
A Language for Geometric Reasoning in Mobile Robots
Joseph J. Pfeiffer, Jr.

Department of Computer Science

New Mexico State University

Las Cruces, NM, USA 88003

pfeiffer@cs.nmsu.edu

Abstract
Isaac is a rule-based language for mobile robots currently under development at NMSU. A successor to Altaira, it replaces

Altaira’s state-based rules and tile-based navigation with a more general geometric reasoning mechanism. The language

uses the FuzzyCLIPS expert system shell as a reasoning backend.

Keywords
Rule-based languages, reasoning, robotics, fuzzy logic

A Language for Geometric Reasoning in Mobile Robots
Joseph J. Pfeiffer, Jr.

Department of Computer Science

New Mexico State University

Las Cruces, NM, USA 88003

pfeiffer@cs.nmsu.edu

Abstract
Isaac is a rule-based language for mobile robots cur-

rently under development at NMSU. A successor to Al-

taira, it replaces Altaira’s state-based rules and tile-

based navigation with a more general geometric reason-

ing mechanism. The language uses the FuzzyCLIPS ex-

pert system shell as a reasoning backend.

Introduction
Geometric reasoning for mobile robots is a natural prob-

lem domain for visual languages, as the concepts used

(polygons, physical motion, ranging and other sensor re-

turns) are strongly visual. The robot’s environment, the

path to be followed, and the actions it should perform are

all represented quite naturally in pictorial form.

This paper discusses Isaac (named for the late Isaac Asi-

mov, who coined the term robotics and explored the ethi-

cal implications of robots in his fiction), a visual language

for geometric reasoning in mobile robots.

Isaac is a rule-based language, with rules enabled by the

presence of objects in the robot’s environment. These

objects may be known to be in the environment before the

program begins execution, they may be representations of

sensor readings, or they may be created as a result of rule

firings. In addition, they may represent objects that are

actually physically present (such as walls), or they may be

abstract concepts (such as a path to follow).

Isaac maintains representations of the robot and its envi-

ronment using a two dimensional geometric modelling

library developed by the project team. FuzzyCLIPS is

used as the reasoning backend.

The paper is organized as follows: following this intro-

duction, we discuss past research into visual languages for

mobile robots. After discussing the deficiencies of tile-

based navigation, specifically as used by Altaira, we de-

scribe Isaac itself, including its geometric modeling sys-

tem, its rules, and the mapping from Isaac’s geometric

concepts to FuzzyCLIPS facts and rules. Finally, we give

some preliminary conclusions.

Prior Research
In recent years, there have been a number of visual lan-

guages developed for mobile robots. These languages

have been intended for small robots with limited process-

ing power (typically using a Motorola HC11 or similar

microcontrollers) constructed from LEGO parts. Four

examples of these languages are Altaira, LEGOsheets,

RCX Code, and VSL. Except for VSL, all of these lan-

guages are targeted at novice users (in particular, chil-

dren).

Altaira[1] is a purely visual language for LEGO mobile

robots. It uses a tile-based navigation system, and imple-

ments a state machine based on both tile and robot states.

On each execution cycle, the sensors are all sampled, and

the combination of sensor, tile state, and robot state inputs

is used to select new tile and robot states, perform naviga-

tional updates, and control the robot’s actuators. Altaira

was a finalist in the 1997 Visual Programming Challenge.

Isaac may be regarded as a successor language to this lan-

guage, so we will be describing it and its deficiencies in

more detail later.

LEGOsheets[2] is a hybrid visual-textual language in-

tended specifically for use with LEGO robots, as a way of

introducing programming concepts to children. The rules

are tied to the actuators (so each actuator has effectively

an independent rule set), and are textual. There is no no-

tion of saved state or navigation. LEGOsheets deserves

special mention as the language which inspired the Visual

Programming Challenge, held in conjunction with VL’96.

and VL’97.

RCX Code[3] is a visual language developed by LEGO

for use with their MINDSTORMS robotics products.

This is an event-driven language, in which changes to

monitored sensor result in the execution of a series of

commands in a control-flow model.

VSL[4] is a straightforward implementation of Brooks’s

subsumption architecture[5], implemented in Prograph[6].

The same authors have also developed VBBL[7].

A number of other, more general, visual languages have

also been applied to small mobile robot control in the con-

text of the Visual Programming Challenge, including

COCOA[8], Formulate[9], and Prograph. COCOA also

deserves special mention here, as it was also a finalist in

the 1997 Visual Programming Challenge.

