning benchmarks encoded in PDDL, providing
a wide range of use cases for testing. Second, it makes the
comparison between systems easier.

A direct implementation of a best-first search and
progression-based planner begins with the critical decision
of selecting a representation for the belief states. The second
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important question is related to the development of heuris-
tics functions to guide the search process. Before the in-
troduction of CPA (Tran et al. 2009; Son et al. 2005),
two main approaches had been commonly employed. The
first approach relies on ordered binary decision diagrams
(OBDD) (Bryant 1992). The advantage of this approach is
the availability of efficient libraries for creating and manip-
ulating OBDDs. This allows the developer to focus on the
second issue, i.e., the development of heuristic. The system
POND (Bryce et al. 2006) is a good example of a planner
that relies on OBDD technology. The main disadvantage
of this approach is that the size of the OBDD can be very
large—the structure of the OBDD is sensitive to the order-
ing of variables and the manipulation of the OBDD might
require intermediate OBDDs of exponential size. The sec-
ond approach, used in CFF(Brafman and Hoffmann 2004),
does not employ an explicit representation of belief states
during the computation. Instead, the belief state at any point
in the search process is implicitly described by the sequence
of actions used to reach that belief state in the search. In this
approach, checking entailment in a belief state requires en-
coding the initial state and the effects of the sequence of ac-
tions as a propositional theory and using a SAT solver. The
advantage of this approach is that it is less demanding in
terms of memory w.r.t. planners using OBDDs. The trade-
off is represented by the need to call a SAT solver. Systems
like CFF introduce techniques to minimize the number of
calls made to the SAT solver.

The negative aspects encountered in both methods are
not surprising, considering that the problem of checking
whether a proposition holds after the execution of an action
in presence of incomplete information is a co-NP complete
problem (Baral et al. 2000).

An alternative, indirect, approach to best-first search and
progression-based planning consists of transforming a con-
formant planning problem into a classical planning problem,
and then using an off-the-shelf classical planner to search for
solutions. The planner t0 (Palacios and Geffner 2007), and
its predecessor cf2cs(ff), employ this method.

The introduction of CPA (Son et al. 2005) brought a dif-
ferent perspective to the development of conformant plan-
ners. Instead of using the complete transition function in the
search, CPA uses an approximation, first described in (Son
and Baral 2001). A belief state is approximated by the in-



tersection of the states it contains. The advantage of this
approach lies in the low-complexity of the approximation:
the successor (approximated) belief state can be computed
in polynomial time. This approach proves to be adequate
in a number of benchmarks. The approximation is, how-
ever, incomplete. Consequently, planners employing the ap-
proximation are incomplete. To address this issue, (Son and
Tu 2006) identifies conditions for the completeness of CPA
and develops techniques to make CPA complete. These
techniques require the system to deal with sets of approx-
imated states, which—in the worst case—are the same as
belief states. CPA represents this information as a formula
in disjunctive normal form. The advantage of this approach
is that the computation of the next state is still very sim-
ple. On the other hand, there are planning problems where
the size of the disjunction can become exponential, prevent-
ing the planner from realistically start its search. To address
this issue, the authors of the recent CPA developed prepro-
cessing techniques which help reduce the size of the initial
formula (Tran et al. 2009). These techniques enabled the
planner to perform very well in several benchmarks and won
the conformant planning category in the IPC-08 (http://
ippc-2008.loria.fr/wiki/index.php/Main_Page).

The objective of this paper is to answer the question of
whether disjunctive normal form representations, used to
provide a complete representation of the belief state, can
be competitively used in a best-first and progression-based
search planner. The intuition is that disjunctive normal form
representation can provide easy computation of the succes-
sor belief state, and they can be less demanding in terms
of memory consumption. To this end, we develop an im-
plementation of a complete transition function over belief
states encoded using disjunctive normal form formulae, and
empirically compare this alternative to the state-of-the-art in
conformant planning. The experimental outcomes validate
this option: the newly developed planner outperforms exist-
ing systems on a large variety of benchmarks.

Background: Conformant Planning
A planning problem is a tuple P = 〈F,O, I,G〉, where F
is a set of propositions, O is a set of actions, I describes the
initial state, and G describes the goal. A literal is either a
proposition p ∈ F or its negation ¬p. ¯̀ denotes the com-
plement of a literal `—i.e., ¯̀= ¬`, where ¬¬p=p for p∈F .
For a set of literals L, L = {¯̀ | ` ∈ L}. A conjunction of
literals is often represented as the set of its conjuncts.

A set of literals X is consistent (resp. complete) if for
every p∈F , {p,¬p}6⊆X (resp. {p,¬p}∩X 6=∅). A state is
a consistent and complete set of literals. A belief state is a
set of states. We will often use lowercase (resp. uppercase)
letter to represent a state (resp. a belief state).

Each action a in O is associated with a precondition φ
(denoted by pre(a)) and a set of conditional effects Ca of
the form ψ → ` (also written as a : ψ → `), where φ and ψ
are sets of literals and ` is a literal.

A state s satisfies a literal `, denoted by s |= `, if ` ∈ s.
s satisfies a conjunction of literals X , denoted by s |= X , if
it satisfies every literal belonging to X . The satisfaction of
a formula in a state is defined in the usual way. Likewise,

a belief state S satisfies a literal `, denoted by S |= `, if
s |= ` for every s ∈ S. S satisfies a conjunction of literals
X , denoted by S |= X , if s |= X for every s ∈ S.

