
A Common Framework for Input, Processing, and Output in a Rule−based
Visual Language

Joseph J. Pfeiffer, Jr.
Department of Computer

Science
New Mexico State University
Las Cruces, NM 88003 USA
pfeiffer@cs.nmsu.edu

Rick L. Vinyard, Jr.
Department of Computer

Science
New Mexico State University
Las Cruces, NM 88003 USA
rvinyard@cs.nmsu.edu

Bernardo Margolis
Department of Computer

Science
New Mexico State University
Las Cruces, NM 88003 USA
bemargol@cs.nmsu.edu

ABSTRACT

Isaac is a programing language for geometric
reasoning intended for controlling mobile robots,
currently under development at NMSU. Due to the
application area, handling input and output (in
particular, sensor input and actuator output) in a manner
consistent with the language as a whole is particularly
important in this language.

In this paper, we discuss the mechanisms employed
by Isaac to provide a common framework for input,
processing, and output in this language.

KEYWORDS

Rule−based visual languages, mobile robots,
geometric reasoning

1. Introduction

In developing a visual language for a specialized
problem domain, the characteristics of the language
must be carefully matched to the requirements of the
domain.

In the case of Isaac, a rule−based visual language for
reactive robot control applications, the nature of the
processing model (described below) makes the
mechanism used for specifying I/O operations as
important as any of the mechanisms used for specifying
any of the other functionality of the language. In
developing the Isaac I/O system, a number of
requirements were established in order to meet this goal:
• Input and output functions should be configurable by

the robot programmer.
• Input and output should make use of the same

abstractions as those used for geometric reasoning.
• The editors used for specifying the mappings from

input and output to the language’s I/O abstractions
should be as similar as possible to those used in the
remainder of the language.

• While a certain amount of textual code will be
required to provide low−level interfacing with the
device drivers, this wrapper should be very thin, in
the sense that the mappings mentioned in the
previous item should define the I/O interface as
completely as possible. This will help to make the
system as flexible as possible, and make adding new
devices as simple as possible.
The general approach to I/O in this work is to model

sensor inputs as the firing of rules similar in form to the
other rules used by the system, and to use the firing of
designated rules to cause actuator outputs to occur.
Each sensor on the robot is mapped to a rule adding
input objects to the robot’s world model; affine
transformations are used to control the detailed
placement of the resulting object. Similarly, when rules
are fired which place output objects in the world model,
an affine transformation is used to map the location of
the output object to the specific value to be output to a
particular actuator.

In this paper, we describe the I/O facilities which
have been defined for Isaac, and their relationship with
the other components of the language. The paper is
organized as follows. Following this Introduction,
Section 2 will describe some relevant background
including a description of reactive mobile robot control
and of the I/O facilities provided by selected visual
languages which have been used or developed for
mobile robots, and Section 3 gives a brief description of
Isaac. Section 4 will describe the visual editors used in
Isaac paying particular attention to the relationship
between the I/O editor and the other editors. Section 5
will introduce the device interaction library, and Section
6 will present some preliminary conclusions and
directions for future research.

2. Background

In this section, we introduce some relevant
background, giving some of the motivations for the
design of Isaac. This will include a brief description of

reactive robot control, and mention some related visual
robot control languages.

2.1. Reactive Control of Mobile Robots

Robot applications may be broadly divided into two
classes: industrial robots, in which a stationary robot
functions as an intelligent tool in the tightly constrained
environment of the assembly line, and autonomous
mobile robots, in which a mobile robot maneuvers in
much less constrained environments such as offices,
hallways, or even the surface of another planet.

These two very different environments call for
radically different approaches, methodology, and even
languages. For an industrial robot, it is appropriate to
use a procedural methodology to control the robot’s
motion, with (possibly) fine adjustments based on sensor
inputs. The robot may be programmed explicitly, using a
procedural robot control language, or implicitly using a
pendant to guide the robot through its sequence of
operations.