Deficiencies in Tile-Based Navigation for Mo-

bile Robots
In order to motivate the design of Isaac, we describe the

salient features of its predecessor, Altaira. Altaira’s ex-

ecution model is essentially that of a two dimensional

Turing machine. The environment is divided into square

tiles (corresponding to the LEGO road tiles on which the

robot operates), each of which is in some state. This tile

state is used to represent the type of the tile, its orienta-

tion, and the history of the robot’s entrances to and exits

from the tile for purposes of making later navigational

decisions.

There is also a state associated with the robot itself. This

state is used to represent subgoals to be accomplished by

the robot such as ‘‘turn left at intersection.’’

Altaira’s rules map the robot’s sensor inputs, the robot

state, and the current tile state to actuator outputs, new

robot and tile states, and navigational commands which

serve to maintain a notion of the robot’s orientation and

the tile it is located on. A rule can specify any number of

these inputs, or it can replace some or all of them with

wild card inputs.

Altaira’s ruleset is hierarchical, with the hierarchy defined

by whether rules are conditioned on state inputs or not,

and on the number of sensors used in defining a rule.

This is used to implement a subsumption architecture

with higher-level behaviors overriding lower-level behav-

iors (rules with robot state inputs define higher-level be-

haviors than rules with tile state inputs, and rules with tile

state inputs define higher-level behaviors than rules that

fail to specify either robot or tile state on input) and more

specific rules (rules that specify more sensor inputs) over-

riding less specific rules (rules that specify fewer sensor

inputs).

While Altaira’s tile- and state-based model is appropriate

for the limited environment for which it was intended, it

is not adequate for a more general environment, for three

primary reasons.

First, the tile-based navigation is itself inadequate. It as-

sumes that the world can be divided into squares, and that

it is relatively simple to determine when the robot has

crossed from one to another. While this is true in some

domains, it is in general too limiting.

Second, the use of a single monolithic state to represent a

wide variety of different types of information relating to a

tile leads to an explosion in both the number of states and

the number of rules to deal with them.

Third, the language is only able to treat sensor inputs as

boolean values. Support for sensors that return inherently

scalar data (such as direction or range sensors) is not

available in the language, nor is it clear how it could be

added.

Work is continuing on addressing the first two issues

within the context of Altaira, as the language’s execution

model remains well-suited to computing environments

with limited processing power. At the same time, we

have been exploring Isaac, a completely new language

Object

Triangle

Point

Figure 1: Geometric Hierarchy

Figure 2: Example Robot Environment in Isaac

Expected sonar return area

Wall avoidance area

Unexpected sonar return area

Figure 3: Interpretation of Region Colors

intended to directly address these issues by eliminating

the tile-based navigation and state-based reasoning with

more general mechanisms. Isaac is intended to advance

rule-based visual programming for robots to more general

navigation, more powerful robots, and more sophisticated

users.

Isaac
The Isaac environment includes two dimensional geomet-

ric environment and robot representations, editors for cre-

ating geometric models and rules, and a reasoning back-

end driven by FuzzyCLIPS[10].

Geometric Models

The geometric representation is a two dimensional model-

ling system using triangulated polygons. The system is

hierarchical, allowing the representation of articulated

objects. The geometric hierarchy is shown in Figure 1.

An object is made up of an arbitrary number of triangles,

and may also have subobjects. Each triangle is made up

of three points.

Objects (including subobjects) have transformation matri-

ces associated with them, so they can be translated or ro-

tated by manipulating the matrices. As an object’s hierar-

chy is traversed, the transformation matrices are multi-

plied so subobjects are located relative to their parents.

This supports articulated objects, in which the subobjects

are able to move independently of one another.

Objects also have sets of colors associated with them (so

the object can be regarded as being of more than one

color), for use in enabling rules for firing.

Typically, we will have two top-level objects: the robot

and its environment. Figure 2 is an example of a possible

environment.

For the sake of clarity, the triangulation is not shown in

Figure 2. The various objects in the environment are

given different colors, to sensitize them for different rules.

The meaning of the colors is given in Figure 3 (in the ac-

tual environment, these regions are assigned different col-

ors by the user. As this paper is destined for printing in

black and white, the regions are being shown in shades of

grey, instead).

The dark regions represent areas from which sonar returns

are expected (walls in the environment). Sonar returns

from these areas result in manipulation of the robot’s po-

sition.

Figure 4: Rule for Obstacle Detection

The lighter areas represent collision avoidance areas. If

the robot encounters these areas it is too close to the

walls, and avoidance rules must be enabled.