Given a state s, an action a is executable in s if s |=
pre(a). The effect of executing a in s is

e(a, s) = {` | ∃(a : ψ → `). s |= ψ}
The transition function, denoted by Φ, in the planning do-
main of P is defined by Φ(a, s) = s \ e(a, s) ∪ e(a, s) if
s |= pre(a); and Φ(a, s) = undefined , otherwise.

We can extend the function Φ to define Φ̂, a transition
function which maps sequences of actions and belief states
to belief states. Φ̂ is used to reason about the effects of plans.
Let S be a belief state. We say that an action a is executable
in a belief state S if it is executable in every state belonging
to S. Let αn = [a1, . . . , an] be a sequence of actions:
• If n = 0 then Φ̂([ ], S) = S;
• If n > 0 then
◦ if Φ̂(αn, S) is undefined or an is not executable in

Φ̂(αn−1, S), then Φ̂(αn, S) is undefined;
◦ if Φ̂(αn−1, S) is defined and an is executable in

Φ̂(αn−1, S) then Φ̂(αn, S)={Φ(an, s
′)|s′∈Φ̂(αn−1, S)}

where αn−1 = [a1, . . . , an−1].
The initial state of the world I is a belief state and is repre-
sented by a formula. By SI we denote the set of all states
satisfying I . Typically, the goal description G can contain
literals and or-statements (see below).

A sequence of actions [a1, . . . , an] is a solution of P if
Φ̂([a1, . . . , an], SI) satisfies the goal G.

DNF Representation of Belief States
In this section we develop the theoretical underpinning of
using DNF formulae to represent belief states. We will de-
scribe a progression function for computing the successor
belief state given the current belief state is represented as a
formula in disjunctive normal form. Let us begin with some
motivations of the approach.

The specification of an initial state I is often given as
a conjunction of literals C1 and a set of statements C2

of the form oneof(φ1, . . . , φk) or or(φ1, . . . , φk), where
φ1, . . . , φk are conjunctions of literals, and oneof and or
is the exclusive-or and the logical-or operator, respectively.

For a specification I , the belief state SI is uniquely de-
termined and can be computed by (i) generating all states
satisfying C1; and (ii) selecting among those the states sat-
isfying all statements in C2. As we have observed in the
introduction, the size of the initial belief state (in terms of
its cardinality) can be exponential in the number of proposi-
tions of the domain. Worst, the process of creating the initial
state can prevent the system to start the search. For exam-
ple, given a domain with n propositions f1, . . . , fk and the
specification I = {oneof(fi,¬fi) | i = 1, . . . , n}. This
indicates that the initial belief state SI consists of all possi-
ble states of the world and has the cardinality of 2n. On the
other hand, it is easy to see that I is logically equivalent to
the empty set of states. As such, one might wonder whether
SI can be replaced by ∅. This view has been investigated in
(Son et al. 2005), where approximation reasoning is defined



and a planner is discussed. The main disadvantage of this
method is the incompleteness of the approximation. For a
detailed discussion on this issue and a possible way to ad-
dress it, the reader is referred to (Son and Tu 2006).

In this paper, we would like to investigate a middle ground
of the two aforementioned extremes. On the one hand, we
would like to represent the above initial state by ∅. On the
other hand, we would like to maintain the completeness of
the planner utilizing this representation. In order to achieve
this goal, we define a notion of a DNF-state and define the
progression function for computing successor DNF-states.
We need the following terminologies and definitions.

A partial state is a consistent set of literals. A state s is
a completion of a partial state δ if δ ⊆ s. ext(δ), called the
extension of δ, is the set of all completions of δ. Observe
that if δ is a partial state then δ ≡

∨
{s|s ∈ ext(δ)} and

δ =
⋂
{s|s ∈ ext(δ)}.

Definition 1. A DNF-state is a set of partial states. A DNF-
state is minimal if it does not contain a pair of different par-
tial states δ1 and δ2 such that δ1 ⊂ δ2.

Let ∆ be a DNF-state. We define min(∆) = ∆ \
{δ | ∃δ′∈∆.δ′ ⊂ δ}. It is easy to see that min(∆) is a
minimal DNF-state equivalent to ∆. We call ext(∆) =⋃
{ext(δ)|δ ∈ ∆} the completion of ∆. Obviously, the

completion of ∆ is a belief state which is equivalent to ∆.
Given a partial state δ, a literal ` is true (resp. false) in δ

if ` ∈ δ (resp. ¯̀∈ δ). A literal ` is known in δ if it is true or
false in δ. Otherwise, it is unknown. Abusing the notation,
we will write δ |= ` to indicate that ` is true in δ. For a set of
literals γ, δ |= γ if δ |= ` for every ` ∈ γ. For a DNF-state
∆ and a set of literals γ, ∆ |= γ if δ |= γ for every δ ∈ ∆.

We will now define the progression function over DNF-
states, which will be denoted by ΦDNF . Given a DNF-state
∆ and an action a, we need to define ΦDNF (a,∆). Let us
consider some examples that provide the motivation behinds
the definition of ΦDNF .

