A Language for Geometric Reasoning in Mobile Robots
Joseph J. Pfeiffer, Jr.
Department of Computer Science
New Mexico State University
Las Cruces, NM, USA 88003
pfeiffer@s. nmsu. edu

Abstract

Isaac is a rule-based language for mobile robots currently under development at NMSU. A successor to Altaira, it replaces
Altaira’s state-based rules and tile-based navigation with a more general geometric reasoning mechanism. The language
uses the FuzzyCLIPS expert system shell as a reasoning backend.

Keywords

Rule-based languages, reasoning, robotics, fuzzy logic



A Language for Geometric Reasoning in Mobile Robots
Joseph J. Pfeiffer, Jr.
Department of Computer Science

New Mexico State University
Las Cruces, NM, USA 88003
pfeiffer@s. nmsu. edu

Abstract

Isaac is a rule-based language for mobile robots cur-
rently under development at NMSU. A successor to Al-
taira, it replaces Altaira’s state-based rules and tile-
based navigation with a more general geometric reason-
ing mechanism. The language uses the FuzzyCLIPS ex-
pert system shell as a reasoning backend.

Introduction

Geometricreasoningfor mobile robotsis a naturalprob-
lem domain for visual languagesas the conceptsused
(polygons, physicalmotion, rangingand other sensorre-
turns) are strongly visual. The robot’s environmentthe
pathto befollowed, andthe actionsit shouldperformare
all represented quite naturally in pictorial form.

This paperdiscussedsaac(namedfor the late IsaacAsi-
mov, who coinedthe term roboticsandexploredthe ethi-
cal implicationsof robotsin hisfiction), avisuallanguage
for geometric reasoning in mobile robots.

Isaacis a rule-basedanguagewith rulesenabledby the
presenceof objectsin the robot’s environment. These
objectsmaybeknownto bein the environmenbeforethe
programbeginsexecution they may be representationsf
sensomreadingspr they may be createdasa resultof rule
firings. In addition, they may represenibjectsthat are
actually physicallypresen{suchaswalls), or theymaybe
abstract concepts (such as a path to follow).
Isaacmaintainsrepresentationsf the robot andits envi-
ronmentusing a two dimensionalgeometric modelling
library developedby the project team. FuzzyCLIPSis
used as the reasoning backend.

The paperis organizedas follows: following this intro-

duction,we discusgastresearchinto visuallanguagegor

mobile robots. After discussingthe deficienciesof tile-

basednavigation,specifically as usedby Altaira, we de-
scribe Isaacitself, including its geometricmodelingsys-
tem, its rules, and the mappingfrom Isaac’sgeometric
conceptgo FuzzyCLIPSfactsandrules. Finally, we give
some preliminary conclusions.

Prior Research

In recentyears,therehavebeena numberof visual lan-
guagesdevelopedfor mobile robots. Theselanguages
havebeenintendedfor small robotswith limited process-
ing power (typically using a Motorola HC11 or similar
microcontrollers) constructedfrom LEGO parts. Four
examplesof theselanguagesare Altaira, LEGOsheets,
RCX Code,andVSL. Exceptfor VSL, all of theselan-
guagesare targetedat novice users(in particular, chil-
dren).

Altaira[1] is a purely visual languagefor LEGO mobile
robots. It usesa tile-basednavigationsystem,andimple-
mentsa statemachinebasedon bothtile androbot states.
On eachexecutioncycle, the sensorsareall sampledand
the combinationof sensortile state,androbotstateinputs
is usedto selectnewtile androbotstatesperformnaviga-
tional updatesand control the robot’s actuators. Altaira
wasa finalistin the 1997 Visual ProgrammingChallenge.
Isaacmayberegardedhasa successolanguageo thislan-
guage,sowe will be describingit andits deficienciesin
more detail later.

L EGOsheetd2] is a hybrid visual-textuallanguagein-
tendedspecificallyfor usewith LEGO robots,asa way of



introducingprogrammingconceptgo children. Therules
are tied to the actuatorgso eachactuatorhaseffectively
anindependentule set),andare textual. Thereis no no-
tion of savedstateor navigation.LEGOsheetdeserves
specialmentionasthe languagevhich inspiredthe Visual
ProgrammingChallengeheldin conjunctionwith VL'96.
and VL'97.

