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ABSTRACT

ADAPTING SNOBOL-STYLE PATTERNS TO THE UNICON LANGUAGE

BY

SUDARSHAN GAIKAIWARI

Master of Science in Computer Science

New Mexico State University

Las Cruces, New Mexico, 2005

Dr. Clinton L. Jeffery, Chair

String scanning and pattern matching is used in diverse applications such

as bioinformatics, natural language processing and web applications. However

most mainstream languages do not provide facilities for string processing other

than regular expressions. By directly supporting pattern matching, programming

languages can provide programmers with greater power and productivity. One of

the ultimate classic string processing languages is SNOBOL4, and its pattern data

type is so much more powerful than the dominant paradigm of regular expressions

that it is one of relatively few languages from the 1960’s to survive to this day.

Unfortunately, SNOBOL4 lacks essential concepts for large modern applications.

Its successor Icon, intentionally lacks SNOBOL4’s pattern data type. This thesis

explores the reintroduction of SNOBOL-style patterns as a built-in type to a
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modern object-oriented successor to Icon called Unicon.
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CHAPTER 1

INTRODUCTION

Programming languages enhance productivity by providing facilities for

common tasks. Searching for patterns in text and replacing them is one of the most

common tasks in programming. This task is also interesting from the perspec-

tive of theoretical computer science. The present work explores enhancing Unicon

with a more powerful pattern matching construct. The first chapter explores the

context of this work by looking at applications of string processing. SNOBOL4

provided facilities for string processing in the form of its pattern matching frame-

work, while Icon provides the same facilities in its string scanning framework.

Both pattern matching and string scanning are also discussed in the first chapter.

The second chapter presents the details of the syntax and usage of the pattern

matching construct; it constitutes a user’s guide to Unicon’s new pattern matching

construct. Chapter three deals with the internal implementation of the pattern

data type and assists future maintainers of the code to understand and modify

the pattern matching internals. Chapter four compares Unicon’s pattern datatype

with equivalent constructs in Perl, Icon and SNOBOL. Chapter five summarizes

the results and discusses future work to enhance the pattern data type.
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1.1 String processing and pattern matching

String pattern matching is a vital aspect of a wide range of fundamen-

tal application domains, and its role in analysis and synthesis of input/output

guarantees its importance on a permanent basis. String pattern matching plays

an important role in the fields of bioinformatics and natural language processing.

Modern high-level languages that support string processing tend to cluster around

the most comfortable theoretical ground, namely regular expressions and context

free grammars, but the tasks performed during analysis and synthesis of strings

often do not fit within these tidy classes of languages. Specialized libraries and

tools such as yacc and lex have also been developed to perform string matching.

In addition to the limits of their regular expression and context free notations,

these tools are not integrated into the language. Programmers have to suffer the

extra burden of having to learn a different syntax and notation, and they also face

problems in debugging the code generated by these tools

One of the most successful early string processing languages is SNOBOL4

[7]. Its interpretive flexibility can be compared to Lisp, and its pattern data type

is perhaps unsurpassed to this day. SNOBOL4’s successor Icon offered numerous

improvements but was less successful than SNOBOL4, possibly because it was

a by-product of university research instead of an AT&T product, but possibly

because in the process of successfully generalizing SNOBOL’s pattern-matching
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primitives, Icon intentionally omitted SNOBOL’s pattern data type in favor of a

string scanning control structure. The pattern type turns out to be important

for all the reasons that data is more convenient to manipulate than is code: eas-

ier composition and reuse, modification and dynamic altering of patterns on the

fly, and so on. In addition, Icon users have been known to complain that their

string scanning control structure is not as concise as SNOBOL patterns or regular

expressions.

1.2 SNOBOL4

SNOBOL (StriNg Oriented symBOlic Language) is a computer program-

ming language that was developed between 1962 and 1967 at AT&T Bell Labo-

ratories by David J. Farber, Ralph E. Griswold and Ivan P. Polonsky. The first

SNOBOL language was designed and implemented in 1962-63. The motivation

for the development of SNOBOL was the need for a general purpose program-

ming language for string processing. SNOBOL was superseded by SNOBOL3 in

1965 which in turn was superseded by SNOBOL4 in 1967. SNOBOL4 had many

features that we see in popular dynamic programming languages such as dynamic

typing, eval and garbage collection. From the string processing perspective its

most important contribution was the pattern data type.
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1.2.1 Overview

SNOBOL4 is really a language composed of two distinct sublanguages.

One sublanguage is a conventional imperative language with a rich set of data

types and a simple control structure. The other is the pattern language with

its own substructure. SNOBOL programs consist of statements which are of the

following form:

label subject = object goto

label subject pattern goto

label subject pattern = object goto

The first statement is an assignment statement. It assigns a value to the subject.

The second statement is a pattern matching statement, which examines the value

of the subject for a pattern. The third statement is a pattern replacement state-

ment which modifies the part of the subject matched by the pattern. The optional

label identifies the statement. The optional goto indicates the next statement to

be evaluated.

SNOBOL4 supports integers, reals and strings as primitive data types.

Depending on the operation, operands can be seamlessly converted from one type

to another. SNOBOL4 also has support for heterogeneous arrays and tables.

The following example SNOBOL program concatenates the first three elements

of a table. In SNOBOL space seperated strings variables are concatenated. So

STRINGOUT ’:’ A<I> concatenates the strings STRIGNOUT, :, A<I>
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A = TABLE(6)

A<2> = ’two’

A<1> = ’one’

A<3> = ’three’

STRINGOUT I = 1

STRINGOUT = A<1>:F(END)

STRINGOUT_1 I = I + 1

GT(I,3) :S(PRINT)

STRINGOUT = STRINGOUT ’:’ A<I>:S(STRINGOUT_1)

PRINT OUTPUT = STRINGOUT

END

SNOBOL4 shows its age in its control structure, which is based on control

signals that can be either SUCCESS or FAILURE. The optional goto field of a

statement transfers control. This field takes one of the following forms

:(label)

:S(label)

:F(label)

:S(label1) F(label2)

White space (space or tab) is required before the colon. label is the

identifier of the target statement, and must be enclosed in parentheses. If the first

form is used, execution resumes at the referenced statement, unconditionally. In

the second and third forms, transfer to the referenced statement occurs only if the

statement has succeeded or failed, respectively. Otherwise, execution proceeds to

the next statement in line. If the fourth form is used, transfer is made to label1

if the statement succeeded, or to label2 if it failed.

Since goto is the only form of control transfer in SNOBOL4, it is difficult

to do structured programming in SNOBOL4. Hence SNOBOL4 is not used for
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large scale application development today.

1.2.2 Patterns

SNOBOL4 introduced patterns as a first class data object that can be

created with functions and operators. This allowed construction of complicated

patterns by composing them from simpler elements. The two basic pattern con-

struction operators are concatenation and alternation. The concatenation of two

patterns is a pattern that will match anything that its two components will match

consecutively. The alternation of two patterns is a pattern that will match any-

thing that either of its two components will match. Alternation is represented by

a vertical bar and concatenation by a blank; e.g.

CHARACTER = ’COWARD’ | ’CRAVEN’

ACTTYPE = CHARACTER ’LY’

The pattern CHARACTER matches either of the strings COWARD or CRAVEN,

and ACTTYPE matches anything CHARACTER matches followed by the string

’LY’ (i.e. ’COWARDLY’ or ’CRAVENLY’).

Pattern-valued functions generalize the concept of patterns and avoid spe-

cial notations for each type. For example, the value returned by LEN(n) is a

pattern that matches n characters, and the pattern returned by TAB(n) matches

a substring through the nth character of the subject string. For example,

OPER = TAB(6) ’X’
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creates a pattern that will match any string containing an X as its seventh char-

acter. Other pattern valued functions create patterns that match any one of a

number of specific characters, search for specific characters, etc. Examples are

SPAN(’0123456789’), which matches a substring consisting only of digits, and

BREAK(’;,’), which matches the substring beginning at the current position up

to the next comma or semicolon.

In SNOBOL4, pattern matching is left to right, and components must

match consecutive substrings of the subject string. When a component fails

to match, alternative matches are attempted. If no alternative is specified, the

pattern-matching process backs up to earlier, successfully matched components,

seeking other ways in which the entire pattern match can succeed. Conceptually,

the pattern-matching process manipulates a cursor, which is an imaginary marker

in the subject string indicating the current position of the match. Movement of

the cursor is implicit, not under direct control of the programmer, although in

some patterns there is a direct correlation. Thus, LEN(3) moves the cursor to

the right three characters. The cursor cannot be moved to the left by a successful

match.

SNOBOL4 also supports the assignment of the substring matched by a

pattern component to a variable during pattern matching. The operator for as-

signment when the whole pattern succeeds is .̇ The operator allows the cursor

position to be assigned to a variable. The operator for immediate assignment is
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the binary $ operator, e.g.

