
Conjunctive Representations in Contingent Planning:
Prime Implicates versus Minimal CNF Formula∗

Son Thanh To and Tran Cao Son and Enrico Pontelli
New Mexico State University

Department of Computer Science
sto|tson|epontell@cs.nmsu.edu

Abstract

This paper compares in depth the effectiveness of two con-
junctive belief state representations in contingent planning:
prime implicates and minimal CNF, a compact form of CNF
formulae, which were initially proposed in conformant plan-
ning research (To et al. 2010a; 2010b). Similar to the de-
velopment of the contingent planner CNFct for minimal CNF
(To et al. 2011b), the present paper extends the progression
function for the prime implicate representation in (To et al.
2010b) for computing successor belief states in the presence
of incomplete information to handle non-deterministic and
sensing actions required in contingent planning. The idea was
instantiated in a new contingent planner, called PIct, using
the same AND/OR search algorithm and heuristic function
as those for CNFct. The experiments show that, like CNFct,
PIct performs very well in a wide range of benchmarks. The
study investigates the advantages and disadvantages of the
two planners and identifies the properties of each represen-
tation method that affect the performance.

Introduction
Contingent planning (Peot and Smith 1992) has been con-
sidered one of the most challenging problems in automated
planning (Haslum and Jonsson 1999). It is charged with
finding a plan for an agent to achieve the goal in the presence
of imperfect knowledge about the world, non-deterministic
actions, and observations (also called sensing actions).

Most state-of-the-art contingent planners, e.g., MBP
(Bertoli et al. 2001), POND (Bryce et al. 2006), and
contingent-FF (Hoffmann and Brafman 2005), employ an
AND/OR search algorithm in the belief state space for con-
tingent solutions. Those planners have been shown to be
fairly effective in a number of domains. Yet, their scala-
bility is still modest, mostly due to the disadvantages of the
method they use to represent belief states as discussed in (To
et al. 2011a; 2011b). In those papers, we also discuss the
advantage and weakness of the translation-based approach
introduced in (Albore, Palacios, and Geffner 2009).

Recently, in (To et al. 2011a), we proposed a new ap-
proach to contingent planning which relies on the DNF rep-
resentation of belief states for conformant planning (To et

∗The authors are partially supported by NSF grant IIS-0812267.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

al. 2009). We extended the progression function for DNF to
handle non-deterministic and sensing actions and developed
a new AND/OR forward search algorithm, called PrAO, for
contingent planning. The resulting planner, called DNFct,
outperforms other state-of-the-art contingent planners by far
on most benchmarks. Nevertheless, DNFct does not perform
well in problems where the size of disjunctive formulae rep-
resenting the belief states is too large. This issue motivated
us to develop CNFct (To et al. 2011b) that employs the same
search algorithm PrAO as DNFct but uses CNF for belief
state representation. A comparison on the effectiveness of
the two representations, DNF and CNF, is presented in (To et
al. 2011b). That study shows that neither of the two methods
completely dominates the other. While DNFct can find a so-
lution faster on more problems, CNFct scales better with the
size of problems, especially those where the size of disjunc-
tive formulae representing the belief states is significantly
larger. The main reason for this lies in that the trade-off be-
tween the complexity for successor belief state computation
and the size of formulae representing belief states, which
affects also the computation and scalability.

The aforementioned study motivates us to search for a
middle ground between DNF and CNF representations of
belief states. Ideally, we would like to take the advantages of
both representations. This inspires us to investigate the use
of prime implicates (pi-formula) to represent belief states. In
this work, we extend the progression function defined in (To
et al. 2010b) to handle non-deterministic and sensing ac-
tions required for contingent planning and implements it in
a contingent planner, called PIct, that uses the same search
algorithm and same heuristic function as CNFct and DNFct
in (To et al. 2011b) do. The experiments validate our expec-
tation: PIct is faster than CNFct, scales better than DNFct,
and outperforms the other state-of-the-art planners on most
tested domains. The paper then compares the advantages
and disadvantages of pi-formula and CNF, identifies prop-
erties of the representation schemes that affect the perfor-
mance of the planners differently over the benchmarks.

The rest of the paper is organized as follows. The next
section reviews the basics of contingent planning. After-
wards, the prime implicate representation and CNF repre-
sentation in (To et al. 2010b) are extended for contingent
planning. It follows with a description of PIct and CNFct, an
empirical evaluation against state-of-the-art contingent plan-

ners. Next, a discussion about the effectiveness of the repre-
sentations is presented. The paper ends with a summary of
the contribution and the future work.

Background: Contingent Planning
A contingent planning problem is a tuple P =
〈F,A,Ω, I, G〉, where F is a set of propositions, A is a set
of actions, Ω is a set of observations, I describes the initial
state, and G describes the goal. A and Ω are disjoint, i.e.,
A ∩ Ω = ∅. A literal is either a proposition p ∈ F or its
negation ¬p. ¯̀ denotes the complement of a literal `—i.e.,
¯̀ = ¬`, where ¬p = p for p∈F . For a set of literals L,
L = {¯̀ | ` ∈ L}. We will often use a set of conjuncts to
represent a conjunction of literals.