In a mobile robot, a procedural programming
approach becomes very difficult to employ successfully,
since there is a much higher probability of reaching
unanticipated situations. Because of this, a reactive
control strategy (i.e. a control strategy based on
‘‘reactions’’ to the environment, using rules to combine
sensor inputs with a world model to produce actuator
outputs and changes to the world model) is a common
and successful approach[2, 4, 6, 9, 10].

2.2. I/O in Rule−Based Visual Languages for
Robots

Over the last several years, a number of visual
languages have either been developed or adapted for
robot control, beginning with LEGOsheets[5]. The
majority of the approaches we will describe here were
developed for use in the 1997 Visual Programming
challenge[1], so their mechanisms are tailored to the
sensor and actuator set available in the robot used in the
Challenge.

2.2.1. Altaira Altaira, the immediate predecessor to
Isaac, is a language for control of small mobile robots
using tile−based navigation[12]. As it is intended for an
environment with very limited processing power and
sensor configurations, its I/O facilities are
correspondingly limited. It was originally developed
specifically for the 1997 Visual Programming
Challenge, so its I/O facilities are tailored to the robot
used in the Challenge.

This robot had five light sensors and two touch
sensors. The environment and problem was constrained
so that the light sensors only had to be able to detect

‘‘light’’ and ‘‘dark,’’ and did not need to return an
analog reading. The robot also had two drive motors as
its only actuators; the motors could be programmed to go
either forward or reverse.

In Altaira, sensor inputs are thresholded so they can
be regarded as simply indicating the presence or absence
of a condition in the robot’s surroundings. On each rule
execution cycle, all sensor inputs are read, and the
thresholded inputs used (along with state information
maintained by the language) in a match against the left
hand side of all the rules in the ruleset to determine
whether a given rule is to be enabled on a given cycle. A
rule can explicitly ignore any or all of the sensor inputs
(this is referred to as using dontcare inputs).

Actuators are limited to simple forward−off−reverse
motors; control for all of the actuators (along with the
state information used for rule activation) is updated on
each execution cycle. Just as it is possible to use a
dontcare on input, a rule can leave any or all actuators
unchanged (this is referred to as using nochange
outputs).

The integration of I/O with reasoning in Altaira is
provided by simply having all rules consider input and
generate output. While this yields a very complete
integration, it does not scale well to robots with large
numbers of inputs or outputs, or inputs which cannot
conveniently be thresholded and treated as boolean
values.

2.2.2. Cocoa Cocoa is a simulation tool for children,
using rules to define the behavior of characters on a
stage[14]. The language was adapted for use in the 1997
Visual Programming Challenge by adding I/O
functionality appropriate to the robot used in the
Challenge[7].

In Cocoa’s case, the base language did not support
I/O, so an extension to the language was used to translate
the inputs to a boolean vector. The input and output
processing performed using this vector is very similar to
Altaira’s, though it is possible to define rules in which
input and output do not appear at all (this is equivalent to
using all dontcares for input and nochanges for
output in Altaira, though the Cocoa mechanism is clearer
as it explicitly uses no input and provides no output for
these rules). Also, Cocoa implements speed control for
the motors.

2.2.3. HDM−SDM A visual environment for
programming mobile robots using a Hardware Definition
Module (HDM) and Software Definition Module (SDM)
is described in [3]. HDM generalizes the boolean input
model used by Altaira and Cocoa by partitioning the
input values into an arbitrary number of cases, and also
generalizes the vector of sensor inputs used by those
languages by permitting the user to define ‘‘compound
sensors’’ based on vectors of inputs. A visual editor is

used to define the mapping from sensor inputs to iconic
representations.

A similar visual editor is used to define actuators,
allowing the user to control actuator speed and direction,
and to use several icons to represent a motor that is
stopped, going forward, or going in reverse (to use their
example).

HDM also provides a robot editor, allowing the
programmer to define the locations of the sensors and
actuators on the robot for purposes of simulation.

3. Isaac Processing Model

Isaac is a rule−based language for mobile robots. It
uses a more general geometric model than the tile−based
navigation present in all of the languages described
above, replacing this with arbitrary two−dimensional
positioning of objects. It also replaces the crisp rule
enabling of those three languages with a fuzzy logic
approach, using intersections between objects on the left
hand side of rules and objects in the world model to
enable rules. The area of an intersection is used to
determine the extent to which a rule is enabled, with
FuzzyCLIPS[11] used as a reasoning engine to drive the
actual execution of the rules.