HEAD = LEN(7) $ LABEL

constructs a pattern that matches seven characters. The seven characters, when

matched, are assigned to LABEL, so LINE HEAD assigns the first seven characters

of the value of LINE to LABEL. If the match fails (as it would because LINE is less

than seven characters long), no assignment is made to LABEL. Another aspect of

pattern matching is the ability to modify the pattern during matching depending

on substrings matched by earlier components. Evaluation of an expression in a

pattern may be deferred by prefacing the expression with *. The expression is

then left unevaluated until it is encountered in pattern matching. An example of

the power of this facility is given by

SPECPAT = LEN(1) $ D BREAK(*D) . SEARCH LEN(1) BREAK(*D) . REPLACE

which recognizes strings of the form

/PROGRAMMING/CODING/

as well as

$PROGRAMMING$CODING$.

The separator is matched by LEN(1) and assigned to D. Since D is passed as

unevaluated parameter to the BREAK pattern it is not evaluated during pattern

matching unless it has been assigned by LEN. This allows the pattern to recognize

various forms of the pattern regardless of what character is used as a separator.
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SNOBOL allows users to create concise programs for grammars that are

beyond the capablities of regular expressions and context free grammars. A

SNOBOL pattern fragment (matching anbncn) is

ANBNCN = POS(0) SPAN(’A’) @A SPAN(’B’) @B SPAN(’C’)

@C RPOS(0) *((EQ(B - A,A) (EQ(C - B,A) )

1.3 Icon

Icon [8] is a successor to SNOBOL4 developed at University of Arizona

from 1979-1983 and refined over the following decade. Icon’s research contribution

is to generalize and make explicit goal-directed evaluation, including generators

and backtracking, that previously was implicit and built-in to SNOBOL pattern

matching.

1.3.1 Overview

Icon is an imperative, procedural language with a syntax very similar to C

or Pascal. In Icon variables are dynamically typed. Icon supports a large number

of data types: co-expression, cset, file, integer, list, null, procedure, real, set,

string, table and window. The aggregate types - sets, lists, tables, and records -

can hold values of any type. Tables can be indexed by values of any type. Integers,

reals, character sets, and strings are atomic values; operations on them produce

new values. Aggregates use implicit pointer semantics; operations on them can

change existing values as well as produce new ones. Strings and aggregates can be
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of arbitrary size, and their sizes can change during execution. Memory is managed

using garbage collection.

Icon has an expression-oriented syntax; even control structures are expres-

sions. Procedures consist of zero or more expressions separated by newlines or

semicolons. Icon programs consist of one or more procedure definitions, and exe-

cution begins by calling the procedure named main.

Expressions can produce zero or more values. As in traditional languages,

many Icon expressions produce a single value, for example, a + 1 produces the

sum of a and 1. Other expressions can produce more than one value, for example,

a | 5 produces a then, if necessary, produces 5. Such expressions are called

generators; there are several built-in generators and procedures can be written

to be generators. Other examples of built-in generators include x to y, which

generates the integers from x to y, and !x, which generates all the characters from

string x or the elements from aggregate x.

A goal-directed expression evaluation mechanism is Icon’s most distinguish-

ing characteristic. Expression evaluation seeks success - at least one value for an

expression. An expression fails if it does not produce a value. The evaluation

mechanism tries all combinations of values from generators in pursuit of a suc-

cessful outcome. For example, y < (x | 5) first compares y to x. If y is less

than x, evaluation succeeds and produces the value x. If y is not less than x, y is

compared to 5, the next value generated by the subexpression x | 5. If y is less
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than 5, evaluation succeeds and produces 5. Otherwise, evaluation fails, and no

value is produced. Comparison operators produce the value of their right operand

if they succeed.

Failure drives control expressions and inhibits subsequent evaluation. For

example, max := max < x sets max to x only when it is less than x. Likewise,

if y < (x | 5) then write("y=", y)

prints the value of y only if it is less than x or 5. The evaluation mechanism

pervades Icon; for example, procedures are called only if all of their arguments

succeed, so the last example could be written more succinctly as

write("y=", (x | 5) > y)

The backtracking implied by the goal-directed evaluation mechanism is limited to

the expression in which it occurs. For example, in

max := max < x

write("y=", (x | 5) > y)

failure in the second expression does not affect the outcome of the first. The ex-

pression every e1 do e2 ‘drives’ e1 - it evaluates e2 for every successful outcome

of e1. So, if p is a list of 100 elements,

every i := (1 to 10) | (91 to 100) do write(p[i])

prints the first and last ten elements of p. The do clause is optional, and the eval-

uation mechanism often helps eliminate temporary variables like i, for example,
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every write(p[(1 to 10) | (91 to 100)])

also prints the first and last ten elements of p, and

every !p := 0

sets each element of p to zero.

1.3.2 String Scanning

The pattern matching facilities in SNOBOL as well as other languages such

as Perl focus on pattern specification. However the programmer has no control

over how the pattern matching process works. String scanning in Icon is unique in

that all of Icon’s functionality is available during string scanning. String scanning

in Icon is setup by the expression s ? e. This expression establishes s as the

subject to which string processing operations in e apply. e contains a series of

expressions which are typically string analysis operations,but may include any

Icon operation. The expression s ? e creates a scanning environment which is

characterized by a pair of implicit variables &subject,&pos. The subject is the

string on which the scanning operations are applied. &pos is a location in the

subject and changes as the subject is analyzed. It is initialized to 1. Once the

scanning environment is setup e is evaluated. After evaluating e, the previous

scanning environment, if any is restored.

The following functions are commonly used during string scanning in Icon
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Function Effect
move(n) relative adjustment; string result
tab(n) absolute adjustment; string result

Table 1.1: Functions that change &pos

Function Effect
many(cs) produces position after run of characters in cs
upto(cs) generates positions of characters in cs
find(s) generates positions of s
match(s) produces position after s, if s is next
any(cs) produces position after a character in cs

Table 1.2: Analytical functions that return a position in the subject

Function Effect
pos(n) tests if &pos is equal to n
bal(cs1,cs2,cs3) locate balanced characters

Table 1.3: Other functions:

The following code prints the first seven characters of a line in Icon

line ? write(move(7))

To achieve the similar effect in SNOBOL we first have to construct the

pattern, then apply it and finally print the output.

Icon’s string scanning code can be more verbose than corresponding SNOBOL

pattern matching. Here is an example Icon string scanning fragment (matching

anbncn)
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procedure ABC(s)

suspend =s | (="a" || ABC("b"||s) ||="c")

end

procedure main()

while write(line := read()) do

if line ? {

ABC("") & pos(0)

}

then write(" accepted") else write(" rejected")

end

1.4 Alternatives for improving upon string scanning

The author explored various approaches to improving string scanning in

Unicon before implementing the approach presnted in this thesis. The first ap-

proach added operator overloading to Unicon and implemented a pattern match-

ing class with overloaded operators. These operators had semantics similar to the

regular expression operators. However this approach led to patterns that were too

verbose and cumbersome. The other approach tried by the author was to embed

a SNOBOL interpreter in Unicon. For this an existing public domain SNOBOL

interpreter CSNOBOL4 [2] was used. Although this allowed programmers to em-

bed SNOBOL patterns in Unicon code it was found that this approach had major

performance issues.
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CHAPTER 2

THE UNICON PATTERN DATA TYPE

2.1 Overview

Unicon patterns are closely related in their syntax and semantics to SPIT-

BOL [3] patterns. It is trivial to translate SNOBOL4/SPITBOL pattern construc-

tion code to Unicon patterns. This chapter explains Unicon patterns in detail so

that programmers who have never been exposed to SNOBOL can understand and

use them. Where necessary differences between Unicon patterns and SNOBOL

patterns are also pointed out. The simplest operands for pattern matching in

Unicon are strings and character sets. These match themselves when used in a

pattern matching expression. ”??” is the pattern matching operator in Unicon,

for example:

"Unicon" ?? "nic"

Like all Unicon expressions this expression can either succeed or fail. If

the pattern is found in the subject then the expression succeeds and returns the

first substring of the subject matched by the pattern. In the above expression a

substring corresponding to the 2nd to 5th characters of the subject is returned.

While strings and characters can be used in pattern matching expressions the
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pattern data type allows complicated patterns to be constructed and stored in

variables. This pattern construction is done with the following operators and

functions.

2.2 Operators

Patterns are mainly built up from simple components using alternation

”.|” and concatenation “&&”. These pattern operators were chosed to avoid

clashes with Unicon’s many other operators. A pattern formed by alternation

of two elements succeeds if either of the elements matches. A pattern formed by

concatenation of two elements matches if both those elements match consecutively.

When two patterns are joined together by alternation they are called alternates.

When two patterns P1 and P2 are combined using concatenation as P1 && P2

then P2 is the subsequent of P1. Pattern concatenation has higher priority than

pattern alternation. So the pattern P1 .| P2 && P3 matches either the pattern

P1 or the pattern formed by concatenation of P2 and P3. Parentheses can be

used to group patterns differently. ( P1 .| P2) && P3 matches P1 or P2 followed

by P3.

Thus patterns can be composed from subpatterns. When a subpattern

successfully matches a portion of the subject, the matching subject characters are

bound to it. The next sub pattern in the pattern must match beginning with the

very next subject character. If a subsequent fails to match, the pattern backtracks,
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unbinding patterns until another alternative can be tried. A pattern match fails

when an alternative that matches cannot be found.

Suppose we wanted to construct a pattern that matched any of the follow-

ing strings: ’COMPATIBLE’, ’COMPREHENSIBLE’ and ’COMPRESSIBLE’.