A set of literals X is consistent (resp. complete) if for
every p∈F , {p,¬p}6⊆X (resp. {p,¬p}∩X 6=∅). A state is
a consistent and complete set of literals. A belief state is a
set of states. We will often use lowercase (resp. uppercase)
letters to represent a state (resp. a belief state).

Each action a in A is a tuple 〈pre(a), O(a)〉, where
pre(a) is a set of literals indicating the preconditions of ac-
tion a and O(a) is a set of action outcomes. Each o(a) in
O(a) is a set of conditional effects ψ → ` (also written
as oi : ψ → `), where ψ is a set of literals and ` is a lit-
eral. If |O(a)| > 1 then a is non-deterministic. O(a) is
mutually exclusive, i.e., the execution of a makes one and
only one outcome in O(a) occur. However, which outcome
that occurs is uncertain. Each observation ω in Ω is a tuple
〈pre(ω), `(ω)〉, where pre(ω) is the preconditions of ω (a
set of literals) and `(ω) is a literal.

A state s satisfies a literal ` (s |= `) if ` ∈ s. s satis-
fies a conjunction of literals X (s |= X) if X ⊆ s. The
satisfaction of a formula in a state is defined in the usual
way. Likewise, a belief state S satisfies a literal `, denoted
by S |= `, if s |= ` for every s ∈ S. S satisfies a conjunction
of literals X , denoted by S |= X , if s |= X for every s ∈ S.

Given a state s, an action a is executable in s if s|=pre(a).
The effect of executing a in s w.r.t. an outcome oi is

e(oi, s) = {` | ∃(oi : ψ → `). s |= ψ}
Let res(oi, s) = s \ e(oi, s) ∪ e(oi, s). The progression
function maps an action and a belief state to a belief state,
defined as Φ(a, S) = {res(oi, s) | s ∈ S, oi ∈ O(a)} if
S 6= ∅ and S |= pre(a); Φ(a, S) = undefined , otherwise.
Example 1. Given a domain F = {at(p1), at(p2), at(p3)},
a belief state S that contains only one state s =
{at(p1),¬at(p2),¬at(p3)}, an action leave(p1) with
pre(leave(p1)) = {at(p1)} and O(leave(p1)) = {o1, o2},
where o1 = {∅ → ¬at(p1), ∅ → at(p2)} and o2 =
{∅ → ¬at(p1), ∅ → at(p3)}. One can easily compute:
res(o1, s) = {¬at(p1), at(p2),¬at(p3)}, and res(o2, s) =
{¬at(p1),¬at(p2), at(p3)}. Hence, Φ(leave(p1), S) =
{{¬at(p1), at(p2),¬at(p3)}, {¬at(p1),¬at(p2), at(p3)}}.

Observe that the non-deterministic action leave(p1)
causes the certain belief state S to become uncertain.

Let ω be an observation in Ω; we define S+
ω = {s | s ∈

S, s |= `(ω)} and S−ω = {s | s ∈ S, s |= `(ω)}.
Given a contingent planning problem P , a structure T

constructed from the actions and observations of P is said

to be a transition tree of P if
• T is empty, denoted by [], or T = a, where a ∈ A; or
• T = a◦T ′, where a ∈ A and T ′ is a non-empty transition

tree; or
• T = ω(T+|T−), where ω ∈ Ω and T+ and T− are tran-

sition trees.
Intuitively, a transition tree represents a conditional plan,
as defined in the literature, and can be represented as an
AND/OR graph whose nodes are belief states and links are
AND/OR-edges. Let ⊥ denote undefined . The result of the
execution of a transition tree T in a belief state S, denoted
by Φ̂(T, S), is a set of belief states defined as follows:
• If S = ⊥ or S = ∅ ∧ T 6= [] then Φ̂(T, S) = ⊥; else
• If S 6= ∅ then Φ̂([], S) = {S}, else Φ̂([], ∅)=∅; else
• If T = a, a ∈ A, then Φ̂(a, S) = {Φ(a, S)}; else
• If T = a ◦T ′, a∈A, then Φ̂(T, S) = Φ̂(T ′,Φ(a, S)); else
• If T = ω(T+|T−) then Φ̂(T, S) = Φ̂(T+, S+

ω) ∪
Φ̂(T−, S−ω) if S |= pre(ω), and Φ̂(T, S) = ⊥ otherwise.
Note that the definition of Φ̂ allows the application of an

observation ω in a belief state where `(ω) is known, if the
subtree rooted at the resulting empty belief state is empty.

Let SI be the initial belief state described by I . A transi-
tion tree T is said to be a solution of P if Φ̂(T, SI) 6= {∅}
and every belief state in Φ̂(T, SI) \ {∅} satisfies the goal G.

