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Abstract—Supercomputers generate vast amounts of data, master and slave strategy. In the MapReduce architechee, t
typically organized into large directory hierarchies on paallel file  file tree operations tasks given to slave processes could be

systems. While the supercomputing applications are paradl, the copying a single file, or a segment of a file, allowing large
tools used to process them requiring complete directory treer- . ; ! . '

sals, are typically serial. We present an algorithm framewdk and files tQ be copied b_y muItlplg Workers' .

three fully distributed algorithms for traversing large parallel While parallel, this centralized implementation suffens

file systems, and performing file operations in parallel. Thefirst communication overheads. The master process needs to keep
algorithm introduces a randomized work-stealing schedulg the  track of which worker processes are busy, and what they
second improves the first with proximity-awareness; and the are working on. Each new task requires a minimum of two

third improves upon the second by using a hybrid approach. . .
We have tested our implementation on Cielo, a 1.37 petaflop messages — the dispatch of work unit from the master to a

supercomputer at the Los Alamos National Laboratory and its7 ~ Slave, and the reply from the slave to the master. Also, the
petabyte file system. Test results show that our algorithmsx@cute master process must maintain a global list of tasks to be
orders of magnitude faster than state-of-the-art algorithms while performed. For very large file trees, such a list can outgrow
achieving ideal load balancing and low communication costWe the memory available to the master process.

ﬁ]reSforgugﬁgfﬁr;nyas?:;S'ngt'gEfo[?n;e:?;nﬁz ggi%urfilzlgsc;gttgms Another exampleT |s_the checkpoint an.d rgstart facility in
operations. large parallel applications. Parallel applications rumoas
Index Terms—File Systems, Metadata, Parallel Algorithms hundreds or thousands of distributed processors in a phrall
system. With the number of components in such a system
rapidly increasing, the probability of a hardware compdnen
failure is also increasing rapidly [4]. Checkpointing aedtart
facilities are being used widely to help parallel applioat
The amount of scientific data produced today has beenprove fault tolerance in the event of hardware/software
keeping pace with the increases in disk/memory capacitids dailures. In addition to allowing an application to restart
densities. On large compute clusters consisting of hursdoéd from a checkpoint, this data can also serve as application
thousands of processors, applications easily generaliemsil output. Searching, indexing, and processing this outprhfr
of files per job. Scientists often use sophisticated tools tery large compute jobs can be prohibitively expensive for
write applications that read, compute, and store these, daterial/naive parallel implementations. Our algorithme as-
in parallel, on large distributed storage systems. Howeher pecially geared towards performing these actions withelitt
tools and algorithms used to traverse file systems to archimeerhead.
the data to long term reliable storage, or post-process theAnother example is file tree traversal (walk). A serial file
data for visualization or statistical analysis, are ofteniad, tree traversal mechanism is implemented as part of the Linux
making data archiving or searching time consuming. The fdwrnel in accordance to a POSIX specification [5]. A user
tools that exist for parallel processing [1] and archivii®y [ provides a function to be called back for each node in the tree
use centralized parallel algorithms for load balancing arahd then calls the functiofitw(path) [5] to begin a traversal
work distribution, leading to unnecessarily high communibn a given path. The file system tree rootedvath is then
cation overhead. Traversal of large file trees in paralled isexplored in a pre-order traversal. In addition to the catiiha
common problem encountered in parallel storage systents, metadata about each node is supplied to the user provided
has received limited attention. call back function to avoid performing an additional metada
Problem Motivation: There are numerous motivationalookup for the same file. This solution is adequate for normal
examples for the parallel tree traversal/walk problem. Orsized directories where serial performance is satisfgctart
such example is the problem of copying a large file trabe serial nature of the Linux file tree walk severely limits
to long term archival storage. In a naive implementation, the speed of directory traversal. Moreover, there is a gsrio
single client could serially copy each file, under-utilgithe problem traversing deep file trees.
parallelism available. A simple parallel implementatiomyn  An obvious improvement to the serial file tree walk is
use a pool of worker processes and a master process, whengarallelized version. At Los Alamos National Laboratory
the master process dispatches tasks to the worker procesdeSNL), a parallel file tree walk algorithm has been develdpe
The MapReduce framework [3] designed by Google uses tliishouse and is used for gathering metadata on very large
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parallel file systems [6]. This algorithm was a first attenmipt &ramework better, in the Background section, Section Ill.
large file tree exploration in parallel, and showed a sigaific We present our framework and the three related algorithms,
speedup over the serial algorithm. It uses a centralized tamd improvements in Section IV. We present the empirical
distribution paradigm with a master process for control an@sults of our experiments on large scale systems at LANL in
slave processes to perform individual node exploratiohs. Section V. Finally, we conclude our paper in Section VI.
also allows multiple directories to be explored simultamsp
by multiple worker processes. However, the centralized-mas
ter/slave algorithm requires communication between thees|  File systems are organized into trees, which can be traderse
processes and the master for each task assigned by the masteally using well-known algorithms, such as Breadth tFirs
to a given slave. This occurs first when the task is assign&garch (BFS) or Depth First Search (DFS) [8]. The super-
and then again when the work is returned to the master. A&smputing research community has expended significant re-
we will show in Section I, this overhead is significaifhis search efforts in designing efficient parallel graph exmtiion
served as our motivation to study the problem of parallel techniques, a few notable ones being [9]-[11]. Many existin
file tree walk and design/develop algorithm(s) to improve graph algorithms have been studied and modified with success
not only the operating time, but also reduce the messageto exploit parallelism [12]. For instance, a typical paeall
complexity. graph search and exploration algorithm used widely is the
In this paper, we propose an algorithm framework ardepth-First Branch and Bound (DFBB) [13] algorithm. In
develop three efficient algorithms, each of which can libe DFBB algorithm, parts of the search space (subtrees) tha
used in different scenarios. In our framework, we obtain theo not contain an optimal solution are eliminated by using
improvement in running time and message complexity by diseuristical branch and bound [14]. Breadth First SearctS|BF
pensing with the synchronization requirement and by awngidiis parallelized by maintaining a global frontier of unwésit
a centralized control process altogether. Our framework isvertices [15]. During each iteration, every process ataihjic
fully distributed framework for workload distribution, plied acquires one vertex from the frontier. It then explores the
specifically to the problem of file tree exploration. We use aertex to discover the vertex’s neighbors. The process then
randomizedwork stealing scheduler [7] to efficiently balanceadds the unexplored neighbors of that vertex (if any) to the
workload between the worker processes. This mechanisnirisntier of unexplored vertices. Between explorationsg on
popularly termed as work stealing because idle workeral'stemore processes need to take the list of unexplored vertiwts a
work from other processes which have pending work in theieduce it to asetto eliminate repeats. However, all these par-
queue [7]. Our algorithms show a large speedup over th#iel implementations require process synchronizatiasch
centralized parallel algorithm, with drastically reducsaim- becomes very costly as the number of parallel processes is
munication overhead. This reduced communication overheiadreased [16]. In normal BFS, there is a possibility of havi
(and complete lack of collective communication) allow oumultiple paths to a given vertex. For a tree with a branching
algorithms to scale much better than the previous solutidactor b, and a depthd the asymptotic time complexity for
For instance, when run on a file tree consisting @ million BFS isO(b%) if multiple paths are allowed. These are some
files, our algorithmsexchange two orders of magnitude lessf the challenges in parallel graph exploration.
bytes than a centralized parallel algorithm and take leaa th However, parallel file tree exploration is different from
a fourth of the time to run on an average with tekame parallel graph exploration on both fronts. The fact that in a
number of processe¥Ve also perform comparisons among ouparallel file tree traversal every node in the tree must bigeds
algorithms and identify their suitability for differentsations. makes the problem unique as we cannot exclude or ignore any
To our best knowledge, our proposed framework and tisebtree within the file tree. This is in contrast to other pakra
algorithms are a first, and a novel, attempt in the literdree or graph algorithms. Moreover, there is no express need
ture to perform truly distributed operations in large pklal for synchronization of the slave processes, as we will show i
file systems without the need for explicit synchronizatiorihis paper. Thus there is scope for major run time speed-ups.
Our solution can find application in many large scale data essence, the algorithms for parallel graph exploratmnat
storage systems and provide significant speed-ups at réduapply to parallel file tree exploration, because of theseomaj
communication costsln fact, it is currently under use in differences, among others. The problem of exploring a file
production systems at LANLThe results presented in thistree as a graph differs from conventional graph exploration
paper are obtained from the runs of our algorithms in thege an important way — it's representation. A graph can be
production settings. As our solution has potentially wideepresented efficiently, however the biggest impediment fo
spread usage and draws on several areas of High Performditedree exploration is the that in order to construct theppra
Computing for concepts. We begin by describing file systerepresentation, complete graph information must be knawn
metadata storage techniques, the serial file traversalitdgg priori. Moreover, the cost of determining the neighbors of
works in parallel file tree traversal at LANL, and relevana vertex in a standard network graph in a serial setting is
graph exploration algorithms in the related works sectiogenerally attributable to the cost of the data structureius
Section Il. Then, we describe the parallel file tree travers#@o represent the graph. In contrast, for a parallel file thég t
and other relevant concepts that will help understand ocwst is affected by external factors, such as the network hop
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count, the type of parallel file system, network bandwidtlthe empirical results section, our algorithms requés of
metadata storage paradigm, file system attribute cachidg dhe time on an average to perform indexing in comparison to
other variables. This makes the task of optimizing file treexisting techniques.
traversal more complex. i

