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Abstract

Composed of linear difference equations, a discrete dynamical system model was

designed to reconstruct transcriptional regulations in gene regulatory networks for

ethanologenic yeast Saccharomyces cerevisiae in response to 5-hydroxymethylfurfural,

a bioethanol conversion inhibitor. The modeling aims at identification of a system

of linear difference equations to represent temporal interactions among significantly

expressed genes. Power-stability is imposed on a system model under the normal

condition in the absence of the inhibitor. Non-uniform sampling, typical in a time

course experimental design, is addressed by a log-time domain interpolation. A sta-

tistically significant discrete dynamical system model of the yeast gene regulatory

network derived from time course gene expression measurements by exposure to

5-hydroxymethylfurfural, revealed several verified transcriptional regulation events.

These events implicate Yap1 and Pdr3, transcription factors consistently known for

their regulatory roles by other studies or postulated by independent sequence mo-

tif analysis, suggesting their involvement in yeast tolerance and detoxification of the

inhibitor.

Keywords: Discrete dynamical system, Data-driven modeling, Gene regulatory net-

work, Stress tolerance, Saccharomyces cerevisiae



1 Introduction

Quantitative modeling of gene regulatory networks (GRNs) in ethanologenic yeast

using high throughput biotechnology, in part a large-scale computational problem,

holds the key towards high-yield ethanol production from biomass in the presence of

inhibitory chemical compounds. By far, few data-driven approaches are capable of

describing the information flow over time in a dynamical biological system. Dynami-

cal system modeling of GRNs, however, empowers one to understand systematically

the interactions among variables in a system. Motivated by its computational feasi-

bility for modeling large-scale dynamical systems, we study the discrete dynamical

system (DDS) model, composed of linear difference equations, for reconstruction of

GRNs in yeast during biomass conversion to ethanol. The Verhulst equation, a single-

variable DDS model, is an example that is widely used in mathematical biology [1]

to study population dynamics. Although DDS modeling has been utilized for GRN

reconstruction by estimating system coefficients using least squares [2], their potential

has remained largely unrecognized in molecular systems biology. Only until recently,

gene interactions or biochemical reaction pathways by DDS models consisting of ei-

ther linear difference equations or finite state linear equations have been characterized

[3, 4, 5]. Our work moves along with three innovations. The first is to perform log-time

domain interpolation on non-uniformly spaced samples and resample from equally

spaced time locations. The second is to assess statistical significance of all feasible lin-

ear difference equations for a given gene variable and to choose the most significant

one, as well as to assess the statistical significance of the overall DDS model. The third

is to enforce power stability on the DDS model so that it does not exhibit chaotic or

unstable behaviors under a normal condition. A DDS is power stable if variables in

the system stay bounded as time goes to infinity given any finite initial state.

Our work has originated from the investigation of genetic mechanisms for bioethanol

conversions in yeast in pursuit of renewable sources of energy. As public interests

in alternative sources of energy rise, agriculture as a renewable energy producer has
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soared. Biomass, including lignocellulosic materials and agricultural residues, has

become a focus of low-cost materials for biofuel production. One major barrier of

biomass conversion to ethanol is inhibitory compounds produced during biomass pre-

treatment, which interfere with microbial growth and subsequent fermentation. For

economic reasons, dilute acid hydrolysis is commonly used to prepare the biomass

degradation for enzymatic saccharification and fermentation [6, 7]. However, numer-

ous side-products are generated by this pretreatment, many of which inhibit microbial

metabolism. More than 100 compounds are known to have potential inhibitory effects

on microbial fermentation [8]. Among these compounds, 5-hydroxymethylfurfural

(HMF) and furfural are the most potent and representative inhibitors derived from

biomass pretreatment [9, 10]. Few yeast strains tolerant of inhibitors are available. The

molecular mechanisms involved in the stress tolerance and detoxification are not well

understood for yeast. Based on transcriptome pofiling analysis, a concept of genomic

adaptation to the biomass conversion inhibitors by the ethanologenic yeast has been

proposed [11, 12]. However, a great deal of detailed knowledge about GRNs in yeast

involved in stress tolerance during the biomass conversion still remains unknown.

In the computational and biological context described above, we have developed DDS

models to study the genetic basis underlying metabolic pathway of the ethanologenic

yeast. As initiated in this study, we have delineated through DDS models how yeast

behaves in response to the inhibitor HMF during the earlier exposure to the inhibitor

for ethanol production. In this model, the change rate in expression level of a target

gene at a discrete time point is a linear function of the expression levels of influential

genes at the previous discrete time point. This model facilitates the characterization of

gene interactions in ethanol production by yeast under both control and HMF-stress-

treatment conditions, allowing one to introduce specific perturbations into a system

and predict the effects on biomass conversion under various stress conditions. Fur-

thermore, the model provides potential to identify relevant genes and gene interac-

tions for optimal genetic manipulations that will guide the engineering of more robust

yeast strains for economic ethanol production.
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DDS modeling is advantageous given the increased availability of experimental de-

signs that collect time-course gene expressions at the whole-genome scale, though

other modeling paradigms exist for different emphases:

Temporal probabilistic networks – The dynamic Bayesian network (DBN) is an ex-

tension of Bayesian networks, which incorporates time transitions between Bayesian

networks. A DBN can describe statistical and temporal dependencies among

genes in a GRN. We have no doubt that DBNs are successful in extracting prob-

abilistic dependencies in modeling GRNs [13, 14, 15]. Although certain DBNs

can be converted to probabilistic Boolean networks [16], DBN modeling is an in-

direct tool to understand system dynamics since it does not explicitly describe

temporal relations among genes in a functional form.