RCX Cod€[3] is a visual languagedevelopedby LEGO
for use with their MINDSTORMS robotics products.
This is an event-drivenlanguage,in which changesto
monitored sensorresult in the executionof a seriesof
commands in a control-flow model.

VSL[4] is a straightforwardimplementationof Brooks's
subsumptiorarchitecture[5]jmplementedn Prograph[6].
The same authors have also developed VBBL[7].

A numberof other, more general,visual languagesave
alsobeenappliedto smallmobilerobotcontrolin thecon-
text of the Visual ProgrammingChallenge,including
COCOA[8], Formulate[9],and Prograph. COCOA also
deservespecialmentionhere,asit wasalsoa finalist in
the 1997 Visual Programming Challenge.

Deficienciesin Tile-Based Navigation for Mo-

bile Robots

In orderto motivatethe designof Isaac,we describethe
salientfeaturesof its predecessorAltaira. Altaira’s ex-

ecution model is essentiallythat of a two dimensional
Turing machine.The environmentis divided into square
tiles (correspondingo the LEGO roadtiles on which the
robot operates)eachof whichis in somestate. This tile

stateis usedto representhe type of the tile, its orienta-
tion, andthe history of the robot’s entrancego and exits
from the tile for purposesof making later navigational
decisions.

Thereis alsoa stateassociatedvith the robotitself. This

stateis usedto represensubgoaldo be accomplishedy

the robot such as “turn left at intersection.”

Altaira’s rules map the robot’s sensorinputs, the robot
state,and the currenttile stateto actuatoroutputs,new

robot and tile states,and navigationalcommandswhich
serveto maintaina notion of the robot’s orientationand
thetile it is locatedon. A rule canspecifyany numberof
theseinputs, or it canreplacesomeor all of them with
wild card inputs.

Altaira’s rulesetis hierarchicalwith the hierarchydefined
by whetherrules are conditionedon stateinputs or not,
and on the numberof sensorsusedin defining a rule.
This is usedto implementa subsumptionarchitecture
with higher-levelbehaviorsoverridinglower-levelbehav-
iors (ruleswith robot stateinputs define higher-levelbe-
haviorsthanruleswith tile stateinputs,andruleswith tile
stateinputs define higher-levelbehaviorsthan rules that
fail to specifyeitherrobotor tile stateoninput) andmore
specificrules(rulesthatspecifymoresensoiinputs)over-
riding lessspecific rules (rules that specify fewer sensor
inputs).

While Altaira’s tile- and state-basedhodelis appropriate
for the limited environmentfor which it wasintended,it
is not adequatdor a moregeneralenvironmentfor three
primary reasons.

First, the tile-basednavigationis itself inadequate.It as-
sumesthatthe world canbe dividedinto squaresandthat
it is relatively simple to determinewhen the robot has
crossedfrom oneto another. While this is true in some
domains, it is in general too limiting.

Secondthe useof a singlemonolithic stateto represent
wide variety of differenttypesof informationrelatingto a
tile leadsto anexplosionin boththe numberof statesand
the number of rules to deal with them.

Third, the languages only ableto treatsensorinputs as
booleanvalues. Supportfor sensorghatreturninherently
scalar data (such as direction or range sensors)is not
availablein the languagenor is it clearhow it could be
added.

Work is continuing on addressingthe first two issues
within the contextof Altaira, asthe language’sexecution
model remains well-suited to computing environments
with limited processingpower. At the sametime, we
have beenexploring Isaac,a completely new language



intendedto directly addresstheseissuesby eliminating
the tile-basednavigationand state-basedeasoningwith
more generalmechanisms. Isaacis intendedto advance
rule-basedvisual programmingor robotsto moregeneral
navigation,more powerful robots,and moresophisticated

users.

| saac

The Isaacenvironmenincludestwo dimensionalgeomet-
ric environmentandrobotrepresentationgditorsfor cre-
ating geometricmodelsand rules, and a reasoningback-
end driven by FuzzyCLIPS[10].