However, parallel file tree exploration has not received InnucI:3 - File Tree Walk

attention in the communityur work is a novel attempt to fill We know that serial file systems are not useful in the
this void. supercomputing environment. So let’s look at parallel fieet

walk.
A. Filesystem Metadata

Smaller, serial file systems can reduce the cost of attriblﬁlgomhm 1 Centralized Parallel File Tree Walk
gathering (a requirement for any other file operation) by in-1: 5 = 0 for slave processespot for the master
dexing directories for fast traversal. In Linux ext3 file gyms, % if processor rank == 0 then
HTrees are used for directory indexing [17]. HTrees are thase3 ¢ = 0
on B-Trees, except that the maximum depth is limited. Thet ~ While |[S[ >0 do

cost for searching a B-Tree is the same as that of searching®a ~ Receive Message from Procesgor

binary search tre&)(log n), but under the assumption that the &: if Message is a work requetten

directory structure is indexed and in RAM. This requirement’: p = S.dequeue()

makes serial file systems unsuitable for large supercomguti & Sendp to j

applications. The obvious answer is to use large paralkel fil ® else

systems. 10: S.queueMessage) {Work to be processgd
One popular open source file system is Lustre [18]. Lustre" end if

stores all file system metadata in a single high performanéé end while
data store. This effectively converges the data path fon-gat!: else
ering attributes to a single server. However, many Lustrk repeat

metadata optimizations have been implemented to maintditi if |S| =0 then
high throughput from the metadata server, so that parall&: Send work request to Processpr
processes can make use of it. Despite using an optimizéf Receive Message from Processointo path
single metadata server, the problem of traversing file tred& endif o _
in parallel is still applicable to Lustre. This is becausec® 19 if path is termination sentinethen
a process has credentials for reading or writing a file, thed: ex_lt
metadata server is no longer in the data path. A credentialét end if _
Lustre client communicates directly with storage devices t22 if path is a file then
speed-up the parallel file operations (until new credestiaé 23 processfile)
needed)_ 24: else
Another state-of-the-art parallel file system, Ceph [18gs1 2 S5=0 _
a novel approach to metadata. Ceph employs a scheme kncifn for all child in path.children() do
as Dynamic Subtree Partitioning to distribute metadat@hCe 2" S.queuethild)
dynamically stores file system subtree attributes on iddiai 28 end for
metadata servers, unless certain criteria are met. Themot? SendS' to Processof
of a subtree’s popularity is measured and stored for a shéft end if