A rule in Isaac consists of a left hand side specifying a
configuration of objects in the vicinity of the robot in the
world model, and a right hand side specifying changes to
the world model that occur when the rule is executed.
This may include adding objects to the model, deleting
objects from the model, or modifying the position of the
robot in the model. A more complete description of
Isaac’s processing model may be found in [13].

Isaac’s input and output is handled consistently with
other processing. Sensor rules translate sensor input
readings into objects which are placed in the world
model, while actuator rules are enabled by the presence
of objects in the world model and result in output to
actuators.

4. Isaac Editors

The Isaac programming environment makes use of a
total of four closely related editors:

• Object editor for defining libraries of objects for
use in the other editors, and for defining initial
world models.

• I/O editor creating mappings from sensor inputs
to geometric objects to be placed in the world
model, and from objects in the world model to
actuator outputs.

• Robot editor for instantiating sensors and editors
defined using their respective editors, and
positioning them relative to the robot body.

• Rule editor for developing rules which draw
inferences from the world model, and modify the
world model as a result.

The editors all make use of a similar user interface
with common features. Each of the editors can be used
individually, so it is possible to create a library of sensors
and actuators which may be instantiated on a variety of
robots, or create a variety of maps on which a robot can
be placed.

The following sections describe each of these editors
in greater detail.

4.1. Object Editor

The simplest editor of the four is the object editor,
which is able to define the properties of an object. This
is used to create a library of objects for later use in both
this and the other editors, and to create an initial world
model. As shown in Figure 1, the object editor provides
a hierarchy view and a map view. The robot programmer
is able to add objects to and delete objects from the map,
and may modify the position and size of the objects.
Objects may be selected for deletion, modification, or to
serve as the parent for sub−objects to be created, by use
of either the hierarchy or the map view. The
programmer can create objects either by defining shapes
in this editor, or by selecting pre−defined objects from a
library (the library of pre−defined objects is in turn
created by this same editor, and saved to the library
instead of saving as a map).

The initial world model established in the object
editor may be completely empty (as in the case of a
totally unknown environment) or may contain an
arbitrarily detailed map of the robot’s expected
surroundings. It is even possible to place ‘‘objects’’ in
the world model which do not correspond to objects in

Figure 1. Object editor

the physical environment; this can be done (for instance)
to represent a path to be followed by the robot.

As mentioned above, the object editor can also be
used to create objects which can be placed in an object
library, for use as predefined objects in the I/O, robot,
and rule editors, as described below, or in defining maps.

4.2. I/O Editor

The I/O editor provides the programmer with a visual
environment for defining a catalog of I/O objects of
various types, and specifying the properties of these I/O
objects. These properties include the specification of the
actions necessary to insert an object into the world model
in response to a sensor reading, and conversely, an
actuator response to the presence of an object in the
world model. The I/O object types defined in this editor
can then be associated with specific sensors on the actual
robot, as we will describe in Section 4.3.

An I/O rule is composed of the following:

• Sensor or Actuator Type

• Object

• Affine Transformation

• Sensor or Actuator Value

Sensor objects are created by selecting a sensor type
from a catalog, defining a geometric object to place in
the world model in response to a sensor input, and
defining an affine transformation to apply to the object to
modify its location or size due to the value of the sensor
input.

Actuator objects are created similarly; in this case, the
object will be recognized in the environment and the
affine transformation is used to determine the value to be
output to the actuator.

When the programmer begins definition of an I/O
rule, a mnemonic name may be assigned to the rule. This
helps to identify the rule in other editors such as the
Robot Editor and Rule Editor.

The following subsections describe the use of the I/O
editor in defining sensor and actuator objects. We will
refer to Figure 2, a screen capture of the I/O editor,
thoughout this description.