Geometric Models

The geometriaepresentatiois atwo dimensionamodel-
ling systemusing triangulatedpolygons. The systemis
hierarchical, allowing the representatiorof articulated

objects. The geometric hierarchy is shown in Figure 1.

Object
Point

Figure 1: Geometric Hierarchy

An objectis madeup of anarbitrarynumberof triangles,
and may also havesubobjects.Eachtriangleis madeup
of three points.

Objects(including subobjectshavetransformatiommatri-
cesassociateavith them,sothey canbe translatecor ro-
tatedby manipulatingthe matrices. As anobject’'shierar-
chy is traversed,the transformationmatricesare multi-
plied so subobjectsare locatedrelative to their parents.
This supportsarticulatedobjects,in which the subobjects
are able to move independently of one another.
Objectsalso havesetsof colorsassociatedvith them (so
the object can be regardedas being of more than one
color), for use in enabling rules for firing.

Typically, we will havetwo top-level objects:the robot
andits environment. Figure?2 is anexampleof a possible
environment.

Figure 2: Example Robot Environment in Isaac

For the sakeof clarity, the triangulationis not shownin
Figure 2. The various objectsin the environmentare
givendifferentcolors,to sensitizeahemfor differentrules.
The meaningof the colorsis givenin Figure3 (in theac-
tual environmenttheseregionsareassignedlifferentcol-
ors by the user. As this paperis destinedfor printing in
black andwhite, the regionsare beingshownin shadef
grey, instead).

Unexpected sonar return are:

- Wall avoidance area
- Expected sonar return area

Figure 3: Interpretation of Region Colors

The darkregionsrepresenareadrom which sonarreturns
are expected(walls in the environment). Sonarreturns
from theseareasresultin manipulationof the robot’s po-
sition.



The lighter areasrepresentollision avoidanceareas. If
the robot encountersthese areasit is too close to the
walls, and avoidance rules must be enabled.

The mostlightly shadedareagrepresentinexpectedonar
returnareas. Sonarreturnsfrom theseareasrepresentn-
expectedobstaclesvhich must be addedto the environ-
ment and avoided, as shown in the next section.

The unshaded areas will not enable any rules.

Rules

Rulestakethe form of aleft handsidedescribinga situa-

tion which canoccur,andaright handside. Whentheleft

hand side situation is recognized, the rule is fired.

A rule can causeany or all of the following actionsto

take place:

1. Objects can be added to the environment.

2. Objects can be removed from the environment.

3. Geometrictransformationgan be appliedto objects
in the environment.

An exampleof a rule thatinsertsone objectin the envi-

ronment, and deletes another, is shown in Figure 4.

Figure 4: Rule for Obstacle Detection

This rule responddgo a situationin which a sonarreturn
indicatesan unexpectedbjectin the environment. The
octagonis the objectrepresentinghe robot; the sonarre-
turn is representedby the small box. As a result of the
rule firing, the sonarreturnbox is removed,andtwo new
boxes,in different colors, representinghe detectedob-
stacle,are inserted. The inner box is a representatiorof
the obstaclétself; the outerbox is a newareafrom which
sonarreturnsare now expected.In the eventof a sonar

returnfrom the areaaroundthe box, the box will be modi-
fied to reflect the new information aboutits size. This
doesassumehat the sonarreturnobjecthasat leasttwo
membersn its color set,soit cantrigger rulesfrom both
expectedsonarreturn areasand unexpectedareas. The
solid blackline is ameasuringgtick: it stateghatthe new
obstacleshouldappeaiin the samepositionrelativeto the
robot as the sonar return object.

