
Dynamic Spatial Partitioning for Real-Time Visibility
Determination

Joshua Shagam
New Mexico State University

Department of Computer Science

2

Contents

1 Introduction 7

2 The dynamic AABB tree 9
2.1 Managing the tree . 9

2.1.1 Splitting nodes . 9
2.1.2 Inserting objects . 11
2.1.3 Deleting objects . 11
2.1.4 Updating objects . 11
2.1.5 AABB determination . 12
2.1.6 Fragmentation avoidance . 12

2.2 Using the tree . 12
2.2.1 View volume clipping . 12
2.2.2 Hierarchical geometry clipping . 15
2.2.3 Occlusion culling . 16
2.2.4 Collision detection . 17

3 Nesting heuristics 19
3.1 K-D . 19
3.2 Ternary . 19
3.3 Octree . 21
3.4 Icoseptree . 21

4 Timing comparisons 23
4.1 Uniform distribution . 23
4.2 Clustered distribution . 23
4.3 Lissajous distribution . 24
4.4 Sphere . 28
4.5 Overall assessment . 29

5 Conclusions and future work 31

6 Acknowledgments 33

A AABB tree implementation 35
A.1 Interface . 35
A.2 Implementation . 37

Bibliography 49

3

4 CONTENTS

List of Figures

2.1 Four nesting heuristics . 10
2.2 Moved split point facilitates rebalancing; a) moving object grows smaller subtree, b) moving

object shrinks larger subtree, c) moving object moves into smaller subtree, d) a massively-
imbalanced tree before and after 100 random movement cycles 13

2.3 Visibility culling a two-dimensional dynamic AABB tree with the K-D heuristic; a) full input
set (c. 106 objects), b) input set near query, c) queried node boundaries, d) working set and
final query result . 14

2.4 Visibility culling in 3D with the icoseptree heuristic; 539 objects visible of an 851-object
working set, and a 1331-object input set . 14

2.5 A hierarchically-modeled scene; 423 objects total are visible from a 680-object working set
clipped from multiple nested AABB trees (icoseptree heuristic) 15

2.6 Simple occlusion culling; a) the rendered view; b) wireframe view without culling; c) with
culling; d) visibility query (icoseptree heuristic) . 16

3.1 Finding the optimum split values for the heuristics . 20

4.1 Comparing the leafy vs. non-leafy variants of the four heuristic types 24
4.2 Performance on a uniform distribution . 25
4.3 Performance on a clustered distribution . 26
4.4 Performance on a Lissajous loop distribution . 27
4.5 Performance on a multiple sphere distribution . 28

5

6 LIST OF FIGURES

Chapter 1

Introduction

It is nearly axiomatic that users of interactive 3D systems, be they virtual environments, data visualizations,
or user interfaces, have rising expectations with regards to the speed, malleability, and interactivity of the
system. However, without infinite processing power, any significantly-complex interactive system must have
some form of visibility determination which can discard large amounts of objects which have no chance at
being visible. The existing algorithms for visibility determination within an interactive environment impose
a number of constraints; for the vast majority of visibility algorithms, the data must either remain largely
static or must be constrained to a precomputed set of possible locations [3]. Although this is acceptable
for a large class of interactive systems, many applications, such as massively multi-user virtual spaces and
high-performance data visualization, require the ability to modify the environment’s data in any way at any
moment, as there is simply no way to predict every possible visibility change.

Many commonly-used offline visibility algorithms precompute per-region potentially-visible sets from a
static spatial partitioning [12, 15, 4]. A few algorithms take a more relaxed approach, performing the visibility
determination on the fly but requiring a static spatial partitioning[10]. Other algorithms perform well without
the need for spatial partitioning and provide visibility processing on the fly, but require significant amounts
of dedicated processing power, predetermined sets of simplified potential occluders, and advance knowledge
of motion constraints [14, 9]. Finally, a handful of algorithms come very close to the fully-dynamic ideal, but
still require some offline processing and prescient knowledge of which objects will be present and how they
may move [11].

In this paper, we take a simple spatial partitioning mechanism commonly used for collision detection
and extend it to facilitate dynamic updates and to allow different heuristics for its partitioning strategy, de-
scribe four heuristics each with two variants, and compare their relative performance and efficiency. We
also adapt a simple occlusion-culling algorithm from a static octree to this dynamic spatial partitioning,
providing a dynamic visibility algorithm, which happens to perform adequately even without any imposed
constraints, as a reference point for occlusion-culling research. We also show how to use the dynamic tree
with a hierarchically-modeled data set and briefly explore collision detection.

Of course, like any object-level visibility algorithm, it can be used for any problem where an arbitrary
region must be queried for object inclusion, such as object selection, motion planning, and various other
volume-related tasks in computational geometry.

In the remainder of this paper, we describe a dynamic spatial partitioning data structure, show how to use
it for a variety of tasks including visibility determination and occlusion-culling, describe several optimization
heuristics, and then compare the heuristics’ performance on a number of synthetic datasets.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

The dynamic AABB tree

Traditionally, an AABB tree is a simple tree structure where each node in the tree consists of an axis-aligned
bounding box (AABB), and either two child nodes or a list of objects (usually individual polygons) [13]. Each
internal node has the property that its AABB encompasses all of its objects and/or child nodes’ AABBs, and
the tree is built by successively splitting the top-level AABB in half along its longest axis and putting the
objects into each child based on which side of the split it is on.

To facilitate dynamic operations and overall performance gains, it is useful to remove some of the con-
straints assumed in the traditional implementation of an AABB tree. For the dynamic AABB tree, we don’t
limit the number of children that a node can have, and we allow objects to be stored in internal nodes. Fur-
thermore, rather than build the entire tree based on static data, we only build subtrees which are actively
being queried. Finally, the tree as a whole has a nesting heuristic, which dictates how nodes are split and how
objects are stored in the children. Four nesting heuristics will be described in detail in section 3.

2.1 Managing the tree

2.1.1 Splitting nodes

If a leaf node is queried and it contains more objects than a threshold value, the node is split. Splits do not
happen at the time of object insertion, but at the time of query; this maintains better tree balance and improves
overall efficiency, as node splits become “batched up” for later.

First, an algorithm chooses a splitting point. An ideal algorithm would be such that an equal number
of objects will be on opposite sides of the point, such as by finding the median object coordinate in all
dimensions. However, in our current implementation, we simply take the mean of every object’s center.

Next, every object is given to the nesting heuristic, which selects the appropriate child node to put the
object into based on the splitting point and the current node’s previous bounding box. Some heuristics may
decide to keep the object within the current node; as this does not violate the relaxed constraints of a dynamic
AABB tree, this is acceptable.

Finally, if every object goes into the same child node (which is possible in certain pathological situations
for some heuristics, e.g. all objects are the same size and at the same position, or are all within a certain
distance of a boundary case), it means that there were enough of them to cause a split, and the child node
has the exact same characteristics that the current node did; as a result, the nesting heuristic would end up
putting every object into the same child node again, causing an infinite loop. In this case, we simply transfer
the objects back to the current node, but keep the current node marked as split to prevent it from being split
again.

This process is demonstrated with four different heuristics in figure 2.1, with the heuristics themselves
explained in section 3.

Complexity analysis The cost of splitting a single leaf node is difficult to calculate directly, but it can be
amortized by assuming the tree is fully split once and never changes significantly.

9

10 CHAPTER 2. THE DYNAMIC AABB TREE

���������������
��
����������������������������
������������
���

������
���
������
��� 	�		�	
	�	
�

�

�

���
�
�
�

�
�

�
�

�
�

�
�

�������������������������

������
���
������
���

������
���
������
���������������
������
���
�

K−D

���������������
��
����������������������������
������������
���

������
���
 � �
 �

!�!!�!
!�!
"�""�"
"�"#�##�#$�$$�$
%�%&�&
''(
(

)�))�)
)�)
*�**�*
�

++,
,
-�-�--�-�--�-�--�-�--�-�--�-�-

.�.�..�.�..�.�..�.�..�.�..�.�.