Example 1. Consider a domain with three propositions f ,
g, and h and the action a with one effect a : > → f and
the DNF-state ∆ = ∅. Intuitively, we would expect that the
execution of a in ∆ will yield the DNF-state {{f}} as the
execution of a in any state belonging to ext(∆) will yield f
while g and h retain their value. So, {{f}} is equivalent to
the belief state Φ(a, ext(∆)).

Now consider an action bwith the effect b : f → g and the
DNF-state ∆ = {{¬f}}. Here, the intuitive result of execu-
tion b in ∆ would be ∆ as the condition of the effect cannot
be satisfied, i.e., executing b will not change anything.

Example 2. Consider a domain with three propositions f ,
g, and h and the action a with two effects a : f → h and
a : ¬f → g and the DNF-state ∆ = ∅. Intuitively, we
would expect that the execution of a in ∆ will result in the
DNF-state {{f, h}, {¬f, g}}. This is because we know that
∆ represents all possible states of the world and in any state,
either f of ¬f is true. As such, executing a will cause either
h ∧ f or g ∧ ¬f to be true.

Now consider the same action a with the DNF-state
∆ = {{f,¬h}, {g}}. Executing a in ∆ should result in

∆′ = {{f, h}, {g, f, h}, {g,¬f}} which is equivalent to
∆′ = {{f, h}, {g,¬f}}.

The examples show the two cases that we need to con-
sider. In the first case, the conditional effects of the ac-
tion is either satisfied or not by the DNF-state (Example 1).
The progression function should proceed as if we have com-
plete information. In the second case, the actions might have
some effects whose condition is unknown in the given DNF-
state (Example 2). In this case, the DNF-state might have
to be unfolded into an equivalent DNF-state in which the
conditions are known. To this end, we define the notion of
partial extension of a partial state δ as follows.
Definition 2. Let δ be a partial state and γ a consistent set
of literals. The partial extension of δ w.r.t. γ, denoted by
δ + γ, is a set of partial states and is defined as

δ + γ =

{
{δ} if γ ⊆ δ or γ ∩ δ 6= ∅
{δ ∪ γ} ∪ {δ ∪ {l̄}|l ∈ γ\δ} otherwise (1)

Intuitively, δ+ γ is a DNF-state satisfying δ in which γ is
known. In the first and second cases, γ is true or false in δ
respectively. In the third case, γ is unknown and therefore,
we need to extend δ with literals in δ so that the truth value
of γ can be determined in every partial state in δ+γ. For a
DNF-state ∆, let ∆+γ= min(

⋃
δ∈∆(δ+γ)). It holds that

Proposition 1. Let δ (resp. ∆) be a partial state (resp.
DNF-state). If γ is a consistent set of literals, then δ + γ
(resp. ∆ + γ) is a minimal DNF-state which is equivalent to
δ (resp. ∆). If γ1 and γ2 are two consistent sets of literals
then (δ + γ1) + γ2 = (δ + γ2) + γ1.

This proposition indicates that the order of extensions of
a partial state δ with different sets of literals is irrelevant.
Definition 3. Let a be an action with the set of conditional
effects Ca. A partial state δ is called enabling for a if for
every conditional effect ψ → ` in Ca, either δ |= ψ or δ |=
¬ψ holds. A DNF-state ∆ is enabling for a if every partial
state in ∆ is enabling for a.
Example 3. Consider the DNF-state ∆ =
{{¬f}, {f,¬g}}, the action a with the effect a : f → ¬g,
and the action b with two effects b : f → ¬f, g and b :
g → f . One can see that ∆ is enabling for a since every
partial state in ∆ either entails f or ¬f . On the other hand,
∆ is not enablingfor b, due to the fact that the truth value
of g, the antecedent of the second effect of b, is unknown in
the partial state {¬f} in ∆.

For an action a and a partial state δ, let expa(δ) = ((δ +
ψ1)+ . . .)+ψk where Ca = {ψ1 → `1, . . . , ψk → `k}. For
a DNF-state ∆, expa(∆) =

⋃
δ∈∆ expa(δ).

Proposition 2. For every partial state δ, DNF-state ∆, and
action a:
• expa(δ) is a minimal DNF-state which is equivalent to δ

and enabling for a.
• If ∆ is a minimal DNF-state so expa(∆) is a minimal

DNF-state which is equivalent to ∆ and enabling for a.
To define ΦDNF we also need the following notation. For

an action a and a partial state δ, the effect of a in δ, denoted
e(a, δ), is defined as follows. e(a, δ) = {l|ψ → l ∈ Ca, δ |=



ψ}. The result of execution a in δ is defined by res(a, δ) =
δ\e(a, δ)∪e(a, δ).We are now ready to define the transition
function ΦDNF which maps pairs of actions DNF-states into
DNF-states as follows.

Definition 4. Let ∆ be a DNF-state and a an action.
The execution of a in ∆ results in a DNF-state, denoted
by ΦDNF (a,∆), is defined as follows: ΦDNF (a,∆) =
min({res(a, δ′) | δ′ ∈ expa(∆)}) if ∆ |= pre(a) and
ΦDNF (a,∆) = undefined otherwise.

