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Abstract
Isaac is a rule-based language for mobile robots cur-

rently under development at NMSU.  A successor to Al-

taira, it replaces Altaira’s state-based rules and tile-

based navigation with a more general geometric reason-

ing mechanism.  The language uses the FuzzyCLIPS ex-

pert system shell as a reasoning backend.

Introduction
Geometric reasoning for mobile robots is a natural prob-

lem domain for visual languages, as the concepts used 

(polygons, physical motion, ranging and other sensor re-

turns) are strongly visual.  The robot’s environment, the 

path to be followed, and the actions it should perform are 

all represented quite naturally in pictorial form.

This paper discusses Isaac (named for the late Isaac Asi-

mov, who coined the term robotics and explored the ethi-

cal implications of robots in his fiction), a visual language 

for geometric reasoning in mobile robots.

Isaac is a rule-based language, with rules enabled by the 

presence of objects in the robot’s environment.  These 

objects may be known to be in the environment before the 

program begins execution, they may be representations of 

sensor readings, or they may be created as a result of rule 

firings.  In addition, they may represent objects that are 

actually physically present (such as walls), or they may be 

abstract concepts (such as a path to follow).

Isaac maintains representations of the robot and its envi-

ronment using a two dimensional geometric modelling 

library developed by the project team.  FuzzyCLIPS is 

used as the reasoning backend.

The paper is organized as follows:  following this intro-

duction, we discuss past research into visual languages for 

mobile robots.  After discussing the deficiencies of tile-

based navigation, specifically as used by Altaira, we de-

scribe Isaac itself, including its geometric modeling sys-

tem, its rules, and the mapping from Isaac’s geometric 

concepts to FuzzyCLIPS facts and rules.  Finally, we give 

some preliminary conclusions.

Prior Research
In recent years, there have been a number of visual lan-

guages developed for mobile robots.  These languages 

have been intended for small robots with limited process-

ing power (typically using a Motorola HC11 or similar 

microcontrollers) constructed from LEGO parts.  Four 

examples of these languages are Altaira, LEGOsheets, 

RCX Code, and VSL.  Except for VSL, all of  these lan-

guages are targeted at novice users (in particular, chil-

dren).

Altaira[1] is a purely visual language for LEGO mobile 

robots.  It uses a tile-based navigation system, and imple-

ments a state machine based on both tile and robot states.  

On each execution cycle, the sensors are all sampled, and 

the combination of sensor, tile state, and robot state inputs 

is used to select new tile and robot states, perform naviga-

tional updates, and control the robot’s actuators.  Altaira 

was a finalist in the 1997 Visual Programming Challenge.  

Isaac may be regarded as a successor language to this lan-

guage, so we will be describing it and its deficiencies in 

more detail later.

LEGOsheets[2] is a hybrid visual-textual language in-

tended specifically for use with LEGO robots, as a way of 



introducing programming concepts to children.  The rules 

are tied to the actuators (so each actuator has effectively 

an independent rule set), and are  textual. There is no no-

tion of saved state or navigation. LEGOsheets deserves 

special mention as the language which inspired the Visual 

Programming Challenge, held in conjunction with VL’96. 

and VL’97.

RCX Code[3] is a visual language developed by LEGO 

for use with their MINDSTORMS robotics products.  

This is an event-driven language, in which changes to 

monitored sensor result in the execution of a series of 

commands in a control-flow model.

VSL[4] is a straightforward implementation of Brooks’s 

subsumption architecture[5], implemented in Prograph[6].  

The same authors have also developed VBBL[7].

A number of other, more general, visual languages have 

also been applied to small mobile robot control in the con-

text of the Visual Programming Challenge, including 

COCOA[8], Formulate[9], and Prograph.  COCOA also 

deserves special mention here, as it was also a finalist in 

the 1997 Visual Programming Challenge.