Continuous dynamical system models – Differential equations in both deterministic

[17, 18] and stochastic [19] formulations have been used to model interactions in

GRNs in continuous time. The E-CELL Project [20, 21, 22] targets at knowledge-

based reproduction, not data-driven reconstruction, of intracellular biochemical

and molecular interactions within a single cell using differential equations. The

stochastic master equations relate state probabilities by differential equations,

impractical for biological systems involving many variables because of the com-

putational burden. Recent research has been focusing on improving the scala-

bility of such models [23]. However, almost all differential equations reduce to

difference equations in practical applications. Direct DDS modeling overrides

this intermediate step and speaks the native discrete time language of a com-

puter. We believe it is more effective to go without the intermediate mode of

differential equations. In addition, the actual time interval between discrete time

points in difference equations can be adjusted to the sparsity of data, making it

more flexible to model the dynamics at different resolutions.

Boolean networks – In a Boolean network [24, 25, 26, 27, 28] and its Markovian [29]

or probabilistic [30] extensions, each variable takes the value of either 0 or 1. The
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dichotomous nature of a Boolean network seriously limits its capacity to dis-

criminate quantitative differences. This can be crucial when such differences are

more interesting than the mere information of presence (1) or absence (0). Our

primary goal is to establish a system model encoding regulatory mechanisms in

biomass conversion to ethanol, especially the quantitative shift of biotransforma-

tion and detoxification of the inhibitors for effective ethanol conversion, which

requires information beyond the presence or absence of genes. Thus, Boolean

networks are not the best dynamical strategy to describe accurately the amount

of biotransformation as a function of dynamical metabolic interactions. This has

been indicated by the recent extension of probabilistic Boolean networks to in-

corporate more than two levels for each variable [31].

Following the introduction, we consider DDS modeling in Section 2 and present our

solution to data-driven modeling that creates models of statistical significance, includ-

ing a log-time domain interpolation to address the issue of non-uniformly sampled

time points. The scaling performance of our DDS modeling is evaluated through a

simulation study in Section 3. We discuss the reconstructed GRN in the context of

known transcriptional regulations and suggest potentially novel gene interactions of

yeast in response to HMF in Section 4. Finally, we give conclusions and potential fu-

ture work in Section 5.

2 The discrete dynamical system model

Although dynamics in molecular processes are largely nonlinear as in various kinet-

ics models, the number of observations sufficient to induce a nonlinear model for a

biological system is too large to be practical for a system with more than a handful

of variables. Instead of nonlinear models, we use a first-order linear DDS model to

capture system dynamics. A system can be approximated using a linear DDS model

when the perturbation to the system is sufficiently small. In our experiment, the time
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course gene expression we collected reflected the initial response of gene expressions

to the inhibitor HMF before saturation, a major nonlinear dynamical effect, takes place.

Thus, we consider the DDS model capable of approximating primary expression re-

sponse to HMF.

In a first-order linear DDS model, the transition from one state at discrete time t− 1 to

the next state at t depends linearly on the state of the system at only time t − 1. Let h

be the constant time span of 1 unit of discrete time. First order refers to the transition

from t− 1 to t does not depend on the state of the system at t− 2, t− 3, and so on, but

the state at t − 1. Let g[t] = (g1[t], g2[t], . . . , gN [t])> be a vector of the expression levels

of N genes at time t. Let e[t] = (e1[t], e2[t], . . . , eK [t])> be a vector of the strength of K

external stimuli at time t. A first-order linear DDS model is defined by

g[t]− g[t− 1]

h
= A g[t− 1] + B e[t− 1] + ~ε [t], (1)

where A = {aij} is an N × N system matrix and aij (i 6= j) is the influence of gene j

on gene i, aii is the self-control rate, B = {bik} is an N × K external influence matrix

where bik is the influence of the k-th stimulus on gene i, ~ε [t] = (ε1[t], ε2[t], . . . , εN [t])> is

a vector of noise levels to each gene at time t. The noise is estimated by fitting the DDS

model, and thus is a function of the time interval as well as the observed data. In the

modeling process, we assume the noise model Gaussian. We also introduce a possible

intercept vector c to the right hand side of the above equation during model selection

for each node.

2.1 Estimating coefficients for each linear difference equation

From an experiment with trials under various external stimuli and in replica, one can

collect M trials of time course observations or trajectories of a system at the discrete

time points 0, 1, 2, . . . , T . Let gm[0], gm[1], . . ., gm[T ] be the m-th observed trajectory of

(m = 1 . . .M ) the system, and em[0], em[1], . . ., em[T ] be the m-th trajectory of external
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stimuli applied to the system. We use the least squares to find optimal estimates of

system matrix A and external influence matrix B. The DDS model defined in Eq. (1)

can be written as a collection of all M trajectories by

gm[t]− gm[t− 1]

h
= A gm[t− 1] + B em[t− 1] + ~ε m[t], (2)

where

gm[t] =



gm
1 [t]

gm
2 [t]

...

gm
N [t]


, em[t] =



em
1 [t]

em
2 [t]

...

em
K [t]


, Noise: ~ε m[t] =



εm1 [t]

εm2 [t]

...

εmN [t]


.

Equivalently, for each gene variable, we have the multiple linear regression form

gm
i [t]− gm

i [t− 1]

h
=

[∑
j∈Ni

aijg
m
j [t− 1]

]
+

[∑
k∈Ki

bike
m
k [t− 1]

]
+ εmi [t], (3)

where Ni is a subset of indices to gene variables in the system, pointing to non-zero

elements on row i of A , andKi a subset of indices to external stimuli, pointing to non-

zero elements on row i of B. Any coefficients not indexed in the subsets are considered

zero. This is a critical explicit form in the DDS modeling in order to express only the

most statistically significant subsets for influencing a gene.