Example 4. Consider the same DNF-state ∆ and two
actions a and b as given in Example 3. Assume
that pre(a) = pre(b) = >. One can check that:
expa(∆) = ∆ and ΦDNF (a,∆) = ∆. On the other hand,
expb({¬f}) = {{¬f, g}, {¬f,¬g}}, expb({f,¬g}) =
{{f,¬g}}, expb(∆) = {{¬f, g}, {¬f,¬g}, {f,¬g}}, and
ΦDNF (b,∆) = {{f, g}, {¬f,¬g} {¬f, g}}.

By definition, for every action a and DNF-state,
ΦDNF (a,∆) is a minimal DNF-state. The function ΦDNF

is extended to allow for reasoning about the effects of an
action sequence as follows. Let ∆ be a DNF-state and
αn = [a1, . . . , an] an action sequence. We define
• Φ̂DNF (αn,∆) = ∆ if n = 0;
• Φ̂DNF (αn,∆) = ΦDNF (an, Φ̂DNF (αn−1,∆)), if
n > 0, where αn−1 = [a1, . . . , an−1] and
ΦDNF (a, undefined) = undefined for every action a.

The next theorem shows that Φ̂DNF is equivalent to the com-
plete semantics defined by Φ̂.

Theorem 1. Let ∆ be a DNF-state and [a1, . . . , an] be an
action sequence. Then,

Φ̂DNF ([a1, . . . , an],∆) ≡ Φ̂([a1, . . . , an], ext(∆)).

This theorem allows us to compute solutions of confor-
mant planning problems without the need to explicitly enu-
merate all possible states of the world when it is not neces-
sary. In the next section, we describe the implementation of
a planner employing this progression function.

Implementation
In this section, we detail the implementation of the confor-
mant planner, called DNF, which uses the function ΦDNF

in its search for conformant plans. DNF is a heuristic best-
first search, progression-based planner. As such, the overall
structure of DNF is similar to that of any direct implementa-
tion of a heuristic best-first search, progression-based plan-
ner such as CFF, CPA, POND, etc. For completeness of the
paper, we include the overall search algorithm implemented
in DNF (Algorithm 1). From now on, for a planning prob-
lem 〈F,O, I,G〉, by SI we denote a DNF-state satisfying I
(the computation of SI will be presented later). We will now
provide the detail of how ΦDNF is implemented in DNF.

Computing Successor DNF-States
Given a DNF-state ∆ and an action a with the set of condi-
tional effects Ca, we need to compute ∆′ = ΦDNF (a,∆).
By Definition 4, we have the following steps:

1. If pre(a) is not true in ∆ then ∆′ is undefined.

Algorithm 1 Search(P,O, I,G)
1: Input: A planning problem 〈P,O, I,G〉
2: Output: Solution if exists; No solution otherwise
3: Create Priority Queue Q and initialize it with (SI , [])

{Initializing Search}
4: while Q is not empty do
5: Let s = (∆, CP ) be the first element of Q
6: if ∆ satisfies G then
7: return CP {the plan reaching ∆}
8: else
9: for each action a such that ∆ |= pre(a) do

10: Compute ∆′ = ΦDNF (a,∆)
11: Insert (∆′, CP ◦ [a]) to Q
12: {Heuristic of ∆′ as Priority in Q}
13: end for
14: end if
15: end while
16: return no solution

2. If pre(a) is true in ∆ we need to compute the
DNF-state expa(∆) and compute the DNF-state
min{res(a, δ′)|δ′∈expa(∆)}.

The computation of expa(∆) is based on the computation
of expa(δ) for a partial state δ, which in turn is based on
the computation of δ + γ. Algorithm 2 shows how δ + γ is
computed.
Algorithm 2 Computing δ + γ

1: Input: partial state δ, consistent set of literals γ
2: Output: δ + γ
3: if γ ⊆ δ ∨ γ ∩ δ 6= ∅ then
4: return {δ}
5: else
6: Let X = {δ ∪ γ}
7: for each l ∈ γ \ δ do
8: Set X = X ∪ {δ ∪ {l̄}}
9: end for

10: return X
11: end if

It is easy to see that Algorithm 2 computes δ+ γ, accord-
ing to Def. 2. This is used in computing expa(δ) as follows.
Algorithm 3 Computing expa(δ)

1: Input: partial state δ, action a
2: Output: expa(δ)
3: Let C = Ca, X = {δ}
4: while C 6= ∅ do
5: Pick an effect ψ → ` in C
6: Let Y = ∅
7: for each δ′ ∈ X do
8: Y = Y ∪ (δ′ + ψ)
9: end for

10: Remove from C all effects with antecedent ψ
11: Set X = Y
12: end while
13: return min(X)

The correctness of Algorithm 3 is again easy to see. We
are now ready to present the algorithm for computing ∆′.



Algorithm 4 Computing ΦDNF (a,∆)
1: Input: DNF-state ∆, action a
2: Output: ΦDNF (a,∆)
3: if ∆ 6|= pre(a) then
4: return undefined
5: else
6: Compute expa(∆) {Using Algorithm 3}
7: Compute X = {res(a, δ) | δ ∈ expa(∆)}
8: end if
9: return min(X)

As with other algorithms, the correctness of Algorithm
4 is easy to verify. We will next discuss some properties
related to the run-time of each of these algorithms. Let us
assume that the domain has n propositions and the action a
has k effects (|Ca| = k). We have that

Proposition 3. Let δ be a partial state, ∆ a DNF-state, γ a
consistent set of literals, and a an action. We have that
• Computing δ + γ is O(|γ| ∗ log(n)).
• Computing expa(δ) is at most O(Πψ→`∈Ca

(|ψ| ∗
log(n))).
• Computing min(∆) can be done in O(n ∗ |∆|2).
• For a DNF-state ∆ which is enabling for a, computing
ΦDNF (a,∆) can be archived in O(k ∗ n ∗ |∆|).