4.2.1. Sensor/Actuator Selection The programmer
specifies the Sensor or Actuator component of an I/O
object by selecting from a catalog of available sensors
and actuators. This catalog is provided by the I/O editor
in the form of a tree representing either an intuitive or
transformational hierarchy as described in [15]. The
catalog of sensors and actuators is shown in the left−most
window in Figure 2. The tree structure shown provides
the programmer with an intuitive hierarchy, and allows
the programmer to select the sensor to be modified. In
this example, a Polaroid L−series rangefinder transducer
has been selected for this rule. The programmer could

select another sensor for this rule by selecting another
Polaroid series, a Murata sensor, or a completely
different family of sensors.

4.2.2. Object Definition The object to be associated
with the sensor is defined in the I/O editor’s map editor,
shown in the right−most window of Figure 2, The
programer is provided with two methods of modifying
objects within the I/O editor. Double−clicking the object
in the map window will provide the programmer with a
catalog of all predefined objects, from which an object
may be selected. Alternatively, the programmer is
allowed to use the Object editor to create an entirely new
object. For convenience, a quick color button is provided
to the left of the horizontal ruler. This provides the
programmer with a quick reference to the current color of
the object. Clicking on this button provides the
programmer with a color selection dialog allowing the
color of the object to be changed without explicitly using
the Object editor.

4.2.3. Transformation An affine transformation is the
final programmer−specifiable component of an I/O
object. The specified transformation will be applied to
the selected object to provide a mapping from the
original input to the position of an input object to an
object in the world model, or conversely from the
position the object in the world model to an actuator
output.

Any of the transformations may be parameterized by
the final component of an I/O rule (a sensor value or
actuator value). Typically, the programmer will only
parameterize a few of the transformations. The type of
information returned by a sensor dictates which affine
transformations are parameterized by the sensor value.
Conversely, the type of information required by an
actuator dictates which inverse transformations are
parameterized by an actuator value(s). An example of a

Figure 2. I/O editor

sensor type that would not parameterize an affine
transform is a contact closure tactile sensor which has
only boolean values. A sensor that would typically
parameterize the affine transform is a sonar sensor which
would apply its value to the Y component of the
translation affine transform.

Thus, up to five functions may be specified by the
programmer for each rule, as shown in Table 1.

The I/O editor provides the programmer with two
methods of defining the transformation: either through
manipulation of function plots specifying the affine
transform component parameters, or through the map
editor representing the location of the object in relation
to the location of the sensor/actuator.

The three windows in the middle of Figure 2 comprise
the plot view. The plot view allows the programmer to
graphically edit the affine transformation component
functions. In this example, the sonar sensor returns a
value that may be used to determine the distance to an
object. This value is used to parameterize the affine
transform component function TY(sv). The two scaling
affine transforms SX(sv) and SY(sv), the rotational
transform R(sv), and the translational affine transform
TX(sv) are all constant functions. The object will not be
rotated, will remain at its original size, and will not be
translated along the X−axis, regardless of the sensor
value.

In this example, the programmer has determined that
a minimal sensor return of 0 will insert an object 4
meters away, and a maximal sensor reading of 32767
will insert the object 20 meters away. Thus, the
programmer is specifying the following function:

TY sv = 16m

32767
∗sv+2mY0.49mm∗sv+2m

The map editor allows the programmer an alternative
visual method of defining the affine transformation
functions, without explicitly understanding affine
transformations themselves. By dragging the horizontal
dotted line up and down, the user defines the y−intercept

of TY(sv). By dragging the object in the map editor, the
user defines the slope of TY(sv). Thus, the user is
provided with an intuitive method of programming the
sensor.

Similarly, the map editor provides the programmer
with a visual methodology for defining the other four
affine transformation component functions. An interior
bounding box is provided which allows the programmer
to specify the minimum width and height of an object.
Similarly, an exterior bounding box specifies the
maximum width and height of an object. Values between
the minimum and maximum are calculated by SX(sv) and
SY(sv).

A pair of rotational bars is provided to the
programmer to similarly specify the minimum and
maximum angular rotation values of a sensor.

The programmer can also vary the operation of the
rule by changing the type of function associated with an
affine transform component. Although only linear
functions are mentioned above, the programmer could
have chosen from a variety of functions including
exponential, polynomial and logarithmic.