amount of time. Using this information, Ceph can remap & u”_t" path ==
subtree’s attributes to multiple metadata servers if thekwo 32 end if
load warrants it. Ceph also allows for proximity optimizais
of the file subtree’s attributes, stored across multipleacieta  Centralized Parallel File Tree Walk: The first centralized
servers. parallel (CP) file tree traversal algorithm was developed in
The current file system in production at LANL is a statehouse at LANL (2007) and used a dynamic centralized load
of-the-art proprietary parallel file system called Pang28% balancing technique [8]. For the benefit of the reader Algo-
Panasas distributes metadata for files as file componemtssacrithm 1 presents the CP algorithm. Line 1 initializes the kvor
the storage system for performance and redundancy. ThegseueS to be empty for all slave processes, andt as the
metadata storing components can be accessed in paratlel, master. The master process (Proc@sgxecutes Lines 2-12,
the Panasas file systems has implemented many optimizatiamdle the slaves execute Lines 14-31. The master enters a
for fast metadata access. while loop in Line 4, and stays in the loop un#lis empty.
We note that our framework for distributed parallel file opThe basic idea of CP is the following: When the master process
erations can be plugged into any existing parallel file syste receives a message from a slave procgsdine 5). If j
and improve their performance in indexing searches, by®irtis requesting work, then a work element is removed from
of the enhanced parallelism provided. As we will show ithe queue and sent back jo(Lines 6-8). Otherwise; has




Transfer Totals (B) master process and slaves, but never between two slaves. The

10 1.6e+09 heat map clearly demonstrates inefficient use of the network
1.4e+09 interconnects, which in turn creates a performance beitlen

® 126409 at the master process.

20 16409 For every leaf node in the file tree, one communication

occurs between the master and a slave process, namely trans-

Sending Rank

8e+08
N 6e+08 mission of the results from the file operation. However, for
10 Jor08 every internal node (directory) in the file tree, two communi
5 ro0s cations occur — the work from the master to the_slave process
N _ _ . and the results returned by the slave. As we will show later,
0 5 10 15 2 25 30 this leads to an asymptotic network cost@fn?), wheren
Receiving Rank is the message length. The first component is the network

Fig. 1. Centralized Parallel Tree Walk: Communication Cost latency incurred by every transfer. The second component is
the worst case message size for a process which operates on

returned work results (directories and files) that need ttobea directory containing: — 1 entries in it. This would occur
be added to the queue (Line 10). The slave processes bagithe case where the file system contained one directory with
their execution in Line 14, entering a repeat until loop. &vsl ;1 files in it. The quantity is multiplied by two because each
checks (Line 15) to see if there is work to do, if not, the slavgperation requires two transfers, from master to slave aen t
requests work from the master (Lines 16-17). After recgVvirpack to the master. Since the file system is random access, all
a response, the slave checks for a termination sentinel frejyerations done by slave processes are equivalent in cost.
the master (Lines 19-20). Otherwise, the master has sent a |II. BUILDING BLoCKS OF OUR FRAMEWORK
path to explore. The user provided callback function isezhll A. Parallel Tree Traversal

in Line 23 to perform any necessary work on the path if itis o goal in this paper is to design a parallel algorithm for
afile. Lines 25 through 29 determine the descendanf&f ,ref file systems tree exploration, in which each node in
(if any), and send that information back to the master pmcege tree s visited exactly once. Additionally, we seek azgid

In CP, the master process distributes work units to each|ghd balance, with equitable load-distribution, where tht
the worker processes, one at a time. Each worker perforfigajie| processes performs the same amount of work. In the
the work assigned and sends the results back to the magigfe of a file tree, the work is visiting nodes in the tree, and
process (which may contain new work to be added to thg forming any legal file operations on each node. Operstion
work queue). Until the queue is empty the master procesg one node are mutually independent from those on other
meters out a portion of work to each slave process, and thefies — a fact we exploit in the design of our algorithms.
waits for a response from each one, which requires proc&gsere is a provision in most file systems to use links (synsiink
synchronization. Additionally, a minimum of two networknardiinks, etc.). Links can cause cycles in the file tree civhi
transfers is required for every item in the work queue, whiGRoyid result in a traversal algorithm going into an infinibep.
could prove to be very time consuming for large diametag prevent this from happening, we ignore links in the filetre
networks. The actual implementation of this algorithm@ssi qyring traversal. We note that the algorithms we propose in
certain tasks_ only to certain slaves. For example, in the LANpe paper will duplicate effort proportional to the numbér o
implementation only one work process from the slave poghrdiinks. However, in real world production systems, sash
is used tq read the contents of directories. This causeshg aANL (and others), for simplicity, the parallel filesysts
disproportionate amount of work to be done by one slavge generally not POSIX compliant, that is, they do not use
process in the event that large directories are presentein g links, inodes, and symlinks. So, our assumption holds.
Input. We note that this problem is embarrassingly parallel. That

Fig. 1 shows the total number of bytes exchanged betwegno say, there are no dependencies between the units of work
different process ranks. The results are output from amunst (subtrees) to be processed. This allows us to ignore the brde
mented file tree walk using CP. This test was performed onyaich items are processed. Now we describe in detail some of
supercomputer at the Los Alamos National Laboratory usingi@e concepts that form the bare-bones of our framework. This
471 TB Panasas [20] file system consisting of approximatedgtail description here would facilitate better underdtag of

6.5 million files. The graph is a heat map showing thgur algorithms and the empirical results.
total volume of bytes exchanged between each process pair.

The color spectrum goes from white, which represents zel??o Inter-Process Communication without Global Synchraniz
bytes exchange, to red, which represent§ x 10° bytes Uon

exchange. The vertical and horizontal axes represent the MPWe seek to visit all nodes within a graph (in this case a
rank numbers of the processes (total306franks). A square, tree) in parallel, as quickly as possible. One way to achieve
for example, the square at,() represents the number ofthis efficiently is by avoiding global process synchronizat
bytes sent from RanKk to Rank 0 (master) for the entire Any rendezvous between all processes in a parallel job must
job. Observe that communication strictly occurs between the coordinated by way of communication, and this is known



to be costly [16]. We make the distinction between pair-wisgnce the master process distributes the work evenly among
communication, and collective communication. the slaves.