/�//�/
/�/
0�00�0
0�0

Ternary

121121
121
323323
323
424244242442424
525525
525

6262662626626266262662626
7272772727727277272772727

828828
828
929929
929

:2::2:
:2:
;2;;2;
;2; <= >>?

?

@2@@2@
@2@
A2AA2A
A2A

B2BB2B
B2B
C2CC2C
C2C

DDE
E

F2F2FF2F2FF2F2FF2F2FF2F2FF2F2F

G2G2GG2G2GG2G2GG2G2GG2G2GG2G2G

HHI
I

Octree (front half)

J2JJ2J
J2J
K2KK2K
K2K
L2L2LL2L2LL2L2L
M2MM2M
M2M

N2NN2N
N2N
O2OO2O
O2O PQ

R2RR2R
R2R
S2SS2S
S2S T2TT2TU2UU2U

V2VV2V
V2VV2VW2WW2W
W2W X2XX2X

X2XX2XY2YY2Y
Y2YY2Y

Z2ZZ2Z
Z2Z
[2[[2[
[2[\\]
]

^2^^2^
^2^
_2__2_
2
``a
ab2b
b2bb2b
b2b
c2cc2c
c2c

Icoseptree (front third)

Figure 2.1: Four nesting heuristics

2.1. MANAGING THE TREE 11

If there are n objects in the tree, then the time cost of splitting the entire tree is K cost of processing each
individual object, plus the cost of splitting the child nodes. Assuming the nesting heuristic evenly distributes
the objects across C children, then the total cost is T (n) = Kn+CT

(

n
C

)

= O(n logn); however, in practice,
the total processing time to split an entire subtree scales essentially linearly with respect to the number of
objects, and the cost of each individual object is very nearly constant. This will be demonstrated in section 4.

2.1.2 Inserting objects

Inserting an object into the tree is simple. Start at the root node, and using the nesting heuristic, select the
appropriate child for the object until either we have reached a leaf node or the nesting heuristic determines
that the object should stay at an internal node. Associate the final tree node with the object, then expand the
AABBs of all nodes up to and including the root as necessary.

Complexity analysis This process takes average-case O(logn) time for the traversal and AABB expan-
sion (worst-case O(n) for an extremely unbalanced tree), and O(1) time for the insertion into the tree node
itself (assuming that the node’s object list is maintained using a dynamic hash of pointers, such as a C++
<hash_set>, though in practice, an O(logn) binary tree, such as a C++ <set>, performs better).

2.1.3 Deleting objects

Deleting an object is simple; first, remove the object from the object list of the node which contains it. Next,
starting with the current node, check to see if the object’s bounding volume was flush against the edge of
the AABB (meaning the AABB could potentially shrink as a result of this deletion); if so, mark the AABB
for recalculation, traverse to the parent, and repeat this process until the object is no longer flush against the
AABB. Finally, perform a simple garbage collection; if the node now contains no objects of its own and
has no children, delete the node, and notify the parent of the child’s deletion. If a parent node now has no
children, then it should be unsplit, and if it has neither children nor objects of its own, it should be deleted.
This process should continue all the way to the root of the tree.

Complexity analysis This process takes O(1) time for the deletion and, in the worst case, O(n) time for
the garbage collection and AABB invalidation (for an extremely unbalanced tree). However, in general, only
one or two nodes will ever be garbage-collected or have their AABB invalidated at any given time, making
the average-case complexity essentially O(1).

2.1.4 Updating objects

An object must be updated within the tree whenever its bounding volume changes with respect to the node it
is stored in, such as when the object moves, rotates, or changes its geometry. The update process is simple.
First, traverse up the tree until we find a node whose AABB will completely contain the object’s bounding
volume (stopping at the root of the tree). Next, use the nesting heuristic to determine the child node which
should now contain the object. Finally, if this destination node is different than the object’s current node,
remove the object from the current node and insert it into the destination node, and if not, simply adjust the
current node’s AABB accordingly.

This technique exploits both spatial and temporal coherence; if an object does not move between visibility
queries, then no processing is required, and if an object does move, only the space which it has moved within
must be searched for its new location.

Complexity analysis As the search for the smallest subtree takes at most O(logn) time, the search for the
new location place takes O(logn) time, and the individual deletion, insertion, and AABB update steps take
O(1) time, the entire process takes worst-case O(logn). However, given a good nesting heuristic and updates
over short distances, the searches take only O(1) time on average.

12 CHAPTER 2. THE DYNAMIC AABB TREE

2.1.5 AABB determination

Determining the AABB of a node is simple. For each object stored within the node, grow the AABB to
accommodate the object’s bounding volume. Next, get each child node’s AABB, and grow the current node’s
AABB to accommodate it. Finally, mark the AABB as current, and signal an update to the parent node, which
may then require an update. This process initially takes an average of O(1) time per node (amortized; O(n)
total time for O(n) nodes), and subsequently only must be performed when a contained object was deleted
if the object’s bounding volume was flush against the AABB, which will take at most O(logn), assuming a
change in bounding volume must be propagated all the way to the root of the tree.

2.1.6 Fragmentation avoidance

In many situations, it is quite possible for a number of objects to be added in such a way that it will “fragment”
the tree, causing them to be inserted at much deeper levels of the tree than they would if the tree were built
containing them to begin with, and also causes the tree as a whole to become imbalanced. In order to prevent
this, the property that nodes within an AABB tree may overlap becomes very useful.

Whenever the extents of the AABB are recomputed after an invalidation, the split point is recomputed
by taking the weighted mean of all of the objects in the current node and the split points of the child nodes.
The objects are given a weight of 1, and the child split points are given a weight of the split threshold; with
the assumption that the subtrees have remained defragmented, this new split point will be reasonably close to
the split point which would be computed if the tree were generated anew. Because the leaf nodes of the tree
are, by definition, balanced, by the inductive hypothesis, the tree as a whole will stay more or less balanced,
assuming that any imbalance-causing objects stay in motion. Because imbalances are typically caused by
moving objects, this assumption seems reasonable.

As a result, if an object is within a subtree which would now be bigger because of the new split point and
it moves, it will remain within that subtree, growing that subtree’s AABB towards the split point. Conversely,
if an object is within a subtree which would now be smaller because of the new split point and it moves, either
the move will cause the AABB to shrink anyway, or it will move outside of the AABB and be transferred
to the subtree which is growing. The end result of this is that as objects move, the tree will eventually shift
towards a balanced state. The rebalancing occurs quickest in the parts of the tree which are the most active.
The three balance-shifting scenarios and an example of it in operation are shown in figure 2.2.

2.2 Using the tree

Except for the view volume clipping algorithms, the following algorithms are stated as examples on how to
take advantage of the dynamic AABB tree to easily solve certain problems in computational geometry, and
are not intended as the sole implementation for doing such. The dynamic AABB tree is a mechanism and a
platform for future work, not an implicit solution to every problem in computational geometry.

2.2.1 View volume clipping

The process of clipping an entire data set against a convex volume of space, such as a potentially-visible
volume of space, is simple; for any given node in the tree, test its AABB against the volume, for which there
are many fast algorithms such as [1]; in our implementation, we first test a sphere circumscribed around the
AABB against the visibility query, and if that succeeds, test the AABB itself using an algorithm similar to
the inclusion test of Cohen-Sutherland [5]. If the AABB is totally visible, then insert all of the node’s objects
and all of the objects of all of its subtrees into the visible set. Otherwise, if the AABB is partially-visible,
then compare its objects against the visibility query and recursively clip its subtrees. Finally, if an AABB
isn’t visible at all, simply discard it. Examples of a visibility query are shown in figures 2.3 and 2.4.