4.3. Robot Editor

The robot editor is used to define a mobile robot.
Definition of the robot is a two step process which begins
by creating a visual representation of the robot’s physical
configuration. The second step is to develop instantiation
rules for the robot’s sensors and actuators. This is done
by assigning particular instances of I/O objects defined
using the I/O editor to corresponding physical locations
on the robot.

4.3.1. Physical Specification Creating a representation
of the physical configuration of the robot is accomplished
through several steps. The programmer is able to use any
combination of objects, sensors and actuators to specify
the components of the robot. A catalog of these
components is presented in the leftmost upper window of
Figure 3. The programmer selects these components by
clicking on the desired component and dragging it to the
map view (on the far right side of of the figure). This
places the component on the robot, and allows the
programmer to further define the instantiation of the
component, if appropriate.

All components associated with the current robot are
listed in the robot component window (middle window of
Figure 3). Selecting a component in this window allows
the programmer to change the properties of this
component, or delete the component entirely.

Figure 3 shows the use of the robot editor to define a
typical mobile robot with an octagonal body. The
programmer has added six sonar rangefinders which will
eventually comprise a ring of eight sonar rangefinders
used by the robot to determine distance to obstacles.

Affine Transformation
Component

Functions

Rotation about the Z−axis R(sv) R−1(av)

Translation along the X−axis TX(sv) T−1
X(av)

Translation along the Y−axis TY(sv) T−1
Y(av)

Scaling in the X−axis SX(sv) S−1
X(av)

Scaling in the Y−axis SY(sv) S−1
Y(av)

Table 1. Available affine transforms

Additionally, the robot has two ultraviolet sensors to
determine the presence of a flame, an un−powered rear
wheel for balance, two powered front wheels and two
motors for movement.

Other components are necessary for a functional
robot. These would include power supply, servo
controller cards, and logic control mechanisms. If these
components will not be associated with any rule, then it
is at the discretion of the programmer to include or
exclude these items from the physical description of the
robot. In this example the three wheels are included as
objects, but have no rules associated with them.
However, if the wheels extruded from the frame of the
robot, it is likely that collision avoidance rules would be
developed for them.

4.3.2. Component Instantiation When a component is
instantiated, an affine transformation matrix is created
which defines the component’s location and orientation
in reference to the robot’s origin. For sensors and
actuators an I/O rule is created, which performs the
interaction between the I/O device and the world model.

Defining the instantiation of a component requires
that the programmer select the component in either the
map view or the robot component window. The
programmer is provided with two methods of specifying
the affine transformation associated with a particular
component. Using the map view, the programmer may
drag the component into the proper position, specifying
the translation component of the affine transformation
matrix. Similarly, the programmer can use the rotation
and scaling handles to rotate the component and scale it
larger and smaller respectively.

Instead of using the map view to drag the sensor into
the appropriate position, the programmer may use the
spin buttons above the map view to specify the position,
rotation and size of the component.

The body of the robot in Figure 4 is octagonal, with a
maximal diameter of 30cm. The selected sonar sensor
has been placed on the far left side of the robot, resulting
in an X translation of −15cm from the center of the robot,
and has been rotated 270� clockwise from the centerline
of the robot.

The leftmost lower window of Figure 4 presents the
programmer with all currently developed rules. To
associate a component with a rule, the programmer drags
the rule from the rule window and drops the rule on the
component in either the map view or the robot
component window. Multiple rules may be associated
with a single component.

In this example, a sensor rule developed in the I/O
editor, as shown in Figure 2, has been selected. This rule
will obtain sensor readings from the sonar sensor on the
left most side of the robot and insert objects in the world
model as previously specified in the I/O editor after
multiplying those objects by the affine transformation
matrix of this sonar sensor. Similarly, an actuator rule
maps transformations applied to the actuator object in a
rule output to the device.

