
Hardware Abstraction
in a

Visual Programming Environment
Rick L. Vinyard, Jr . Joseph J. Pfeiffer , Jr . Bernardo Margolis

Department of Computer Science
New Mexico State University

Las Cruces, NM, USA
+1 505 646 1605

pfeiffer@cs.nmsu.edu
ABSTRACT
Isaac is a visual programming language for geometric
reasoning, intended for the control of mobile robots. A
major task in mobile robot control, and hence one of the
major components of the language, is the handling and
fusing of sensor data. A common framework for
abstracting the characteristics of a large number of sensor
types has been developed, and is being used in the
development of the language.

This paper presents two hierarchies for classification of
sensors for mobile robots. The first hierarchy presented is
based upon intuitive groupings of sensors with similar
physical principles. This hierarchy is most useful in
organizing an intuitive visual programming environment. 

The second hierarchy relates to the mathematical effects
of sensors. At the core of this hierarchy are affine
transforms. The three transforms of rotation, scaling and
translation can be represented through compositions of
matrices. This common property forms a superclass in
developing a coherent reusable object oriented library.

Keywords
Visual Languages, Robot, Actuator, Transducer, Affine
Transform.

1 INTRODUCTION
A key feature in any successful programming environment
is the use of a small set of powerful, intuitive concepts
which are used consistently throughout the environment.
Limiting the number of concepts the programmer is
required to learn in order to make use of the environment
makes it possible to learn the environment faster, and be
more productive. Additionally, implementation is
simplified by using a relatively small set of concepts,
creating an environment that is both more robust and
easier to maintain.

This project uses visual rules expressing geometric
transformations to model sensor inputs, perform geometric
reasoning, and manage actuator outputs. By expressing
these actions using a common framework, we have
created a language that is simultaneously quite simple and
yet robust.

In this paper, we focus on the use of affine transformations
to model sensor inputs, and the development of an editor

permitting the programmer to easily define the
characteristics of sensors for use in the environment.

The paper is organized as follows: in Section 2 we will
briefly introduce Isaac, the language which is currently
undergoing our most active development. An overview of
the project as a whole is presented in Section 3. Section 4
briefly introduces a design pattern which forms the basis
of object oriented sensor class abstraction. Section 5
provides the methodology of using affine transforms in
relation to sensor input. Section 6 outlines the sensor
abstraction hierarchy. Section 7 outlines some preliminary
conclusions, and describes our directions for future
research.

2 ISAAC
Our software development concern is a project called
Isaac, which has been in progress at New Mexico State
University since early 1998[12]. Briefly, Isaac is a visual
language for geometric reasoning, for use in programming
autonomous mobile robots.

Mobile Robots
Our particular application domain is that of robots
navigating in comparatively unconstrained environments.
In contrast to the highly constrained environment of a
typical assembly−line stationary robot, a mobile robot is
called upon constantly to make decisions based on
unexpected inputs, to plan its path through unknown
environments, and in general to perform a variety of
geometric reasoning tasks. Applications of mobile robots
are as prosaic as office mail delivery systems and as
exotic as planetary exploration.

Visual Programming Languages
Programming language development may be described as
an ongoing effort to find representations of appropriate
concepts that are both natural to the human programmer,
and precise in order that they may be unambiguously
interpreted. In the vast majority of programming
languages which have been developed to date, these
abstractions have been expressed textually.

An alternative mechanism for defining a programming
language is to adapt a visual notation, such as dataflow
diagrams, for the purpose. Successful visual languages
have been developed based on control flow diagrams[7],



dataflow diagrams[4, 8], and several varieties of rule−
based languages [1, 11, 13].

One particular notation which is very well suited for use
as a programming language is compass−and−straightedge
geometric constructions. This notation is intuitive, well−
defined, and has a several−millennia history of use for
geometric reasoning. In an application such as mobile
robot control, this notation is ideal.

3 PROJECT OVERVIEW
The Isaac environment includes two dimensional
geometric environment and robot representations, editors
for creating geometric models and rules, and a reasoning
backend driven by FuzzyCLIPS[9].

The geometric representation is a two dimensional
modeling system using triangulated polygons. The system
is hierarchical, allowing the representation of articulated
objects. An object is made up of an arbitrary number of
triangles, and may also have subobjects. Each triangle is
made up of  three points.