Let ai = (ai1, . . . , aiN)> and bi = (bi1, . . . , biK)> be the parameters associated with gene

variable i. ai and bi can be solved independently of other parameter vectors using the
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multiple regression in Eq. (3). By least squares, optimal estimates for ai and bi are

bi =

[
2h2

M∑
m=1

T−1∑
t=1

e′m[t]e′m[t]>

−

(
2h2

M∑
m=1

T−1∑
t=1

e′m[t]g′m[t]>

)(
2h2

M∑
m=1

T−1∑
t=1

g′m[t]g′m[t]>

)−1(
2h2

M∑
m=1

T−1∑
t=1

g′m[t]e′m[t]>

)−1

[(
2h

M∑
m=1

T∑
t=2

(gm
i [t]− gm

i [t− 1])e′m[t− 1]

)

−

(
2h2

M∑
m=1

T−1∑
t=1

e′m[t]g′m[t]>

)(
2h2

M∑
m=1

T−1∑
t=1

g′m[t]g′m[t]>

)−1

·

(
2h

M∑
m=1

T∑
t=2

(gm
i [t]− gm

i [t− 1])g′m[t− 1]

)]
, (4)

ai =

(
2h2

M∑
m=1

T−1∑
t=1

g′m[t]g′m[t]>

)−1 [(
2h

M∑
m=1

T∑
t=2

(gm
i [t]− gm

i [t− 1])g′m[t− 1]

)

−

(
2h2

M∑
m=1

T−1∑
t=1

g′m[t]e′m[t]>

)
bi

]
, (5)

where g′m[t] = (g′m1 [t], . . . , g′mN [t])>, e′m[t] = (e′m1 [t], . . . , e′mK [t])>,

g′mj [t] =

 gm
j [t], if j ∈ Ni

0, otherwise
, (6)

and

e′mk [t] =

 em
k [t], if k ∈ Ki

0, otherwise
. (7)

2.2 The most significant linear difference equation for each gene

variable

In solving the multiple linear regression in Eq. (3) for gene i, assigning {1, 2, . . . , N} to

Ni and {1, 2, . . . , K} to Ki will guarantee minimal least squares. However, such a so-
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lution by involving all variables as independent variables is in general not statistically

significant due to the high degrees of freedom of the regression model. Thus obtained

DDS model would most likely fit the dynamical behaviors caused by noise as well as

those by consistent systematic interactions.

Hence we strategically reduce the number of variables involved in each difference

equation so that the resulting fit can attain a given statistical significance. We achieve

this selection by findingNi andKi that together produce the smallest p-value of the F -

test for each multiple linear regression. For N genes and K external stimuli, there are

2N+K − 1 possible subsets– excluding the empty set as the null hypothesis–to consider

for Ni and Ki, only computationally feasible for a system with less than a dozen of

variables. We limit the number of possible incoming edges or potential regulators

for each variable to some computational doable number. Although this leads to an

incomplete exploration of the system search space, our experience indicates that major

influential gene variables can be identified even when the number of regulator nodes

explored is small for typical sample sizes of a microarray experiment.

Since the chance of making a Type I error increases dramatically as we increase the

number of interactions to inspect, we perform multiple testing p-value adjustment by

Bonferroni correction. The p-value for the multiple linear regression of each node is

multiplied by the total number of regressions performed in the entire modeling pro-

cess to derive the adjusted p-value. This p-value is capped to one if the product is

greater. The p-value for each coefficient in a single difference equation is also inflated

in exactly the same way. The Bonferroni adjustment provides the most stringent cri-

terion among all alternatives and only the most highly significant interactions repre-

sented by multiple linear regressions can survive the p-value cutoff after inflation.

2.3 Stabilization

Although solutions to the linear difference equations constitute an optimal fit to the

observed data, the resulting DDS model can be unstable, meaning that the log expres-
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sion levels of some genes increase to infinity or decrease to negative infinity as time

goes on when the initial state of the system is finite. Thus we stabilize the system

model when no external stimuli are present.

Now we derive the stabilization formula. Equivalently, Eq. (1) can be written as

g[t] = (hA + I)g[t− 1] + hB e[t− 1] + h~ε [t]. (8)

When the system is not subject to external stimuli or noise, it becomes

g[t] = (hA + I)g[t− 1]. (9)

In the bioethanol conversion process, this system equation describes the ideal behavior

of yeast gene expression without the inhibitor HMF in a zero-noise environment. In

such a system, one does not expect the expression of any gene becomes unstable dur-

ing the experiment since otherwise the subject perishes. An optimal solution found for

A by Eq. (5) may lead to an unstable system in Eq. (9). Let W = hA + I. A necessary

and sufficient condition for the system described by Eq. (9) to be stable is to require

W to be power stable – all eigenvalues of W must be located within or on the unit

circle; or the spectral norm must be no greater than one. Let λ(W) be the sequence of

eigenvalues of W. The spectral norm ρ(W) is defined by [32]

ρ(W) = max{|λ| : λ ∈ λ(W)}. (10)

Let Λ be a diagonal matrix, generated by diag(λ(W)), and V be a matrix whose

columns are the eigenvectors in an order corresponding to the order of eigenvalues

in λ(W). It follows that

W = VΛV−1. (11)

We stabilize W to obtain Ws by scaling all its eigenvalues by its spectral norm if the
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spectral norm is greater than 1, while maintaining the same eigenvectors, that is,

Ws =


V

Λ

ρ(W)
V−1 =

1

ρ(W)
W if ρ(W) > 1

W otherwise
. (12)

Let As be the transformed matrix A after stabilization. Plugging in the definition of

W, we obtain

As =
1

h

[
hA + I

ρ(hA + I)
− I

]
, (13)

if the spectral norm of W is greater than 1. Replacing A by As in Eq. (1), we obtain

g[t]− g[t− 1]

h
=

{
1

h

[
hA + I

ρ(hA + I)
− I

]
g[t− 1] + B e[t− 1]

}
+ ~ε [t]. (14)

There are several theoretical and numerical properties associated with our stabiliza-

tion strategy. It is evident that any coefficients off the diagonal line in A with a value

close to 0 will be closer to 0 after stabilization. This ensures that no new interactions

between different genes will be introduced by stabilization. The spectral norm can be

found efficiently using the power method without obtaining all eigenvalues or eigen-

vectors of matrix W. In addition, since there is no matrix decomposition involved, the

stabilized matrix As will be real if A is real, which holds true theoretically but could

be violated numerically by other approaches.