The pattern can be constructed by

‘‘COMP’’ && (‘‘AT’’ .| "RE" && (‘‘HEN’’ .| ‘‘S’’) && "S") && ‘‘IBLE’’

One way to understand patterns is to construct bead diagrams for them. In a

bead diagram, pattern matching is the process of attempting to pass a needle

and thread through a collection of beads which model the individual pattern

components. Pattern subsequents are drawn side-by-side, left-to-right. Pattern

alternates are stacked vertically, in columns, with a horizontal line between each

alternative. Here is a bead diagram for the above

Consider the following pattern and its application

Manufacturer := ‘‘SONY’’ .| ‘‘DELL’’

Type := ‘‘Desktop’’ .| ‘‘Laptop’’

Machine := Manufacturer && Type

‘‘SONY Laptop’’ ?? Machine

The pattern matching will succeed. However we would also like to deter-

mine which of the pattern alternatives actually matched. For this we use the

conditional binary operator −>. The operator is called conditional, because as-

signment occurs only if the pattern match is successful. It assigns the matching
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Figure 2.1: Bead Diagram

substring on its left to the variable on its right. Note that the direction of as-

signment is just the opposite of the assignment operator :=. Changing the above

example to use conditional assignment.

Manufacturer := (‘‘SONY’’ .| ‘‘DELL’’) -> Corporation

Type := (‘‘Desktop’’ .| ‘‘Laptop’’) -> SysType

Machine := Manufacturer && Type

‘‘SONY Laptop’’ ?? Machine

write(Corporation)

write(SysType)

OUTPUT

SONY

Laptop

The immediate assignment operator $$ allows us to capture intermediate
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results during the pattern match. Immediate assignment occurs whenever a sub-

pattern matches, even if the entire pattern match ultimately fails. Like conditional

assignment, the matching substring on its left is assigned to the variable on its

right. Immediate assignment is often used as a debugging tool to observe the

pattern matching process. When used with unevaluated expressions immediate

assignment allows creation of a powerful class of patterns as we will see later.

Both the assignment operators perform the write operation if the assign-

ment variable happens to be a file handle.

During a pattern match, the cursor is Unicon’s pointer into the subject

string. It is integer valued, and points between two subject characters. It may

also may be positioned before the first subject character, or after the final subject

character. Its value may never exceed the size of the subject string by more than

1. Heres an example of the numbering for the substring string UNICON:

• U • N • I • C • O • N •

1

OO

2

OO

3

OO

4

OO

5

OO

6

OO

7

OO

The cursor is set to 1 when a pattern match begins, corresponding to a

position immediately to the left of the first subject character. As the pattern

match proceeds, the cursor moves right and left across the subject to indicate

where Unicon is attempting a match. The value of the cursor is assigned by the

unary cursor position operator .$ to a variable. It appears within a pattern,
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preceding the name of a variable. For example,

p := ( "b" .| "r") && ("e" .|"ea") && ("d" .| "ds")

pattern := .$x && p && .$y

write("the beads are red")

if "the beads are red" ?? pattern then

write(repl(" ",x - 1) , repl("_", y - x))

The above code will underline the part of the substring that is matched by the

pattern. The output is

the beads are red

-----

Summary of Unicon pattern matching operators

Operator Operation
&& Pattern concatenate
.| Pattern alternation
−> Conditional assignment
$$ Immediate assignment
.$ Cursor position assignment

Table 2.1: Pattern Construction Operators

The previous examples used patterns created from literal strings. Instead of

specific characters, qualities of the string to be matched can also be specified.The

ability to specify these qualities makes patterns powerful at recognizing more

abstract patterns. There are 3 different types of pattern construction functions

that allow specification of pattern qualities:

• Integer pattern functions
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• Character pattern functions

• Pattern primitives

2.3 Integer Pattern Functions

These pattern construction functions take an integer as a parameter and

return a pattern as result. The integer pattern functions are:

2.3.1 PLen(I): Match fixed-length string

PLen(I) produces a pattern which matches a string exactly I characters

long. I must be an integer greater than or equal to zero. Any characters may

appear in the matched string. For example, PLen(5) matches any 5-character

string, and PLen(0) matches the null string. PLen() maybe constrained to certain

portions of the subject by other adjacent patterns:

out := &output

s := "abcda"

s ?? PLen(3) -> out

s ?? PLen(2) -> out && "a"

OUTPUT

abc

cd

The first pattern match had only one constraint, that the subject had to

be at least three characters long. Thus PLen(3) matched its first three charac-

ters. The second case imposes the additional restriction that PLen(2)’s match be

followed immediately by the letter ”a”. This disqualifies the intermediate match

attempts ”ab” and ”bc”.

21



Using PLen() with keyword &ascii as the subject provides a simple way

to obtain a string of unprintable characters. For example, the ASCII control

characters occupy positions 0 through 31 in the 256-character ASCII set. To

obtain a 32-character string containing these control codes, use:

&ascii ?? PLen(32) -> controls

2.3.2 PPos(I), PRpos(I): Verify cursor position

The PPos(I) and PRpos(I) patterns do not match subject characters. In-

stead, they succeed only if the current cursor position is a specified value. They

often are used to tie points of the pattern to specific character positions in the

subject. The following shows the cursor positions as used by PPos():

• U • N • I • C • O • N •

1

OO

2

OO

3

OO

4

OO

5

OO

6

OO

7

OO

The following are the cursor postions used by PRpos().

• U • N • I • C • O • N •

6

OO

5

OO

4

OO

3

OO

2

OO

1

OO

0

OO

PPos(I) counts from the left end of the subject string, succeeding if the

current cursor position is equal to I. PRpos(I) is similar, but counts from the right

end of the subject. If the subject length is N characters, PRpos(I) requires the

cursor be (N - I). If the cursor is not the correct value, these functions fail, and

the pattern matcher tries other pattern alternatives.
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out := &output

s := "abcda"

if s ?? PPos(1) && "b" then

write("Match succeeded")

else

write("Match failed")

s ?? PLen(3) -> out && PRpos(0)

s ?? PPos(4) && PLen(1) -> out

if s ?? PPos(1) && "abcd" && PRpos(0) then

write("Match succeeded")

else

write("Match failed") out := &output

s := "abcda"

s ?? PLen(3) -> out

s ?? PLen(2) -> out && "a"

OUTPUT

Match failed

cda

d

Match failed

The first example requires a ”b” at cursor position 1, and fails for this subject.

PPos(1) anchors the match, forcing it to begin with the first subject character.

Similarly, PRpos(0) anchors the end of the pattern to the tail of the subject.

The next example matches at a specific mid-string character position, PPos(3).

Finally, enclosing a pattern between PPos(1) and PRpos(0) forces the match to

use the entire subject string. At first glance these functions appear to be setting

the cursor to a specified value. Actually, they never alter the cursor, but instead

wait for the cursor to come to them as various match alternatives are attempted.
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2.3.3 PRtab(I), PTab(I): Match to fixed position

These patterns are hybrids of PArb(), PPos(), and PRpos(). They use

specific cursor positions, like PPos() and PRpos, but match subject characters,

like PArb(). PTab(I) matches any characters from the current cursor position

up to the specified position I. PRtab(I) does the same, except, as in PRpos(),

the target position is measured from the end of the subject. TAB and RTAB will

match the null string, but will fail if the current cursor is to the right of the target.

They also fail if the target position is past the end of the subject string. These

patterns are useful when working with tabular data. For example, if a data file

contains name, street address, city and state in columns 1, 30, 60, and 75, this

pattern will break out those elements from a line:

P = PTab(30) -> NAME && PTab(60) -> STREET && PTab(75) -> CITY && PRest() -> ST

The pattern PRtab(0) is equivalent to primitive pattern PRest(). It counts from

the right end of the subject, but matches to the left of its target cursor. Example:

out := &output

s := "abcde"

s ?? PTab(3) -> out && PRtab(1) -> out

OUTPUT

ab

cd

Success

PTab(3) matches "ab", leaving the cursor at 2, between "b" and "c". The

subject is 5 characters long, so PRtab(1) specifies a target cursor of 6 - 1, or 5,
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which is between the ”d” and ”e”. PRtab() matches everything from the current

cursor, 3, to the target, 5.

2.4 Character Pattern Functions

These functions produce a pattern based on a character set argument. The

argument passed to these functions is always converted to a character set

2.4.1 PAny(S), PNotAny(S): Match one character

PAny(S) matches the next subject character if it appears in the string S,

and fails otherwise. PNotAny(S) matches a subject character only if it does not

appear in S. Here are some sample uses of each:

out := &output

vowel := PAny("aeiou")

dvowel := vowel && vowel

notvowel := PNotAny("aeiou")

"vacuum" ?? vowel -> out

"vacuum" ?? dvowel -> out

"vacuum" ?? (vowel && notvowel) -> out

OUTPUT

a

uu

ac

2.4.2 PBreak(S), PSpan(S): Match a run of characters

These are multi-character versions of PNotAny and PAny. Each requires

a non-null string argument to specify a set of characters. PSpan(S) matches one

or more subject characters from the set in S. PSpan() must match at least one

subject character, and will match the longest subject string possible. PBreak(S)
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matches up to but not including any character in S. The string matched must

always be followed in the subject by a character in S. Unlike PSpan() and PNo-

tAny(), PBreak() will match the null string. These two functions are called stream

functions because each streams by a series of subject characters. PSpan() is most

useful for matching a group of characters with a common trait. For example,

we can say an English word is composed of one or more alphabetic characters,

apostrophes, and hyphens. A pattern for this is:

word := PSpan(&letter ++ "’-")

Some patterns that can be formed by PSpan() and PBreak().