Objects (including subobjects) have transformation
matrices associated with them, so they can be translated or
rotated by manipulating the matrices. As an object’s
hierarchy is traversed, the transformation matrices are
multiplied so subobjects are located relative to their
parents. This supports articulated objects, in which the
subobjects are able to move independently of one another.

Rules take the form of a left hand side describing a
situation which can occur, and a right hand side. When
the left hand side situation is recognized, the rule is fired.

A rule can cause any or all of the following actions to take
place:

1. Objects can be added to the environment.

2. Objects can be removed from the environment.

3. Affine transformations can be applied to objects in
the environment.

Several examples of Isaac rules are shown in Figure 1. In
all rules shown, the hexagon represents a robot, and the
boxes represent features in the robot’s environment. The
first rule represents a rule that might be invoked as the

result of a sonar return from an unexpected obstacle. The
left side shows the robot and the sonar return; the sonar
return is from an area in which no return is expected.  As a
consequence, a new object is placed in the representation
of the environment (these figures are color−coded in the
actual environment). In the middle rule, a sonar return
from an expected object has an unexpected range. This
rule will change the robot’s idea of its location. Finally,
the last rule in the figure responds to a situation in which
the robot finds itself too close to an obstacle. In this case,
its motors are set to divert it from the collision.

Isaac rules are parameterized by ‘ ‘measuring sticks’ ’
inserted in the left and right hand side of the rules. The
measuring sticks represent affine transforms to be applied
to objects in the rule; for instance, the first two rules
shown in Figure 1 are given a translation matrix by the
vertical line.

A more complete description of the Isaac language and
environment may be found in [12].

Software Organization
In many ways, Isaac is an outgrowth of the earlier Altaira
project [11], building on its strengths and attempting to
remedy its deficiencies [10]. Early decisions based on
lessons learned with Altaira included:

Operating System
The NMSU Department of Computer Science almost
exclusively uses Linux. Students are much more likely to
have development experience with Linux than other
operating systems. Linux had previously been used
successfully in Altaira, so it was retained for Isaac.

Language
The nature of the problem, focussing on geometric objects
and robot components, lends itself very naturally to an
object−oriented approach. Java was regarded as
unacceptable due to ongoing performance concerns, so
C++ was selected as the language. C++ had also been
used successfully in Altaira.

Graphical User Interface
Altaira used Motif, with decidedly mixed results. While
the UIL interface description language used by Motif is an
excellent, declarative description of the interface, Motif
suffers from being excessively rigid in its demands that
programmers conform to its recommended look and feel.
In addition, Motif’s C interface is not appropriate to a
program written in C++. Consequently gtkmm (formerly
Gtk−−) was selected as the user interface. To allow for a
change of GUI toolkits at a later date, should that become
advisable, a strict model−view−marshaller architecture
was implemented for use with the project. Using gtkmm
has not been without difficulty, as it is also under
development and essentially lacking in documentation.

2

Figure 1:  Samples of Isaac Rules



4 THE MVM (MODEL−VIEW−MARSHALLER)
ARCHITECTURE

The Model−View−Marshaller paradigm (MVM) is based
upon the concepts of the Model/View/Controller paradigm
(MVC) of the SmallTalk80 Graphical User Interface
(GUI) system[3].

The Model component is analogous to a data structure. It
is responsible for maintaining data values relative to a
concrete or theoretical object.

The View component is analogous to a display window. It
is responsible for device display of a subset of the data
represented by the Model. Most often, the View will
comprise a visual display of data on a screen.

The Controller component is responsible for interpretation
of user input, and passing of control to the appropriate
component. Most modern GUI’s (Windows, X, Java) and
their associated toolkits(Motif, Gtk+, MFC, JDK, et. al.)
provide the functionality of the controller through items
such as callbacks or other message handling capabilities.
This functionality is closely tied to the View, and is not
implemented in the higher abstractions of the MVM.

The focus of the MVM is to provide an abstract layer that
may be extended through specialized classes to a variety
of specific environments and toolkits. 

The MVM architecture is a design pattern that relies
heavily upon many other common design patterns. The
Model is related to the View through a subject−observer
pattern [6]. It is implemented in C++ and utilizes the
Standard Template Library (STL) for various internal
structures.  The architecture is shown in Figure 2.