These results show that computing ΦDNF (a,∆) depends on
the size of ∆ and the cost of computing expa(∆). Observe
that the cost of computing expa(∆) is the extra cost incurred
due to the use of DNF-states to represent belief states. This
extra cost, theoretically, depends on n, the size of Ca and
its elements. It can therefore be quite significant when Ca
contains a large number of effects with distinct antecedents.
Fortunately, this situation does not often arise in practice. In
most benchmarks, we observe that k is often less than 5.

Heuristics
Given a DNF-state ∆, DNF uses a heuristic that is a combi-
nation of the following three values:
• hgoal(∆): the number of goals satisfied by ∆.
• hcard(∆): the cardinality of ∆.
• hdis(∆): the square distance of ∆ to the goal, defined by:

hdis(∆) = Σδ∈∆(|G| − hgoal(δ))2

where G is the goal of the problem.
The heuristic function used in DNF is defined by triples
of the form 〈hgoal(∆), hcard(∆), hdis(∆)〉 with the lexico-
graphical order. While the first two values are inspired by
CPA and other planners, the third value aimed at promot-
ing DNF-states in which the satisfaction of goals among its
partial states is uniform. We observe that DNF favors the
number of satisfied goals value over the cardinality, while
CPA prefers cardinality over the number of satisfied goals.
The main reason for this decision lies in the fact that ΦDNF

maintains the minimality of the DNF-states during its exe-
cution.

Implementation Considerations
The implementation of the DNF system was developed by
modifying the source code of the CPA system. This choice

was motivated by the fact that both CPA and DNF rely on a
representation of belief states using disjunctive normal form
formulae. This also allows DNF to take advantages of the
preprocessing techniques developed for the most recent CPA
system (Tran et al. 2009). Those techniques include the for-
ward/backward simplification, the oneof combination, and
the goal splitting strategy. The oneof combination is aimed
at reducing the size of the DNF form of the initial state, by
combining separate oneof clauses. The goal splitting trans-
formation is aimed at partitioning a planning problem into
subproblems, each having only a subset of the final goal. For
completeness, the DNF system applies only the first two of
these transformations but not the last one (goal splitting)—
which is, in general, incomplete. Those techniques are built
in prolog inside the translator of the input theory. This trans-
lator reads the input in PDDL and write the output to a file
in a particular format that CPA or DNF can read. Beside the
advantage of reducing the size of the DNF form of the initial
state, this process usually generates overhead of the run-time
and it is significant for small or easy problems.

To improve DNF’s performance, we implement some op-
timizations aimed at reducing the cost of computing the suc-
cessor DNF-state. These include:
• considering effects of the form ψ → ϕ where ϕ is a set of

literals. This is useful for two reasons: (i): it is commonly
in PDDL used in the benchmarks; (ii) it removes the cost
caused by the computation in Line 10, Algorithm 3.

• computing e(a, δ′) for each δ′ ∈ expa(δ) during the com-
putation of expa(δ). This is possible due to Definition 2.
This is useful because it reduces the cost of computing
ΦDNF (a,∆) (Line 7, Algorithm 4).

• replacing “Y = Y ∪ (δ′ + ψ)” (Line 8, Algorithm 3)
with Y = Y ∪ {δ′} if the head of all effects with the
same antecedent ψ belongs to δ′. This does not change
the correctness of ΦDNF due to the observation that for
every effect ψ → ` in Ca and partial state δ′, if ` ∈ δ′

then the truth value of ψ in δ′ is unimportant. This is
useful since it eliminates the computation of δ′ +ψ when
it is not needed.

• The computation of X (Algorithm 4) can be modified to
obtain min(X) directly.

• computing SI by converting I into DNF-state where (i)
oneof-clause of the form oneof(f,¬f) is eliminated; (ii)
computing the cross product, denoted by Z, of all remain-
ing oneof-clauses; (iii) creating (a minimal) SI from the
set of facts, the set of or-clauses, and Z.

Experimental Evaluation
Planners

We compare the performance of DNF with four state-of-
the-art conformant planners: CPA, CFF, POND, and t0.
CPA is an approximation-based planner, and winner of the
NOND track at IPC-08; we employed the most recent re-
lease of this planner.There are several available versions of
POND which, in conjunction with different parameter op-
tions, return very different results. Nevertheless, no single
version/parameter combination appears to dominate the oth-
ers; in the experiments reported in this paper we decided to
select POND version 1.1.1 with the default execution set-



tings. The CFF system was obtained from the public release
at members.deri.at/~joergh/cff.html. The t0
system has been provided by its authors—the version we
used was obtained in April 2009.

The planners have been executed using the default set-
tings. All the experiments have been performed using a ded-
icated Linux Intel Core 2 Dual 9400 2.66GHz workstation
with 4GB of memory. The execution times reported here
represent the average of two runs with minimal variance. In
each experiment, we set a time-out limit of two hours.