Pattern Function
a run of blanks PSpan(” ”)
a string of digits PSpan(&digits)
a run of letters PSpan(&lettters)
everything up to the next blank PBreak(” ”)
everything up to the next punctuation mark PBreak(”,.;:!?”)

2.4.3 PBreakx(): Extended PBreak() function

Like SPITBOL, Unicon offers an extended version of PBreak() called PBreakx().

If necessary, PBreakx() will look past the place where it stopped to see if a longer

match is possible. It will do this if some subsequent pattern element fails to match.

The pattern matcher checks to see if extending PBreakx() might allow the subse-

quent pattern element match. If so, the operation succeeds. If not, other pattern
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alternatives (if any) prior to PBreakx() are attempted. Suppose the pattern needs

to match everything before the first "e" in a subject string, as with:

out := &output

"integers" ?? PBreak("e") -> out

OUTPUT

int

PBreak works fine in this scenario, however if whatever comes before the first

occurrence of a two-letter pattern ”er” is to be matched, then PBreakx() is more

appropriate.

out := &output

"integers" ?? PBreakx("e") -> out && "er"

OUTPUT

integ

PBreakx() stopped at the first “e” in “integer”, and tried to match the next

pattern element, the two letters “er”. But the next subject characters were “eg”,

a mismatch, so PBreakx() was instructed to try again. PBreakx() extended itself

to the next “e”, where “er” in the subject matches “er” in the pattern. The

above example illustrates that PBreak(S) will never return a string containing

any characters in S, while PBreakx(S) might, if a subsequent pattern requires it.

PBreakx(S) provides a more selective, and more efficient version of the PArb()

pattern. For example the following construction could have been used :

out := &output

"integers" ?? PArb() -> out && "er"

OUTPUT

integ
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but PArb() pokes along one character at time, matching “i”, “in”, “int”, and

“inte”, before finding the desired match, “integ”. In contrast, PBreakx() gets the

right answer after only two attempts: “int” and “integ”. The increased efficiency

is even more pronounced with a long subject.

2.5 Primitives

There are seven primitives built into the Unicon pattern matching system.

They are:

2.5.1 PRest: Match remainder of the subject

PRest will match zero or more characters at the end of the subject string.

Example

out := &output

"NMSU Aggies" ?? "NMSU" && PRest() -> out

OUTPUT

Aggies

The subpattern “NMSU” is matched at its first occurrence in the subject. PRest

is matched from there to the end of the subject. If the example is changes to

out := &output

"NMSU Aggies" ?? "Aggies" && PRest() -> out

OUTPUT

the ”Aggies” matches at the end of the string leaving an empty remainder for

PRest. PRest then matches the null string and the assignment to the out causes

just a newline to be written to the standard output.
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The pattern components to the left of PRest must successfully match some

portion of the subject string. PRest begins after the last character matched by

the earlier pattern component and matches all subject characters till the end of

the string. There is no restriction on the particular characters matched.

2.5.2 PArb(): Match arbitrary characters

PArb matches an arbitrary number of characters from the subject string.

It matches the shortest possible substring, including the null string. The pattern

components on either side of PArb determine what is matched. Example:

out := &output

"Pragmatic Programmer" ?? "a" && PArb() -> out && "a"

OUTPUT

gm

out := &output

"Pragmatic Programmer" ?? "a" && PArb() -> out && "g"

OUTPUT

In the first statement, the PArb() pattern is constrained on either side by

the known patterns “a” and “a”. PArb() expands to match the subject characters

between, “gm”. Note the smaller substring between two occurences of “a” is

matched. In the second statement, there is nothing between “a” and “g”, so

PArb() matches the null string. PArb() behaves like a spring, expanding as needed

to fill the gap defined by neighboring patterns.
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2.5.3 PArbno(): Match zero or more consecutive occurences of pattern

This function produces a pattern which will match zero or more consec-

utive occurrences of the pattern specified by its argument. PArbno() is useful

when an arbitrary number of instances of a pattern may occur. For example,

PArbno(LEN(3)) matches strings of length 0, 3, 6, 9, ... There is no restriction

on the complexity of the pattern argument. Like the PArb() pattern, PArbno()

tries to match the shortest possible string. Initially, it simply matches the null

string. If a subsequent pattern component fails to match, Unicon backs up, and

asks PArbno() to try again. Each time PArbno() is retried, it supplies another

instance of its argument pattern. In other words, PArbno(PAT) behaves like

( "" | PAT | PAT PAT | PAT PAT PAT | ... )

Also like PArb(), PArbno() is usually used with adjacent patterns to draw it out.

Consider the following example which tests for a list of one or more numbers

separated by commas and enclosed by parentheses.

item := PSpan(&digits)

list := PPos(1) && "(" && item && PArbno("," && item) && ")" &&

PRpos(0)

if "(12,345,6)" ?? list then

write("Match succeeded")

else

write("Match failed")

if "(12,,6)" ?? list then

write("Match succeeded")

else

write("Match failed")

OUTPUT
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Match succeeded

Match failed

PArbno() is retried and extended till the subsequent “)” matches. PPos(1) and

PRpos(0) force the pattern to be applied to the entire subject string.

2.5.4 PAbort(): End pattern match

The PAbort() pattern causes immediate failure of the entire pattern match,

without seeking other alternatives. Usually a match succeeds when we find a sub-

ject sequence which satisfies the pattern. The PAbort pattern does the opposite:

if we find a certain pattern, we will abort the match and fail immediately. For

example suppose we are looking for an "a" or "b", but want to fail if "1" is

encountered first:

if "ab1" ?? PAny("ab") .| "1" && PAbort() then

write("Match succeeded")

else

write("Match failed")

if "1ab" ?? PAny("ab") .| "1" && PAbort() then

write("Match succeeded")

else

write("Match failed")

OUTPUT

Match succeeded

Match failed

The second pattern matching expression deserves some elaboration as it

shows how the pattern matching engine works. At each cursor position all pattern

alternatives are tried. In the second pattern matching expression after the literal
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“1” matches PAbort() matches causing the pattern to fail. The PAny() pattern

thus does not get a chance to match the character ”a” at cursor position 2.

2.5.5 PBal(): Match balanced string

The PBal() pattern matches the shortest non-null string in which parenthe-

ses are balanced. (A string without parentheses is also considered to be balanced.)

According to PBal() the following strings are balanced:

(X) Y (A!(C:D)) (AB)+(CD) 9395 (8+-9/2)

and these are not:

)A+B (A*(B+) (X))

PBal() is concerned only with left and right parentheses. The matching string does

not have to be a well-formed expression in the algebraic sense. Like PArb(), PBal()

is most useful when constrained by other pattern components. For example:

out := &output

"ab+(14-2)*c" ?? PAny("+-*/") && PBal() -> out &&

PAny("+-*/")

OUTPUT

(14-2)

An example of using PBal() primitive to manipulate algebraic expressions is pro-

vided in the next chapter.
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2.5.6 PFail(): Seek other alternatives

The PFail pattern signals the failure of this portion of the pattern match,

causing the pattern matcher to backtrack and seek other alternatives. PFail()

will also suppress a successful match, which can be very useful when the match is

being performed for its side effects, such as immediate assignment. For example

this fragment will display the subject characters, one per line:

out := &output

subject ? PLen(1) $$ out $$ PFail()

PLen(1) matches the first subject character, and immediately assigns it to

out. PFail() tells the pattern matcher to try again, and since there are no other

alternatives, the entire match is retried at the next subject character. Forced

failure and retries continue until the subject is exhausted. The difference between

PAbort() and PFail() is that PAbort() stops all pattern matching, while PFail()

tells the system to back up and try other alternatives or other subject starting

positions.

2.5.7 PFence(): Prevent match retries

Pattern PFence() matches the null string and has no effect when the pattern

matcher is moving left to right in a pattern. However, if the pattern matcher is

backing up to try other alternatives, and encounters PFence(), the match fails.

PFence() can be used to lock in an earlier success. Consider the following example:
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The pattern succeeds if the first “a” or “b” in the subject is immediately followed

by a plus sign.

"1ab+" ?? PAny("ab") && PFence() && "+"

In the example above, the pattern matcher matches the “a”s match and

goes through the PFence(), only to find that “+” does not match the next subject

character, “b”. The pattern matcher then tries to backtrack, but is stopped by the

PFence() and fails. If PFence() were omitted, backtracking would match PAny to

“b”, and then proceed forward again to match “+”. If PFence() appears as the

first component of a pattern, the pattern matcher cannot back up through it to

try another subject starting position. This allows Unicon to simulate SNOBOL’s

anchored pattern matching mode without requiring a new &anchored keyword.

2.5.8 PSucceed(): Match Always

This pattern was added to Unicon to match SNOBOL4 pattern for pattern.

The author does not know of any useful use of PSucceed(). The frivolous sawtooth

example in the next chapter is the only place where the author has seen PSucceed()

being used.