Deficiencies in Tile-Based Navigation for Mo-

bile Robots
In order to motivate the design of Isaac, we describe the 

salient features of its predecessor, Altaira.  Altaira’s ex-

ecution model is essentially that of a two dimensional 

Turing machine. The environment is divided into square 

tiles (corresponding to the LEGO road tiles on which the 

robot operates), each of which is in some state.   This tile 

state is used to represent the type of the tile, its orienta-

tion, and the history of the robot’s entrances to and exits 

from the tile for purposes of making later navigational 

decisions.

There is also a state associated with the robot itself. This 

state is used to represent subgoals to be accomplished by 

the robot such as ‘‘turn left at intersection.’’

Altaira’s rules map the robot’s sensor inputs, the robot 

state, and the current tile state to actuator outputs, new 

robot and tile states, and navigational commands which 

serve to maintain a notion of the robot’s orientation and 

the tile it is located on.  A rule can specify any number of 

these inputs, or it can replace some or all of them with 

wild card inputs.

Altaira’s ruleset is hierarchical, with the hierarchy defined 

by whether rules are conditioned on state inputs or not, 

and on the number of sensors used in defining a rule.  

This is used to implement a subsumption architecture 

with higher-level behaviors overriding lower-level behav-

iors (rules with robot state inputs define higher-level be-

haviors than rules with tile state inputs, and rules with tile 

state inputs define higher-level behaviors than rules that 

fail to specify either robot or tile state on input) and more 

specific rules (rules that specify more sensor inputs) over-

riding less specific rules (rules that specify fewer sensor 

inputs).

While Altaira’s tile- and state-based model is appropriate 

for the limited environment for which it was intended, it 

is not adequate for a more general environment, for three 

primary reasons.

First, the tile-based navigation is itself inadequate.  It as-

sumes that the world can be divided into squares, and that 

it is relatively simple to determine when the robot has 

crossed from one to another.  While this is true in some 

domains, it is in general too limiting.

Second, the use of a single monolithic state to represent a 

wide variety of different types of information relating to a 

tile leads to an explosion in both the number of states and 

the number of rules to deal with them.

Third, the language is only able to treat sensor inputs as 

boolean values.  Support for sensors that return inherently 

scalar data (such as direction or range sensors) is not 

available in the language, nor is it clear how it could be 

added.

Work is continuing on addressing the first two issues 

within the context of Altaira, as the language’s execution 

model remains well-suited to computing environments 

with limited processing power.  At the same time, we 

have been exploring Isaac, a completely new language 
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intended to directly address these issues by eliminating 

the tile-based navigation and state-based reasoning with 

more general mechanisms.   Isaac is intended to advance 

rule-based visual programming for robots to more general 

navigation, more powerful robots, and more sophisticated 

users.

Isaac
The Isaac environment includes two dimensional geomet-

ric environment and robot representations, editors for cre-

ating geometric models and rules, and a reasoning back-

end driven by FuzzyCLIPS[10].

Geometric Models

The geometric representation is a two dimensional model-

ling system using triangulated polygons.  The system is 

hierarchical, allowing the representation of  articulated 

objects.  The geometric hierarchy is shown in Figure 1.

An object is made up of an arbitrary number of  triangles, 

and may also have subobjects.  Each triangle is made up 

of  three points.

Objects (including subobjects) have transformation matri-

ces associated with them, so they can be translated or ro-

tated by manipulating the matrices.  As an object’s hierar-

chy is traversed, the transformation matrices are multi-

plied so subobjects are located relative to their parents.  

This supports articulated objects, in which the subobjects 

are able to move independently of one another.

Objects also have sets of colors associated with them (so 

the object can be regarded as being of more than one 

color), for use in enabling rules for firing.

Typically, we will have two top-level objects: the  robot 

and its environment.  Figure 2 is an example of a possible 

environment.

For the sake of clarity, the triangulation is not shown in 

Figure 2.  The various objects in the environment are 

given different colors, to sensitize them for different rules.  