2.4 Statistical significance of a discrete dynamical system model

Let the minimum p-value of fitting a linear difference equation to gene i be pi. The

p-value of a fitted DDS model is computed by

p-value = 1−
N∏

i=1

(1− pi), (15)

where pi is computed by the F -tests during the fitting of linear model for gene variable

i. This defines a conservative p-value. Nevertheless, the p-value of a DDS model is a
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statistically effective and computationally efficient measure to determine the chance

an estimated model would arise randomly. This p-value is influenced by 1) how well

each linear difference equation can be fitted to the data and 2) the number of non-

zero coefficients in the model, which constitute two competing factors. Our algorithm

minimizes the p-value by trade-off between both factors.

2.5 Log-time interpolation

Non-uniform time sampling is often used in a time course experimental design, such

that various frequency components in the original continuous signal can be preserved

adaptively. Conversely, interpolation in the original time domain over non-uniform

samples tends to distort high frequency components in the original signal. To save

sharp transitions at densely sampled time locations, we apply a logarithm transform

on time by

t′ = log(t+ t0), (16)

where t′ is the time variable in the log-time domain. Selection of the constant t0 is

determined by how well it equalizes the distance between each consecutive pair of

time points after the log-time transform. The observed samples are then interpolated

by cubic splines in the log-time domain, by assuming that the sampling times are

designed sufficiently well to capture major change of the stimuli; or equivalently, the

change of gene expression levels between two consecutive time points can be captured

by the cubic splines. Let x = f(t′) be the interpolated cubic spline. One can obtain

values at equally spaced time points 0, h, 2h, . . . , qh, . . ., in the original time domain

by

xq = f(log(qh+ t0)), (17)

where h is the sampling interval. We pick the same number of interpolated points

as the number of points in the original data set. So the interpolation solely serves to

equalize the non-uniform time points in the log-time domain. If more points were
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interpolated, the p-value must be adjusted to that effect, otherwise, faulty significance

might arise. The DDS model will be fitted to the interpolated values in the original

time domain, using the procedure described in previous subsections.

3 Simulation study of the scaling performance of DDS

modeling

The scaling property of DDS modeling determines its applicability to a wide range

of systems. Through a simulation study, we demonstrate the scaling performance of

our DDS reconstruction method under different network sizes, or numbers of vari-

ables. The measures we use to evaluate the performance include the false negative

rate (FNR) and the false discovery rate (FDR), and the Hamming distance. We de-

fine an interaction as an ordering from node j to node i such that entry aij at the i-th

row and the j-th column in system matrix A is not zero. The FNR is the ratio of the

total number of missed interactions to the total number of original interactions. The

FDR is the ratio of the number of incorrectly detected interactions to the number of

detected interactions. We do not include the false positive rate (FPR) here because it is

usually magnitude lower than FDR when a system is sparsely connected as in many

biological systems. The FNR and FDR qualitatively evaluate whether the topology of

a DDS model has been correctly identified. The Hamming distance is defined as the

total number of false negative and false positive edges in the reconstructed network in

reference to the original ground truth network. Hamming distance can be interpreted

as a measure to determine how two graphs mismatch each other topologically – the

greater the distance, the severer the mismatch.

For each given network size N , a random N × N system matrix A can be generated

with the following specifications. For each row, 2 or 3 entries are selected randomly

and uniformly from {1, . . . , N}. The values in each of the selected entries are also

determined randomly and uniformly from [−10, 10]. All remaining entries in the row
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are set to zero. Then the system is stabilized, as described in Section 2.3, by scaling all

eigenvalues of matrix hA + I, where I is an N ×N identity matrix, to be on or within

the unit circle. No scaling is done if all eigenvalues are already on or within the unit

circle.

In simulation of a DDS model, we consider two types of noises: the random biological

variability εb and the random measurement error εm. We consider the final observed

variable a sum of an original unobserved variable plus both noises. The biological

noise influences the system dynamic, while the measurement noise does not. Let g[t]

be a state vector for observed values of all nodes at time t, containing both noises. Let

gb[t] be the unobserved state vector for all nodes at t, containing only biological noise.

It is important to note that only gb[t] participates in the dynamical evolution of the

system. Thus, we use the following DDS model characterized by A for gb[t]:

gb[t] =

 gb[0] t = 0

(hA + I) gb[t− 1] + ~εb[t] t > 0
, (18)

where ~εb[t] is a random vector representing the biological noise distributed as N(0, σ2
b )

at time t, which arises from the random biological variability. It is unnecessary to in-

clude external influence matrix B because it will not influence the scaling performance

evaluation. Thereafter, a final trajectory can be obtained by adding the measurement

noise to the biological state vector gb[t]

g[t] = gb[t] + ~εm[t], (19)

where random vector ~εm[t], with each entry a random variable distributed asN(0, σ2
m),

represents the measurement error introduced by imprecision in instrumentation at

time t.

To quantify the strength of noises, we define the signal to measurement noise ratio

(SMNR) as 10 times log10 of the sum of squares of the signal divided by the sum of

squares of the measurement noise. Analogically, we define the signal to biological

13



noise ratio (SBNR). The units of both ratios are decibels (dB).