2.6 Unevaluated Expressions

Consider the following pattern construction example which captures the

next N characters after a colon:

npat := ":" && PLen(N) -> item
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This pattern is static in the sense that the value of N at time of pattern

construction is captured by the pattern. Even if N subsequently changes the

pattern uses the original value of N. One way to use the current value of N is to

specify the pattern each time it is used.

SUBJECT ?? ":" && PLen(N) -> item

However this is not only inefficient, but also a possible maintainence nightmare.

The “unevaluated expression” facility allows us to obtain the efficiency of static

pattern construction yet use the current value of variables. An unevaluated ex-

pression is constructed by enclosing it in “‘”. So we can construct the pattern

npat as

npat := ":" && PLen(‘N‘) -> item

The pattern is only constructed once, and assigned to npat. N’s current value is

ignored at this time. Later,when npat is used in a pattern match, the deferred

evaluation operator fetches the then current value of N. Deferred evaluation may

appear as the argument of the pattern functions PAny(), PBreak(), PBreakx(),

PLen(), PNotAny(), PPos(), PRpos(), PRtab(), PSpan(), or PTab().

out := &output

pat := PTab(‘i‘) -> out && PSpan(‘s‘) -> out

sub := "123aabbcc"

i := 5

s := "ab"

sub ?? pat

i := 4

sub ?? pat
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OUTPUT

123a

abb

123

aabb

Note that i and s were undefined when pat was first constructed.

2.6.1 Immediate Assignment

Immediate assignment can be used as a debugging aid to view the pattern

matching process. However combined with unevaluated expressions immediate

assignments give rise to a powerful class of patterns. In these patterns a variable

that is assigned to during the pattern matching process is used later in the very

same pattern match. Consider the following example where the first part of the

subject contains the length of the field that is to be extracted. So the pattern first

assigns the length to a variable n and uses that variable as a argument to PLen().

fpat := PSpan(&digits) $$ n && PLen(‘n‘) -> field

"12abcdefghijklmn" ?? fpat

write(field)

OUTPUT

abcdefghijkl

2.6.2 Limitations due to lack of eval()

A major difference between the SNOBOL4 and Icon families is that Icon

lacks a general eval facility that is available in SNOBOL. To overcome this limita-

tion the pattern feature was augmented so that certain operations will be evalu-

ated during the pattern matching phase instead of the pattern construction phase.
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Unicon supports the following language constructs in unevaluated expressions.

• function call.

• method call.

• variable reference.

• field reference.

Note the function or method calls can only have identifiers or constants as

parameters. Expressions as parameters are not allowed. Multiple field references

are of the form x.y.z are not supported. An unevaluated function or method call

is used in two ways. The pattern matcher performs the call and if it fails treats

the failure as if a pattern sub component has failed and tries to backtrack in

seach of other alternatives. However if the pattern call succeeds then the pattern

matcher can either ignore the result of the function or use the result in the pattern

matching process. To specify that the result should be used in pattern matching

the unevaluated function call is enclosed in ‘ ‘. Unevaluated expressions can also

include operators for example to check if a variable is non null

‘\(x)‘

binary operators can be used using the prefix notation. Only one operator or

function call can be used in an unevaluated expression. Unicon programs that use

unevaluated expressions must be compiled with the ”-f s” option which enables

full string invocation.
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2.7 Pattern expressions and Unicon control structure

One of the goals while introducing pattern types in Unicon was to ensure

that it integrated well with Unicons syntax and features such as goal directed

evaluation. Unicons features such as generators and limiting generators can be

used along side the pattern matching features to write concise and readable code.

The following code changes all lines of the format

year month day unchanged portion

in the input file to

month day year unchanged portion

in the output file.

procedure main()

p := PFence() && PLen(4) -> yr && " " &&

PLen(4) -> mo && " " && PLen(2) -> day

in := open("leninput", "r")

out := open("lenoutput", "w")

every write(out, (line := !in) ??

p := mo || " " || day || ", " || yr || " " )

end

The following code shows how the limiting generation control structure can

be used to obtain the nth occurrence of a pattern. In this example the word red

before the third occurrence of fish will be output

procedure main()

s := "One fish two fish red fish blue fish"

wrdpat := PBreak(&letters) && PSpan(&letters) -> word

p := wrdpat && PSpan(" ") && "fish"

every (s ?? p)\3
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write(word)

end
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CHAPTER 3

IMPLEMENTATION OF THE UNICON PATTERN DATA TYPE

Adding patterns as a first class data type to Unicon involved the following:

• Writing C data structures to represent patterns.

• Modify Unicon’s runtime to recognize and handle these patterns

• Constructing different patterns that a user can specify

• The pattern matching engine.

• Modifications to Unicon’s compiler to handle the new pattern operators

This chapter discusses all of the above. The implementation of patterns in Unicon

closely follows the Ada module GNAT.Spitbol.Patterns. [4]

3.1 Internal representation of patterns

Both SNOBOL4 and SPITBOL represent patterns internally in form of a

linked graph [5]. This representation is very natural for patterns as subsequents

and alternants can be specified with links to different nodes. Each pattern dis-

cussed in chapter 2 is internally represented as a linked graph with one or more

elements. To implement this list two different structures are used. The pattern

header is represented by struct b pattern
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struct b pattern { /∗Pattern header b l o c k ∗/
word t i t l e ; /∗T Pattern ∗/
word id ; /∗ S e r i a l number o f pa t t e rn ∗/
word s t c k s i z e ; /∗max . s i z e o f s t ack requ i r ed ∗/
union block ∗ pe ; /∗ po in t e r to the f i r s t pa t t e rn element ∗/

} ;

The individual elements of the pattern are represented by struct b pelem

struct b pelem { /∗ Pattern element b l o c k ∗/
word t i t l e ; /∗ T Pelem ∗/
word pcode ; /∗ I nd i c a t e s Pattern type ∗/
union block ∗ pthen ; /∗ Pointer to succed ing po in t e r element ∗/
word index ; /∗ p o s i t i o n o f pa t t e rn element in po in t e r chain ∗/
struct de s c r i p parameter ; /∗ parameter ∗/

} ;

3.2 Adding pattern data type to Unicon

Due to Icon’s optimizing compiler which performs type inferencing, the

procedure for adding new types to Icon is a lengthy and complicated. This proce-

dure is well documented in [10]. The two major types in Icon are value types and

aggregate types. Aggregate types can contain other Icon types as their members.

Since a pattern is composed from various sub patterns, it is considered an aggre-

gate type by the iconx runtime. The details of adding new types to the runtime

are covered in Appendix 1.
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Pcode

Index

Pthen

Parameter

Figure 3.1: Default structure of pattern element

3.3 Structure of pattern types

Each pattern type such as PLen() consists of one or more individual pattern

elements. The above figure contains the default structure for an individual pattern

element. The Pcode is an enum value which identifies the type of a pattern node.

It is also used by the case statement in the pattern matching engine to handle the

node appropriately. Index is the serial number and its use is handled in a later

section.

Pthen is a pointer to the successor node, the node to be matched if the

current node successfully matches. If the current node is the last node then Pthen

points to a dummy node whose Pcode PC EOP signals pattern exit.

Consider the pattern element corresponding to the pattern PLen(). As

seen in chapter 2, PLen() takes an integer argument and matches that many

characters from the current cursor position. If the parameter to PLen() is an

unevaluated expression then it must be evaluated and converted to an integer

before use in pattern matching. It is possible at compile time to determine the

type of the unevaluated expression. Since each type of unevaluated expression
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needs to be evaluated in a separate manner, corresponding to the type of the

unevaluated expression different Pcodes are assigned to the Pcode field. This

allows the pattern matching engine to perform the appropriate conversion without

having to check the type of the expression every time during a pattern match. The

different unevaluated expressions and the corresponding pcodes for PLen() are:

• function call: PC Len NF

• method call: PC Len NMF

• variable reference: PC Len NP

• field reference : PC Len NP

When the parameter to PLen() is not an unevaluated expression, then

the Pcode assigned is PC Len Nat. The parameter passed is converted to an

integer and stored in the parameter field of the node. Other patterns such as

PAny(), PBreak(), PNotAny(), PPos(), PRpos(), PRtab(), PSpan() and PTab()

are similarly constructed.

Other pattern types that correspond to alternation, PArbno or PBreakx

are composed from more than one pattern element. The structure of these types

is explained in the next section.
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3.4 Pattern matching engine

To perform the actual match of a pattern against the subject, the run-

time function pattern match is called. This function is a generator function and

suspends a trapped substring variable if the pattern successfully matches against

the subject. The cursor position indicates the start of the portion of the subject

which will be matched against the pattern. Initially this function attempts to

match the pattern with the cursor position set to 0. If this function is resumed

then it attempts to match the pattern with the portion of the string just after the

part that was last matched. The pattern match function is a wrapper over the

function internal match which performs the job of actual pattern matching.