Benchmarks
We have collected a number of benchmark problems from
different domains. For ease of evaluation, the results are di-
vided into benchmark suites, based on the source of the do-
mains: IPC-08 domains, domains from previous IPCs, and
challenging domains.
IPC-08 Domains: There are six domains used in IPC-08.
The adder domain is the synthesis of an adder boolean cir-
cuit. dispose (denoted by ds-n-m in the table), is the prob-
lem of retrieving objects, whose initial locations are un-
known, and placing them in a trash can; n represents the
number of locations and m the number of objects. forest,
raokey, and uts-cycle are variants of the grid problems.
Domains from Previous IPCs: This test-suit consists of
seven domains. The domains coins, comm, sortnet, and
uts_k are selected from IPC-06. The remaining domains,
logistics, ring, and safe, come from the distribution of
CFF and t0. Note that logistics is the “incomplete ver-
sion” of the well-known logistics domain.
Challenging Domains: The authors of t0 proposed some
challenging problems which are variants of the grid prob-
lem. Some of them have been used in IPC-08, e.g., dispose.
1_dispose, is a variant of dispose. push is another variant
of dispose, where objects can be picked up only at two des-
ignated locations, to which all objects have to be pushed to.
look_n_grab is about picking up objects that are sufficiently
close, and dumping them in the trashcan before continuing.

Experiments and Results
In our experimental study, we are interested in comparing
different planners, according to performance—i.e., speed of
computation—and scalability—ability to solve increasingly
larger problem instances. The execution times reported in
this section are expressed in seconds. For each experiment,
we report in the tables the execution time and the length of
the plan found. The execution time reported for each experi-
ment represents the total execution time; for DNF, CPA, and
t0 the execution time includes both the translation time as
well as the time to search for a plan. In the result tables, OM
denotes out-of-memory, NA denotes non-applicable bench-
mark, F means failure during execution of t0 probably due
to out-of-memory, TO denotes time-out.
IPC-08 Domains: The results for the benchmarks from
IPC-08 are reported in Table 1; ds represents the dispose
problem, raok represents the Rao’s key problem, uts-c
represents the uts-cycle problem, and uts-fc represents
the uts-full-connected problem. The results in Table 1 show

Problem DNF CPA(C) T0 CFF POND

adder-1 0.323/3 11.19/3 TO NA TO
adder-2 OM OM TO NA TO
block-1 0.91/7 1.3/7 0.04/5 0.02/6 0.01/6
block-2 0.94/38 1.55/41 0.2/23 TO 0.06/34
block-3 210/331 OM 16.7/83 TO 3.96/80
block-4 OM OM F TO TO
ds-4-3 1.58/185 4.9/288 0.22/122 0.62/73 219.7/98
ds-4-4 1.73/187 7.66/421 0.39/120 1.342/90 TO
ds-4-5 1.89/180 11.42/554 0.77/145 2.55/107 TO
ds-8-3 36.2/447 782/2462 135/761 TO TO
ds-8-4 51.9/733 1367/3596 750.4/835 TO TO
ds-8-5 63.3/878 2152/4730 F TO TO
ds-10-5 270/1286 TO F TO TO
forest-2 3.2/55 31.87/35 0.12/16 0.11/18 1.34/18
forest-3 1058/16343 TO 0.66/45 TO 386.8/65
forest-4 871.9/8207 OM 0.988/78 TO OM
forest-5 OM OM 2.88/129 TO OM
raok-2 0.56/39 1/32 0.12/21 0.07/34 F
raok-3 1.68/153 2.72/21 F 11.8/102 F
raok-4 TO TO F TO F
uts-c-3 1.18/3 2.31/3 0.12/3 NA no sol.
uts-c-4 1.29/6 17.67/6 0.42/7 NA no sol.
uts-c-5 1.37/10 OM 1.92/10 NA no sol.
uts-c-6 1.43/17 OM 9.46/17 NA no sol.
uts-c-7 2.82/32 OM 62.8/26 NA no sol.
uts-c-8 8.86/41 OM F NA no sol
uts-fc-4 OM OM F NA no sol.

Table 1: Execution times and plan lengths, IPC-08
that DNF outperforms the other planners in four out of six
domains (adder, ds, raokey, and uts-cycle). Furthermore,
the results show that DNF has a higher level of scalability—
being able to solve several instances that are not solvable by
the other planners.

Observe that, CPA outperforms t0 for adder, dispose,
and raokey while t0 is better than CPA in the other three
domains. Observe also that no planner is able to solve even
the smallest instance of the uts-full-connected domain.
t0 outperforms DNF for two smallest problems in the

uts-cycle domain, but it does not scale as well as DNF for
larger instances (in block, ds, raokey, and uts-cycle). t0
is the best planner in the forest domain, and the lengths of
the plans found are significantly shorter than those found by
DNF. We believe that this is due to the effectiveness of the
heuristic function used by FF in this domain. In contrast,
the heuristic function used by DNF, which relies heavily on
the number of satisfied goals, is not useful in this domain,
since the number of goals in each problem in this domain is
only two.

The experiments for POND show an inconsistent behav-
ior. The system largely outperforms the other planners in
the block domain, but it leads to time out or out of memory
situations for the majority of the other domains. The plans
returned by POND for raokey appear to be incorrect (they
are plans of length 1)—this has been denoted by F in the
table. For the uts-cycle domain, POND incorrectly reports
that there are no solutions (while solutions actually exist).