It is important to note that I/O objects may
simultaneously be environmental objects as described in
the Rule Editor. In this capacity, the I/O object is simply
an object in the environment, and does not use the value
of the I/O object to parameterize a rule. In Figure 4, the
selected sonar sensor has been colored red. This
coloration has no effect upon parameterized objects the
sensor inserts into the environment. By coloring the
sensor red, collision avoidance rules can be developed in
the Rule Editor to prevent collisions involving extruding
components. Since actual images of the sensors may be
used by the programmer when desired, the coloration of a
component is visually displayed to the programmer by
placing a framed bounding box around the component

Figure 3. Robot editor − physical
specification

Figure 4. Robot editor − component
instantiation

when it is selected. The background color of the
bounding box is the color of the object.

4.4. Rule Editor

The rule editor defines a robot’s reactions to its world
model. The left hand side of a rule is a configuration of
one or more objects in the world model, while the right
hand side represents the modifications which will be
made to the world model if the rule is executed.

In operation, the left hand side editor is identical to
the map editor, except that in addition to defining objects
directly in this editor and selecting objects from the
object library (described in section 4.1), the user can also
select sensor objects defined in the I/O editor and
instantiated with the robot editor.

Also, any modifications the user makes to the left
hand side of the rule, except for insertion of sensor
objects, is automatically made to the right hand side as
well. This benefits both the programmer and the code
generator by providing an interface in which initial
conditions and modifications are explicitly (and
separately) defined. Sensor objects are not echoed to the
right hand side because they are intended to always be
transitory, and are deleted as soon as they have been used
to activate rules.

When an object is added to the left hand side of the
rule, its origin is always the same as the robot’s.
Positioning the object defines a transformation, setting its
new position relative to the robot’s origin. For objects
other than sensor objects the programmer has the
freedom to modify the object by rotation, translation, or
scaling; with sensor objects, the only modifiable
parameter is that specified in the definition of the sensor
object (so rule can be created that is responsive to sonar
readings in a certain range, for instance).

The user is able to perform three types of
modifications to the right hand side: objects may be
added to the world model, they may be deleted from the
world model, and translations and rotations may be
applied to the robot icon. In addition to defining objects
directly and using objects from the library defined using
the map editor, it is also possible to insert actuator
objects defined with the I/O editor.

Objects other than actuator objects added to the world
model in the right hand side have their origins relative to
the world (not relative to the robot, as is the case on the
left hand side). The user, as with the left hand side, is
able to apply transforms to set the location of the object.

In the case of actuator objects, the object location is
relative to the robot, and the transformation applied to
the actuator object will be used to control the output
signal applied to the device. As with sensor objects, only
the parameter defined in the I/O editor can be set with
actuator objects. Unlike other objects, the actuator

object is not actually added to the world model when its
rule is fired; its usefulness is in generating the output.

The changes that are defined will be emphasized
through the following visual means:
• when an object is removed from the world model, its

border will still appear on the right hand side, though
it will be empty (rather than colored as it was on the
left hand side).

• when an object is added to the world model, its
border will be bold.

• when the robot is moved, it may be either translated
or rotated, or both. This is emphasized by showing
both the old location of the robot as an empty border
(the same representation that is used for an object that
has been removed), and as a colored object with a
bold border (the same representation as for an object
that has been added).
An example of the use of the rule editor is shown in

Figure 5. In this example, the rule is a response to a
sonar return from an unexpected object; the response is
to insert an obstacle at the location returned by the sonar
sensor.

5. Device Interaction Library

Isaac is being developed for use in POSIX−compliant
environments, in particular Linux with the Kansas
University Real−time Extensions[8]. A library is being
developed to provide a consistent interface to all of the
sensors and actuators supported by Isaac.

Each sensor driver implements a method called
GetValue(), which performs any interactions
necessary with the operating system’s device driver to
obtain a reading from the sensor, and translates the
reading into a 32 bit signed binary value.

Similarly, each actuator driver implements a function
called PutValue(), which translates a 32 bit binary
value into a value expected by the low−level device
driver, and writes it to the driver.

All sensors and actuators of a common type accessed
as elements of an array; the sensor and actuator drivers
are loadable at run−time. Both sensors and actuators are
required to provide an _init() method, which will open

Figure 5. Rule editor

the device and perform any other initialization necessary
to make use of it.