Example 2 ((To et al. 2011b)). Consider a robot R
which needs to move (mv) from room A to room B
through a door D whose opened-closed state is un-
known. R can sense (s) whether D is opened and
toggle (t) to change its status. The planning prob-
lem P is specified by F={at(A), at(B), opened},
A = {mv, op}, Ω = {s}, I = at(A), and
G = at(B); where mv = (opened, {at(A)→¬at(A),
at(A)→at(B), at(B)→¬at(B), at(B)→at(A)}),
t = (true, {¬opened→opened, opened→¬opened}),
and `(s) = opened.

Figure 1 illustrates a solution for the problem, which is
rather a directed acyclic graph (DAG) than a tree and corre-
sponds to the transition tree s(mv | t ◦mv). The solution
depth, which is the length of the longest action sequence that
leads to a goal node from the initial node (s ◦ t ◦mv), is 3.

¬opened
at(A), ¬at(B)

N2

opened
at(A), ¬at(B)

N1

opened
¬at(A), at(B)

N3 (goal)

?opened
at(A), ¬at(B)

N0 (initial)
sense (s) sense (s)

move (mv)

toggle (t)

Figure 1: A contingent solution in AND/OR forward search

The next section extends the progression functions in (To
et al. 2010b) to deal with non-deterministic actions and ob-
servations for contingent planning.

Prime Implicates and CNF Representations

A clause α is a disjunctive set of literals. α is tautological if
{f,¬f} ⊆ α for some f ∈ F . α is a unit clause if it contains
only one literal, called a unit literal. A CNF-formula is a set
of clauses. A literal ` is in a CNF formula ϕ, denoted by
` ∈ ϕ, if there exists α ∈ ϕ such that ` ∈ α. By ϕ` we
denote the set of clauses in ϕ which contain `.

A clause α subsumes a clause β if α ⊂ β. A clause α of
a CNF-formula ϕ is said to be trivially redundant for ϕ if
it is either tautological or subsumed by another clause in ϕ.
The technique of simplifying a CNF formula by removing
the trivially redundant clauses from it is called reduction.

Two clauses α and β are said to be resolvable if there ex-
ists a literal ` such that ` ∈ α, ¯̀∈ β, and their resolvent α|β,
defined by α|β = (α\{`})∪ (β \{¯̀}), is a non-tautological
clause. Observe that, if α and β are two resolvable clauses
in a CNF formula ϕ then ϕ can be simplified to an equiv-
alent smaller CNF formula by replacing the set of clauses
subsumed by α|β in ϕ with α|β, provided that this set is
not empty (otherwise the formula will be increased by α|β).
This technique is referred to as subsumable resolution.

A clause α is said to be an implicate of a formula ϕ if
ϕ |= α. It is a prime implicate of ϕ if there is no other
implicate β of ϕ such that β subsumes α. By PI(.) we
denote the function that returns the set of prime implicates
of a formula. A CNF formula ϕ is a prime implicate formula
(pi-formula) if ϕ = PI(ϕ).

A PI-state is a pi-formula. A PI-belief state is a set of
PI-states.

A CNF formula ϕ is said to be a CNF-state if
• ϕ does not contain a trivially redundant clause; and
• ϕ does not contain two resolvable clauses γ and δ such

that γ|δ subsumes a clause in ϕ.
Observe that a CNF-state is minimal in the sense that it

cannot be simplified to a smaller CNF-formula using re-
duction or subsumable resolution. Conversely, one can use
these techniques to simplify an arbitrary CNF-formula to an
equivalent (usually smaller) CNF-state. By min(.), we de-
note an idempotent function that maps a CNF-formula to an
equivalent CNF-state. Note that a PI-state is, by definitions,
also a CNF-state but the converse is not necessarily true.

A set of CNF-states is called a CNF-belief state.
For two CNF formulae ϕ = {α1, . . . , αn} and ψ =

{β1, . . . , βm}, the cross-product of ϕ and ψ, denoted by
ϕ × ψ, is the CNF-formula defined by {αi ∪ βj | αi ∈
ϕ, βj ∈ ψ}. If either ϕ or ψ is empty then ϕ × ψ = ∅.
The reduced-cross-product (resp. min-cross-product) of ϕ
and ψ, denoted by ϕ ⊗ ψ (resp. ϕ ⊗min ψ), is the CNF-
formula obtained from ϕ × ψ by removing all trivially re-
dundant clauses in ϕ × ψ (resp. CNF-state min(ϕ × ψ)).
For a set of CNF formulae Ψ = {ϕ1, . . . , ϕn}, ×[Ψ] (resp.
⊗[Ψ],⊗min[Ψ]) denotes ϕ1× . . .×ϕn (resp. ϕ1⊗ . . .⊗ϕn,
ϕ1 ⊗min . . . ⊗min ϕn). It is easy to see that ×[Ψ], ⊗[Ψ],
and ⊗min[Ψ] are a CNF-formula equivalent to

∨n
i=1 ϕi.

It can be proved that the reduced-cross-product of a set of
pi-formulae (PI-belief state) is also a pi-formula (PI-state).