The theoretical background for the pattern matching engine can be found

in [1]. The pattern matching engine uses a stack to control backtracking when

a match fails. The stack entries consist of a cursor value to be restored, and a

node to be reestablished as the current node to attempt an appropriate rematch

operation. The processing for a pattern element that has rematch alternatives

pushes an appropriate entry on to the stack, and then proceeds. If a match fails

at any point, the top element of the stack is popped off, resetting the cursor

and the match continues by accessing the node stored with this entry. The stack

entries are represented by the stack entry

typedef struct s t a ck en t r y {
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int cu r so r ;
struct b pelem ∗node ;

} s t a ck en t r y ;

The stack itself is a variable local to internal match. This allows pattern

matching to be invoked recursively. For example an unevaluated function call can

contain a pattern matching expression. During pattern matching some pattern

elements require a stack to be nested on the existing stack. This is implemented

by the macros Push Region and Pop Region. Push Region makes a new region

on the history stack. The caller first establishes the special entry on the stack,

but does not push the stack pointer. Then this call stacks a PC Remove Region

node, on top of this entry, using the cursor field of the PC Remove Region entry

to save the outer level stack base value, and resets the stack base to point to this

PC Remove Region node. Pop Region is used at the end of processing of an inner

region. If the inner region left no stack entries, then all trace of it is removed.

Otherwise a PC Restore Region entry is pushed to ensure proper handling of

alternatives in the inner region.

The function internal match consists of a giant switch statement. It

switches to one of the cases based on the pcode field on the current node.

3.4.1 Implementation of alternation

The pattern L .| R constructs the following structure.

The A element in the figure has pcode field set to PC Alt, the downward
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A - L

?
R

Figure 3.2: Structure of alternation element

arrow points to the contents of the parameter field. When the PC Alt element is

matched, it stacks a pointer to the leading element of R on the history stack so

that on subsequent failure, a match of R is attempted. In this and the figures that

follow a horizontal right pointing arrow is from the pnext field while a vertical

downward arrow is from the paramter field.

3.4.2 Implementation of PArbno

There are 2 cases to the implementation of PArbno depending on the pa-

rameter P passed to PArbno. In the simple case the pattern matches at least

one character if it succeeds and is known not to make any history stack entries.

In this case PArbno is constructed with the following structure. The S (pcode

-

6
-

?

�
?
S

P

Figure 3.3: Structure of PArbno element simple case

46



PC Arbno S) node matches null stacking a pointer to the pattern P. If a subse-

quent failure causes P to be matched and this match succeeds, then node S gets

restacked to try another instance if needed by a subsequent failure.

When the parameter P to PArbno can match null (or at least is not known

to require a non-null string) and/or P requires pattern stack entries, the following

structure is constructed for PArbno.

-

6
-

?

�
?

- -

X

E P Y

Figure 3.4: Structure of PArbno element complex case

The node X with pcode as PC Arbno X matches null, stacking a pointer to

the E-P-Y structure used to match one PArbno instance. Here E is the PC R Enter

node which matches null and creates two stack entries. The first is a special entry

whose node field is not used at all, and whose cursor field has the initial cursor.

The second entry corresponds to a standard new region action. A PC R Remove

node is stacked, whose cursor field is used to store the outer stack base, and the

stack base is reset to point to this PC R Remove node. Then the pattern P is

matched, and it can make history stack entries in the normal manner, so now the

stack looks like:
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stack entries made before PArbno pattern

Special entry, node field not used,
used only to save initial cursor

PC R Remove entry, "cursor" value is (negative)
points to Stack Base saved base value for the enclosing region

stack entries made by matching P

Figure 3.5: Stack structure while matching P

If the match of P fails, then the PC R Remove entry is popped and it removes

both itself and the special entry underneath it, restores the outer stack base, and

signals failure. If the match of P succeeds, then node Y, the PC Arbno Y node,

pops the inner region. There are two possibilities. If matching P left no stack

entries, then all traces of the inner region can be removed. If there are stack

entries, then we push an PC Region Replace stack entry whose ”cursor” value is

the inner stack base value, and then restore the outer stack base value, so the

stack looks like:

After matching an instance of the PArbno pattern, its successor is consid-

ered. There are two cases. If the PArbno pattern matched null, then there is no

point in seeking alternatives, as this would just match a whole bunch of nulls. In

this the alternative node is passed over, and the pattern matching engine moves

directly to its successor (i.e. the successor of the PArbno pattern). If on the other

hand a non-null string was matched, we simply follow the successor to the alter-
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stack entries made before assign pattern

Special entry, node field not used,
used only to save initial cursor

PC R Remove entry, "cursor" value is (negative)
saved base value for the enclosing region

stack entries made by matching P

PC Region Replace entry, "cursor" value is (negative)
stack pointer value referencing the PC R Remove entry

Figure 3.6: Stack structure when P fails

native node, which sets up for another possible match of the PArbno pattern. The

stack count (and hence the stack check) for a pattern includes only one iteration

of the PArbno pattern. To make sure that multiple iterations do not overflow

the stack, the PArbno node saves the stack count required by a single iteration,

and the Concat function increments this to include stack entries required by any

successor. The PC Arbno Y node uses this count to ensure that sufficient stack

remains before proceeding after matching each new instance.

3.4.3 Implementation of unevaluated expressions

Due to Unicon’s lack of a generic eval mechanism, the implementation of

unevaluated expressions is a kludge. See chapter2 for the limited expressions that

are actually handled. The Unicon compiler and the runtime system interact closely

to implement this kludge. The Unicon compiler converts the expression into a form
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that can be efficiently interpreted by the runtime. Unevaluated expressions are

names of functions and variables that are evaluated at runtime. The names are

stored either directly or in form of a list in the parameter field of a pattern node

containing the unevaluated expression. The following macros are used

• GetVarFromNodeParameter This macro is used when the unevaluated ex-

pression is reference to a variable or a field member of an object. In case of

a simple variable the Unicon compiler stores the name of the variable in the

parameter field. The macro uses the function getvar to resolve the name.

In case of a member field reference the compiler stores a list containing the

name of the object as the first element and the field referred to as the sec-

ond element. The macro uses getvar to first resolve the object from the

object name. It then performs introspection on the object to determine the

location of the field.

• GetResultFromFuncCall This macro is used when the unevaluated expres-

sion is a function call. The Unicon compiler stores this unevaluated expres-

sion in the form of a list. The first element of the list is the name of the

function or operator being invoked. The remaining elements of the list are

parameters. The macro resolves the names to the actual variable and pro-

cedure locations and then uses the function calliconproc to perform the

actual function invocation. If the function succeeds then the result of the
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function is stored in the variable cresult. If the function fails then it is as

if the pattern node also failed to match.

• GetResultFromMethodCall This macro is used when the unevaluated ex-

pression is a method call. The Unicon compiler stores this unevaluated ex-

pression in the form of a list. The first element of the list is the name of the

object and the second the method being invoked. The remaining elements

are parameters. This macro is very similar to GetResultFromFuncCall.

The only difference is that first the object name and then the method refer-

ence needs to be resolved in manner similar to resolution of field reference

performed by GetVarFromNodeParameter.

It is not possible to model unevaluated expressions using coexpressions as

coexpressions use the environment that was in effect when the coexpression was

created. This prevents using the new values of immediately assigned variables in

unevaluated expressions.

3.5 Modifications to Unicon’s compiler

Unicon’s compiler is a source code translator and translates object oriented

Unicon code to plain vanilla Icon code. The operators in the new pattern matching

feature are actually just functions implemented in Unicon’s runtime. The Unicon

compiler needed to be modified to translate the operators used in pattern matching

code to the respective runtime function.

51



Operator Runtime function
&& pattern concatenate
.| pattern alternate
− > pattern assign onmatch
$$ pattern assign immediate
.$ pattern setcur

Table 3.1: Pattern Operators and corresponding runtime functions

Unevaluated expression are detected by the compiler as they are always

enclosed in either ”‘” or ”“”. The type of the expression can also be determined

at compile time. The compiler emits function calls corresponding to the type of

unevaluated expression.

Expression Runtime function
local/global variable pattern unevalvar
member field pattern unevalvar
string procedure invocation pattern stringfunccall
bool procedure invocation pattern boolfunccall
string method invocation pattern stringmethodcall
bool method invocation pattern boolmethodcall

Table 3.2: Unevaluated expressions and corresponding runtime functions

Adding the new operators involved adding the following tokens to the lex-

ical analyser of Unicon.

• ??

• &&

• .|
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• ‘

• −>

• $$

• .$

The pattern construction and matching operators have lower precedence

than the existing operators in Unicon. See appendix B for the new unicon operator

table. The addition of the new operators involved changes to the unicon grammar

and addition of new production rules. These rules create specific nodes in the parse

tree when pattern matching operators are parsed. The code generation phase

treats these nodes as a special case and emits the runtime function corresponding

to the pattern operator observed.
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CHAPTER 4

BENCHMARKS

To determine the potential value of pattern matching and establish wether

it should be made a standard feature of the Unicon programming language, tests

were conducted to compare implementations of string processing tasks using both

Icon string scanning and the pattern matching facility discussed in this thesis.

Programs written in SNOBOL and executed using CSNOBOL4 are also a part

of the comparison for the benefit of SNOBOL programmers. The benchmarks

compare the conciseness (in terms of Lines Of Code (LOC) ) and efficiency of

the programs. This chapter also includes the source code of the programs so that

readers can draw their own conclusions about readability of programs written in

these two different paradigms. The following tests were conducted

• Decomposing phone numbers

• Detecting words with double letters

• Strings of the form AnBnCn
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4.1 Testing methodology

Programs were written using both string scanning and pattern matching

for each of the above tasks. The output of the two programs was compared to

ensure that they were identical. Each program was run 10 times using a ruby

script and the total real time in seconds is shown in the tables below. The ruby

script as well as the details of the machine on which the programs were run are

shown in Appendix C.