The most lightly shaded areas represent unexpected sonar

return areas. Sonar returns from these areas represent un-

expected obstacles which must be added to the environ-

ment and avoided, as shown in the next section.

The unshaded areas will not enable any rules.

Rules

Rules take the form of a left hand side describing a situa-

tion which can occur, and a right hand side. When the left

hand side situation is recognized, the rule is fired.

A rule can cause any or all of the following actions to

take place:

1. Objects can be added to the environment.

2. Objects can be removed from the environment.

3. Geometric transformations can be applied to objects

in the environment.

An example of a rule that inserts one object in the envi-

ronment, and deletes another, is shown in Figure 4.

This rule responds to a situation in which a sonar return

indicates an unexpected object in the environment. The

octagon is the object representing the robot; the sonar re-

turn is represented by the small box. As a result of the

rule firing, the sonar return box is removed, and two new

boxes, in different colors, representing the detected ob-

stacle, are inserted. The inner box is a representation of

the obstacle itself; the outer box is a new area from which

sonar returns are now expected. In the event of a sonar

return from the area around the box, the box will be modi-

fied to reflect the new information about its size. This

does assume that the sonar return object has at least two

members in its color set, so it can trigger rules from both

expected sonar return areas and unexpected areas. The

solid black line is a measuring stick: it states that the new

obstacle should appear in the same position relative to the

robot as the sonar return object.

Inputs

An input from any sensor results in an object being added

to the robot model. On each execution cycle, all of the

inputs are polled and objects added as appropriate. Typi-

cally, the rules which are fired by the presence of these

objects will also remove them from the environment, in

order to avoid polluting future execution cycles. The lo-

cation and color of the object in relation to the robot is

determined by the user, with the robot editor. Isaac sup-

ports four types of input devices:

Boolean sensors are devices such as touch sensors which

provide a boolean value. On each execution cycle, a

fixed-size object may be added to the environment de-

pending on the state of the boolean sensor. The user may

select to insert objects when the sensor returns true, when

it returns or false, or different objects may be inserted on

each condition.

Local analog sensors are devices such as light or flame

sensors. The area of the object added as a result of the

analog sensor is determined by the sensor reading.

Direction sensors are devices such as compasses. A di-

rection sensor adds a fixed-size object a fixed distance

from the center of the robot, at an angle to the centerline

of the robot determined by the compass reading.

Ranging sensors are devices such as sonar or infrared

ranging modules which return a value determined by the

distance from the robot to a reflector. Ranging sensor

values result in a fixed-size object being added to the en-

vironment at a fixed angle to the centerline of the robot,

at a distance determined by the value returned by the

ranging sensor.

In the interests of simplicity in the programming model,

there is no support as yet for imaging sensors (such as

vision).

Outputs

Four types of actuators are supported. Actuators are sub-

classed from objects, so they can be added to or removed

from the robot by the rules. When a rule adds or deletes

an object representing an actuator, the corresponding ro-

bot actuator’s state is controlled. There are two types of

actuators:

Boolean actuators can only be given a value of true or

false. A boolean actuator simply fires; its operation is

analogous to the button on a spray can.

Analog actuators can be given a value from -1 to 1. Ana-

log actuators are typically used in applications where

speed control is needed.

Consideration is being given to adding linear and rotating

servo actuators. If these are added, they will operate by

adding an object of a given length or at a given rotation,

and will cause the associated servo to track the length or

rotation in the rule.

FuzzyCLIPS Backend

FuzzyCLIPS is an expert system shell based on CLIPS,

enhanced to support fuzzy logic. Its operation is similar

to CLIPS and other expert system shells, except that it is

capable of handling fuzzy concepts and reasoning, and

uncertainties in the rules and facts.

The shell extends on standard notions of expert systems

by permitting assertions to include linguistic terms (such

as asserting TEMPERATURE HOT), and permitting par-

tial set membership. Rather than rules simply being en-

abled or disabled (as is the case in a conventional expert

system), FuzzyCLIPS permits a rule to be enabled to the

extent that its preconditions are satisfied. All rules are

fired to whatever extent they are enabled, after which

their results are combined in a defuzzification step.

An interface has been developed for manipulating the

FuzzyCLIPS environment from C, so we will be able to

make use of the FuzzyCLIPS reasoning engine from

Isaac.

Execution Cycle

Isaac executes the following sequence of events on each

execution cycle (the meanings of many of the terms used

here will be made clear in subsequent sections).

1. Insert new objects in environment based on sensor

inputs.

2. Determine object intersections, and assert facts in

FuzzyCLIPS knowledge base.