Let oi be an outcome of action a. A CNF-formula ϕ is
enabling for oi if for every conditional effect oi : ψ → `,

either ϕ |= ψ or ϕ |= ¬ψ holds. A set of CNF-formulae Ψ
is enabling for oi if every ϕ∈Ψ is enabling for oi.

For an enabling CNF-formula ϕ for oi, the effect of a in ϕ
when the outcome oi occurs, denoted by e(oi, ϕ), is defined
by: e(oi, ϕ) = {` | oi : ψ → `, ϕ |= ψ}.

The update of a CNF-state ϕ by a literal `, denoted by
upd(ϕ, `), is a CNF-state defined by:

upd(ϕ, `) = min((ϕ \ (ϕ` ∪ ϕ`)) ∧ ` ∧ ϕ`|ϕ`)
where ϕ`|ϕ`={α|β | α∈ϕ`, β∈ϕ`, α and β are resolvable}

Intuitively, upd(ϕ, `) encodes the CNF-state after execu-
tion of an action, that causes ` to be true, in ϕ.

For a PI-state ϕ, one can prove that every resolvent in
ϕ`|ϕ` either is trivially redundant for (ϕ \ (ϕ` ∪ ϕ`)) or
already exists in this set. Thus, the update of PI-state ϕ is as

updpi(ϕ, `) = (ϕ \ (ϕ` ∪ ϕ¯̀)) ∧ `
One can also prove that updpi of a PI-state results in a

PI-state. Furthermore, the result of updating a PI-state (resp.
CNF-state) ϕ w.r.t. a consistent set of literals L is indepen-
dent from the order in which the literals in L are introduced.
For a consistent set of literals L, we define updpi(ϕ,L) =
updpi(updpi(ϕ, `), L \ {`}) for any ` ∈ L if L 6= ∅ and
updpi(ϕ, ∅) = ϕ. For a CNF-state ϕ, similarly, we denote
upd(ϕ, ∅) = ϕ and upd(ϕ,L) = upd(upd(ϕ, `), L \ {`})
for any ` ∈ L if L 6= ∅.
Definition 1. Let ϕ be a PI-state and γ be a consistent set of
literals. The enabling form of ϕ w.r.t. γ, denoted by ϕ ⊕ γ,
is a PI-belief state defined by

ϕ⊕ γ =

{
{ϕ} if ϕ |= γ or ϕ |= ¬γ
{PI(ϕ ∧ γ), P I(ϕ ∧ ¬γ)} otherwise

where ¬γ is the clause {¯̀ | ` ∈ γ}.
It is easy to see that ϕ ⊕ γ is a set of (at most two) PI-

states such that for every δ ∈ ϕ ⊕ γ, δ |= γ or δ |= ¬γ.
For a PI-belief state Ψ, let Ψ + γ =

⋃
ϕ∈Ψ(ϕ ⊕ γ). For an

outcome oi of action a and a PI-state ϕ, let enbpi(oi, ϕ) =
((ϕ⊕ψ1)⊕. . .)⊕ψk where oi = {ψ1 → `1, . . . , ψk → `k}.
Definition 2. Let ϕ be a PI-state and a be an action.
The progression function between PI-states, denoted by
ΦPI (a, ϕ), is defined as follows:
• ΦPI (a, ϕ) = ⊗[

⋃
oi∈O(a){updpi(χ, e(oi, χ)) | χ ∈

enbpi(oi, ϕ)}] if ϕ |= pre(a); and
• ΦPI (a, ϕ) = ⊥ otherwise.

Given a fluent formula ϕ, by BS(ϕ) we denote the belief
state represented by ϕ. By definition, for a sensing action
ω, the execution of ω in BS(ϕ) results in two disjoint belief
states S1 and S2 such that S1∪S2=BS(ϕ), S1|=`(ω), and
S2|=`(ω). Observe that S1 ≡ ϕ ∧ `(ω) and S2 ≡ ϕ ∧ `(ω).
Thus, the execution of ω in a PI-state ϕ results in two PI-
states: ϕ+

ω = PI(ϕ ∧ `(ω)) and ϕ−ω = PI(ϕ ∧ `(ω)).
Similarly to the definition of Φ̂, we define Φ̂PI , an ex-

tended progression function that maps a transition tree and
a PI-state to a set of PI-states, by replacing each belief state
S with its encoding PI-state ϕ, where, for each observation
ω in Ω (last item), ϕ+

ω and ϕ−ω play the role of S+
ω and S−ω ,

respectively. The correctness of Φ̂PI is given next.
Theorem 1. Let ϕ be a PI-state and T be a transition tree.
Then each belief state in Φ̂(T,BS(ϕ)) is equivalent to a

PI-state in Φ̂PI (T, ϕ), and each PI-state in Φ̂PI (T, ϕ) rep-
resents a belief state in Φ̂(T,BS(ϕ)).

Thus, Φ̂PI is equivalent to the complete semantics of Φ̂.
Similar to defining ΦPI , the definition of the progression

function for CNF-states, denoted by ΦCNF and used in the
development of CNFct, is presented in (To et al. 2011b).