Pair-wise communication refers to a message transfer thatVe also make the assumption that the file system tree is
occurs between two processes. Note that one transfer mayrdgdom access, that is, the cost for querying the neighldors o
referred to as one message, but if a reliable network prbto@my given vertices are equivalent. Modern parallel file eyt
is used that single message may require more than one padtetperform caching, but we are interested in very large file
which can cause even a single message to incur netwdrges that do not fit in any file system cache. In fact, we are
latency cost more than once. Communication may be blockiigerested in file trees that do not even fit in the memory of a
(synchronous), or non-blocking (asynchronous). We use naingle machine.
blqcking communication semantics,_thgs we avoid Processef, A FrRAMEWORK FORDISTRIBUTED PARALLEL FILE
being blocked. Qne process may initiate a gommumcatlon SYSTEM TRAVERSAL
request and continue doing useful work, periodically clivegk
to see if that request has been answered. Likewise, while 8/ first present the framework on which the three algo-
process is processing work, it can periodically check far ouithms to be presented in this secthn are based. The frankewo
standing communications from other processes. To accemplis essentially a set of design principles that we follow.
this, we use the asynchronous messaging mechanism provi
by Message Passing Interface (MPI) [21].

We define a collective communication as a message exFarallelism via the Message Passing Interfacewe im-
change which is meant for all processes. This type 8fement our algorithms using the Message Passing Interface
communication is normally used due to an implicit ordefMP1) [21] standard for parallelism. MPI allows parallel
dependency in the computation, such as a need to find?f@cesses to communicate within an MPI C(_)mmumcator,
minimum or maximum value of a variable across all process#lich can be created dynamically and have multiple prosesse
synchronously. In other words, collective communicatiarss associated. Each process has a unique integer identier, it
a form of synchronization. Our approach avoids collectidP! rank within a given communicator. A rank can then be
communication, using pair-wise communication exclugivelused to uniquely identify processes for communication [21]

Additionally, we benefit from the pair-wise communication Anyone-Asks-Anyone:We create a distributed parallel al-
being non-blocking. gorithm framework by using the principle that there is no

master process, all processes in the system are equal, and
any process can ask any other process for work. The file tree
exploration does start at a single process, in our case it is
To compare the complexity of our parallel algorithm wittprocesskank 0 termed as theoot process. But once the work
existing work, we use the Work Depth (WD) model's [22] nogets distributed, a process can ask any other process fé&& wor
tion of complexity for parallel computation, which is typity The only centralized operation is termination detectiohiclv
used for Parallel Random Access Machines (PRAM) [23k centralized for the sake of efficiency. The root process is
A PRAM model is used as an analogous way to describesponsible for initiating the termination procedure (taken
parallel machines without the need for communication @eneration) and detection. More on this follows. Of couiise,
synchronization so long as the memory access performeddyarge system it is inherently wasteful for a process to ask
the processes obeys the semantics described in the PRAMther process, which is several hops away, for work. Hence
model. In the WD model, the worR’(n), where the input size it makes better sense in terms of latency and communication
is n, is defined as the number of operations to be executedst for a process to execute an expanding search for request
and the depthD(n) is the greatest number of sequentiat ask direct neighbors, ask neighbors neighbors, and so on.
dependencies occurring in the computation. Brenal. [24] Light Weight Processes v/s Single ProcesseGiven the
have shown that if we are givéiy (n) andD(n), we can place 1/O bound nature of the tree walk, it makes sense for having
reasonable bounds on the running time faprocessors [24]. multiple threads/processes on each compute node. However,
They also showed that the running tinfe can be bound if all co-located threads/processes ask each other for work
as % <T< % + D. The parallelism of an algorithm is don't find any, and all send work requests over the network, it
then defined asP? = %. Additionally, we use the simple is inherently wasteful. Instead, one of them can be desighat
model for network costC'(n) = o+ n * 3 wherea is the to seek work from remote processes, after which all co-tmtat
network latency incurred for every network transféris the threads/processes can share the work.
average transmission cost for one network unit, and the Random Splitting v/s Equal Splitting: When a process
message length (in units). We note that the work is fixed &5 receives a request for work from another procBssif P;
W(n) = O(n) for all of our parallel algorithms, since wehas a queue of pending tasks to complete (directories/files t
must visit every node in the tree exactly once. The areas fxplore), it can provide®; a part of its pending tasks, this is
improvement therefore are the network cd@strn) and the termedqueue splittingProcess?; may split the queue in equal
depthD(n) of the algorithms. Note that the depih(n) of the halves or into two unequal parts randomly and assign one of
CP algorithm is? for p processes operating ontree nodes, the parts taP;. Unless a task in the queue is the exploration of