The meaning of the colors is given in Figure 3 (in the ac-

tual environment, these regions are assigned different col-

ors by the user.  As this paper is destined for printing in 

black and white, the regions are being shown in shades of 

grey, instead).

The dark regions represent areas from which sonar returns 

are expected (walls in the environment).  Sonar returns 

from these areas result in manipulation of the robot’s po-

sition.



Figure 4:  Rule for Obstacle Detection

The lighter areas represent collision avoidance areas.  If 

the robot encounters these areas it is too close to the 

walls, and avoidance rules must be enabled.

The most lightly shaded areas represent unexpected sonar 

return areas.  Sonar returns from these areas represent un-

expected obstacles which must be added to the environ-

ment and avoided, as shown in the next section.

The unshaded areas will not enable any rules.

Rules

Rules take the form of a left hand side describing a situa-

tion which can occur, and a right hand side.  When the left 

hand side situation is recognized, the rule is fired.

A rule can cause any or all of the following actions to 

take place:

1. Objects can be added to the environment.

2. Objects can be removed from the environment.

3. Geometric transformations can be applied to objects 

in the environment.

An example of a rule that inserts one object in the envi-

ronment, and deletes another, is shown in Figure 4.

This rule responds to a situation in which a sonar return 

indicates an unexpected object in the environment.  The 

octagon is the object representing the robot; the sonar re-

turn is represented by the small box.  As a result of the 

rule firing, the sonar return box is removed, and two new 

boxes, in different colors, representing the detected ob-

stacle, are inserted.  The inner box is a representation of 

the obstacle itself; the outer box is a new area from which 

sonar returns are now expected.  In the event of a sonar 

return from the area around the box, the box will be modi-

fied to reflect the new information about its size.  This 

does assume that the sonar return object has at least two 

members in its color set, so it can trigger rules from both 

expected sonar return areas and unexpected areas.  The 

solid black line is a measuring stick:  it states that the new 

obstacle should appear in the same position relative to the 

robot as the sonar return object.

Inputs

An input from any sensor results in an object being added 

to the robot model.  On each execution cycle, all of the 

inputs are polled and objects added as appropriate.  Typi-

cally, the rules which are fired by the presence of these 

objects will also remove them from the environment, in 

order to avoid polluting future execution cycles.  The lo-

cation and color of the object in relation to the robot is 

determined by the user, with the robot editor.  Isaac sup-

ports four types of input devices:

Boolean sensors are devices such as touch sensors which 

provide a boolean value.  On each execution cycle, a 

fixed-size object may be added to the environment de-

pending on the state of the boolean sensor.  The user may 

select to insert objects when the sensor returns true, when 

it returns or false, or different objects may be inserted on 

each condition.

Local analog sensors are devices such as light or flame 

sensors.  The area of the object added as a result of the 

analog sensor is determined by the sensor reading.

Direction sensors are devices such as compasses.  A di-

rection sensor adds a fixed-size object a fixed distance 

from the center of the robot, at an angle to the centerline 

of the robot determined by the compass reading.

Ranging sensors are devices such as sonar or infrared 

ranging modules which return a value determined by the 

distance from the robot to a reflector.  Ranging sensor 

values result in a fixed-size object being added to the en-

vironment at a fixed angle to the centerline of the robot,  



at a distance determined by the value returned by the 

ranging sensor.

In the interests of simplicity in the programming model, 

there is no support as yet for imaging sensors (such as 

vision).

Outputs

Four types of actuators are supported.  Actuators are sub-

classed from objects, so they can be added to or removed 

from the robot by the rules.  When a rule adds or deletes 

an object representing an actuator, the corresponding ro-

bot actuator’s state is controlled.  There are two types of 

actuators:

Boolean actuators can only be given a value of true or 

false.  A boolean actuator simply fires; its operation is 

analogous to the button on a spray can.

Analog actuators can be given a value from -1 to 1. Ana-

log actuators are typically used in applications where 

speed control is needed.