The Planner PIct
Implementation of PIct: We built PIct on top of PIP (To
et al. 2010b) using the (extended) prime implicates repre-
sentation. Like CNFct and DNFct, PIct employs the same
AND/OR search algorithm PrAO (To et al. 2011a) for con-
tingent planning and the same input language extended from
that of PIP to allow non-deterministic and sensing actions.
Heuristics: For a better understanding of the effectiveness
of the representations, PIct uses the same heuristic function
as CNFct and DNFct do, based on the number of satisfied
subgoals and the number of known literals in the belief state.
Observe that the second component of the heuristic func-
tion prioritizes expansion of nodes with less uncertainty and
smaller size in all the representations. Note that the use of
the same search framework, i.e., same search algorithm and
heuristic function, allows the planners to expand/generate
the same sets of nodes (belief states) in the search graph.
Empirical Performance: We compare PIct with CNFct,
DNFct, CLG, contingent-FF, and POND 2.2 on a large set
of benchmarks. These planners are known to be among the
best available contingent planners. We executed contingent-
FF with both available options (with and without helpful ac-
tions) and report the best result for each instance. POND
was executed with AO* search algorithm (aostar). For CLG,
we observed that the translation time can vary in a very wide
range on each instance so we report the average result of sev-
eral execution times. All the experiments were performed on
a Linux Intel Core 2 Dual 9400 2.66GHz workstation with
4GB of memory with the time-out limit of two hours.

Most of the benchmarks have been collected from the
contingent-FF distribution (btcs, btnd, bts, ebtcs, egrid,
elogistic, and unix) and from the CLG distribution (cball,
doors, localize, and wumpus). The others including e1d,
ecc, edisp, and epush are variations of the challenging
conformant domains 1-dispose, corner-cube, dispose, and
push, respectively. These domains are modified by us to
force planners to generate conditional plans as the new prob-
lems do not have a conformant plan.

Tables 1 reports the overall performance of PIct in com-
parison with CNFct/DNFct and the other state-of-the-art con-
tingent planners. The columns 2, 3, and 4 report the to-
tal run-time in seconds for PIct, CNFct, and DNFct respec-
tively. Since PIct, CNFct, and DNFct use the same search
framework, they return the same solution for each problem
(except for the case that one finds a solution but another
produces out-of-memory or time-out for the same problem).
Therefore we report in the 5th column the size s (number of
actions) and the depth d of the solutions for these planners.
In the last three columns of the other planners—written as t
(s/d)—t, s, and d denote the total run-time in seconds, the

Problem PIct CNFct DNFct s/d CLG: t (s/d) cont-FF: t (s/d)Pond: t (s)

btcs-70 83.59 111 2.76 139/70 331 (140/140) 123 (139/70) 74 (139)
btcs-90 247 347 5.63 179/90 503 (180/180) 477 (179/90) TO
btnd-70 43 38.12 1.47 209/72 NA 536 (140/72) TO
btnd-90 119.5 112.4 2.28 369/92 NA 2070 (180/92) TO
bts-70 79.6 102 1.53 139/70 618 (70/70) 1672 (70/70) TO
bts-90 235 319 2.6 179/90 634 (90/90) TO TO
cball.3-4 35 65.2 346 93.8k/71 761 (1.3M/61) TO 572 (35k)
cball.5-2 4.38 6.97 22.5 5169/107 167 (72.8k/107) TO OM
cball.5-3 96 206 OM 134k/166 TO TO OM
cball.9-1 29.4 32 23.5 365/193 113 (3385/197) TO OM
cball.9-2 306 581 OM 43k/374 TO TO OM
doors-7 5.14 5.64 5.27 2193/53 7.6 (2153/51) E 18 (2159)
doors-9 46.98 63.3 58.8 45k/89 585 (46k/95) E 1262(44k)
doors-11 OM 1429 OM 1.1M/124 TO E TO
e1d-3-5 80.3 118 191 296k/183 TO TO TO
e1d-5-2 3.71 5.44 4.31 2887/132 1382 (13k/99) E TO
e1d-5-3 54.4 93.8 91.5 77k/407 TO TO TO
e1d-9-1 31.3 33.8 21.9 324/184 TO TO TO
e1d-9-2 320 578 165 32k/744 TO TO TO
ebtcs-70 36.8 30.6 1.04 139/70 24.79 (209/71) 63 (139/70) 24.7 (139)
ebtcs-90 107 97 1.56 179/90 69.99 (269/91) 255 (179/90) TO
ecc40-20 2.04 1.15 1.15 466/70 2089 (275/75) 37.1 (288/63) TO
ecc75-37 7.75 3.04 3.24 903/202 TO 999 (529/114) TO
ec119-59 25 8.26 9.18 1.4k/290 TO TO TO
edisp.3-5 84.6 134 194 335k/90 TO E TO
edisp.5-2 3.6 5.33 2.91 2.7k/97 27.4 (8k/87) E TO
edisp.5-3 50.3 91 84 74k/139 1588 (266k/112) E TO
edisp.9-1 29.6 31.6 20.4 325/177 140 (1051/237) E TO
edisp.9-2 293 527 164 24k/320 TO E TO
egrid-3 1.8 2.06 1.8 352/47 1180 (111/28) 943 (58/41) 105 (148)
egrid-4 3.01 3.73 3.06 849/54 1558 (884/48) TO OM
egrid-5 9.67 13 10.05 1.4k/136 657 (208/40) TO OM
elog.-7 0.94 0.98 0.9 416/126 0.11 (210/22) 0.04 (223/23) 0.95 (212)
elog.-L OM TO OM 90 (36152/73) TO OM
epush3-5 25.4 38.9 123 33k/149 TO TO TO
epush3-6 1384 495 OM 262/179 TO TO TO
epush6-2 11 12.1 9.93 5k/241 447 (24.5k/148) TO TO
epush6-3 183 310 362 103k/383 TO TO TO
epsh10-1 75.5 79.4 54.9 864/345 342 (1983/446) TO TO
epsh10-2 659 1151 399 65k/839 TO TO TO
local.-5 1.66 0.64 0.54 48/31 0.57 (112/24) 42 (53/53) TO
local.-9 30.7 3.6 0.82 110/63 12.8 (386/50) MC TO
local-13 346 46.9 2.17 289/186 OM MC TO
unix-2 0.66 0.68 0.65 48/37 0.35 (50/39) 0.13 (48/37) 1.71 (48)
unix-3 2.04 2.32 1.87 111/84 4.93 (113/86) 3.84 (111/84) OM
unix-4 18.9 21.3 17.1 238/179 78.9 (240/181) 143 (238/179) OM
wump.-5 2721 2.34 2 1.3k/43 5.61 (754/41) E 4.65 (587)
wump.-7 TO 61.1 56.4 38k/86 91.6 (6552/57) E TO