I nputs

An input from any sensorresultsin anobjectbeingadded
to the robot model. On eachexecutioncycle, all of the
inputs arepolled andobjectsaddedasappropriate. Typi-
cally, the ruleswhich are fired by the presenceof these
objectswill alsoremovethem from the environment,in
orderto avoid polluting future executioncycles. The lo-
cation and color of the objectin relationto the robot is
determinedby the user,with the robot editor. Isaacsup-
ports four types of input devices:

Boolean sensors aredevicessuchastouchsensoravhich
provide a booleanvalue. On each executioncycle, a
fixed-size object may be addedto the environmentde-
pendingon the stateof the booleansensor. The usermay
selectto insertobjectswhenthe sensorreturnstrue, when
it returnsor false,or differentobjectsmay be insertedon
each condition.

Local analog sensors are devicessuchaslight or flame
sensors. The areaof the objectaddedas a result of the
analog sensor is determined by the sensor reading.
Direction sensors are devicessuchascompassesA di-
rection sensoraddsa fixed-size object a fixed distance
from the centerof the robot, at an angleto the centerline
of the robot determined by the compass reading.
Ranging sensors are devicessuch as sonaror infrared
ranging moduleswhich returna value determinedby the
distancefrom the robot to a reflector. Ranging sensor
valuesresultin a fixed-sizeobjectbeingaddedto the en-
vironmentat a fixed angleto the centerlineof the robot,



at a distancedeterminedby the value returnedby the
ranging sensor.

In the interestsof simplicity in the programmingmodel,
thereis no supportas yet for imaging sensorg(such as
vision).

Outputs

Fourtypesof actuatorsare supported.Actuatorsare sub-
classedrom objects,sothey canbe addedto or removed
from the robot by the rules. Whena rule addsor deletes
an objectrepresentingan actuator,the correspondingo-

bot actuator'sstateis controlled. Thereare two typesof

actuators:

Boolean actuators canonly be given a value of true or

false. A booleanactuatorsimply fires; its operationis

analogous to the button on a spray can.

Analog actuators canbegivenavaluefrom-1to 1. Ana-

log actuatorsare typically usedin applicationswhere
speed control is needed.

Considerations beinggivento addinglinear androtating
servoactuators.If theseare added,they will operateby

addingan objectof a given lengthor at a given rotation,
andwill causethe associatedervoto track the lengthor

rotation in the rule.

FuzzyCL1PS Backend

FuzzyCLIPSis an expertsystemshell basedon CLIPS,

enhancedo supportfuzzy logic. Its operationis similar

to CLIPS andotherexpertsystemshells,exceptthatit is

capableof handling fuzzy conceptsand reasoning,and
uncertainties in the rules and facts.

The shell extendson standardnotionsof expertsystems
by permitting assertiongo include linguistic terms(such
asassertingTEMPERATUREHOT), and permitting par-

tial setmembership.Ratherthanrules simply beingen-

abledor disabled(asis the casein a conventionalexpert
system),FuzzyCLIPSpermitsa rule to be enablecdto the

extentthat its preconditionsare satisfied. All rules are

fired to whateverextent they are enabled,after which
their results are combined in a defuzzification step.
An interface has been developedfor manipulatingthe
FuzzyCLIPSenvironmentfrom C, so we will be ableto
make use of the FuzzyCLIPS reasoningengine from
Isaac.

Execution Cycle

Isaacexecuteghe following sequencef eventson each

executioncycle (the meaningf manyof thetermsused

here will be made clear in subsequent sections).

1. Insert new objectsin environmentbasedon sensor
inputs.

2. Determine object intersections,and assertfacts in
FuzzyCLIPS knowledge base.

3. Execute FuzzyCLIPS to obtain results of rule firings.
Apply resultsof rule firings to objectsin geometric
model.

5. Map output objects to robot actuators.

Mapping Geometric Reélationships to FuzzyCLIPS

Facts

Rulesare enabledby detectingthe presenceof polygons
in the robot modelwith specifiedcolorsin “sensitized”

areasof the environment. Polygonalintersectionis used
to determine this, as follows:

On eachexecutioncycle, eachof polygonsmakingup the
representatiorof the robot is intersectedwith any poly-

gonsof the samecolor in the environment.For eachnon-
emptyintersectionthatis located,a fact is insertedin the
FuzzyCLIPSdatabase.The degreeto which the fact is

asserted is determined by the area of the intersection.
The fuzzy logic providedby FuzzyCLIPS is usedto pro-

vide a very intuitive mechanisnfor sensoifusion: if sev-
eral sensorseturndata,they mayall enabledifferent(and
possiblyconflicting) rules. Eachof theserulesfires, with

the levelsof confidencegivenby theintersectiorarea. A

decisionis maderegardingthe final outcomeby the rule



combining and defuzzification mechanismsof Fuzzy-
CLIPS.