We studied the scaling performance using network sizes 32, 64, 128, 256, 512, and

1,024. For each network size, we generated five random DDS models to obtain an

average performance. For each randomly generated DDS system, we simulated 4 tra-

jectories, with 6 time points (h = 1) and the state vector randomly initialized at time

zero, under a high noise setting (SBNR ≈ 10 dB, SMNR ≈ 10 dB) and a low noise

setting (SBNR ≈ 20 dB, SMNR ≈ 20 dB). The choices of the network sizes, the sample

size, and the trajectory length align with our experimental design of gene expression in

yeast in response to HMF. Then we performed DDS modeling to reconstruct a system

for each set of trajectories corresponding to an original DDS system. Figure 1 shows

the average scaling performance FNR and FDR with their standard errors under low

and high noise settings. The monotonic FNR and FDR curves suggest that the scaling

performance of DDS modeling in determining the correct topology decreases as the

network size increases. In the high noise setting in Fig. 1(a), the FNR can range from

12% to 45%, and the FDR from 20% to 55%, as the network size increases from 32 to

1,024. In the low noise setting in Fig. 1(b), the FNR is less than 15% when the network

size is 1,024; the FDR is about 20% when the network size is 128; both FDR and FNR

reduce to around 5% when the network size is 32. If high noise prevails in an exper-

iment, the strategy to improve the performance is to increase either the sample size

or the number of time points during the transient phase of the underlying dynamical

system.

Table 1 shows the average Hamming distance as a function of the network size under

the low and high noise settings. Each shown distance is an average from five instances

of networks with the same size. Although the shown average Hamming distance in-

creases almost linearly with the network size, the Hamming distance, if normalized

by N2, would drop linearly as the network size increases, indicating the strength of

our DDS modeling method.
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4 Reconstructed gene regulatory networks of yeast in re-

sponse to HMF

We performed DDS modeling on time-course microarray measurements of relative

mRNA levels for transcriptional interactions among genes in yeast during the earlier

exposure to the inhibitor HMF for ethanol production. After the initial exposure to

HMF for about 2 hours, the expression profile of involved genes in yeast evolves to

a saturation stage when linear gene interactions come to an end and strong nonlinear

gene interactions dominate. Our objective is to detect earlier linear interactions using

the DDS model, when gene expression changes are steady and not saturated. For

complete details of the experiment design, microarray data analysis, gene clustering,

and modeling results, please refer to the online supplement.

Experimental design – Target genome microarray of Saccharomyces cerevisiae was fabri-

cated with a recent version of 70-mer oligo set representing 6,388 genes. Each genome

microarray was designed with two replications on one microarray slide. Each microar-

ray slide consisted of 13,000 elements including replicated target genes and spiking-in

quality controls for linear dynamic calibration, ratio reference, DNA sequence back-

ground, and slide background controls. The first developed universal external RNA

control was applied in microarray experiments [33]. Ethanologenic yeast S. cerevisiae

NRRL Y-12632 was used and HMF added 6 hours after incubation [11]. A set of gene

expression profiles derived from a yeast culture grown under the same conditions

without the HMF treatment served as a control. The time point at inhibitor addition

was designated as hour 0. Yeast cells were harvested at 0 hour, 10 min, 30 min, 1 hour,

and 2 hour. The non-uniform sampling occurs densely at the beginning phase to al-

low one to capture accurately the initial dynamical response at the onset of external

stimuli.

Microarray data analysis – Each microarray slide was scanned and data acquisition

obtained using GenePix 4000B scanner and GenePix Pro software after normalization
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using universal RNA control [33]. Median of foreground signal intensity subtracted

by background for each dye channel was used. Data were collected with two biolog-

ical replications each with two technical replications. Based on ANOVA and a cluster

analysis, 364 significantly differentially expressed genes by the HMF treatment were

selected. We shifted the log-transformed microarray data on each chip by the median

of the chip to correct system biases.

Gene clustering – Genes that have highly linearly correlated expression time courses

can confuse DDS modeling. If these genes are treated as different variables, DDS mod-

eling would pick only a single one while ignoring all others, leading to very different

conclusions for how these genes influence others, though they are equivalent due to

linearly correlated dynamical behaviors. Thus these genes should be treated as a single

variable in DDS modeling. A representative from a cluster of linearly correlated genes

can be designated as this single variable. In addition, selecting only one representa-

tive gene that resembles other genes the most from each cluster of linearly correlated

genes will greatly reduce the computation in DDS reconstruction. We performed a

clustering procedure from a package developed in the R language [34]. A total of 169

gene clusters and representative gene for each cluster were identified and are shown

in Table 2.

DDS modeling – We estimated a DDS model using the HMF and the concentrations

of representative genes. The DDS model underlying the GRN is an optimal solution

after searching all possible directed graphs with 170 nodes and the maximum number

of incoming edges (including a possible one from the HMF node) for a gene variable

is at most 3. The HMF node is not allowed to have incoming edges. This DDS model

captured temporal dependencies among the 169 gene clusters and HMF during the

earlier exposure to the inhibitor in yeast fermentation process. A GRN is derived from

the DDS model, by creating an edge from each potential regulator j to each gene i if the

coefficient of gene j is non-zero in the difference equation of i. The reconstructed GRN

of transcriptional regulation with the 169 gene clusters nodes plus an HMF node is

depicted in Fig. 2. Existence of an edge from Pdr1 to Rib5 indicates a temporal depen-
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dency of the rate of change in Rib5 expression on the mRNA level of Pdr1. The number

8× 10−4, positioned next to the edge, is the p-value of this temporal dependency. The

original system matrix was stabilized by scaling all eigenvalues by the spectral norm

2.40. The overall p-value, 0.011, of the fitted DDS model indicates that the model is sta-

tistically significant, meaning that the resulting model has high levels of consistency

with biological observations because the probability of the model arising by chance is

as low as 0.011.