CFF is unable to handle problems that have disjunctive
goal clauses or conjunctions within oneof clauses.
Domains from previous IPCs: Table 2 reports the exper-



Problem DNF CPA(C) T0 CFF POND

coins-10 0.91/27 1.79/67 0.036/26 0.12/38 0.52/146
coins-15 1.41/67 7/362 0.12/79 2.64/89 10.2/124
coins-20 4.17/99 17.8/472 0.14/107 16.3/143 104/153
coins-21 OM OM F TO TO
comm-15 3.57/125 5.93/95 0.11/110 0.2/95 11.5/98
comm-20 117/296 174/239 0.51/278 4.99/239 OM
comm-25 1246/501 1767/389 1.53/453 39.8/389 OM
lg-4-2-2 1.92/41 2.3/41 0.036/19 0.01/19 0.26/21
lg-4-2-4 2.8/123 3.39/81 0.05/40 0.06/40 1.86/45
lg-4-3-2 3.72/70 3.8/39 0.06/24 0.03/23 2.02/26
lg-4-3-3 5.68/160 7.9/221 0.08/35 0.04/37 22.5/37
ring-2 0.85/7 1.41/8 0.01/5 0.01/7 0/6
ring-3 0.99/11 1.63/12 0.015/8 0.11/15 0.02/13
ring-4 1.02/15 1.77/17 0.02/13 1.45/26 0.13/16
ring-5 1.68/19 2.46/21 0.024/17 25.4/45 3.06/20
safe-10 0.87/10 0.88/10 0.016/10 0.02/10 no sol.
safe-30 1.05/30 2.85/30 0.072/30 1.24/30 no sol.
safe-50 1.49/50 20.6/50 0.232/50 27.17/50 no sol.
safe-70 2.48/70 90.8/70 0.488/70 113.6/70 no sol.
sort-05 0.93/15 0.94/12 0.196/15 NA 0/12
sort-10 1.85/54 3.18/39 OM NA 0.03/38
sort-13 8.92/90 39.7/41 F NA 0.08/55
sort-15 35.8/118 243/65 F NA 0.14/65
uts-k-10 2.51/66 20.1/80 0.89/59 14.55/58 18.6/68
uts-k-20 22.4/136 1423/197 11.6/119 1558/118 OM
uts-k-30 114/206 TO 59.8/179 TO OM
uts-k-40 344/276 TO 224/239 TO OM
uts-k-50 846/346 TO 592/299 TO OM
uts-k-55 1265/381 TO F TO OM

Table 2: Execution times from previous IPCs
imental results from several domains from previous IPCs.
lg represents the logistics domain and sort is the sortnet
domain. The table indicates that these domains seem to be
easy for most of the conformant planners. In this test-suite,
t0 is the best at five out of seven domains. On the other
hand, t0 does not succeed in sortnet; DNF provides great-
est scalability on the uts-k domain. Although DNF is not the
best in many of these domains, it is the only one which can
solve all the problems on the table with a reasonable execu-
tion time. The exception is the comm domain where DNF
does not scale well. We observe that in most problems of
this domain, the time spent by the pre-processor of DNF is
significant more than the time spent by DNF to search for
solution. For example, DNF requires only 0.96 seconds and
3.378 seconds to find a plan for comm-20 and comm-25 after
completion of the translation.

Challenging Domains: Table 3 presents the execution times
from the challenging domain; in the table, 1d denotes the 1-
dispose domain, lng denotes the look-and-grab domain. t0
can only solve a few of these problem instances, mostly the
smaller size ones. Note that the set of actions in these do-
mains is so complicated. We suspect that a heuristic heavily
dependent on the distance in the graph plan does not work
well in these domains. As such, t0, CFF, and POND do
not perform well in this test suite. CPA can solve most of the
problems, but is significantly slower than DNF. DNF proves
its absolute advantage in these difficult domains where the
translation time is negligible compared to the search time.
We also observe that, in these domains, the lengths of plans

Problem DNF CPA(C) T0 CFF POND

1d-2-5 1.57/14 1.45/12 F TO 46/14
1d-2-7 19.4/14 14.3/12 F TO OM
1d-2-9 451/14 OM F TO OM
1d-5-1 1.85/98 2.29/98 F TO OM
1d-5-3 127/122 264/102 F TO OM
1d-5-4 1732/536 OM F TO OM
1d-10-1 151/406 172/568 F TO OM
1d-10-2 568/536 OM F TO OM
lng-5-1-1 2.14/35 2.19/32 0.91/31 414/133 OM
lng-5-1-2 2.77/30 3.52/43 F TO OM
lng-8-1-1 27.4/99 28.7/94 114/415 TO OM
lng-8-2-2 51.4/73 60.5/98 F TO OM
lng-8-3-3 449/32 OM F TO OM
lng-10-1-1 157/157 160/204 F TO OM
lng-10-1-2 301/225 OM F TO OM
push-5-1 1.89/64 2.35/113 0.49/107 13.8/82 TO
push-5-3 6.6/523 2546/3282 161/251 513/105 TO
push-5-5 14/631 TO 451/213 TO TO
push-9-1 68/205 75/253 590/652 TO TO
push-9-2 90/998 OM F TO TO
push-9-3 157/2225 OM F TO TO
push-10-4 640/4387 OM F TO TO

Table 3: Execution times for challenging domains
found by DNF are usually shorter than the lengths of plans
obtained by other planners.