g\.eqi)esign Principles for the Framework

C. Work Depth Model



a particular file, that is, it is a directory instead, thenqass adding one request and one responsg tiher processes for
P; has no idea how much time it would take to explore theach of then — 1 queue splitsC, =2-(n—1) -p-(p —2) -
task. This is because it is not possible to know the nature ©f1) = O(n - p?), asp << n. Thus, the total network cost is
the descendants of a directory (whether they are files onYora; = C, + C, = O(n?). However, this worst case is rare,
directories and files, or directories) and the depth of th® suoccurring if the file system is a directory containing onlg$il
tree rooted at the directory without exploring it. Due to thand during each split all but one file is sent to a requesting
unbalanced nature of file trees, an even split may lead to sylpecess.
optimal load balancing. For example, i; always splits the  Given the above analysis, and in the absence of specific
queue equally (non-cognizant of the next level), it may lEad information about fan-outs and depths of filesystem tree, we
P; giving away a large proportion of leaf nodes, while keepingelieve that random splitting may be a better technique than
its portion of the queue filled with nodes representing larggual splitting in balancing amortized load [25]. We follow
subtrees — an unbalanced split. There is a possibility et s this line of thought and use random splitting; empiricabsts
a split happens often, and will result i3 exploring a larger (Section V) validate this line of reasoning as well.
portion of the internal nodes in comparison to its requestin  Termination Detection: Termination detection in a parallel
processes. This not only causes inequitable load balanwing distributed algorithm is an important aspect. In our altjoris,
also causes more network traffic as the requesting procesggfination detection is also distributed, and is achiavsidg
end up sending out more work requests. It is easy to see thgkstra’s Token Algorithm [26]. We note that in order for
the network cost will beD(n?). the Dijkstra’s algorithm to terminate successfully, linfksck
For even work distribution, queue splits may occur manydges, such as symlinks and hardlinks) must not be explored —
times; the challenge is to ensure an even balance with tse le@ey would cause infinite work loops. We utilize this Dijlsg
number of splits. In our algorithms, splits are not globallgigorithm for all three of the algorithms presented in thizky
synchronized, only the work exchange between a pair pijkstra’s algorithm can be implemented very simply, using
processes is locally synchronized. Asymptotically, theupl the following rules [26]: all processes are logically oretbr
can be split at mostO(n) times for n elements. This is (numerical order is used for convenience); each procesbe&an
because for every split, the splitting process will alwagek colored black or white, every process starts as white; antoke
at least one element to process. No matter how the wagkn be passed between processes, and the token is alsalcolore
is distributed amongst the processes, the pending work obick or white; when the root process (Rank 0) is idle, it
process decreases by at least one unit after a queue spéit. Henerates a white token and sends it to the next process (Rank
is true for all processes, thus ensuring termination. 1); any time a process sends work to a process with a lesser
If we assume that there ageprocesses, and each procesgnk it colors itself black; if a black process receives aetok
consumes one work unit (initially. units), between two then it colors the token black, colors itself white, and then
consecutive splits of its queue, then it can be proved th@kwards the token; if a white process receives a token then i
the work to be done by a process decreases by at least @ivards the token unchanged, tokens are only forwarded by
for each queue split. This in turn implies a reduction Yy a process when it is idle; and termination is detected when th
units overp processes after their corresponding queue split®ot process receives back a white token.
Note that the splits do not have to synchronized. Giyen \ne present our three algorithms now. The processes in
processes consuming elements (at leasp at a time), the the presented algorithms perform random splitting. We do
depth is then by definitionD(n) = 2. The communication not present the equal splitting variants, but note that the
complexity is dependent on the queue splitting — every quesiitting procedure can be conceptually thought of as a-plug
splitinvolved a request and a reply. In the worst case, whergng-play module, with random replaced by equal. The three
queue splits,—1 times, we show now that the communicationygorithms we present in this section, combine one or more of

cost is C(n) = O(n®). As we have noted, the networkihe functionalities mentioned above in their design. Now we
cost for a message of size units is C(n) = o+ n x 3 present each of them in order.

(Section 11I-C). Since the queue decreases by at least one
element for every split, the messages bgcomes smaller byB‘T’uDistributed Random Queue Splitting
least one element. Each exchange consists of a work request
of size one unit, and a response of size frém—1,...,1} Our Distributed Random Queue Splitting (DRQS) algorithm
units, with a total cost ofC, = {C(1) + C(n — 1)} + is presented in Algorithm 2. Except for the purposes of termi
{C(1) + C(n — 2)} + --- + {C(1) + C(1)}. Expanding nation initialization and detection, all processes arackalty
the formula and combining all th€’(1) terms, we have equivalent. There is no centralized master process, and no
Co=n-(a+8)+{a+(n—-1)-8}+---+{a+1-p}, that centralized work queue. Instead, each process maintans it
is,Co =n-(a+0)+n-a+ % -(n—=1)-(n—2). Itis easy own local work queue. One of the processes (Rank 0) contains
to see that’, = O(n?). the root of the parallel file system, that is where we start. In
Also note that if the queue splits— 1 times, each processLine 1, the queue is initialized empty for all processesggxc
could send a maximum g — 2 non-fruitful work requests for the root process (Rank 0), which has only one item in it
to other processes. This increases the total network costibiially — the root path to be explored.



C. Proximity Aware Distributed Random Queue Splitting (PA-
DRQS) Algorithm

Typically, multiple processes run concurrently on the same
compute node within a compute cluster. The cost for two
co-located processes (same compute node) to participate in
pair-wise communication is generally much lower than two
processes running on separate compute nodes due to the
absence of the latency that is introduced in each hop of net-
work communication. The cost difference is also enhanced by
MPI’s choice of shared memory segments for communication

After initialization, every process executes a work loop iR€tWeen co-located processes. This idea is shown in Fig. 2,
Lines 3-13. The execution of this work loop is not synchrd’-"here thicker edges represent a higher cost of communicatio

nized between processes. For each iteration of the loopE&ch rank is an MPI process, and the left and right rectangle

process begins by checking for outstanding work requesits fr represent two different compute nodes in a supercomputer.
other processes in Line 4. If there are outstanding requiests Work Request Ordering: Because of the latency cost,
performs one of two things. If the process’s queue is empty,is preferable for a process to request work from a co-
it sends a negative response to each requester. Alteriyativiocated process before askingemoteprocess. To that end, we

if the process’s queue is not empty it then splits its qued@ve designed and implemented a proximity aware version of
randomly and sends a portion of it to each requesting procé@&QS, known as Proximity Aware Distributed Random Queue
The next step in each iteration is also dependent on the logRlitting (PA-DRQS). We note that in the literature, proitm
work queue. If it is non empty (condition checked in Line 5)@wareness is popularly termed topology awareness. However
the process dequeues one item from the queue and proce¥éx4ise “proximity aware” as we believe it is more apt given
it (Line 8). Note that processing the item may add more itenkidat @ process asks other processes for work in increasiteg or
to the work queue if that work item is a directory. If the queu@f their distance from it. The PA-DRQS algorithm is struetr

is empty (condition checked in Line 5), a work request is sefitmilarly to DRQS, but rather than choosing a random process
to another process chosen at random on Line 6. Lastly, L request work from, we impose an order to the requests.
11 checks for termination by running Dijkstra’s terminatio Before we can do that, we must determine which ranks are
algorithm at the end of each work loop iteration. Algorithm £0-located. This can be achieved in the following way:

o Each process obtains its network number, as defined by
RFC 1166 [27].

o« An MPI_AIll_gather (from the MPI 2.0 specification)
operation is performed so that every process has the com-
plete list of all networks numbers. This is a synchronous
step. After the MPIAII_gather, further operations are
compute node local.