Among the 364 genes in 169 clusters, there are 12 known transcription factors (TFs)

according to YEASTRACT [35], including Pdr1(C11[1]), Mal33(C50[2]), Cup2 (C60[1]),

Nrg1 (C66[2]), Gis2 (C138[2]), Swi6 (C140[1]), Gcr1 (C169[1]), Yap1 (C9[6]), Uga3 (C28[2]),

Rap1 (C25[6]), Pdr3 (C8[14]), and Lys14 (C3[3]). We inspect in our DDS model whether

these TFs have been identified as of significant temporal influence over other genes as

well as whether they show response to HMF treatment. Table 3 lists the number of

edges that come out of each TF, as #Detected from the GRN in Fig. 2. It also gives how

many among these edges are established transcriptional regulations in yeast in the

literature, as #Documented, and the number of potential transcriptional regulations

based on sequence motifs, as #Potential. The last column in Table 3 indicates whether

a TF has shown statistically significant response to HMF (p-value less than 0.05 for the

coefficient of HMF) in the DDS model. Although Table 3, based on the unadjusted

p-values of the best fitting difference equations of each gene variable, has not taken

into consideration of multiple comparison effects when searching for a best set of in-

fluencing nodes, it is useful in eliminating TFs that may not play a significant role in

response to HMF. The obvious includes Nrg1 (C66[2]) and Swi6 – No other gene clus-

ters have shown any temporal dependency on either, though Nrg1 may be affected by

HMF directly. In addition, a TF that does not directly respond to HMF but does have

influences on other genes may less likely participate in the first effect of HMF; these

include Cup2, Gcr1, and Mal33.

Eight TFs in Table 3 can thus be candidates for responding directly to HMF. However,

the p-value must be adjusted to cancel the multiple testing effect in order to reduce the
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false positive rate. We further used the conservative Bonferroni correction, by inflat-

ing all p-values and excluding those interactions with inflated p-values greater than

0.05, to illustrate the most significant interactions in the DDS model (Fig. 3). Two

TFs survived the stringent p-value inflation – Pdr3 (C8[14]) and Yap1 (C9[6]). Cluster

C8(14), to which Pdr3 belongs, significantly responds to HMF and influences 10 other

genes in four clusters. Among those influenced, Top4 (C68[2]) has some motif pattern

to which Pdr3p binds, though nothing in literature has been established for the other

9 genes. Cluster C36(5) takes a significant multivariate effect from HMF: HMF has

a direct positive role in the gene expression rate of this cluster as well as of cluster

C8(14), though C8(14) has a negative effect on C36(5). Thus HMF influences C36(5) in

two competing paths and the overall effect is a balance of the two. Cluster C9(6), to

which Yap1 belongs, significantly influences a single cluster C45(7). Among the seven

genes in C45, six have been experimentally determined as being regulated by Yap1p

– Pre1 [36], Pre4 [36], Pre8 [37], Rpn2 [36], Rpn8 [36], and YNL155w [37]. Interestingly,

four of these six transcriptional interactions regulated by Yap1p in Saccharomyces cere-

visiae have been established very recently [36] to be highly responsive to the toxicant

arsenite at both gene expression and protein levels. Such coincident transcriptional in-

teractions as identified in this study may suggest that Yap1p be involved in the stress

tolerance mechanism, and Yap1p can be a core regulator for stress tolerance in yeast.

Although Yap1 does not show a significant direct incoming edge from HMF in this

new work, its significant interactions downstream found by this study stand still. It

suggests a significant role and involvement of Yap1 in response to HMF. In addition,

it is encouraging that the GRN model developed in this study is highly consistent

with the current knowledge including documented experimental observations and se-

quence motif based analysis. The other five TFs listed in Table 3, but not appearing in

Fig 3, may still be potentially interesting given the significant correlation with known

TFs. However, additional study and supporting data are needed for more conclusive

remarks.

In addition to the genes that are directly influenced by HMF, our DDS model also
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presented numerous interesting interactions among genes with potential significance.

For example, cluster C1(5) (Zrt2, Sam3, Put1, Ggc1, His5) showed highly significant

negative response to HMF as well as a strong negative influence on the expression rate

of ARP4 (Fig 3). Cluster C106(2) and C26(2) showed a significant negative influence

on Ssz1 and cluster C114(2), respectively. Cluster C2(15) has a significant positive

influence on the genes in cluster C70(5).

These genes have been observed to be core stress response genes and many related

genes are observed to be interesting in coping with the HMF stress for survival [Liu

et al., unpublished data]. Resolution of such interactions could have a significant im-

pact to understand the mechanism of detoxification and the stress tolerance caused by

HMF. Although they have not been reported, such statistically significant gene inter-

actions presented by this model could be potentially biologically significant to predict

unknown gene interactions. With the high consistency of predicted Yap1 and Pdr3 clus-

ters obtained using DDS modeling presented in this study and current knowledge, it

is reasonable to assume that relationships predicted using this model are potentially

biologically significant. A commonly documented TF Pdr1 shows a possible regula-

tory role to the selected subset genes in this model. Although it is highly homologous

with Pdr3, Pdr1 does not always respond the same with Pdr3. Further examination

using biological experiments is needed.

Beyond agreement with existing knowledge of transcriptional regulations in yeast, the

interactions discovered in the DDS model are consistent quantitatively with the ob-

served dynamical behavior of our experimental data. Figure 4 shows the DDS model

response to HMF and how well the model fits the observed trajectory data for the four

clusters that have known transcriptional interactions. Clusters C8(14), C68(2), C9(6),

and C45(7) show the prediction of response to HMF with and without HMF (Fig. 4).