A mediator pattern acts as a signal marshaller between a
related set of Models and Views. This functionality
eliminates the one to many relationship between Models

and Views and provides a more flexible hierarchy.

Distributed computing is provided through the mediator as
well. The mediator is an abstract base class that provides a
communication interface to a local Model and View.
Since Marshaller−Marshaller communication is also
provided, subclasses can be developed for message
passing on specific distributed architectures such as
CORBA (Common Object Request Broker Architecture)
and MPI (Message Passing Interface).

Beyond message passing, the Marshaller provides
additional functionality to the MVM architecture. At a
base level, it provides a factory method for instantiation of
Models and Views. Subclasses of Marshaller can provide
instantiations of Model and View subclasses.

Another feature the Marshaller provides to the MVM
architecture is a chain of responsibility. This is most
useful when performing queries throughout the hierarchy,
or when a selective set of communication rules is desired.

5 SENSOR ABSTRACTIONS IN ISAAC
The most intuitive organization of robotic sensors is
related to functional groupings based upon the physical
properties of the sensor’s operation. Thus, short−range
sensors such as local infrared or touch sensors are
separated into one group, while other groups may be
organized as inertial, rangefinding, interfacing, and so
forth. Such a functional grouping, as displayed to the
Isaac program, is shown in Figure 4. This is the hierarchy
that is presented to a programmer using Isaac for a robotic
control task.

For implementation purposes, it is more appropriate to
classify sensors according to affine transformation
subclasses to increase software re−use.

An affine transform is a geometric transformation which
preserves parallelism of lines, though not necessarily
lengths or angles[5]. Subclasses of affine transforms
include: 

� Scaling − which preserves angles
� Rotation − which preserves lengths
� Translation − which preserves both lengths and

angles

Affine transforms can be represented as homogeneous
matrices, and are easily manipulated through matrix

Figure 3: Example of distributed communication

Figure 2: Model−View−Marshaller Design Pattern

3



compositions. Since geometric manipulations constitute a
major component of the reasoning performed by Isaac,
affine transformations are a logical choice for representing
these manipulations. This is true of the reasoning engine
present within Isaac, and more specifically of the
environmental sensor inputs.

A sensor event is represented as the right−hand side of a
rule, placing or modifying objects in the environment and
thus enabling rules for firing. The right hand side of a
sensor rule is represented by a programmer defined
template, and is parameterized by a homogeneous matrix
containing entries specified by the sensor inputs..

6 ISAAC SENSOR CLASSES
Isaac maps sensor classes to subclasses of affine
transforms based on properties of the sensors. The
fundamental sensor classes are:

Identity
An identity sensor is most commonly represented by a
simple boolean on−off switch sensor, such as a digital
touch sensor. Identity sensors place  object(s) at a fixed
location in the environment, and do not include any
representation of data input strength. No
parameterization is required, so an identity transform
is applied.

Scalar
Sensors whose output includes a measure of the extent
to which a property is present in the environment (such
as  a temperature sensor) will have a scalar component.

Since Isaac uses the area of an object in its rule
enabling to determine the extent to which the

corresponding feature is present in the environment, a
scalar component is used in the transform to reflect the
strength of the sensor’s output.

As both boolean and scalar sensors simply identify the
presence of an environmental condition, and do not
provide information regarding its location in relation to
the robot body (except in relation to the fixed sensor
location), we frequently refer to sensors in these two
classes as ‘ ‘myopic’ ’  sensors.

Translation
A sensor whose output is capable of identifying a
particular location in relation to the robot, such as a
range−finder, will insert an object into the
environment at a distance corresponding to the range
given by the sensor. This is accomplished by
parameterizing a translation matrix.

Rotation
A sensor whose output specifies a particular direction,
(such as a compass), will use a rotation matrix to add a
fixed−size object a fixed distance from the robot, at an
angle to the centerline of the robot determined by the
sensor reading.

In addition to the fundamental sensor classes just defined,
sensors whose characteristics include aspects of several
affine transforms are defined as composite sensor classes.
The composite sensor classes are:

Combined Scalar  and Translation
Sensors whose outputs express the extent to which
some external input is present in the immediate
neighborhood of the robot (such as proportional touch
sensors or local infra−red sensors) are represented
using a combined scalar and translation matrix.