total: 48 16/45 5/47 26/43 1/30 2/15 0/9

Table 1: Comparing PIctwith CNFct/DNFct and other planners.
TO: time-out; OM: out-of-memory; NA: not supported (CLG does
not support non-deterministic actions); E: incorrect report; MC:
too many clauses (for contingent-FF to handle).
solution size, and the solution depth, respectively (POND
does not report the depth information). Usually, d and s are
criteria for evaluating the quality of a solution. We consider
d to be more important, as it is the maximum number of
actions to be executed to obtain the goal. The last row sum-
marizes the performance of the planners in the format n1/n2,
where n1 denotes the number of solutions the planner found

quickest and n2 is the number of instances (out of total 48
instances) the planner is able to find a solution for.

We observed that there are several problems for which
the experimental results differ from those reported in the lit-
erature. We suspect that the versions of the other planners
we downloaded perform differently than their predecessors,
and/or the environments for conducting the experiments are
different (e.g., different hardware/OS).

Table 1 shows that the quality of the solutions found by
PIct, CNFct, and DNFct is, in general, comparable to those
found by the other planners. However, each of our plan-
ners performs clearly much better than the others on most
domains, except elogistic. We believe that the heuristic
scheme used in our planners is not suitable for this domain.
The summary results in the last row show that, within a large
set of benchmarks, DNFct is fastest with the greatest value
of n1, CNFct is the most scalable planner that can solve most
instances (47 out of 48), and PIct is in between. We will in-
vestigate the reason that PIct is faster but able to solve less
instances compared with CNFct in the next section1.

Effectiveness: Prime Implicates v.s. CNF
This section analyzes how prime implicates and CNF repre-
sentations affect the performance and scalability of the cor-
responding planners, identifies the reasons why their relative
effectiveness varies considerably across classes of problems.

To explain the good scalability of PIct and CNFct, we
first consider the cases of cball-n-m, e1d-n-m, edis-n-m,
and epush-n-m in which PIct, CNFct, and DNFct perform
best. In these domains, n and m denote the number of loca-
tions and the number of objects, respectively. The location
of each object oi (i = 1, . . . ,m) is initially unknown among
n given places pj (j = 1, . . . , n), and is described by the
literal at(oi, pj). The number of states in the initial belief
state, hence, is linear in nm, i.e., exponential in m. On the
other hand, the size of the initial PI-state/CNF-state in these
domains is linear in m× n2, i.e., linear in m. This explains
why PIct and CNFct can scale best when m increases if n
is not too large and DNFct perform best when n is large and
m is small enough (1 or 2). Observe that the performance of
CLG is comparable to our planners when m = 1.

In general, the performance and scalability of PIct and
CNFct are highly competitive due to the compact represen-
tation2 and the efficient progression function implemented in
each of them. However, PIct is faster while CNFct is more
scalable, as observed earlier. When the size of PI-states and
the size of CNF-states are comparable, ΦPI is much faster
than ΦCNF for the following reasons:
• Checking satisfaction of a literal or clause in a PI-state

is linear in the number of clauses of the PI-state, while it
is exponential in a CNF-state.

• Update function: It is easy to see that updpi is much

1A detailed comparison between CNF representation (CNFct)
and DNF representation (DNFct) is given in (To et al. 2011b).