These clusters all showed strong enhancement in the expression level. The 2nd and

3rd columns in Fig. 4 demonstrate the prediction made by the model and how the time

courses evolve differently when the same sample is subject to different experimental

conditions. In each plot in the 2nd and 3rd columns, the original time course sample,
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the log-time interpolated data, and the fitted time course are illustrated. The model

captured the trend in the data precisely for all the clusters, given the large sample vari-

ation present in most microarray experiments. Visualization of DDS modeling on all

other clusters is provided in the online supplement.

We also computed a DDS model with at most two incoming edges per gene with an

insignificant overall p-value of 0.062. On the other hand, we used a maximum of 4

and 5 incoming edges, more than 3, per gene to derive additional DDS models with

denser connectivity. The p-values of each gene variable in the resulting DDS models

either decrease very slowly or start to increase as more incoming edges are allowed.

We were thus not able to identify any significant interactions after the Bonferroni p-

value adjustment. Therefore, we believe that the current complexity of DDS fits the

resolution of the data set, and the model has revealed interesting interactions which

are worthwhile to undergo further biological validation.

5 Conclusion and future work

We have developed a data-driven DDS modeling framework, by combining concepts

in dynamical systems, Markovian chains, multiple linear regression, and combinato-

rial and least squares optimization, to detect regulatory interactions and to predict

system dynamical behaviors based on large-scale data sets. The way that we use the

statistical significance, i.e., the p-value, to determine combinatorially the parent as-

signment of each gene, and the way we stabilize a DDS model have not been seen in

the literature to our knowledge. Our modeling strategy can work with non-uniform

time-course data, identify a most statistically significant DDS model that is naturally

stable when no stimulus is present. Using our DDS modeling in application of yeast

transcriptome profiling data challenged by inhibitor HMF, we identified several sig-

nificant regulatory interactions, among which, transcription factor Yap1 and Pdr3 were

significant regulatory elements for HMF tolerance in yeast. Such information aids ex-
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planation of yeast adaptation to inhibitors combining with other phenotypes observed

previously [12, 38]. We will apply DDS modeling to recently developed more tolerant

strains [39] [Liu et al., unpublished] to identify novel interactions for inhibitor toler-

ance in yeast. Knowledge obtained can guide genetic engineering for stress tolerance

strain development. Our DDS modeling methodology can be further applied to analy-

sis of systems from data sets that contain both transcriptome and proteome measured

simultaneously on the same sample. Therefore, complete snapshots of molecular pro-

cessing events can be obtained to provide a more accurate account of the genomic

mechanism on inhibitor detoxification and tolerance for ethanologenic yeast.
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Figure 1: The scaling performance, FNR and FDR, of DDS modeling as a function of
the network size, under two different noise settings.
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Figure 2: Temporal interactions of 169 gene clusters in response to HMF treatment for
biomass conversion to ethanol by ethanologenic yeast. The p-values of each detected
pair of interaction are displayed next to the corresponding edge. A solid directed edge
in green from the first gene node to the second gene node with an arrowhead indicates
enhancement of the second gene by the first gene; An edge in red from the first gene
node to the second gene node with a solid dot indicates repression of the second gene
by the first gene. The dashed edges represent the external influence from HMF to
each gene: red for repressing and green for enhancing. The graph is rendered by the
software GraphViz (www.graphviz.org).
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Figure 3: Significant temporal interactions of candidate gene clusters in response to
HMF treatment for ethanol production by ethanologenic yeast. The adjusted p-values
of each edge are displayed. The color scheme follows the previous picture.
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Figure 4: Simulation of four gene clusters C8(14), C68(2), C9(6), and C45(7) using the re-
constructed DDS model. The 1st column displays the predictions of mRNA expression time
courses of each cluster without HMF (green solid lines) versus with HMF (red dashed lines).
The 2nd column shows the fitting to samples exposed to HMF: Fitted gene expression time
courses (red dashed lines) from the model versus the observed ones (yellow dash-dotted lines);
the big open triangles or stars represent the original values; the small filled yellow triangles
are interpolated values used for model estimation. The 3rd column shows fitting to control
samples not exposed to HMF: Fitted gene expression time courses (green solid lines) from
the model versus the observed ones (blue dotted lines); the big crosses represent the original
values; the small ones are interpolated values actually used.
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Table 1: Average Hamming distance.

Average Hamming Distance
Network Size SBNR≈SMNR≈10dB SBNR≈SMNR≈20dB

32 28.2 8.6
64 93.6 29.6
128 230.8 100.2
256 544.4 249.2
512 1,333.0 534.0
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Table 2: The 169 clusters of 364 genes. The first gene in each cluster is the representa-
tive.

Cluster Genes

C1 ZRT2 SAM3 PUT1 GGC1 HIS5
C2 RPS1B RPL21B ARO2 RPS3 RPS9A RPL18B PSA1 RPL9A

RPL13A RPS1A RPL12A RPS16A RPS4B RPS16B YGL149W
C3 ADK1 MDS3 LYS14
C4 HIS4 ARG1 ODC2 HIS3 YMR321C HOM2 ARO3 ARO4

TMT1 ECM40 TRP3 CPA2 YGL117W
C5 YDR261W-B YDR261C-D YGR038C-B YDR034C-D

YPR137C-B YFL002W-A YOR192C-B YDR210C-D
YNL054W-B YJR027W

C6 YGL157W GRE2 MCH5 ALT1 YDR056C MET3
C7 PRE6 CHA1 MAG1 ERO1 PBA1
C8 PUP3 PDR5 PDR3 SNQ2 REH1 PUT2 RPT6 CDC48 RPT2

SCL1 RPT4 SGT2 RPN9 GET3
C9 RSB1 PDR12 PDR15 YOR1 YAP1 RPT3
C10 HCH1 PDR16 HSP10 AHC2
C11 PDR1
C12 ARG4 ARG3 ARG5,6 TRP2 ARG8
C13 ATM1
C14 PDR10
C15 PDR11 VPS55
C16 SSZ1
C17 PDR17
C18 RPN10 DDI1 RAD52
C19 AHP1 UBC4
C20 STE6
C21 YCR061W TPO1 YLR326W YCR062W
C22 YMR102C
C23 YPR158C-D YGR035C YER138W-A YDR316W-B YHR214C-B