« Each process, having the entire array of network numbers,
sorts them (we use QuickSort in our implementation).

o The resulting lists contains all network numbers, where

Shared Memory

Shared Memory

Fig. 2. Co-located processes have lower communicationicasimparison
with non co-located processes

Algorithm 2 Distributed Random Queue Splitting

1: S = root for the Rank 0 process, and = () for processes
of higher rank.
2: Terminated = False.
3: while not T'erminated do
4. checkForRequests() and satisfyChecks for work re-
quests from peeis
5. if |S] == 0 then

& ;ir;gWorkRequest({.Sends work request to random equal ne.tworl_< numbers are adjacept .in the. Iis.t. Each

7 else group of identical network numbers within the list is the_n

8: processs.dequeue()). §SS|gne(_j a group nl_meer. Each process _then_determmes

o end if its location in 'Fhe list, and ther_w determines its group

0. if |S| == 0 then number, which is referrgd to as it®lor.

11: checkForTermination(}.Checks for termination con-  ° Each process uses its color as_a parameter to
ditions} MPI_Qo_mm_spht, which creates an MPI Communicator

120 end if containing co-located (same color) processes on each

compute node within the compute cluster.
« From that information, a list of processes is created where
co-located ranks are at the beginning (starting with local
Rank 0) and non local ranks comprise the remainder of
the list.

13: end while

achieves good load balancing, but incurs overheads due to
the number of messages being transmitted for requesting and

receiving work. This may not be an impediment in small «
compute clusters, but with in large clusters with high netwo
diameter, the penalty of network transmission rises rgpic
address this impediment, we propose our next algorithm.

Once the sub-communicators have been established, each
process has an additional rank. The first is its global rank,
which a unique identifier within the entire job. The second
is its local rank, a unique identifier among co-located



processes. this algorithm is that it suffers from extra messages o&tjing

The PA-DRQS algorithm begins in Line 1 by initializingfrom the Rank 0 process in the compute node even when there
the work queues for all processes to be empty, except for take pending work in other co-located ranks. This is because
master process which containst. A function to populate the Rank 0 is required to ask a remote process for work. To
work request vector for each process is called in Line 3, andaddress these issues, we propose an extension to the PA-DRQS
implemented as described above in work request ordering. Beheme by using light-weight processes and propose thédhybr
requests to co-located remote processes of the same ranRIgorithm. We note that in the absence of the ability to use
a compute node, the requesting process makes the requesds, PA-DRQS is still the algorithm of choice.
a sequential fashion based on their order in an orderedflist_o
global MPI ranks. Thus processes occurring earlier getcask@lgorithm 3 PA-DRQS: Proximity Aware Distributed Ran-
more often, which may result in more network communicatio#em Queue Splitting
if the requests return empty. A possible solution to thisois t 1: S = root for the Rank 0 process, and = () for processes
perform global ranking of co-located processes in reaétim  of higher rank.
based on decreasing order of work availability, thus enguri 2: Terminated = False.
that a process with more work is asked first. However, mains: requestVector = createRequestVector().
taining such a real-time list at each compute node incursymans: while not T'erminated do
more message exchanges than sending sequential requests:to checkForRequests() and satisffChecks for work re-

co-located remote processes — a higher message overhead. quests from peeis
Lines 4-14 constitute the work loop performed by alle: if |S| == 0 then
processes. Each process checks for outstanding work itsques: sendWorkRequest(]Sends work request to the next
from other processes in Line 5 and services them by sending peer from the request vecior
each requester a portion of the work queue if it has pending: else
work. If the work queue is empty (determined on Line 6),9: process§.dequeue()).

then a work request will be sent to another process. Wherems end if
in Algorithm 2 a process was chosen at random, in PA-DRQ$1:  if |S| == 0 then

the process to request work from is chosen by the ordering ia: checkForTermination(}.Checks for termination con-
the request vector list created in Line 3. When a processsneed ditions}

to request work from another, it iterates over this computers: end if

list from top to bottom. 14: end while

We further modify the algorithm, so that not all ranks
favor asking local ranks. This is because in our empirical ) o o
observations this leads to a large number of non-fruitfohlo D- H-DRQS: Hybrid Distributed Random Queue Splitting
work requests preceding non-local work requests when Afigorithm
local ranks have empty work queues. We mitigate this by In order to improve our proximity aware algorithm, we
changing the order of the work request so that the local rodesign a hybrid parallel approach, which we term the Hybrid
rank (the process within a group of co-located processds widistributed Random Queue Splitting (H-DRQS) algorithm.

a local rank of0) will first ask non-local ranks for work. If Whereas the previous algorithms presented utilize meltipl
the work queue is non-empty, the process will call the usBtPl ranks per compute node in the compute cluster, our hybrid
provided callback function on one element of the work queuapproach is able to leverage parallelism with only one MPI
Finally, Lines 11-13 check for a termination condition. process per compute node. We achieve this by utilizing dight

The PA-DRQS algorithm has much fewer network comweight processes (LWP). In H-DRQS, each compute node may
munications than the DRQS algorithm, which is desirablepawn an arbitrary number of LWPs (threads) corresponding t
However, the design of the algorithm allows even a nomach MPI process. Only the original master thread is allowed
Rank 0 process (Rank x) to seek work from a process outsiteparticipate in MPI communication. This is not a problem as
it's compute node after receiving negative responses fraall processes share a common memory, and hence share one
it's co-located ranks (the process goes through it's requegrk queue. The master thread is able to populate the work
vector list). In our empirical observation, often this desa queue which is accessible to all other threads on the same
unnecessary network communication, because in the tinte thampute node.