Complexity analysis The cost of clipping the tree is a function of the number of nodes which are visited
and the number of objects stored in those nodes. Traversing an input set of n nodes produces two sets of
objects, a candidate set of size w which must be further culled to the clipping region, and a visible set v which
is guaranteed to be within the clipping region; the candidate set and visible set together form the working

2.2. USING THE TREE 13

a)

����������

��

������������

��

	�		�	
	�	

�

�

�
 ��

�
���

������������

��

������
���
������
��� ������

����

b)

������
���
������
��� ��

�
!"

#�##�#$�$$�$ %�%%�%
%�%
&�&&�&
&�& '�'(�(

)�)*
+�+,

-�--�-.
.

c)

/�//�/
/�/
0�00�0
0�0 1�12

3�34�4
56

7�77�78�88�89�99�9
9�9
:�::�:
:�: ;<

=>
?@

A�AA�AB�BB�B

d)

Figure 2.2: Moved split point facilitates rebalancing; a) moving object grows smaller subtree, b) moving
object shrinks larger subtree, c) moving object moves into smaller subtree, d) a massively-imbalanced tree
before and after 100 random movement cycles

14 CHAPTER 2. THE DYNAMIC AABB TREE

a) b)

c) d)

Figure 2.3: Visibility culling a two-dimensional dynamic AABB tree with the K-D heuristic; a) full input set
(c. 106 objects), b) input set near query, c) queried node boundaries, d) working set and final query result

Figure 2.4: Visibility culling in 3D with the icoseptree heuristic; 539 objects visible of an 851-object working
set, and a 1331-object input set

2.2. USING THE TREE 15

Figure 2.5: A hierarchically-modeled scene; 423 objects total are visible from a 680-object working set
clipped from multiple nested AABB trees (icoseptree heuristic)

set. The final visible set is of size Ω(v) and O(v+w), and takes O(v+w) time to compute, as inserting a
known-visible object takes O(1) time, as does testing and inserting a candidate object. Although w is O(n)
(for the worst-case scenario of a heuristic which simply keeps all objects in a single node), it depends on the
heuristic, the input set distribution, and how the query happens to align with the node boundaries.

2.2.2 Hierarchical geometry clipping

The data structure can still work with traditional hierarchically-modeled data. The simplest way to do this
is to use the bounding geometry of the entire hierarchical object group when inserting it into the tree. In the
case of bounding spheres, naïvely calculating the radius of the overall bounding sphere R(N) is fairly trivial,
by recursively finding

R(N) = max{Nr,RC (C1) ,RC (C2) , . . . ,RC (Cn)}

RC (C) = ‖Cp‖+Cr

where N is an object with bounding radius Nr and children C1 . . .Cn; each child’s contributed bounding radius
Rc (C) is calculated from its radius Cr and its position Cp within its parent’s coordinate space. These values
can be stored with the individual objects once calculated, and if a child object moves, the change in overall
bounding radius can simply be propagated upwards through the scene hierarchy in a manner similar to the
AABB updates described in section 2.1.5.

Additionally, the hierarchical scene structure can itself be maintained as a set of nested AABB trees; our
current implementation stores a visibility tree per object alongside a traditional hierarchical scene model,
using the traditional hierarchy for object-management queries and the visibility tree for visibility queries.
When the nested trees are queried for visibility, the AABBs are simply translated by the parent object’s local
coordinate space like any other object. Because a leaf tree node will only be split if there are a sufficient
number of objects, simple hierarchical geometry does not significantly increase the overhead over simply
storing the hierarchy normally, but for complex scenes, the nested visibility trees are clipped to the viewing
volume, providing a very fine-grained level of hierarchical visibility determination without incurring any
significant overhead.

Figure 2.5 shows an example of a hierarchical visibility query. There are five major groups of objects,
each with its own AABB tree. Each of the three tracks is made of 72 segments, each of which is an object
which further contains four parts (two walls, a floor, and a ring). The cloud of shiny points in the center
is another hierarchical group of 1500 randomly-moving billboard-style sprites, and all of the moving light
sources are in a fifth group. These top-level objects are all descended directly from the root scene object.

As each track segment is modeled hierarchically, they each have their own AABB tree; though they are
unsplit, the root AABBs, which are rotated along with the segment grouping object, are still visible in the

16 CHAPTER 2. THE DYNAMIC AABB TREE

a) b)

c) d)

Figure 2.6: Simple occlusion culling; a) the rendered view; b) wireframe view without culling; c) with
culling; d) visibility query (icoseptree heuristic)

query. Additionally, the entire group of shiny points has been rotated a bit to emphasize that its AABB tree,
too, is in a different coordinate system than those of the tracks.

2.2.3 Occlusion culling

Adapting occlusion-culling algorithms which can use bounding volumes for group rejection is straightfor-
ward. In our current implementation we use a technique similar to [6], where we first draw objects which
were visible in the previous frame at a reduced level of detail into a low-resolution software depth buffer
while rendering them (or use the hardware depth buffer after rendering those objects normally), reduce the
depth buffer in the style of a Z-pyramid [7], and then test the AABBs of the tree nodes against the depth buffer
while obtaining the working set. The bounding volumes of the objects are also tested against the occlusion
buffer before they’re rendered, culling out even more geometry.

Figure 2.6 shows this algorithm in operation, with a scene of 1331 randomly-moving objects. Without the
culling algorithm, there are 622 objects rendered of a working set of 804, whereas with the culling algorithm,
there are only 45 objects rendered out of a working set of 285; the remaining 519 objects are culled out based
on using the previous frame’s visible objects as occluders.

Unfortunately, there are many circumstances which cause this algorithm to perform sub-optimally. For
example, if an object occludes a significant portion of the tree, then a sudden change of visibility with respect
to that object will cause many more objects to be rendered than are actually visible, and it will take a few
frames for the correct visible set to emerge once again. In extreme cases, this scenario may cause the entire
set of objects to be rendered even if only one is actually visible.

However, even in light of this simple occlusion-culling algorithm’s weaknesses, it shows quite a bit of
promise for future occlusion-culling algorithms which could, for example, determine and prioritize additional
potential occluders by traversing the tree from the camera’s position, only using the temporally-coherent

2.2. USING THE TREE 17

visibility information in order to provide an initial set of occluders.

2.2.4 Collision detection

Using the dynamic AABB tree to accelerate collision-detection queries is simple and intuitive. The objects
are stored in a collision AABB tree (which should be kept separate from the visibility AABB tree), with their
bounding volumes augmented to contain their motion over the next time increment. To perform collision
queries against an object, a region containing the augmented bounding volume is queried; the resulting visible
set contains only objects which require a detailed collision test as required by the application.

Although this isn’t fundamentally different from any other octree- or AABB-tree-based collision-detection
algorithm such as [2] or [13], this has the advantages that the query region doesn’t have to be grown by a
known global maximum velocity, and the internal book-keeping is significantly simpler because an entire
object will only be stored in a single tree node. Its major disadvantage is that it requires quite a bit of tree
updating and querying, with one update and query for each moving object per test cycle, though if it is used as
a predictive collision detection, one test cycle doesn’t necessarily correspond to one frame. Depending on the
problem domain and necessary level of accuracy, this simple collision-detection algorithm may be sufficient.

18 CHAPTER 2. THE DYNAMIC AABB TREE

Chapter 3

Nesting heuristics

In order to maximize performance, it is useful to compare a number of different nesting heuristics. We have
implemented four heuristics, each with two variants, one where, like a traditional AABB tree, objects are
stored only within leaf nodes if possible (“leafy”), and one where an object will be stored in an internal node
if its bounding volume is at least 1/8 the volume of the internal node’s AABB, so as to avoid creating a lot
of extra child nodes simply to accommodate a particularly large object. Each heuristic is named after the
algorithm it is patterned after; for example, the K-D tree heuristic is patterned after a K-D tree, but is not,
strictly-speaking, a K-D tree, due to the relaxed properties of the dynamic AABB tree and also because the
split dimension doesn’t follow a strict depth-based pattern.