Considerations
We will now discuss in more details the difference between
DNF and t0 and between DNF and CPA.

DNF vs. t0: t0 often outperforms DNF in small or easy
instances, especially those from Table 2. On the other
hand, DNF provides better scalability to large or challeng-
ing instances. Both planners apply some preprocessing tech-
niques to the original problem specification before starting
the search for a plan. In t0, a conformant problem is trans-
lated to an equivalent classical problem and FF is used to
compute a solution of this problem, which will be finally
converted to a solution of the original problem. DNF, on the
other hand, employs the preprocessing techniques of CPA to
simplify the problem before the search starts. As it turns out,
the preprocessing techniques do not always pay off. In some
instances, the preprocessing overhead is significantly larger
than the time used by DNF to search for a solution. This
problem does not seem to occur in t0. Table 4 illustrates
this observation in selected small instances, where DNF’s
preprocessing time is definitely larger than the time needed
to find a solution.

On the other hand, for larger or challenging instances, the
overhead does not seem to play a significant role in the total
time of DNF while the searching time still remains small.
This explains the fact that DNF can scale up better than t0.

DNF vs. CPA: DNF was developed using the source code of
CPA. Nevertheless, the two systems are radically different.
CPA relies on an approximation for progression while DNF
uses complete reasoning. Even though both use sets of par-
tial states to represent belief states. The computation of the
successor belief state of these planners is different. For ex-
ample, executing action a in Example 2 in ∆ = {∅} results



Problem DNF T0 Problem DNF T0

block-1 0.006/0.904 0.04 lg-4-2-4 0.41/2.39 0.05
block-2 0.033/0.907 0.2 ring-2 0.006/0.844 0.01
uts-c-3 0.009/1.171 0.12 ring-3 0.032/0.958 0.015
uts-c-4 0.031/1.259 0.42 safe-10 0.009/0.861 0.016
coins-10 0.018/0.952 0.036 safe-30 0.125/0.925 0.072
coins-15 0.08/1.33 0.12 sort-05 0.09/0.84 0.196
comm-15 0.11/1.3 0.11 lng-5-1-1 0.11/2.03 0.91
lg-4-2-2 0.06/1.86 0.036 push-5-1 0.079/1.811 0.49

Table 4: DNF search time/translation time vs. t0 exec. time
in ∆ in CPA, while it results in {{f, h}, {¬f, g}} in DNF.

Another difference lies in the representation of the initial
state employed by these planners. Given an incomplete rep-
resentation I of the initial state, CPA computes an approxi-
mation I ′ of I which guarantees its completeness, and uses
I ′ as the initial state for its search. This may cause, in some
problems, the size of I ′ to grow significantly w.r.t. the size
of I , e.g., 65536 vs. 0 for the sortnet_15 problem. Observe
that the computation of I ′ from I can be costly, especially
when the size of I and the problem size (i.e., the number of
literals in the problem and number of conditional effects).
These observations are confirmed by the experimental re-
sults presented above. In addition, DNF can operate with
any DNF representation which is logically equivalent to I
(and still preserve soundness and completeness). This opens
the doors to the use of preprocessing to simplify the initial
DNF states and encode it using a compact DNF representa-
tion.

Since DNF can start searching with any equivalent DNF
form of the initial state, one may consider using prime impli-
cants as the main representation of formula in this planner.
Nevertheless, we chose the minimal DNF representation for
two reasons: (i) its computation is simple and the difference
in size of both forms is not significant given the de-facto rep-
resentation of initial state in the considered benchmarks; (ii)
the computation of the successor belief state appears to be
faster. The conversion of a DNF formula to prime implicants
form is expensive and it may generate overhead of compu-
tation of the progression function. For example, let us con-
sider an initial DNF-state ∆ = {{f, g}, {¬f, g}, {¬f,¬g}}
and an action a with the effect a : g → f . ∆ is enabling
for a. If the prime implicants form is used, ∆ is first con-
verted to {{f, g}, {¬f}}, which is not enabling for a. As
such, some overhead might be needed (e.g., computing par-
tial extensions) if prime implicant form is used.

Conclusion and Future Work
In this paper, we presented the design and implementation
of a best-first search, progression-based conformant planner,
which relies on a complete representation of belief states us-
ing disjunctive normal form formulate. We proposed a for-
malization of the representation and of the corresponding
progression function, and demonstrated its integration in a
best-first search planner. The planner has been experimen-
tally evaluated on several sets of benchmarks—with perfor-
mance results that are superior to those provided by other
state-of-the-art conformant planners. These results indicate
that DNF representations have the potential of providing fast

computation of successor belief states, without producing
excessive memory consumption—this leads to faster com-
putations and enhanced scalability.

Although the DNF representation appears to provide effi-
ciency and some level of scalability, there are still a number
of domains that are beyond the capabilities of our system (as
well as several of the other conformant planners). This is the
case, for example, of domains like uts-full-connected from
the IPC-08 competition—which leads to extremely large
disjunctive normal form formulae—and the adder—which
contains an extremely large number of actions. Our future
work will focus on how to modify our approach to effec-
tively cope with these domains.
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