2Note that the compactness of a representation affects not only
the scalability, but also the performance (in term of run-time) of the
planner as the larger the formula, the more the computation and the
more the memory consumption, i.e., the slower the system.

faster than upd since upd needs to compute the resolvent
clauses and the min(.) function but updpi does not.

• Cross-product: The reduced-cross-product function ⊗
used to convert a PI-belief state to the equivalent PI-state
is faster than the min-cross-product function ⊗min used
for CNF-states.

• PI(.) v.s. min(.): These functions used to convert a
CNF-formula to the equivalent PI-state and CNF-state, re-
spectively. In general, PI(.) is exponential while min(.)
is polynomial (in the size of the respective formula).
However, a complete computation of the PI-state from
a CNF-formula is needed only once for the initial belief
state. During the search, the PI-states can be computed
incrementally, mostly when adding a literal or clause to
a PI-state, using an incremental algorithm for computing
prime implicates. This computation is usually very fast,
even much faster than min(.) in most problems as ob-
served in the experiments.
One will be able to observe that this analysis agrees with

the empirical results presented later.
On the other hand, there are problems where the PI-states

are much larger than the equivalent CNF-states and/or PI(.)
generates too many intermediate non-prime implicates and
takes so much time. In this case, PIct does not perform well
and may cause out-of-memory, while CNFct does not.

For a better understanding of the performance of PIct
and CNFct on the benchmarks, we report the size of PI-
states/CNF-states and a breakdown of their execution time
(in seconds) w.r.t the aforementioned operations of ΦPI

and ΦCNF in Table 2. The first column—in the format
n1/n2|n3/n4—reports the number of non-unit clauses in
the initial PI-state (n1) and the initial CNF-state (n2), and
the average number of non-unit clauses in a PI-state (n3) and
CNF-state (n4), respectively. If n1 = n2 (resp. n3 = n4)
then we omit one. Since the computation cost of ΦPI (resp.
ΦCNF) and the memory consumption depends mostly on the
non-unit clauses in the PI-state (resp. CNF-state), only non-
unit clauses are accounted for in Table 2. The second col-
umn denotes the search time of PIct (left) and CNFct (right)
as the translation time of the input theory for both planners
are the same and independent from the representation used.
The time PIct spends to compute the initial PI-state from the
initial CNF-formula is reported in the third column. The last
four columns report the computation time of PIct (left) and
CNFct (right) for conversion of PI-states/CNF-states, check-
ing satisfaction, updating formulae, and cross-production
process respectively. Note that these items are not disjoint,
e.g., the cross-production process for CNFct (⊗min) also in-
curs the computation ofmin(.) function. On the other hand,
there are such operations that consumes a significant amount
of time as writing to/reading from memory and heuristic
evaluation that are not reported here. This explains why the
breakdown times do not add up and they are much smaller
for PIct than for CNFct but the overall search time is not that
different, on several instances, e.g., unix-4.

The experiments reveal that, in most domains, the initial
PI-state is the same as the initial CNF-state. The only ex-
ception is wumpus, where the initial PI-state is much larger
than the corresponding initial CNF-state, e.g., 15,866 vs.

Problem # of clauses search init inc. PI(.)/ sat. check update x-prod
init | average PIct/ CNFct PI(.) min(.) PIct/ CNFct updpi / upd ⊗/ ⊗min

btcs-90 4006 | 679 246/ 346 5.86 71.2/ 184.6 0.37/ 29.5 0.02/ 38.8 31.9/ 112
btnd-70 2347 | 215 42.3/ 37.4 2.03 14.6/ 11.2 0.1/ 3.95 0.006/ 1.27 0.56/ 2.87
bts-70 2416 | 412 78.8/ 101 2.13 25.4/ 47 0.15/ 9.38 0.008/ 8.94 10.7/ 32.5
cball5-3 654 | 19.7 94.8/ 204 0.09 8.4/ 141.3 29.4/ 46.6 0.55/ 43.77 0.4/ 37.4
doors-9 148 | 5.62 23.3/ 39.6 0.01 0.55/ 6.78 11.4/ 19.4 0.069/ 2.26 0.16/ 4.6
doors-11 280 | 7.76 OM/ 1324 ? ?/ 216.9 ?/ 649.3 ?/ 69.48 ?/ 144
e1d-5-3 903 | 13.2 52.96/ 92.4 0.3 3.7/ 48.08 17.1/ 23.6 0.42/ 15.45 0.41/ 17.2
edisp9-2 6482 | 199 270.7/ 505 15.4 14.57/ 477 24.7/ 57.2 0.3/ 128.6 0.19/ 116
egrid-5 10 | 0.04 7.92/ 11.3 0.00 0.016/ 0.7 3.8/ 5.73 0.09/ 0.52 0.19/ 0.86
epush10-2 9902 | 74 589/ 1081 36.82 16.9/ 684 151.5/ 239 0.72/ 180 0.81/ 222
local.-11 2851 | 372/134 105/ 12.1 2.96 47.7/ 2.26 0.38/ 1.13 0.004/ 0.07 30.8/ 6.9
unix-4 1771| 461 3.46/ 5.86 1.14 0.11/ 2.32 0.64/ 2.55 0.001/ 0.6 0.001/ 0.7
wump.-5 16k/88 | 82/6.8 2719/ 0.92 2711 2.74/ 59 0.29/ 0.28 0.01/0.2 0.01/0.21