In order to test the nesting heuristics, a benchmark program creates a set of objects with n spheres of
radius randomly varying from 1 to 10 inclusive, placed with a uniform random distribution within a cube,
3n1/3units on a side. It queries the entire tree (forcing it to fully split), and records the elapsed time. It then
repeats the following process 1000 times, timing the actual CPU usage of each step using the UNIX times()
system call: query a random 100× 100× 100 cubical region of the tree, then randomly select 1000 objects
to move in a random direction, with a distance proportional to its size. All times were taken on a 1133MHz
Athlon with 512MB of PC133 SDRAM. The results of running the benchmark on a few fixed values of n
while varying the splitting threshold are shown in figure 3.1.

Representative images of each distribution will be shown alongside the timing results in section 4.

3.1 K-D

The K-D heuristic, which is the splitting strategy employed by traditional AABB trees, is conceptually anal-
ogous to a K-D tree. The AABB is split across its longest axis into two regions through the calculated split
point, each corresponding to one subtree. The center of the object determines which subtree it goes into.

By varying the splitting threshold with a few fixed numbers of objects, we find that the optimum splitting
threshold is around 35 for the leafy variant, and 30 for the non-leafy variant.

3.2 Ternary

The ternary heuristic is similar to the K-D heuristic in that it splits the AABB across the longest axis into two
regions, but there are three subtrees; objects which are entirely within one of the two regions goes into the
corresponding subtree, and objects whose bounding volume extends into both regions – that is, objects which
straddle across the two regions – go into the third.

By varying the splitting threshold, we find that the optimum splitting threshold is around 25 for the leafy
variant, and 20 for the non-leafy variant.

19

20 CHAPTER 3. NESTING HEURISTICS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

C
ul

lin
g

tim
e

(m
s)

Split threshold, K-D heuristic

leafy, n=100000
leafy, n=250000

non-leafy, n=100000
non-leafy, n=250000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

C
ul

lin
g

tim
e

(m
s)

Split threshold, ternary heuristic

leafy, n=100000
leafy, n=250000

non-leafy, n=100000
non-leafy, n=250000

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140

C
ul

lin
g

tim
e

(m
s)

Split threshold, octree heuristic

leafy, n=100000
leafy, n=250000

non-leafy, n=100000
non-leafy, n=250000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

C
ul

lin
g

tim
e

(m
s)

Split threshold, icoseptree heuristic

leafy, n=100000
leafy, n=250000

non-leafy, n=100000
non-leafy, n=250000

Figure 3.1: Finding the optimum split values for the heuristics

3.3. OCTREE 21

3.3 Octree

The octree heuristic is similar to an irregular octree; three axis-aligned planes through the split point partition
the node into 8 regions, each with a corresponding subtree. An object is inserted into the subtree correspond-
ing with the region its center is in.

By varying the splitting threshold, we find that the optimum splitting threshold is around 40 for the leafy
variant, and 30 for the non-leafy variant.

3.4 Icoseptree

The icoseptree heuristic is the octree equivalent of the ternary tree, above. Each axis is divided into three
regions, two of which are for objects entirely on one side of the split, and the third for objects whose bounding
volumes intersect the split for that axis. The three regions on the three dimensions combine to provide 27
regions, each one representing a child node for objects to be inserted into.

This particular nesting heuristic merits exploration because of an interesting property; if the objects all lie
close to a single axial plane or even along a straight line, an octree will not provide a very good partitioning, as
pairs or quartets of subtrees will have bounding regions which mostly overlap. However, with the icoseptree,
these objects will go into the intermediate subtrees, and the corner subtrees will be constrained to objects
which are further away from the splitting planes, and in many cases this will cause the corner subtrees’
AABBs to be significantly smaller than they would with the octree heuristic. In essence, it theoretically
provides a mixture of octree, quadtree, and K-D tree behavior as necessary.

The optimum split threshold for the icoseptree heuristic is much more nebulous than with the other heuris-
tics, as there is a large plateau of performance. As such, we select values which provide plenty of wiggle
room, around 70 for the leafy variant, and 50 for the non-leafy variant.

22 CHAPTER 3. NESTING HEURISTICS

Chapter 4

Timing comparisons

In order to do a full comparison of the various nesting heuristics, it is not sufficient to simply use a uniform
distribution. Although a uniform distribution does a good job of finding the worst-case performance in order
to find the best overall split threshold for each heuristic, most applications which require the use of online
visibility determination have decidedly non-uniform distributions of objects. Therefore, in order to properly
compare the nesting heuristics, it is important to compare them based on a number of different distributions
which represent common scenarios in visualization and interactive graphics.

However, a comparison between all eight heuristics is unnecessary, as both the leafy and non-leafy vari-
ants show similar results. By varying the number of objects and comparing each heuristic types’ leafy and
non-leafy variants with each other, as in figure 4.1, we see that the non-leafy variant consistently edges out
the leafy variant when both are at their optimum split threshold.

Additionally, the benchmark as used in section 3 is good for finding the optimum splitting threshold, but
is inadequate for a decent real-world test, for a very simple reason: as given, the input data fills a region
which only grows to the size of the query region when it reaches 105 objects. As a result, most queries for
n < 105 end up simply inserting the entire tree, which tests nothing but the tree traversal up to that point. So,
we reduce the queried region to 10×10×10, and make the filled volume a cube n1/3 on a side, so that when
n > 1000, the query covers only part of the space.

For all distributions, we show and analyze graphs showing the query time, the time to randomly move
1000 random objects, the time taken to split the entire tree, the size of the working sets of each of the
heuristics with the theoretical minimum size (i.e. the visible set), and the maximum tree depth. Although
each distribution demonstrates different strengths and weaknesses for the heuristics, one universal result is
that for all heuristics and distributions, the tree split time doesn’t quite scale linearly, but is close enough for
all practical purposes.

4.1 Uniform distribution

The uniform distribution (figure 4.2), as before, randomly fills the volume with objects in a uniform distri-
bution. In terms of sheer performance, the icoseptree and octree heuristics clearly outperform the K-D and
ternary heuristics, with the icoseptree heuristic overtaking the octree heuristic at around n = 4.5× 105. All
the heuristics’ query times appear to scale linearly with the size of the input set, but the visible set itself grows
with the size of the input set in a fashion which indicates that if the output set were of a fixed size, the query
time would scale more or less logarithmically. In any case, the output size is clearly the dominating factor.

Based on the maximum tree depth, we see that each of the heuristics’ trees depths scale logarithmically,
as expected.

4.2 Clustered distribution

In the clustered distribution (figure 4.3), five “seed” points are placed through the area at the same position
every time, and are used for generating clusters of objects with a pseudo-Gaussian distribution.

23

24 CHAPTER 4. TIMING COMPARISONS

 0

 5

 10

 15

 20

 25

 30

 35

 40

1e2 1e3 1e4 1e5 1e6

C
ul

l t
im

e
(m

s)

Total objects (log)

Leafy K-D, s=35
Non-leafy K-D, s=30

 0

 5

 10

 15

 20

 25

 30

 35

1e2 1e3 1e4 1e5 1e6

C
ul

l t
im

e
(m

s)

Total objects (log)

Leafy ternary, s=25
Non-leafy ternary, s=20

 0

 5

 10

 15

 20

 25

 30

1e2 1e3 1e4 1e5 1e6

C
ul

l t
im

e
(m

s)

Total objects (log)

Leafy octree, s=40
Non-leafy octree, s=30

 0

 5

 10

 15

 20

 25

 30

 35

1e2 1e3 1e4 1e5 1e6
C

ul
l t

im
e

(m
s)

Total objects (log)

Leafy icoseptree, s=70
Non-leafy icoseptree, s=50

Figure 4.1: Comparing the leafy vs. non-leafy variants of the four heuristic types

This time around, the icoseptree clearly outperforms the other heuristics, and scales logarithmically with
the input size, whereas a linear term begins to dominate on the other heuristics at around n = 105. By looking
at the maximum tree depth, we see that the icoseptree and ternary heuristics scale logarithmically, depth-wise,
while the K-D and octree heuristics scale more inconsistently. This clearly demonstrates that the icoseptree
heuristic can adapt to inconsistent object distributions far better than an octree can.