Consideration is being given to adding linear and rotating 

servo actuators.  If these are added, they will operate by 

adding an object of a given length or at a given rotation, 

and will cause the associated servo to track the length or 

rotation in the rule.

FuzzyCLIPS Backend

FuzzyCLIPS is an expert system shell based on CLIPS, 

enhanced to support fuzzy logic.  Its operation is similar 

to CLIPS and other expert system shells, except that it is 

capable of handling fuzzy concepts and reasoning, and 

uncertainties in the rules and facts.

The shell extends on standard notions of expert systems 

by permitting assertions to include linguistic terms (such 

as asserting TEMPERATURE HOT), and permitting par-

tial set membership.  Rather than rules simply being en-

abled or disabled (as is the case in a conventional expert 

system), FuzzyCLIPS permits a rule to be enabled to the 

extent that its preconditions are satisfied.  All rules are 

fired to whatever extent they are enabled, after which 

their results are combined in a defuzzification step.

An interface has been developed for manipulating the 

FuzzyCLIPS environment from C, so we will be able to 

make use of the FuzzyCLIPS reasoning engine from 

Isaac.

Execution Cycle

Isaac executes the following sequence of events on each 

execution cycle (the meanings of  many of the terms used 

here will be made clear in subsequent sections).

1. Insert new objects in environment based on sensor 

inputs.

2. Determine object intersections, and assert facts in 

FuzzyCLIPS knowledge base.

3. Execute FuzzyCLIPS to obtain results of rule firings.

4. Apply results of rule firings to objects in geometric 

model.

5. Map output objects to robot actuators.

Mapping Geometric Relationships to FuzzyCLIPS 

Facts

Rules are enabled by detecting the presence of  polygons 

in the robot model with specified colors in ‘‘sensitized’’ 

areas of the environment.  Polygonal intersection is used 

to determine this, as follows:

On each execution cycle, each of polygons making up the 

representation of the robot is intersected with any poly-

gons of the same color in the environment.  For each non-

empty intersection that is located, a fact is inserted in the 

FuzzyCLIPS database.  The degree to which the fact is 

asserted is determined by the area of the intersection.

The fuzzy logic provided by FuzzyCLIPS  is used to pro-

vide a very intuitive mechanism for sensor fusion:  if sev-

eral sensors return data, they may all enable different (and 

possibly conflicting) rules.  Each of these rules fires, with 

the levels of confidence given by the intersection area.  A 

decision is made regarding the final outcome by the rule 



combining and defuzzification mechanisms of Fuzzy-

CLIPS.

Editors

Editors are under development for geometric models and 

for rules.  The geometric model editor permits the user to 

add and delete objects and triangles, and to position them 

relative to one another.  Shorthands exist to add arbitrarily 

shaped polygons, which are triangulated as they are added 

to the model.

The robot editor is enhanced relative to the environment 

editor, as it can also be used to define sensor and actuator 

objects.

The rule editor is also enhanced relative to the environ-

ment editor, as it is also able to specify that geometric 

transformations be applied to objects in the environment 

and the robot.

Preliminary Conclusions
Isaac is being developed as a generalization of the con-

cepts present in tile-based languages such as COCOA and 

Altaira.  The environment is no longer broken into tiles, 

and the tile state (intended to abstractly represent features 

of the environment) is replaced by a direct representation 

of this environment.  The robot state and sensor inputs are 

replaced by a geometric robot representation, in which 

sensor readings are directly placed in the representation 

for processing by the reasoning engine.  The state 

changes, navigation commands, and actuator outputs from 

the rules are replaced by rules which directly add and re-

move objects from the environment, perform geometric 

operations on the robot, and control actuators through a 

consistent interface.  The hierarchical ruleset is replaced 

through a fuzzy logic rule combining mechanism.

It is apparent at this point that Isaac is a substantial gener-

alization of the concepts present in tile-, state- and rule-

based visual languages. It remains to be seen whether it 

will be as effective at mobile robot control in general 

environments as these languages were in the LEGO envi-

ronment.
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