3. Execute FuzzyCLIPS to obtain results of rule firings.

4. Apply results of rule firings to objects in geometric

model.

5. Map output objects to robot actuators.

Mapping Geometric Relationships to FuzzyCLIPS

Facts

Rules are enabled by detecting the presence of polygons

in the robot model with specified colors in ‘‘sensitized’’

areas of the environment. Polygonal intersection is used

to determine this, as follows:

On each execution cycle, each of polygons making up the

representation of the robot is intersected with any poly-

gons of the same color in the environment. For each non-

empty intersection that is located, a fact is inserted in the

FuzzyCLIPS database. The degree to which the fact is

asserted is determined by the area of the intersection.

The fuzzy logic provided by FuzzyCLIPS is used to pro-

vide a very intuitive mechanism for sensor fusion: if sev-

eral sensors return data, they may all enable different (and

possibly conflicting) rules. Each of these rules fires, with

the levels of confidence given by the intersection area. A

decision is made regarding the final outcome by the rule

combining and defuzzification mechanisms of Fuzzy-

CLIPS.

Editors

Editors are under development for geometric models and

for rules. The geometric model editor permits the user to

add and delete objects and triangles, and to position them

relative to one another. Shorthands exist to add arbitrarily

shaped polygons, which are triangulated as they are added

to the model.

The robot editor is enhanced relative to the environment

editor, as it can also be used to define sensor and actuator

objects.

The rule editor is also enhanced relative to the environ-

ment editor, as it is also able to specify that geometric

transformations be applied to objects in the environment

and the robot.

Preliminary Conclusions
Isaac is being developed as a generalization of the con-

cepts present in tile-based languages such as COCOA and

Altaira. The environment is no longer broken into tiles,

and the tile state (intended to abstractly represent features

of the environment) is replaced by a direct representation

of this environment. The robot state and sensor inputs are

replaced by a geometric robot representation, in which

sensor readings are directly placed in the representation

for processing by the reasoning engine. The state

changes, navigation commands, and actuator outputs from

the rules are replaced by rules which directly add and re-

move objects from the environment, perform geometric

operations on the robot, and control actuators through a

consistent interface. The hierarchical ruleset is replaced

through a fuzzy logic rule combining mechanism.

It is apparent at this point that Isaac is a substantial gener-

alization of the concepts present in tile-, state- and rule-

based visual languages. It remains to be seen whether it

will be as effective at mobile robot control in general

environments as these languages were in the LEGO envi-

ronment.

References
1. Pfeiffer, J.J.Jr. (1998) ‘‘Altaira: a rule-based visual

language for small mobile robots,’’ in Journal of Vi-

sual Languages & Computing 9(2), pp 127-150.

2. Gindling, J., A. Ioannidou, J. O. Lokkebo, A. Repen-

ning (1995) ‘‘LEGOsheets: a rule-based programming,

simulation and manipulation environment for the

LEGO programmable brick,’’ in Proceedings of the

11th IEEE Symposium on Visual Languages, pp 172-

179.

3. LEGO Group (1998) LEGO MINDSTORMS,

http://www.legomindstorms.com/

4. Cox, P.T, T.J. Smedley, J. Garden, M. McManus

(1997) ‘‘Experiences with visual programming in a

specific domain − visual programming challenge ’96,’’

in Proceedings of the 1997 IEEE Symposium on Visual

Langauges, pp 258-263.

5. Brooks, R.A. (1986) ‘‘A robust layered control system

for a mobile robot,’’ in IEEE Journal of Robotics and

Automation RA-2, pp 14-23.

6. Cox, P.T., F.R. Giles, T. Pietrzykowski (1989)

‘‘Prograph: a step towards liberating programming

from textual conditioning,’’ in Proceedings of the 1989

IEEE Workshop on Visual Programming, pp 150-156.

7. Cox, P.T, C.C. Risley, T.J. Smedley (1998) ‘‘Toward

concrete representation in visual languages for robot

control,’’ in Journal of Visual Languages & Computing

9(2), pp 211-240.

8. Heger, N., A. Cypher, D.C. Smith (1998) ‘‘Cocoa at

the Visual Programming Challenge 1997,’’ in Journal

of Visual Languages & Computing 9(2), pp 151-170

9. Ambler, A. and A. Broman (1998) ‘‘Formulate solution

to the Visual Programming Challenge,’’ in Journal of

Visual Languages & Computing 9(2), pp 171-210.

10.Orchard, R.A. (1998) FuzzyCLIPS Version 6.04A

User’s Guide.