Rank x is requesting from its neighboring ranks, Rank 0, Whic We prevent race conditions by ensuring the
had no work, has already received work requests from sommequeue/dequeue operations are guarded by a mutual
other compute node. Technically, Rank x can get the woekclusion lock (mutex). We also ensure that the queue is not
now from Rank 0, but does not. modified by any threads during a queue split, which we do

We address this concern in our implementation by requiringing counting semaphores. The master thread of each proces
non-Rank 0 processes to only request their local ranks. Hogxecutes Algorithm 4. It is initialized as in Algorithm 3 in
ever, this results in an increase in the number of local refquéines 1-2, and to begin it creates and initializes a counting
messages in the compute node. As noted, another concern wémaphore for the threads to zero in Line 3. An additional



semaphore is created in Line 4 for use by the master afi@orithm 4 Hybrid Distributed Random Queue Splitting (H-
is also initialized to zero. The master thread executes tREQS)

algorithm shown in Algorithm 4, all other threads executel: S = root for the Rank 0 process, and = () for processes
a simple work loop. When a thread is created (Line 5) it of higher rank.

immediately enters its work loop. In its loop, a thread first2: Terminated = False.

blocks on thethreads semaphore (initially threads is zero, 3: threadguard = semaphor#it(threads).

master has to increment it) until it can decrement it to zero4: masterguard = semaphoreit(master).

Once a thread has successfully decremented the semaphdiestartThreads().

it dequeues one work queue item and processes it. The queéewhile not T'erminated do

modifying operations are still protected by the mutex. 7. checkForRequests() and satisf{Checks for work re-
quests from peets
After processing the item, the threattrementshe master g jf |S| == 0 then
semaphoremaster_guard. Meanwhile, the master thread g. sendWorkRequest({.Sends work request to random
enters its work loop and operates in the same fashion as peef
Algorithm 3 by checking for and servicing work requests, angy.  glse
requesting work from other processes if necessary (Lines fr. count = min(threads.count(),queue.count()).
10). If there is work to be processed in the queue, the master semaphoreéncrement(threadyuard,count).
increments the thread semaphore by the valiig{the number 3. {Threads process work queue eleménts
of threads, number of items in the work quéugines 11- 4. semaphoredecrement(masteguard,count).
12). After incrementing the semaphore, all threads (mastgs. end if
included) process one work queue item (Line 13). Next, thgs.  if |§| == 0 then
master thread attempts to decrement the master semapheye,  checkForTermination(}.Checks for termination con-
the same number of times that it incremented the thread ditions}

semaphore on Line 12. Recall that the master semaphore wgs end if
initialized to zero. This means that the master thread Md€b  19. end while
until all other threads finish their work and increment the
master semaphore. Finally, the master checks for a terimmat
condition just as in Algorithm 3.

V. EXPERIMENTATION AND EMPIRICAL RESULTS

As all ,LWPS share one logical address space, _the cost fF)"'I'o evaluate our algorithms, we designed a simple API based
exchanging data/messages between thr(?ads is minimal Whig, 45 lication call-backs, which is similar to the POSIXcipe
improves communication efficiency. Let's see how we Cagaiion for FTW. For the purposes, of testing we used mutipl
improve communication efficiency. For example, consider trbanasas [20] file systems attached to multiple computeschust
case Wh§r66 MP! processes are launched on each compuig LANL, through a specialized storage network known as
T‘Oqe using Algorithm 3. Suppose that Rank 0 has no WOB%\ScaI [28]. Specifically, we studied three file systems,alpam
in it's queue, but one of the other processes (local Rank 13) 5 ¢ 5 miliion files, of size471 TB; b) a 12 million files,
has work. When Rank 2 requests Rank 0 for work, Rank size 2 PB; and c) al10 million files, of size 7 PB.

sends a negative reply and sends a request over the netwgek jniementation of our algorithms was done using Open
even though there is work available in the locality that can § ;p, [29], combined with the GNU implementation of the
shared. At thg same time, Rank 2, is 0'099'”9 up the SharISQ)SIX threading library. We ran our tests on Cielo — 8944
memory sending out requests to processes in in tumn. Biflyote nodes and 16 cores per compute node. We chose to

aspects are inherently wasteful. run 2 processes per compute node 40 processes on 20 nodes to

Now suppose that instead of the 16 MPI processes being gg_have more nl]leTzory a\_/lautI)e}bIe per prli)cess, ant(jj (i g?fmm
located, we use one MPI process with 16 LWPs (all sharirlilﬁalt we use all 12 avaliable networ_ r_outes (depending on
one work queue). Only when this shared queue is empty (H8de placement in the torus). Our aim is to choose the least
process has work), the master thread sends a work requestg@ber of cores for traversal so that more cores are availabl
non-local rank (there are no co-located ranks now). Moreove" computan-on. )
since the queue is shared a slave thread will block on theQUr €xperiments are run on production systems where
queue when it is empty, but never block if there is work ithe file systems change S|gn|f|c§1ntly within hours, S0 result
the queue. This is done because the threads must not mo@if¢raged over several runs, taking several hours, will eot b

the work queue during a potential queue split, as previoudRflicative of algorithm effectiveness. For this reason, rae
described. on three different file systems to ensure diversity of result

but only 2-3 times, to ensure consistency.
In the next section, we present empirical results from our Centralized Parallel vs. Hybrid Distributed: Figure 3(a)
experiments in large parallel files systems at LANL and stucdhows a comparison of the running time of the previous
the efficiency of our algorithms. Centralized Parallel algorithm (Algorithm 1) versus our @R
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- X —| - o ﬂ Messages and Data Transferstn addition, to demonstrat-
L il ing the communication efficiency of our algorithms, we also
5 s ol | P R performed experiments to measure the number of messages
AR Ll R T and bytes transferred in the network. It is desirable to have
et Aa, | RS low total messages/bytes transferred and also a balance in
TR PSSO O S T S PN communication between the nodes. The results for total num-
BT E LI TR T m oW ww ber of messages and bytes are shown in Fig. 4. The X-axis
(a) Running Time Comparisons (b) Component-wise Running Time of H-DRQS repl’esents the number Of ﬁles in the flle SyStem and and the Y_