YPR158W-B
C24 RPN12 ICT1 SHP1 CDC53
C25 MAL32 PGA3 YLR152C MAL12 RAP1 PYC2
C26 ICY1 STR3
C27 SCS7
C28 PCL5 UGA3
C29 YAR066W
C30 YFL015C
C31 YDR261C-C YER159C-A
C32 RPL22B
C33 VPS61
C34 YGR293C
C35 YLF2
C36 RPN13 SBA1 GDS1 UBP6 ILV3
C37 YGR027W-A
C38 PUS1 NOG1 ECM1 PSP2 PUS7 NMD3 NUG1 LTV1
C39 ADD66
C40 ARP4
C41 YBL101W-B YDR098C-B YBR012W-B YGR161C-D

YDR210W-D YGR161W-B YML045W YOR142W-B
YDR210W-B YDR365W-B

C42 YMR050C YMR045C YGR027W-B YBL005W-B YML039W
C43 DCW1
C44 YTH1
C45 PRE1 PRE8 RPN8 YNL155W PUP1 PRE4 RPN2
C46 PCI8
C47 YPL162C
C48 IMD1 RGD1
C49 YDR210W-C YGR161C-C YFL002W-B YBL005W-A

YBL101W-A YDR365W-A YOR343C-B
C50 MAL33 YFR024C
C51 YMR027W
C52 YOL159C-A SER1
C53 MES1 MRS6
C54 UIP5
C55 YNL179C
C56 YFL065C
C57 TUB4
C58 MAE1
C59 YLR227W-A YAR010C YPR158W-A YOL103W-A YDR098C-

A YML045W-A YLR256W-A YHR214C-C YMR051C
YDR316W-A YPR158C-C YER137C-A YBR012W-A YJR026W

C60 CUP2
C61 MRL1
C62 BMH1
C63 TRK2
C64 DEG1
C65 YGR137W LSB1
C66 NRG1 MCT1
C67 KAR1
C68 SLF1 TPO4
C69 SSA2 SSA1
C70 RPN6 NPL4 PRE9 PRE10 PRE5
C71 YLR400W YCL019W YBL107W-A YMR158C-B
C72 YLR241W
C73 ELP2
C74 ERG9
C75 YDL057W
C76 TEL1 TRP5
C77 PDI1 MGR1
C78 YKL069W
C79 BDF1

Cluster Genes

C80 JLP2
C81 YGL204C
C82 PCM1 YBR300C YAT2
C83 YOR006C YBL028C NOB1
C84 LSG1
C85 JIP5
C86 PAN3
C87 PLP1
C88 TRS120
C89 YGL010W PTC1
C90 SPE4
C91 YDR034W-B
C92 YGR164W
C93 RDH54
C94 YOR060C
C95 ENT4
C96 KCS1
C97 YMR046C
C98 ECM21 CMK2
C99 YJR028W

C100 BUD14
C101 ELM1
C102 YDR541C TIR4
C103 GPI18
C104 YKU80
C105 OTU1
C106 NPA3 CLB3
C107 FMO1
C108 SEC1
C109 ENT1
C110 GAL83
C111 YGR111W
C112 HIS1 YBR028C DBP2 YER156C ORT1 GRX4 HOM3
C113 BLM10
C114 MET13 ARO8
C115 OPT1
C116 YHL029C
C117 ORM2
C118 MVP1
C119 LST4
C120 ADE5,7
C121 DPH5
C122 ITC1
C123 LPD1
C124 DIA1
C125 BUG1
C126 TRM9
C127 NMD2
C128 HSV2
C129 YOR343W-A
C130 UBC13 YPL009C
C131 YOR052C DSS4
C132 YNR070W
C133 SCJ1
C134 ECM31
C135 VHR1 UBX4
C136 NDE1
C137 CSN12
C138 GIS2 SYC1
C139 YLR225C
C140 SWI6
C141 TEF2
C142 YER010C
C143 NIT1 YPL264C YIL165C YHR162W
C144 DSE1
C145 PSF2
C146 YJL220W
C147 TEF1
C148 TDH1
C149 BIO2 FET3
C150 ILV1 VAS1
C151 TDH2 TDH3
C152 UBP3
C153 AAP1
C154 AST1 TRP4
C155 RIB5
C156 MER1
C157 BUD9
C158 YLR049C
C159 MPD2 RNA14
C160 YHI9
C161 SWI1
C162 YBR147W ADH5
C163 SKP1
C164 TYW3
C165 STR2 ARO1 CPR2 YBR116C
C166 YMC1
C167 YDR154C
C168 ANT1
C169 GCR1

31



Table 3: Detected temporal interactions for transcriptional regulations

Known TFs #Detected #Documented #Potential Subject to HMF
(cluster[#members]) Significantly?

Cup2 (C60[1]) 16 0 2 No
Gcr1 (C169[1]) 1 0 1 No
Gis2 (C138[2]) 3 0 0 Yes, negatively
Lys14 (C3[3]) 9 0 0 Yes, negatively
Mal33 (C50[2]) 1 0 0 No
Nrg1 (C66[2]) 0 0 0 Yes, positively
Pdr1 (C11[1]) 16 1 0 Yes, positively
Pdr3 (C8[14]) 26 0 2 Yes, positively
Rap1 (C25[6]) 1 0 0 Yes, negatively
Swi6 (C140[1]) 0 0 0 No
Uga3 (C28[2]) 2 1 0 Yes, negatively
Yap1 (C9[6]) 8 6 1 Yes, positively
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