Table 2: The size of PI-states/CNF-states and the execution time
breakdown of PIct/CNFct on different benchmarks.
88 non-unit clauses for wumpus-5. On this domain, PIct
spends most of the execution time for the computation of the
initial PI-state (2,711 seconds for wumpus-5 and time-out
for wumpus-7). The experiments also show that, in most
domains, the set of expanded/generated PI-states is iden-
tical to the set of expanded/generated CNF-states, except
wumpus and localize. In these two domains, the PI-states
are much larger than the corresponding CNF-states, making
the performance of PIct much worse than CNFct. Observe
that although the sets of expanded PI-states and CNF-states
are the same on btnd, CNFct outperforms PIct due to the fact
that the computation of the PI-states (PI(.)) takes too much
time. There is an interesting case of doors, where PIct is
the best on the smaller instances, but has out-of-memory on
doors-11 while CNFct does not, even though both planners
expanded the same set of formulae. We suspect that PI(.)
generates too many intermediate implicates and/or the PI-
states generated by PIct are much larger than that by CNFct.
epush-3-6 is an exception where CNFct outperforms PIct
even though the breakdown information supports PIct and
PIct is better on the smaller instances of this domain.

In the other cases, PIct is observed to outperform CNFct.

Conclusion
This paper proposed a new approach to contingent planning
using prime implicates as a belief state representation and
implemented it in the new planner PIct; and investigated the
effectiveness of this representation in comparison with CNF
representation, by means of PIct and CNFct. Both planners
employs the same search framework.

The investigation showed that the belief state represen-
tation plays an important role in the context of contingent
planning, as both planners provide highly competitive per-
formance in a wide range of benchmarks, even when us-
ing an unsophisticated heuristic scheme; and they perform
differently through all benchmarks even in the same search
framework. The paper identified the advantage and weak-
ness of each representation and the classes of problems that
promote or degrade the corresponding planner. In summary,
PIct can find a solution faster, while CNFct scales better on
the size of the problem and requires less memory. When the

sizes of the two representations are comparable, the use of
prime implicates results in a better performance. However,
there are few problems where the prime implicate represen-
tation is much larger or PIct generates so many intermediate
implicates, resulting in the poor performance in term of ex-
ecution time and/or scalability. Fortunately, as shown in the
experiments, in most domains, the sets of formulae encoding
the belief states in both representations are almost the same.

Finally, we would like to note that the comparison on the
planners PIct, CNFct, and DNFct helps evaluate the effec-
tiveness of different belief state representations as they use
the same search framework. It also shows that designing a
compact yet efficient and scalable belief state representation
for contingent planning is an important and difficult task. As
such, a systematic comparison—similar to the study in this
paper—between these representations with other representa-
tions (e.g., DNNF or OBDD) using the same search frame-
work will be very useful. To make this feasible, we will
need to define a direct, complete, and efficient progression
function—similar to ΦPI and ΦCNF—employing each re-
spective representation. To the best of our knowledge, such
a definition has not been proposed. We plan to tackle this
issue in our future work. A detailed analysis of memory
consumption and time requirement will also be needed.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
Translation-based Approach to Contingent Planning. IJCAI.
P. Bertoli et al. 2001. MBP: a model based planner. IJCAI
Workshop on Planning under Uncert. and Incomplete Inf..
Hoffmann, J. and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS.
Bryant, R. E. 1992. Symbolic boolean manipulation with
ordered binary decision diagrams. ACM Computing Surveys,
24(3):293–318.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Planning
Graph Heuristics for Belief Space Search. JAIR, 26:35–99.
Haslum, P. and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Proc. of
ECP-99, Lect. Notes in AI Vol 1809. Springer.
Peot, M. and Smith, D. 1992. Conditional nonlinear plan-
ning. AIPS.
To, S. T.; Pontelli, E.; and Son, T. C. 2009. A Conformant
Planner with Explicit Disjunctive Representation of Belief
States. In ICAPS.
To, S. T.; Son, T. C.; and Pontelli, E. 2010a. A New Ap-
proach to Conformant Planning using CNF. In ICAPS.
To, S. T.; Son, T. C.; and Pontelli, E. 2010b. On the Use of
Prime Implicates in Conformant Planning. In AAAI.
To, S. T.; Son, T. C.; and Pontelli, E. 2011a. Contingent
Planning as AND/OR forward Search with Disjunctive Rep-
resentation. In ICAPS.
To, S. T.; Pontelli, E.; Son, T. C. 2011b. On the Effectiveness
of CNF and DNF Representations in Contingent Planning.
In IJCAI.