It is also worth noting that as the number of objects increases, both the icoseptree and K-D heuristics’
working sets approach the absolute minimum of the final visible set size.

4.3 Lissajous distribution

The Lissajous distribution (figure 4.4) places the objects in a Lissajous loop described by the equation P(t) =
〈sin(c1t + k1) ,sin(c2t + k2) ,sin(c3t + k3)〉 with fixed values for c1...3 and k1...3, and t varies from 0 to 5000.
This distribution is interesting because it appears like a straight line at a local level (which works well for
a K-D tree but horribly for an octree), but like a cube at a global level (which works well for an octree but
horribly for a K-D tree). Furthermore, most of the space within the region is empty of all objects.

From the timing graph, it is obvious that the icoseptree heuristic is the clear winner; the K-D heuristic
likely fails because of the global cube-like distribution of objects, though it is interesting that the ternary
heuristic performs about as well as the octree heuristic, even though the global distribution of objects should
have caused the same problems as for the K-D heuristic. The octree fails to perform as well as the icoseptree
due to the local distribution of objects, whereas the icoseptree simply falls back to K-D-like behavior in that
case. It is also interesting to note that most of the heuristics’ performance is dominated by a linear term,
but for the icoseptree it is logarithmic overall, after accounting for the working set size which peaks around
n = 104.

The maximum tree depth on each heuristic scales similarly to the clustered distribution, with a consis-
tent logarithmic growth on the ternary and icoseptree heuristics and less consistency on K-D and octree.
Additionally, the icoseptree and K-D heuristics’ working sets again approach the minimum possible size.

4.3. LISSAJOUS DISTRIBUTION 25

 0
 20

 40
 60

 80
 100

 120
 140 0

 20

 40

 60

 80

 100

 120

 140

 0

 20

 40

 60

 80

 100

 120

 140

 0

 1

 2

 3

 4

 5

 6

 7

 8

1e2 1e3 1e4 1e5 1e6

C
ul

lin
g

tim
e

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 1

 2

 3

 4

 5

 6

1e2 1e3 1e4 1e5 1e6

T
im

e,
 1

00
0

up
da

te
s

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 5

 10

 15

 20

 25

 30

0e0 1e5 2e5 3e5 4e5 5e5 6e5 7e5 8e5 9e5 1e6

T
ot

al
 s

pl
it

tim
e

(s
ec

on
ds

)

Total objects

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 50

 100

 150

 200

 250

 300

 350

1e2 1e3 1e4 1e5 1e6

O
ut

pu
t o

bj
ec

ts

Total objects (log)

Visible set
K-D working set
Ternary working set
Octree working set
Icoseptree working set

 0

 5

 10

 15

 20

 25

1e2 1e3 1e4 1e5 1e6

M
ax

im
um

 tr
ee

 d
ep

th

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

Figure 4.2: Performance on a uniform distribution

26 CHAPTER 4. TIMING COMPARISONS

-20
 0

 20
 40

 60
 80

 100
 120

 140
 160

 180-20
 0

 20
 40

 60
 80

 100
 120

 140
 160

-40

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0

 2

 4

 6

 8

 10

 12

 14

1e2 1e3 1e4 1e5 1e6

C
ul

lin
g

tim
e

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 1

 2

 3

 4

 5

 6

1e2 1e3 1e4 1e5 1e6

T
im

e,
 1

00
0

up
da

te
s

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 5

 10

 15

 20

 25

 30

0e0 1e5 2e5 3e5 4e5 5e5 6e5 7e5 8e5 9e5 1e6

T
ot

al
 s

pl
it

tim
e

(s
ec

on
ds

)

Total objects

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 50

 100

 150

 200

 250

 300

1e2 1e3 1e4 1e5 1e6

O
ut

pu
t o

bj
ec

ts

Total objects (log)

Visible set
K-D working set
Ternary working set
Octree working set
Icoseptree working set

 0

 10

 20

 30

 40

 50

 60

 70

1e2 1e3 1e4 1e5 1e6

M
ax

im
um

 tr
ee

 d
ep

th

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

Figure 4.3: Performance on a clustered distribution

4.3. LISSAJOUS DISTRIBUTION 27

 0
 20

 40
 60

 80
 100

 120
 140 0

 20

 40

 60

 80

 100

 120

 140

 0

 20

 40

 60

 80

 100

 120

 140

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1e2 1e3 1e4 1e5 1e6

C
ul

lin
g

tim
e

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 1

 2

 3

 4

 5

 6

 7

 8

1e2 1e3 1e4 1e5 1e6

T
im

e,
 1

00
0

up
da

te
s

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 5

 10

 15

 20

 25

0e0 1e5 2e5 3e5 4e5 5e5 6e5 7e5 8e5 9e5 1e6

T
ot

al
 s

pl
it

tim
e

(s
ec

on
ds

)

Total objects

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 50

 100

 150

 200

 250

 300

1e2 1e3 1e4 1e5 1e6

O
ut

pu
t o

bj
ec

ts

Total objects (log)

Visible set
K-D working set
Ternary working set
Octree working set
Icoseptree working set

 0

 10

 20

 30

 40

 50

 60

 70

1e2 1e3 1e4 1e5 1e6

M
ax

im
um

 tr
ee

 d
ep

th

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

Figure 4.4: Performance on a Lissajous loop distribution

28 CHAPTER 4. TIMING COMPARISONS

 0
 20

 40
 60

 80
 100

 120
 140 0

 20

 40

 60

 80

 100

 120

 140

 0

 20

 40

 60

 80

 100

 120

 140

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1e2 1e3 1e4 1e5 1e6

C
ul

lin
g

tim
e

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 1

 2

 3

 4

 5

 6

1e2 1e3 1e4 1e5 1e6

T
im

e,
 1

00
0

up
da

te
s

(m
s)

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0e0 1e5 2e5 3e5 4e5 5e5 6e5 7e5 8e5 9e5 1e6

T
ot

al
 s

pl
it

tim
e

(s
ec

on
ds

)

Total objects

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

 0

 50

 100

 150

 200

 250

 300

1e2 1e3 1e4 1e5 1e6

O
ut

pu
t o

bj
ec

ts

Total objects (log)

Visible set
K-D working set
Ternary working set
Octree working set
Icoseptree working set

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1e2 1e3 1e4 1e5 1e6

M
ax

im
um

 tr
ee

 d
ep

th

Total objects (log)

K-D, s=30
Ternary, s=20
Octree, s=30
Icoseptree, s=50

Figure 4.5: Performance on a multiple sphere distribution

4.4 Sphere

The spherical distribution (figure 4.5) places half of the objects near the surface of a hollow sphere, and
the other half of the objects in a solid sphere of 1/3 the radius centered within the hollow sphere at a fixed
location. The distribution throughout the solid sphere is uniform.

Once again, the best performance is had by the icoseptree heuristic. In this case, all of the heuristics have
about the same performance which scales logarithmically until about n = 105, at which point a linear term
begins to dominate for all heuristics except icoseptree, which doesn’t see a linear term dominate until about
n = 8×105. However, at n = 106 the octree and icoseptree heuristics perform about the same, and the linear
term for the icoseptree appears to be much more dominant than for the octree. For higher values of n, it is
likely that the octree will perform better.