Editors

Editorsare underdevelopmenfor geometricmodelsand
for rules. The geometricmodeleditor permitsthe userto

add anddeleteobjectsandtriangles,andto positionthem
relativeto oneanother. Shorthandexistto addarbitrarily

shapedolygons which aretriangulatecastheyareadded
to the model.

The robot editor is enhancedelative to the environment
editor, asit canalsobe usedto definesensoandactuator
objects.

The rule editor is also enhancedelative to the environ-
ment editor, asit is also able to specify that geometric
transformationde appliedto objectsin the environment
and the robot.

Preliminary Conclusions

Isaacis being developedas a generalizatiornof the con-
ceptspresenin tile-basedanguagesuchasCOCOAand
Altaira. The environmentis no longer brokeninto tiles,
andthetile state(intendedto abstractlyrepresenfeatures
of the environment)s replacedby a directrepresentation
of this environment. Therobotstateandsensotinputsare
replacedby a geometricrobot representationin which
sensorreadingsare directly placedin the representation
for processingby the reasoning engine. The state
changesnavigationcommandsandactuatoroutputsfrom
the rulesarereplacedby ruleswhich directly addandre-
move objectsfrom the environment,perform geometric
operationson the robot, and control actuatorsthrougha
consistentinterface. The hierarchicalrulesetis replaced
through a fuzzy logic rule combining mechanism.

It is apparenatthis pointthatlsaacis a substantiabener-
alization of the conceptspresentin tile-, state-and rule-
basedvisual languageslt remainsto be seenwhetherit
will be as effective at mobile robot control in general

environmentsastheselanguagesverein the LEGO envi-
ronment.

References

1. Pfeiffer, J.J.Jr.(1998) “Altaira: a rule-basedvisual
languagefor small mobile robots,” in Journal of Vi-
sual Languages & Computing 9(2), pp 127-150.

2. Gindling, J., A. loannidou,J. O. Lokkebo, A. Repen-
ning (1995)"“LEGOsheets: arule-basegrogramming,
simulation and manipulation environment for the
LEGO programmablebrick,” in Proceedings of the
11th IEEE Symposium on Visual Languages, pp 172-
179.

3.LEGO Group (1998) LEGO MINDSTORMS
http://ww. | egoni ndst or ms. cont

4. Cox, P.T, T.J. Smedley,J. Garden, M. McManus
(1997) “Experienceswith visual programmingin a
specificdomain— visual programmingchallenge96,”
in Proceedings of the 1997 |EEE Symposium on Visual
Langauges, pp 258-263

5. Brooks,R.A. (1986)"“A robustlayeredcontrol system
for amobilerobot,” in IEEE Journal of Robotics and
Automation RA-2, pp 14-23.

6. Cox, P.T., F.R. Giles, T. Pietrzykowski (1989)
“Prograph: a step towards liberating programming
from textualconditioning,” in Proceedings of the 1989
| EEE Workshop on Visual Programming, pp 150-156.

7. Cox, P.T, C.C. Risley, T.J. Smedley(1998) “Toward
concreterepresentatiorin visual languagesfor robot
control,” in Journal of Visual Languages & Computing
9(2), pp 211-240.

8. Heger,N., A. Cypher,D.C. Smith (1998) “Cocoa at
the Visual ProgrammingChallenge1997,” in Journal
of Visual Languages & Computing 9(2), pp 151-170

9. Ambler, A. andA. Broman(1998)"Formulate solution
to the Visual ProgrammingChallenge,”in Journal of
Visual Languages & Computing 9(2), pp 171-210.

10.0Orchard, R.A. (1998) FuzzyCLIPS Version 6.04A
User’'s Guide.