The intent of this mechanism is to provide as thin as
possible an interface between the operating system and
Isaac, providing the programmer with maximum
flexibility in developing I/O objects.

6. Concluding Remarks

We have developed a powerful mechanism for
describing input, output, and processing for a rule−based
visual language in a consistent manner.

Our work to date has focussed on reactive robot
control. While very successful for immediate response to
inputs and for local navigation, it is not clear to what
extent this processing model is appropriate for higher−
level activities such as path planning. As development of
Isaac progresses, it will be interesting to determine the
extent to which our rule−based processing paradigm is
appropriate for the construction of plans and more
complex navigation than we have considered to date.

We have not considered path−planning at this time.
However, a likely approach to the problem would be to
allow a path−planning algorithm to insert new path
objects in the world model. Alternatively, as Isaac is
intended for geometric reasoning, it is likely that it will
be a useful language for expressing path−planning
algorithms which would run concurrently with the
robot’s operation.

REFERENCES

[1] Ambler, A.L., T. Green, T.D. Kimura, A.
Repenning, and T.J. Smedley, ‘‘1997 Visual
Programming Challenge Summary,’’ in Proceedings
of the 1997 IEEE Symposium on Visual Languages
(1997), 11−18.

[2] Brooks, R.A., ‘‘A robust layered control system for a
mobile robot,’’ in IEEE Journal of Robotics and
Automation RA−2 (1986), 14−23.

[3] Cox, P. and T. Smedley, ‘‘Visual programming for
robot control,’’ in Proceedings of the 1998 IEEE
Symposium on Visual Languages (1998), 217−224.

[4] Gat, E.R., R. Desai, R. Ivleve, J. Loch, and D.P.
Miller, ‘‘Behavior Control for robotic exploration of

planetary surfaces,’’ in IEEE Transactions on
Robotics and Automation 10(4) (1994), 490−503.

[5] Gindling, J., A. Ioannidou, J. Loh, O. Lokkebo, and
A. Repenning, ‘‘LEGOsheets: a rule−based
programming, simulation and manipulation
environment for the LEGO programmable brick,’’ in
Proceedings of the 11th IEEE Symposium on Visual
Langauges (1995), 172−179.

[6] Harmon, S.Y., ‘‘A rule−based command language
for a semi−autonomous Mars rover,’’ in Mobile
Robots IV, W. J. Wolfe and W.H. Chun, eds (1989),
147−156.

[7] Heger, N., A. Cypher, and D. Smith, ‘‘Cocoa at the
Visual Programming Challenge 1997,’’ in Journal of
Visual Languages & Computing 9 (1998), 151−168.

[8] Hill, R., B. Srinivasan, S. Pather, and D. Niehaus,
Temporal Resolution and Real−Time Extensions to
Linux, Technical Report ITTC−FY98−11510−03,
Information and Telecommunication Technology
Center, Department of Electrical Engineering and
Computer Science, University of Kansas (1998).

[9] Meyrowitz, A.L., ‘‘Autonomous vehicles,’’ in
Proceedings of the IEEE 84(8) (1996), 1147−1163.

[10]Meystel., A., Autonomous Mobile Robots − Vehicles
With Cognitive Control, World Scientific Publishing
Co. (1991).

[11]Orchard, R., FuzzyCLIPS Version 6.04A User’s
Guide (1998).

[12]Pfeiffer, J., ‘‘Altaira: a rule−based visual language
for small mobile robots,’’ in Journal of Visual
Languages & Computing 9 (1998), 127−150.

[13]Pfeiffer, J.., ‘‘A language for geometric reasoning in
mobile robots,’’ in Proceedings of the IEEE
Symposium on Visual Languages (Tokyo Japan,
September 1999), 164−171.

[14]Smith, D., A. Cypher, and J. Spohrer. ‘‘KidSim:
programming agents without a programming
language.’’ in Communications of the ACM 37
(1994) 54−67.

[15]Vinyard, R., J. Pfeiffer, and B. Margolis, ‘‘Hardware
Abstraction in a Visual Programming Environment,’’
submitted for publication.