The maximum depth of the tree shows something quite interesting; as the number of objects increases
after n = 104, the tree depth begins to decrease for the ternary and icoseptree heuristics. It is likely that at
that point, the space-filling volume is large enough that fewer objects are in contact with the splitting plane,
causing the split-plane branches to go unused. However, this does not explain why both of those heuristics
have much shallower trees than their non-overlapping counterparts. A reasonable theory is that at the lower

4.5. OVERALL ASSESSMENT 29

levels of the tree, the split-plane branches are still beneficial. Regardless, aside from the hump, the depths
again scale logarithmically for the ternary and icoseptree heuristics, while the K-D and octree heuristics
experience much less consistent scaling after 3×103 and 104 objects, respectively.

4.5 Overall assessment

Based on the preceding information, it is fairly straightforward to determine that the best performance overall
is with the icoseptree heuristic, and that the icoseptree heuristic is also likely to continue to scale exceptionally
well for even greater orders of magnitude.

30 CHAPTER 4. TIMING COMPARISONS

Chapter 5

Conclusions and future work

The modifications to the AABB tree presented here make it quite effective at efficiently determining visi-
bility based on view-volume culling without imposing restraints on movement of objects. Furthermore, the
presented occlusion-culling mechanism can be extremely effective at rejecting non-visible geometry from a
complex 3D visualization, and is efficient enough for generalized real-time use. However, it remains far from
optimal; a group-culling algorithm which takes advantage of the AABB tree to identify new occluders as well
as existing ones should be considered.

Additionally, the most effective static nesting heuristic of those tested is the icoseptree, which exhibits a
very good adaptive blend of K-D tree and octree behavior. However, it could still be improved as its working
set is still quite a bit larger than the visible set, and in future work, the development of even more nesting
heuristics, including the creation of a meta-heuristic which selects a nesting heuristic on a per-node basis,
would be extremely beneficial.

31

32 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Chapter 6

Acknowledgments

I would like to thank Dr. Joseph Pfeiffer, Jr. for being my advisor, Hue McCoy, Janet and Richard Shagam,
and Bob DeKinder for their endless encouragement, and an anonymous SIGGRAPH review panel which
offered the valuable insights and suggestions that ultimately led to this particular research. This work was
made possible by National Science Foundation MII grants EIA-9810732 and EIA-0220590 and funded by
the United States Department of Education GAANN program.

33

34 CHAPTER 6. ACKNOWLEDGMENTS

Appendix A

AABB tree implementation

The following code implements the dynamic AABB tree and the test code used to generate the two-dimensional
figures and timing graphs for this paper. As presented it is not compilable, as it relies on the majority of the
other object classes which comprise Solace1, a complete high-performance graphics research platform, which
represents many years of independent work and approximately 16,000 lines of code.

The object classes missing for the are, as follows:

• Camera: a structure describing a viewing origin (position, direction, field of view, etc.)

• GeoImage: a geometry image, the mesh representation used by the research platform (similar to [8])

• HashMap, HashSet: wrapper objects which (at compile-time) select a C++ hash_map/hash_set if
available and desired, or an ordinary map/set if not

• Matrix: a 4x4 homogeneous transformation matrix

• Node: a node in the hierarchal scene geometry

• Shader: a component in a shader script (which programmatically describes how an object should be
rendered)

• vec3: a 3-dimensional vector

A.1 Interface

/* BBTree.h
** Dynamic bounding-box trees
*/

#ifndef BBTREE_H
#define BBTREE_H

#include <vector>

#include "HashMap.h"
#include "vec3.h"

class Node;

1http://www.cs.nmsu.edu/~joshagam/Solace/

35

36 APPENDIX A. AABB TREE IMPLEMENTATION

class BBTree {
public:

BBTree(BBTree *parent = NULL);
~BBTree();

// Get the ABB of the tree
void GetExtents(vec3 &min, vec3 &max, bool split = true);

// Add a node, returning the subtree it’s in
BBTree *AddNode(Node *);

// Find the subtree a node is in
BBTree *FindNode(Node *);
BBTree *FindNode(vec3, float);

// Remove a node from this tree (no search is performed)
bool RemoveNode(Node *);
bool RemoveNode(Node *, vec3 oldp, float oldr);

// Update a node’s location within the tree, taking advantage
// of coherence
bool UpdateNode(Node *, vec3 oldp, float oldr);

// Add all of our nodes to a set
typedef HashSet<Node *> Nodes;
const Nodes &GetNodes() const {

return m_nodes;
}
int GetNodes(std::vector<Node *> &) const;
int NumNodes() const { return m_nodes.size(); }

// Get the children (for external traversal)
typedef std::vector<BBTree *> Children;
const Children &GetChildren() const {

return m_children;
}
bool IsLeaf() { return !m_issplit; }

static void SetSplitVal(int);

private:
BBTree *m_parent;

bool m_issplit;
enum {SplitX, SplitY, SplitZ} m_splitdir;
vec3 m_split;
vec3 m_min, m_max;
bool m_extentsCorrect;

int WhichChild(vec3, float) const;

Nodes m_nodes;

Children m_children;

A.2. IMPLEMENTATION 37

BBTree *GetChild(int c);

void InsertNode(Node *);

void TestSuicide();
void RemoveChild(BBTree *c);

void GrowExtents(const vec3& lo, const vec3& hi);
void ShrinkExtents(const vec3& pos, float r);
void UpdateExtents();
bool Contains(const vec3& minp, const vec3& maxp);

void DoSplit();
void Unsplit();

static unsigned int s_splitval;
};

#endif

A.2 Implementation

/* BBTree.cc
** Implementation of dynamic AABB trees
*/

#include <algorithm>
#include <iostream>

#include "BBTree.h"
#include "Node.h"

using std::cerr;
using std::endl;
using std::min;
using std::max;

//#define DEBUG
//#define DEBUG2
//#define DEBUG3

#define TREETYPE 27
#define NONLEAFY
#define DEFRAG

unsigned int BBTree::s_splitval = 50;

void BBTree::SetSplitVal(int s)
{

s_splitval = s;

38 APPENDIX A. AABB TREE IMPLEMENTATION

}

inline std::ostream& operator<<(std::ostream& lhs, const vec3 &rhs)
{

lhs << ’(’ << rhs.x << ’,’ << rhs.y << ’,’ << rhs.z << ’)’;
return lhs;

}

BBTree::BBTree(BBTree *p)
{

m_parent = p;
Unsplit();
m_extentsCorrect = false;

}

BBTree::~BBTree()
{

for (Children::iterator iter = m_children.begin();
iter != m_children.end(); ++iter)

if (*iter)
delete *iter;

}

void BBTree::GetExtents(vec3 &minp, vec3 &maxp, bool split)
{

if (!m_extentsCorrect)
UpdateExtents();

if (split && !m_issplit && m_nodes.size() >= s_splitval)
DoSplit();

minp = m_min;
maxp = m_max;

}

BBTree *BBTree::AddNode(Node *n)
{
#ifdef DEBUG3

cerr << "BBTree::AddNode("
<< this << ", " << n << ")" << endl;

#endif

BBTree *oo = FindNode(n);
assert(oo);

oo->InsertNode(n);

vec3 pos = n->GetPos();
float r = n->Radius(true);
vec3 pr(r, r, r);
oo->GrowExtents(pos - pr, pos + pr);

#ifdef DEBUG3
cerr << "return = " << oo << endl;

A.2. IMPLEMENTATION 39

#endif
return oo;

}

BBTree *BBTree::FindNode(Node *n)
{

if (n)
return FindNode(n->GetPos(), n->Radius(true));

return NULL;
}

BBTree *BBTree::FindNode(vec3 pos, float r)
{
#ifdef DEBUG3

cerr << "BBTree::FindNode(" << this << ", "
<< pos << ", " << r << ")" << endl;

#endif

BBTree *oo = this;
int c = WhichChild(pos, r);
while (c >= 0)
{

oo = oo->GetChild(c);
c = oo->WhichChild(pos, r);