Fig. 3. Running Time lllustrations axis represents the number of (messages or bytes) and use the

variants equal splitting) for gathering file system metadzt logarithmic scale. The comparison is between CP, H-DRQS,
the file system containing 6.5 million files. The horizonta®nd PA-DRQS, where the tests were run on two parallel file
axis shows the number of processes used for each experimgygtems. As expected, H-DRQS and PA-DRQS perform much
The vertical axis shows the running time of the algorithms ietter than the CP algorithm in terms of both messages (an
seconds. Note that DEQS (Distributed Equal Queue Spljttingrder of magnitude less) and in terms of bytes (more than two
refers to to the case where a requested process splitsOfders of magnitude less). The performance of both H-DRQS
work queue into two equal halves, giving one half to thand PA-DRQS are similar, which is expected.
requesting process. The DRQS/DEQS variants outperformedig- 5 shows the heatmaps for bytes exchanged between
the existing Centralized Parallel (CP) algorithm by moranth Processes when the algorithms were run ortthemillion files
300% percent, in terms of time. In fact, with5 or less Panasas file system. The heatmaps underscore the efficiency o
processes, the CP algorithm took long enough that we canfbf Proposed algorithms versus the CP algorithm. The bytes
represent it in the same graph. exchanged in DRQS are an order of magnitude better than
We also implemented an enhancement of the CP algorittnf> While the H-DRQS has the best result, being almost two
where a slave process keeps one of the work elements fromPders of magnitude better than the CP.
exploration and returns the rest to the master. This vanati
ensures that the slave does not have to make a new request fer

Transfer Totals (B) Transfer Totals (B)

. . . . 7 6e+07
work again, thus reducing network communication. However; [ R - soror
the running time of this enhancement was close to the ofligigg - reews £ 0 -
CP algorithm because network communication was still tEie Le10s 3 s ger0?
major bottleneck. o o -

1e+07
As is noticeable, the H-DRQS algorithm performs the best 0 o
. . 0 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
among all the DRQS/DEQS algorithms, hence we use it more Recening Rank Recetving Rank
(@) prQs Heatmap (b) PA-DRQS Heatmap
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often for other comparisons in the interest of brevity anatcep
Hybrid DRQS Profile: Figure 3(b) shows the profile of M .
time required for each component of the algorithm. As the
H-DRQS is the best algorithm we have, we use its profile. P
For the purposes of profiling we grouped the output irftp: oo
user provided function (a standard user call-back fungtite et
Istat() system call; the readdir() system call; and the péetw
communication overhead. S ik
The X-axis represents the number of processes used in the Fig. 5. Heat Nf;;:?ﬁ;:;:;gaiﬂessage Exchanges
experiment and the Y-axis shows the amount of process tiM&\/ork Distribution: An important goal of work distribution
cor_lsumed _by each ComPO”e_“t- Observe that_ the COMPONGOt], 4chieve uniform load distribution to prevent resoarce
which dominate the running time of our algorithm are IStatgnderutilization. Fig. 6 shows the results of a large soad t
and readdir() (both operating system calls), which implieg .\, 5 the110 million files performed using0 processes.
the components of the algorithm have very low footprint. Afij - 6(4) shows the span of the work distribution. The figure
other positive of our algor|t.hm_|s: with increase n the niemb is a histogram showing the distribution of the workloads- per
of processes the communication cost does not increase. centages among processes. H-DRQS has a much smaller span
Total Messages Transferred Total Bytes Transterred than DRQS. For the rest of the figures (Figs. 6(b), 6(c), 6(d))
teniz the the horizontal axis is composed of ranges of work load
percentages, and the vertical axis shows how many processes
performed a part of the work within the given range. We note
that using DRQS without proximity information resulted in
one process performing a disproportionate amount of thé& wor
revos as can be seen on the far right hand side of the graph. This is
(2) 1ol N of wessages (D) Totm Number of Byes due to a propensity for unfruitful work requests being sent b
Fig. 4. Messages and Bytes Transferred Statistics

1000




the other processes. If a process is required to sent outaseved4]

non fruitful work requests before a fruitful request is fildfd,

then a process with work to do will proceed uninterrupted

while others are idle.

The results of our proximity aware algorithm in Fig. 6(d)
demonstrate the improvement in workload distribution ag a b

product of fewer non fruitful requests being sent, and mldti

(5]
(6]
(7]

co-located processes sharing a work queue. Fig. 6(d) shmws t

results of a similar test to that of Fig.6(b), but with proxiyn

(8]

E. Heien, D. LaPine, D. Kondo, B. Kramer, A. Gainaru, andCap-

pello, “Modeling and tolerating heterogeneous failuredairge parallel

systems,” iNACM/IEEE conference on SupercomputingEEE, 2011,

pp. 1-11.

The Open Group Base Specifications Issue 7, IEEE Std 10084-2
IEEE, 2008.

LANL file tree walk. [Online]. Available: http://www.psi-scidac.org/

events/FASTO8BOF/resources/FASTE®S| LANLD%ataRelease.pdf
R. Blumofe and C. Leiserson, “Scheduling multithreadmeinputations
by work stealing,” inlEEE Foundations of Computer Sciend®94, pp.

356-368.

B. Awerbuch and R. Gallager, “A new distributed algonithto find

awareness enabled. The remaining three subfigures show a breadth first search treesEEE Transactions on Information Theory

comparison between DRQS, DEQS, and H-DRQS, the X-axi

is the workload percentage and the Y-axis is the number

|

vol. 33, no. 3, pp. 315-322, 1987.
S. Hong, S. Kim, T. Oguntebi, and K. Olukotun, “Acceléngt CUDA
graph algorithms at maximum warp,” Proceedings of ACM symposium

processes. It is easy to see that H-DRQS has a much smaller on Principles and practice of parallel programming011, pp. 267-276.

span and better balancing of work among the processes.

V1. CONCLUSION

[10]

(11]

In this paper, we propose a novel framework and three three

novel parallel algorithms to facilitate distributed filessgm

[12]

operations with low message complexity. Our techniques r)i%]
I

only balanced file system work loads uniformly in real-wor

experiments, but did so with low communication costs, and

without global process synchronization. Our algorithmseha[

14]

been tested on state-of-the-art parallel file systems atILAN

and are now used in productions systems on a daily basis
metadata management.
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