Combined Scalar  and Rotation
A combined scalar and rotation transform is used to
describe a sensor such as a sound detector using
Doppler shift to determine the direction of a sound
source. The sound amplitude would be represented
using the scalar transform, and the direction using the
rotation transform.

Combined Rotation and Translation
A combination of rotation and translation is used to
describe sensors such as inertial sensors capable of
supplying both rotation and translation information to
the robot.

Combined Rotation, Scaling, and Translation
Finally a sensor may have all available components of
the transform parameterized.

This classification is summarized in Figure 5. 

Figure 4: Sensor Classification Based on Functional
Groupings

4



It must be emphasized that the technology underlying
each sensor is abstracted by this classification: a
rangefinding sensor may be based on any number of
principles, such as pulse timing, parallax, interferometry,
or others. All such range−finding sensors are represented
in this scheme as either translation or combined
scaling/translation sensors, depending on whether the
sensor simply reports a range, or also reports a measure of
quality or confidence.

7 PRELIMINARY CONCLUSIONS
Visual programming languages provide a very natural
mechanism for expressing the geometric reasoning
required by mobile robots; however, significant
programming challenges are encountered in developing
visual environments to perform these reasoning tasks.

Our identification of a small set of geometric
transformations which can be used to describe a large
number of input sources, and also used in the
implementation of the reasoning engine itself, has
significantly reduced the amount of code which has
needed to be created and allowed for modular support of
new sensor types.

Future Work
We are currently investing the representation of a group of
robots in terms of the hierarchical geometric model
currently defined for a single robot. This will permit us to
combine the environment models from all of the robots in
the group to provide a single, distributed parallel
environment model useable by all of the component
robots. 

Additionally, the use of a distributed environment
provides the robot with the ability to select sensor inputs
from devices not physically located on the mobile unit.

Finally, the use of two dimensional representations of
affine transforms in Isaac also provide a natural platform
for next−generation extensions to the third dimension.

8 REFERENCES

1. Bell, B. and C. Lewis. ‘ ‘ChemTrains: A Language for
Creating Behaving Pictures.’ ’ in Proceedings of the
1993 IEEE Symposium on Visual Languages (1993)
188−195.

2. Booch, G., J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide (1999).

3. Burbeck, Steve, Applications Programming in
Smalltalk−80: How to use Model−View−Controller
(MVC)  (1992)

4. Cox, P. and T. Smedley, ‘ ‘Prograph: a step towards
liberating programming from textual conditioning.’ ’ in
Proceedings of the 1989 IEEE Workshop on Visual
Programming (1989) 150−156.

5. Foley, James D.; van Dam, Andries; Feiner, Steven K.;
Hughes, John F. Computer Graphics. Addison−
Wesley: Reading, Massachusetts (1997).

6. Gamma, Erich; Helm, Richard; Johnson, Ralph;
Vlissides, John Design Patterns: Elements of
Reusable Object−Oriented Software. Addison−
Wesley: Reading, Massachusetts  (1995).

7. Glinert, E., and S. Tanimoto. ‘ ‘PICT: An Interactive
Graphical Programming Environment.’ ’ Computer 17
(November 1984), 7−25.

8. Jagadeesh, J. and Y. Young. ‘ ‘LabVIEW.’ ’ Product
review, Computer 26 (February, 1993), 100−101.

9. Orchard, R. A., FuzzyCLIPS Version 6.04A User’s
Guide (1998).

10.Pfeiffer, J. J. Jr., ‘ ‘Case study: developing a rule−
based language for small mobile robots,’ ’ in
Proceedings of the 1998 IEEE Symposium on Visual
Languages (1998) 144−151.

11.Pfeiffer, J. J. Jr., ‘ ‘Altaira: a rule−based visual
language for small mobile robots,’ ’ in Journal of
Visual Languages & Computing 9 (1998), 127−150.

12.Pfeiffer, J. J. Jr., ‘ ‘A language for geometric reasoning
in mobile robots,’ ’ in Proceedings of the IEEE
Symposium on Visual Languages (Tokyo Japan,
September 1999), 164−171.

13.Smith, D. C., A. Cypher, and J. Spohrer. ‘ ‘KidSim:
programming agents without a programming
language.’ ’ in Communications of the ACM 37 (1994)
54−67.

Figure 5: Classification of Sensors by Transformation
Type

5