}

return oo;
}

bool BBTree::RemoveNode(Node *n)
{

return RemoveNode(n, n->GetPos(), n->Radius(true));
}

bool BBTree::RemoveNode(Node *n, vec3 oldp, float oldr)
{

ShrinkExtents(oldp, oldr);

if (m_nodes.find(n) == m_nodes.end())
{

cerr << "Warning: octree " << this
<< " tried to remove node "
<< n << " which it doesn’t contain" << endl;

if (m_parent)
{

cerr << "Parent says it should be in "
<< m_parent->FindNode(n) << endl;

cerr << "Trying parent" << endl;
return m_parent->RemoveNode(n);

}
return false;

}

m_nodes.erase(n);

40 APPENDIX A. AABB TREE IMPLEMENTATION

// THIS MUST COME LAST
TestSuicide();
return true;

}

void BBTree::TestSuicide()
{

if (m_parent)
{

bool killme = m_parent && m_nodes.empty();
for (Children::iterator iter = m_children.begin();

killme && iter != m_children.end(); ++iter)
killme = (*iter == NULL);

if (killme)
m_parent->RemoveChild(this);

}
}

BBTree *BBTree::GetChild(int c)
{

if (c < 0)
return this;

if (!m_children[c])
{

m_children[c] = new BBTree(this);
#ifdef DEBUG

cerr << "BBTree " << this << " added child " << c << " = "
<< m_children[c] << endl;

#endif
}

return m_children[c];
}

void BBTree::RemoveChild(BBTree *foo)
{
#ifdef DEBUG

cerr << "BBTree " << this << "’s child " << foo
<< " suicided" << endl;

#endif
bool unsplit = true;
for (Children::iterator iter = m_children.begin();

iter != m_children.end(); ++iter)
if (*iter == foo)
{

delete *iter;
*iter = NULL;

} else if (*iter)
unsplit = false;

if (unsplit)
{

A.2. IMPLEMENTATION 41

#ifdef DEBUG
cerr << "BBTree " << this << "unsplitting" << endl;

#endif
Unsplit();

}

TestSuicide();
}

void BBTree::UpdateExtents()
{

bool set = false;

#ifdef DEFRAG
vec3 newsplit(0,0,0);
int ct = 0;

#endif

for (Nodes::iterator iter = m_nodes.begin();
iter != m_nodes.end(); ++iter)

{
vec3 pos = (*iter)->GetPos();
float r = (*iter)->Radius(true);
vec3 lo(pos.x - r, pos.y - r, pos.z - r);
vec3 hi(pos.x + r, pos.y + r, pos.z + r);

if (!set)
{

m_min = lo;
m_max = hi;
set = true;

} else
{

m_min = vec3(min(m_min.x, lo.x),
min(m_min.y, lo.y),
min(m_min.z, lo.z));

m_max = vec3(max(m_max.x, hi.x),
max(m_max.y, hi.y),
max(m_max.z, hi.z));

}

#ifdef DEFRAG
newsplit = newsplit + pos;
ct++;

#endif
}

for (Children::iterator iter = m_children.begin();
iter != m_children.end(); ++iter)

{
vec3 lo, hi;
if (*iter)
{

(*iter)->GetExtents(lo, hi, false);

42 APPENDIX A. AABB TREE IMPLEMENTATION

if (!set)
{

m_min = lo;
m_max = hi;
set = true;

} else
{

m_min = vec3(min(m_min.x, lo.x),
min(m_min.y, lo.y),
min(m_min.z, lo.z));

m_max = vec3(max(m_max.x, hi.x),
max(m_max.y, hi.y),
max(m_max.z, hi.z));

}

#ifdef DEFRAG
newsplit = newsplit + (*iter)->m_split*s_ splitval;
ct += s_splitval;

#endif
}

}

#ifdef DEFRAG
m_split = newsplit/ct;

#endif

m_extentsCorrect = true;
}

void BBTree::Unsplit()
{

m_issplit = false;
for (Children::iterator iter = m_children.begin();

iter != m_children.end(); ++iter)
*iter = NULL;

}

void BBTree::DoSplit()
{
#ifdef DEBUG

cerr << "BBTree " << this << " splitting ("
<< m_nodes.size() << " nodes)" << endl;

#endif

assert(!m_issplit);

// Find the split point
m_split = vec3(0,0,0);
float ttl = 0;
for (Nodes::iterator iter = m_nodes.begin();

iter != m_nodes.end(); ++iter)
{

vec3 pos = (*iter)->GetPos();

A.2. IMPLEMENTATION 43

float r = (*iter)->Radius(true);
#if 0

// weigh by 1/r
float rw = 1.0/(r + 1e-12);

#else
const float rw = 1;

#endif
m_split = m_split + (pos + vec3(r, r, r))*rw;
ttl += rw;

}
m_split = m_split/ttl;

m_issplit = true;
m_children.resize(TREETYPE, (BBTree *)NULL);

#if (TREETYPE == 2) || (TREETYPE == 3)
// Determine which way to actually split
float sx = m_max.x - m_min.x,

sy = m_max.y - m_min.y,
sz = m_max.z - m_min.z;

if (sx > sy && sx > sz)
m_splitdir = SplitX;

else if (sy > sx && sy > sz)
m_splitdir = SplitY;

else
m_splitdir = SplitZ;

#endif

bool safe = false, first = true;
int lc = 0;
Nodes here;
for (Nodes::iterator iter = m_nodes.begin();

iter != m_nodes.end(); ++iter)
{

int c = WhichChild((*iter)->GetPos(), (*iter)->Radius(true));

// Make sure at least one object doesn’t go into the
// same child as everyone else
if (!safe)
{

if (c < 0)
safe = true;

else
{

if (first)
{

lc = c;
first = false;

} else
safe = (c != lc);

}
}

if (c < 0)

44 APPENDIX A. AABB TREE IMPLEMENTATION

{
#ifdef DEBUG

cerr << "Retaining node " << *iter
<< " (pos=" << (*iter)->GetPos()
<< " r=" << (*iter)->Radius(true)
<< ")" << endl;

#endif
here.insert(*iter);

} else
GetChild(c)->InsertNode(*iter);

}
m_nodes = here;

#ifdef DEBUG
cerr << "min=" << m_min << " max=" << m_max << endl;
cerr << "Split at " << m_split << endl;
cerr << "Retained " << m_nodes.size() << endl;
for (unsigned int i = 0; i < m_children.size(); ++i)

if (m_children[i])
cerr << " child " << i << " got "

<< m_children[i]->m_nodes.size() << endl;
#endif

if (!safe)
{

#ifdef DEBUG
cerr << "*** All nodes went to " << lc << "! Reclaiming..."

<< endl;
#endif

// Oops, all objects went into the same child node!
// Take them back.
BBTree *cn = GetChild(lc);
Nodes::iterator iter = cn->m_nodes.begin();
while (iter != cn->m_nodes.end())
{

Node *n = *iter;
++iter;
cn->RemoveNode(n);
InsertNode(n);

}

// The last removal marked this node as unsplit, so
// we’ll just have to do this all over again next time
// this AABB is queried, unless we simply keep this
// node split
m_issplit = true;

}

for (Children::iterator iter = m_children.begin();
iter != m_children.end(); ++iter)

{
if (*iter)

(*iter)->UpdateExtents();

A.2. IMPLEMENTATION 45

}
}

int BBTree::WhichChild(vec3 pos, float radius) const
{

if (!m_issplit)
return -1;

int c = 0;

#ifdef DEBUG2
cerr << "testing "

<< pos << ’:’ << radius << " against " << m_split << endl;
#endif

#ifdef NONLEAFY
//if (m_ extentsCorrect)
{

// If this object’s bounding volume is at least 1/8
// the last known tree bounding volume, just keep it
// here
float sv = radius*4*M_PI/3;
float bv = (m_max.x - m_min.x)

*(m_max.y - m_min.y)
*(m_max.z - m_min.z);

if (sv > bv/8)
return -1;