4.2 Decomposing phone numbers

For the purpose of this test phone numbers are defined by the following

regular expression [9].

# don’t match beginning of string, number can start anywhere

(\d{3}) # area code is 3 digits (e.g. ’800’)

\D* # optional separator is any number of non-digits

(\d{3}) # trunk is 3 digits (e.g. ’555’)

\D* # optional separator

(\d{4}) # rest of number is 4 digits (e.g. ’1212’)

\D* # optional separator

(\d*) # extension is optional and can be any number of digits

$ # end of string

55



Some examples of phone numbers that satisfy this regular expression are

• 800-555-1212

• 800 555 1212

• 800.555.1212

• (800) 555-1212

• 1-800-555-1212

• 800-555-1212-1234

• 800-555-1212x1234

• 800-555-1212 ext. 1234

• work 1-(800) 555.1212 #1234

If the input fragment is

(800) 598-4668

22100 Gratiot Avenue

East Detroit, MI 48021

www.aarda.org

Then the program produces the following output
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<html>

<body>

<div>(800) 598-4668 </div>

<div style="color: red;">Area Code 800</div>

<div style="color: red;">Trunk 598</div>

<div style="color: red;">Number 4668</div>

<div>22100 Gratiot Avenue </div>

<div>East Detroit, MI 48021 <div>

<div>www.aarda.org </div>

</html>

</body>

The input file is processed line by line. If a phone number is detected then

the values of the components of phone numbers are written out. If there is no

match then the line is output enclosed in a div element. So the program not only

detects the phone number, it also converts an unformatted text file to a html file.

This color attribute helps in visual inspection for correctness.

The following is the program written using Icon’s string scanning features.

It is the if statement that performs the actual mapping.

procedure digits (N)

if N = 0 then

return ""

else

return tab(any (& digits )) || digits (N -1)

end

procedure main()
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in := open(" HealthHotlines.txt", "r")

out := open("PhoneParseOut.html", "w")

write(out ,"<html >");

write(out ,"<body >" )

while line := read(in) do

{

line ?

{

write(out , "<div >",line , " </div >")

if tab (upto (& digits )) & (areacode := digits (3)) &

tab (upto (& digits )) & (trunk := digits (3)) &

tab (upto (& digits )) & (restnumber := digits (4)) &

((tab(upto(& digits )) & tab (many(& digits ))) | "" ) &

pos (0) then

{

write(out ,"<div style =\" color :red \">","AreaCode  = ",

areacode ," </div >")

write(out ,"<div style =\" color :red \">","Trunk  = ",

trunk ," </div >")

write(out ,"<div style =\" color :red \">","Rest = ",

restnumber ,"</div >")

}

}

}

write(out ," </body >" )

write(out ," </html >");

end

The following program utilizes the new pattern matching features.

procedure main()

in := open("HealthHotlines.txt", "r")

out := open("PhonePatternOut.html", "w")

threedigits := &digits && &digits && &digits

fourdigits := threedigits && &digits

phone := threedigits -> areacode && PArb() &&

threedigits -> trunk && PArb() &&

fourdigits -> restnumber &&

(( PArb () && PSpan (& digits ) -> extension ) .| "") &&

PRpos (0)

write (out ,"<html >");

write (out ,"<body >" )

while line := read(in) do

{

write(out , "<div >",line , " </div >")

if line ?? phone then

{

write(out ,"<div style =\" color:red \">","AreaCode  = ",

areacode ," </div >")

write(out ,"<div style =\" color:red \">","Trunk = ",

trunk ," </div >")

write(out ,"<div style =\" color:red \">","Rest = ",

restnumber ," </div >")

}

}

write (out ," </body >" )

write (out ," </html >");

end
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Here is the same program in SNOBOL

digits = any(" 0123456789 ")

threedigits = digits digits digits

fourdigits = threedigits digits

phone = threedigits . areacode arb threedigits . trunk arb

fourdigits . restnumber ( (arb span("0123456789 ") . extension ) | ’’)

rpos (0)

output = ’<html >’

output = ’<body >’

NLINE line = INPUT :F(FINISH )

output = ’<div >’ line ’</div >’

line phone :F(NLINE)

output = ’<div  style =" color:red ">’ ’AreaCode  = ’ areacode ’</div >’

output = ’<div  style =" color:red ">’ ’Trunk = ’ trunk ’</div >’

output = ’<div  style =" color:red ">’ ’Rest = ’ restnumber ’</div >’ :( NLINE )

FINISH output = ’</body >’

output = ’</html >’

end

Summary of the phone benchmarks

String Scanning
LOC 32
Time 15.09
Pattern matching
LOC 28
Time 8.28
SNOBOL
LOC 17
Time 8.28

Table 4.1: Phone Benchmarks

4.3 Detecting words with double letters

For the purpose of this task words were defined as a continuous sequence of

letters. The program writes words in which two consecutive letters are the same

to a file. Examples of such words are

• moot
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• Small

• tomorrow

The input for this test was a 19Mb file.

Consider the following program utilizing string scanning

procedure main()

in := open("mtent12 .txt", "r") | stop("open failed ")

out := open(" mtentscanOut.txt", "w")

while line := read(in) do

{

line ?

{

while(tab(upto (& letters ))) do

{

word := tab(many(& letters ))

word ?

{

while c := move (1) do

{

if move (1)==c then {

write(out ,word);

break

}

}

}

}

}

}

end

Compare it with the following program using pattern matching

procedure main()

in := open("mtent12 .txt", "r") | stop("open failed ")

out := open("mtentpatternOut.txt", "w")

double := PArbno (& letters ) && PAny (& letters ) $$ x && ‘x‘ &&

(PSpan (& letters ) .| "")

every write (out , (line := !in) ?? double )

end

Here is the same program in SNOBOL

letters = any (" abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ")

double = arbno(letters ) letters $ x *x

(span(" abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ") | "")

NLINE line = INPUT :F(END)

MATL line double . word = ’’ :F(NLINE)

output = word :( MATL)

end
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Summary of the double letter words benchmarks

String Scanning
LOC 13
Time 112.054694
Pattern matching
LOC 7
Time 45.489382
SNOBOL
LOC 6
Time 637.151224

Table 4.2: Double Letter Words Benchmarks

This pattern uses both immediate assignment as well as unevaluated ex-

pressions. Both these operations are among the most inefficient for pattern match-

ing as they involve doing string comparisons with all the names in scope at that

time. The next chapter presents ways in which this can be improved.

4.4 Strings of the form AnBnCn

This is a common example of a language that cannot be parsed by a CFG

grammar. The Icon program that recognizes strings of this form is from [8]. The

Unicon program utilizing string scanning is based on an example in [6].

The Icon string scanning example

procedure ABC(s)

suspend =s | (="a" || ABC("b"||s) ||="c")

end

procedure main()

while write(line := read ()) do

if line ? {

ABC("") & pos (0)

}

then write(" accepted ")

else write(" rejected ")
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end

The pattern matching example

procedure test(a,b,c)

return ( (a - 1 ) = (b - a)) & ( (a -1) = (c - b))

end

procedure main()

p := PPos (1) && PSpan ("a") && .$a && PSpan("b") && .$b &&

PSpan("c") && .$c && PRpos (0) && ‘test(a,b,c)‘

while write(line := read ()) do

if (line ?? p)

then write (" accepted ")

else write(" rejected ")

end

A bug in the current CSNOBOL4 program prevents us from presenting an

equivalent SNOBOL program.

Summary of the A
n
B

n
C

n benchmarks

String Scanning
LOC 11
Time 14.12
Pattern matching
LOC 11
Time 6.34

Table 4.3: A
n
B

n
C

n Benchmarks
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CHAPTER 5

FUTURE WORK AND CONCLUSION

The pattern matching features implemented in Unicon are still in a pre-

release state. This chapter discusses improvements to the pattern matching fea-

tures, provides an example of how pattern matching and string scanning can

cooperate and ends with a summary of the whole project

5.1 Future work

The future work can be broadly divided into two categories.

• Improving the power of pattern matching.

• Improving the efficiency of pattern matching.

5.1.1 Improving the power of pattern matching

A major difference between SNOBOL and Unicon is the lack of a runtime
eval mechanism in Unicon. The pattern matching code in SNOBOL often relies
on the dynamic evaluation mechanism. For example the pattern for A

n
B

n
C

n in
SNOBOL

ANBNCN = POS(0) SPAN(’A’) @A SPAN(’B’) @B SPAN(’C’)

@C RPOS(0) *((EQ(B - A,A) (EQ(C - B,A) )

is more concise and clear than the same in Unicon

procedure test(a,b,c)

return (a = (b - a)) & (a = (c - b))

end
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procedure main()

p := PPos (1) && PSpan ("a") && .$a && PSpan("b") && .$b &&

PSpan("c") && .$c && PRpos (0) && ‘test(a,b,c)‘

while write(line := read ()) do

if (line ?? p) then write (" accepted ")

else write (" rejected ")

end

The addition of a generic eval mechanism would remove the arbitary limita-

tions that have been imposed on the unevaluated expressions allowed in patterns.