}
#endif

#if TREETYPE == 2
if (m_splitdir == SplitX)

c = (pos.x < m_split.x)?0:1;
else if (m_splitdir == SplitY)

c = (pos.y < m_split.y)?0:1;
else // if (m_ splitdir == SplitZ)

c = (pos.z < m_split.z)?0:1;
#elif TREETYPE == 3

float p, s;
if (m_splitdir == SplitX)
{

p = pos.x;
s = m_split.x;

} else if (m_splitdir == SplitY)
{

p = pos.y;
s = m_split.y;

} else
{

p = pos.z;
s = m_split.z;

}

if (p + radius < s)

46 APPENDIX A. AABB TREE IMPLEMENTATION

c = 1;
else if (p - radius > s)

c = 2;
#elif TREETYPE == 8

if (pos.x < m_split.x)
c |= 1;

if (pos.y < m_split.y)
c |= 2;

if (pos.z < m_split.z)
c |= 4;

#elif TREETYPE == 27
if (pos.x + radius < m_split.x)

c += 1;
else if (pos.x - radius > m_split.x)

c += 2;

if (pos.y + radius < m_split.y)
c += 3;

else if (pos.y - radius > m_split.y)
c += 6;

if (pos.z + radius < m_split.z)
c += 9;

else if (pos.z - radius > m_split.z)
c += 18;

#else
error "Unknown tree type " TREETYPE
#endif

#ifdef DEBUG2
cerr << "got child " << c << endl;

#endif

if ((unsigned int)c >= m_children.size())
{

cerr << this << "s == " << m_issplit
<< ":" << m_split.x << ","
<< m_split.y << ","
<< m_split.z
<< " c == " << c
<< " sz == " << m_children.size() << "/"
<< TREETYPE << endl;

abort();
}

return c;
}

int BBTree::GetNodes(std::vector<Node *> &foo) const
{

int ret = 0;
for (Nodes::const_iterator iter = m_nodes.begin();

iter != m_nodes.end(); ++iter)
{

A.2. IMPLEMENTATION 47

ret++;
foo.push_back(*iter);

}

return ret;
}

void BBTree::GrowExtents(const vec3& lo, const vec3& hi)
{

BBTree *pp = this;
while (pp)
{

if (pp->m_extentsCorrect)
{

pp->m_min = vec3(min(pp->m_min.x, lo.x),
min(pp->m_min.y, lo.y),
min(pp->m_min.z, lo.z));

pp->m_max = vec3(max(pp->m_max.x, hi.x),
max(pp->m_max.y, hi.y),
max(pp->m_max.z, hi.z));

}

pp = pp->m_parent;
}

}

void BBTree::ShrinkExtents(const vec3& c, float r)
{

BBTree *pp = this;
while (pp)
{

if (c.x - r <= pp->m_min.x
|| c.y - r <= pp->m_min.y
|| c.z - r <= pp->m_min.z
|| c.x + r >= pp->m_max.x
|| c.y + r >= pp->m_max.y
|| c.z + r >= pp->m_max.z)

pp->m_extentsCorrect = false;
pp = pp->m_parent;

}

}

void BBTree::InsertNode(Node *n)
{

m_nodes.insert(n);
n->SetBBTreePos(this);

}

bool BBTree::Contains(const vec3& minp, const vec3& maxp)
{

return (minp.x >= m_min.x
&& minp.y >= m_min.y
&& minp.z >= m_min.z

48 APPENDIX A. AABB TREE IMPLEMENTATION

&& maxp.x <= m_max.x
&& maxp.y <= m_max.y
&& maxp.z <= m_max.z);

}

bool BBTree::UpdateNode(Node *n, vec3 oldp, float oldr)
{
#ifdef DEBUG3

cerr << "update of " << n << " from " << this << endl;
#endif

float r = n->Radius(true);
vec3 rp(r, r, r);
vec3 minp = n->GetPos() - rp;
vec3 maxp = n->GetPos() + rp;

BBTree *ptr = this;
#ifdef DEBUG3

cerr << "starting at " << ptr << endl;
#endif

while (ptr->m_parent
&& !ptr->Contains(minp, maxp))

{
ptr = ptr->m_parent;

#ifdef DEBUG3
cerr << "traverse to " << ptr << endl;

#endif
}

#ifdef DEBUG3
cerr << "adding at " << ptr << endl;

#endif

// Find its final reinsertion point
ptr = ptr->FindNode(n);

if (ptr != this)
{

// Moved to a new node
ptr->AddNode(n);
if (!RemoveNode(n, oldp, oldr))

return false;
} else
{

// Just update the extents of this node
GrowExtents(minp, maxp);
ShrinkExtents(oldp, oldr);

}

return true;
}

Bibliography

[1] ASSARSSON, U., AND MÖLLER, T. Optimized view frustum culling algorithms for bounding boxes.
Journal of Graphics Tools: JGT 5, 1 (2000), 9–22.

[2] BANDI, S., AND THALMANN, D. An adaptive spatial subdivision of the object space for fast collision
detection of animating rigid bodies. Eurographics’95 (August 1995), 259–270.

[3] COHEN-OR, D., CHRYSANTHOU, Y., AND SILVA, C. A survey of visibility for walkthrough applica-
tions. In EUROGRAPHICS’00 course notes (2000).

[4] DURAND, F., DRETTAKIS, G., THOLLOT, J., AND PUECH, C. Conservative visibility preprocessing
using extended projections. In Siggraph 2000, Computer Graphics Proceedings (2000), K. Akeley, Ed.,
ACM Press / ACM SIGGRAPH / Addison Wesley Longman, pp. 239–248.

[5] FOLEY, J. D., VAN DAM, A., FEINER, S. K., AND HUGHS, J. F. Computer Graphics: Principles and
Practice, second ed. Addison-Wesley, 1990, ch. 3.12.3, pp. 113–117.

[6] GREENE, N. Visibility culling using graphics hardware. In ACM SIGGRAPH 2002 Tutorial Course
#31: Interactive Geometric Computations Using Graphics Hardware, D. Manocha, Ed., ACM SIG-
GRAPH 2002 Course Notes. ACM SIGGRAPH, 2002, pp. H1–H37.

[7] GREENE, N., KASS, M., AND MILLER, G. Hierarchical Z-buffer visibility. Computer Graphics 27,
Annual Conference Series (1993), 231–238.

[8] GU, X., GORTLER, S. J., AND HOPPE, H. Geometry images. ACM SIGGRAPH 2002 (July 2002),
355–361.

[9] KOLTUN, V., CHRYSANTHOU, Y., AND COHEN-OR, D. Hardware-Accelerated from-Region visibility
using a dual ray space. In Rendering Techniques 2001: 12th Eurographics Workshop on Rendering
(2001), pp. 205–216.

[10] SCHAUFLER, G., DORSEY, J., DECORET, X., AND SILLION, F. X. Conservative volumetric visibility
with occluder fusion. In ACM SIGGRAPH 2000, Computer Graphics Proceedings (2000), K. Akeley,
Ed., ACM Press / ACM SIGGRAPH / Addison Wesley Longman, pp. 229–238.

[11] SUDARSKY, O., AND GOTSMAN, C. Dynamic scene occlusion culling. IEEE Transactions on Visual-
ization and Computer Graphics 5, 1 (1999), 13–29.

[12] TELLER, S. J., AND SÉQUIN, C. H. Visibility preprocessing for interactive walkthroughs. Computer
Graphics 25, 4 (1991), 61–68.

[13] VAN DEN BERGEN, G. Efficient collision detection of complex deformable models using AABB trees.
Journal of Graphics Tools: JGT 2(4) (1997), 1–14.

[14] WONKA, P., WIMMER, M., AND SILLION, F. X. Instant visibility. In EG 2001 Proceedings,
A. Chalmers and T.-M. Rhyne, Eds., vol. 20(3). Blackwell Publishing, 2001, pp. 411–421.

[15] ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF III, K. E. Visibility culling using hierarchical
occlusion maps. Computer Graphics 31, Annual Conference Series (1997), 77–88.

49