Addition of eval to Unicon will vastly improve the power of the existing pattern

matching implementation.

A long standing feature request in Unicon is that the keywords &output

and &input be variables which can be assigned to. This will allow redirection

of input and output at runtime in Unicon code. Most code samples contian the

following code fragment

out := &output

Such redundant code will be eliminated if &output is a Unicon variable.

5.1.2 Improving the efficiency of pattern matching

It is not possible to resolve variable references for unevaluated expressions

and assignment target variables in patterns during pattern construction as pat-

terns are a full fledged data type and can be stored in global variables, return from

functions and passed as paramaters functions. In this case the variable references

resolved at pattern construction have no valid semantics. Hence instead of the

variable reference the pattern stores a string representation of the variable.
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The pattern matching implementation handles features such as variable

assignment in patterns and unevaluated expressions by searching using string

comparison through all the identifiers in scope at that time. This search is per-

formed every time during the pattern match the operation has to be performed.

There are two possible methods in consideration currently to improve this.

Instead of performing string comparisons for all the identifiers in scope

the identifiers should be kept in hash tables. Then variable resolution will be a

quick hash table lookup compared to the many string comparisons that are being

performed now. A major benefit of this approach is that such an identifier table

will be useful when an eval facility is implemented.

Since the environment does not change in a procedure the variable name

resolution should happen only once in each procedure. This can be achieved by

creating a table in which a copy of a pattern with all its references resolved can be

stored. This table is part of the structure used to represent procedure in Unicon.

The first time a pattern A is passed as parameter to the pattern match function

a new pattern is constructed which is a copy of pattern A but with the variable

references resolved. This copy is stored in the table and associated with the serial

number of pattern A. The next time pattern A is passed to pattern match the

copy is used.
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5.2 Mixing pattern matching and string scanning

Pattern matching and string scanning are two orthogonal ways of perform-

ing string processing. Integrating them more closely would pose implementation

difficulties nad possibly lead to cognitive dissonance. For example it might be

tempting to consider constructs such as

pattern := &PArbno (& digits ) && tab (upto(& digits ))

it must be noted that there is no scanning environment in place during pattern

construction by default. If there is a scanning enviroment in effect then the above

pattern has the same effect as

res := tab(upto (& digits ))

pattern := &PArbno (& digits ) && res

Since arbitrary Unicon code can be executed during string scanning it is

possible to mix pattern matching with string scanning code. For example here is

the modified string scanning code for detecting words with double letters

procedure main()

in := open("mtent12 .txt", "r") | stop("open failed ")

out := open("mtentscanOut.txt", "w")

double := (PLen (1) $$ x && ‘x‘)

while line := read(in) do

{

line ?

{

while (tab(upto(& letters ))) do

{

word := tab(many (& letters ))

if word ?? double then write (out , word)

}

}

}

end
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5.3 Conclusion

The newly added pattern data type provides some benefits in text proc-

cessing tasks. It allows Unicon programmers to write more succinct and efficient

code to perform text processing. Since the new pattern facility closely follows the

implementation of patterns in SNOBOL it also provides a path for SNOBOL pro-

grammers to migrate their legacy SNOBOL code to Unicon. Translating SNOBOL

pattern matching code to Unicon patterns has been simplified because of the

nearly one to one matching between SNOBOL operators and functions and Uni-

con operators and functions. The lack of eval in Unicon prevents the pattern data

type from exhibiting all the power of SNOBOL patterns. The real challenge for

Unicon patterns is their adoption in the Unicon programmer community and use

in real world applications.
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APPENDIX A

ADDING THE PATTERN DATA TYPE TO THE ICONX RUNTIME

Due to Icon’s optimizing compiler which performs type infer-

encing, the procedure for adding new types to Icon is a lengthy and complicated.

This Appendix is a detailed line by line explanation of changes that were made

to iconx while adding the new pattern type.

The following lines were added to /common/typespec.txt

pattern {p}: aggregate (pat_elem )

return block_pointer

Since there are two new structures that are added to Icon’s runtime type

codes and descriptor codes corresponding to the pattern header structure and pat-

tern element structure have to be added to rmacros.h. The following typecodes

were added :

#define T_Pattern 26 /* pattern header */

#define T_Pelem 27 /* pattern element */

The following descriptor codes were added:

#define D_Pattern (T_Pattern | D_Typecode | F_Ptr)

#define D_Pelem (T_Pelem | D_Typecode | F_Ptr)

When a new type is added to Unicon the garbage collector also needs infor-

mation about the structures added. This information is provided in the following
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arrays : bsizes, firstd, firstp, ptrno, blkname

bsizes contains the block size of the newly added structure. The following addi-

tions were made to bsizes:

sizeof (struct b_pattern ), /* T_Pattern (26) , pattern block */

sizeof (struct b_pelem ), /* T_Pattern (27) , pattern element */

firstd contains the offset (in bytes) to the first descriptor in the block. The

following additions were made to firstd:

0, /* T_Pattern (26) , pattern block */

4*WordSize , /* T_Pelem (27) , pattern element */

firstp contains the offset of the first pointer in blocks. The following additions

were made to firstp:

3*WordSize , /* T_Pattern(26) pattern block */

2*WordSize , /* T_Pelem(26) pattern element block */

ptrno contains the number of pointers in blocks. The following additions were

made to ptrno:

1, /* T_Pattern (26) , pattern block */

1, /* T_Pelem (26) , pattern element block */

blkname contains the block names used by debugging functions. The following

additions were made to blkname:

"pattern ", /* T_Pattern (26) */

"pattern  element ", /* T_Pelem (27) */
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New allocation routines must be written for the newly added type. These

belong to the file ralc.r.
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APPENDIX B

MODIFIED OPERATOR TABLE

The newly added pattern construction and pattern matching operators

have been inserted in the icon operator table given below.

( expr )

{ expr1; expr2; }

[ expr1, expr2, ]

expr. f

expr1 [ expr2, expr3, ]

expr1 [ expr2 : expr3 ]

expr1 [ expr2 +: expr3 ]

expr1 [ expr2 : expr3 ]

expr ( expr1, expr2, )

expr { expr1, expr2, }

‘expr‘

‘‘expr‘‘

not expr
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| expr

! expr

* expr

+ expr

expr

. expr

/ expr

\ expr

= expr

? expr

~ expr

@ expr

^ expr

$$ expr

expr1 \ expr2

expr1 @ expr2

expr1 ! expr2

expr1 ^ expr2 (right associative)
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expr1 * expr2

expr1 / expr2

expr1 % expr2

expr1 ** expr2

expr1 + expr2

expr1 expr2

expr1 ++ expr2

expr1 expr2

expr1 || expr2

expr1 ||| expr2

expr1 < expr2

expr1 <= expr2

expr1 = expr2

expr1 >= expr2

expr1 > expr2

expr1 ~= expr2

expr1 << expr2

expr1 <<= expr2
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expr1 == expr2

expr1 >>= expr2

expr1 >> expr2

expr1 ~== expr2

expr1 === expr2

expr1 ~=== expr2

expr1 .$ expr2

expr1 -> expr2

expr1 && expr2

expr1 | expr2

expr1 .| expr2

expr1 to expr2 by expr3

expr1 ?? expr2

expr1 := expr2 (right associative)

expr1 < expr2 (right associative)
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expr1 :=: expr2 (right associative)

expr1 <> expr2 (right associative)

expr1 op:= expr2 (right associative)

expr1 ? expr2

expr1 & expr2

break expr

case expr of { expr1 : expr2; expr3 : expr4; }

create expr

every expr1 do expr2

fail

if expr1 then expr2 else expr3

next

repeat expr

return expr

suspend expr1 do expr2

until expr1 do expr2

while expr1 do expr2
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APPENDIX C

BENCHMARK DETAILS

The ruby script used for the benchmarks

require "benchmark "

include Benchmark

bm(12) do |test|

test.report ("Phone parse String  scanning :") do

for i in 1 ... 10

‘./ PhoneParse ‘

end

end

test.report ("Phone parse pattern  matching :") do

for i in 1 ... 10

‘./ PhPpattern ‘

end

end

test.report ("Double  letter  string  scanning :") do

for i in 1 ... 10

‘./ doubleletter ‘

end

end

test.report ("Double  letter  pattern  matching :") do

for i in 1 ... 10

‘./ doublepattern ‘

end

end

test.report ("ABC  string  scanning :") do

for i in 1 ... 10

‘./ABC <ABCinput >ABCoutput ‘

end

end

test.report ("ABC  pattern  matching :") do

for i in 1 ... 10

‘./ ABCss <ABCinput >ABCoutput ‘

end

end

end

Operating system on test machine (output of uname -a)

Linux 2.6.10-5-386 #1 i686 GNU/Linux

CPU information
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processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 13

model name : Intel(R) Pentium(R) M processor 1.86GHz

stepping : 8

cpu MHz : 797.892

cache size : 2048 KB

fdiv_bug : no

hlt_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 2

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat clflush dts acpi mmx

fxsr sse sse2 ss tm pbe nx est tm2

bogomips : 1576.09
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