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Abstract

We introduce a statistical computing framework to address two important issues in spike sorting: flexible spike shape modeling and

realtime spike clustering. In this framework, spikes are detected based on a nonparametric shape distribution; detected spikes are further

grouped by an incremental clustering algorithm involving the second-order statistics–covariance matrix. We performed experiments on

both simulated and real signals to study spike detection accuracy and cluster separation.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Spike sorting is the process of detecting action potentials
from extracellular signals and assigning them to individual
neurons. Early development aims at assisting researchers in
studying brain functions off-line. Recent applications
include brain–computer interfaces and neural prostheses
[11] for people suffering from nervous system traumas.
These efforts all build on the capability of accurate
automatic decoding of neuronal signals, which imposes a
statistical computing task replete with open problems [2].

Most recent work in spike detection [5,8–10] assumes a
parametric form or a template for spike shapes. Some
methods require exact knowledge of spike shapes such as
matched filters; others utilize a combination of shape bases.
For example, nine wavelet bases are manually constructed
in [5] after analyzing real spikes. Some quantitative
performance studies have been reported. The morphologi-
cal filter [8] achieves a correct detection rate of 80� 4% on
data from a simulated cortex containing 90 neurons. The
wavelet transform approach [5] obtains a correct detection
rate of 93% and a false alarm rate of 10%. However, the
method was not evaluated on independent test data. An
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2005.12.111

ing author.

esses: joemsong@cs.nmsu.edu (M.(J.) Song),

ny.edu (H. Wang).
opportunity is to find a flexible and realistic representation
for spike shapes beyond templates.
Realtime spike clustering is another hard challenge [2].

In order for neural prosthetic devices and brain–computer
interfaces to be practical, it is essential to decode spike
signals in realtime. In spite of substantial progress in
algorithms [1,3] for clustering points arrived in a data
stream, no work has been established for realtime spike
clustering.
We introduce a statistical computing framework that

supports a two-phase statistical spike sorting strategy.
During the first phase, signal segments are detected for
spikes using a grid representation of probability density
functions (p.d.f.s). Uniform quantization has been applied
on a spectral representation of spike features and on time
[7], but no probability is associated. In the second phase, an
incremental clustering algorithm is employed to group
detected spikes from the first phase. Experiments on
simulated and real spike signals show encouraging results
for spike sorting under the framework to be described.
2. Spike detection with nonparametric shape modeling

Spike detection is the process of selecting neuronal
action potentials from background noises. A real signal in
Fig. 1 illustrates the ambiguousness of spikes.
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Fig. 1. A real signal, where ‘‘*’’ indicates spikes and ‘‘?’’ for possible ones.
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To overcome strong constraints imposed by parametric
or template models on spike shapes, we describe a
nonparametric spike detection approach under a Bayesian
framework. In this framework, the posterior probability of
a signal segment X being a spike, given the shape of X and
the repetitiveness of X, is used as an indicator for a spike. A
segment X is obtained by finding the maximum value
within a window and then taking two chunks of discrete
signal before and after the maximum value.

A random vector Z and a random variable R, both
defined in the probability-theoretical sense, represent the
shape and the repetitiveness of X, respectively. Although
they are statistically dependent, we consider Z and R

conditionally independent for a given neuron. This is a
strong statistical assumption, but it is justifiable for spike
signals. For a given neuron, its firing rate is not statistically
related to its spike shape. Accordingly, the posterior
probability can be written as

PðX is a spikejZ;RÞ

/ PðZ;RjX is a spikeÞPðX is a spikeÞ

¼ PðZjX is a spikeÞPðRjX is a spikeÞPðX is a spikeÞ.

ð1Þ

The prior probability PðX is a spikeÞ is provided by a domain
expert. The two conditional p.d.f.s are computed, respectively,
by a nonparametric quantization algorithm using a multi-
dimensional nonuniform grid. The grid is estimated by
maximizing a performance measure, which is defined by the
data log likelihood plus an entropy penalty [12].

PðZjX is a spikeÞ suggests how probable it is to observe
the vector Z when X is indeed a spike. It is learned by off-
line training. We gathered groundtruth spikes by setting a
very high threshold on many real signals. We consider those
signal segments that cross the threshold to be true spikes.
Each spike unit lasts about 1ms. At the sampling rate of
40kHz, a spike is quantified to a vector of 400 dimensions.
Then, we reduce the dimensions to 4 by principal
component analysis, which preserves 90% of the variance.
The marginal entropies—computed automatically using
marginal histograms—determine the relative quantization
levels of each dimension. An estimated PðZjX is a spikeÞ,
by grid quantization, is shown in Fig. 2(a).
The repetitiveness of a segment is a critical factor in spike

sorting because a neuron consistently fires spikes in similar
shape. We perform grid quantization again after the signal
segment space is reduced to a 4-D space. We measure
the repetitiveness R by the density value of a segment X.
Fig. 2(b) shows the marginals of an estimated p.d.f. of signal
segments. Eventually, we compute the conditional p.d.f. of
repetitiveness by PðRjX is a spikeÞ / R.
Spike detection is achieved via a Bayesian hypothesis test

on the ratio

PðX is a spikejZ;RÞ=PðX is backgroundjZ;RÞ, (2)

where we apply a uniform distribution for PðZ;RjX is
backgroundÞ.
3. Realtime spike clustering without historical signals

A static clustering method uses the entire recorded signal
to group detected spikes, which is infeasible for realtime
spike sorting. We use a density-based data stream
clustering method [13] relying on the second-order statis-
tics, i.e., the covariance, to cluster spikes arriving in
realtime. Sliding a time window, it incrementally keeps
track of all clusters using only newly arrived data in a
current time window. Within each sliding window, clusters
are modeled as a Gaussian mixture distribution. The
number of components in a mixture model is selected by
the Bayesian information criterion. Each mixture model is
identified through the expectation maximization algorithm.
Newly discovered clusters are compared to and may be
merged with historical clusters by a strategy via multi-
variate statistical tests for equality of covariance and mean.
3.1. Equality-of-covariance test

Let x1; x2; . . . ;xn 2 Rd be a d-dimensional sample of size
n in a cluster of the current window. Let Sx be the
covariance matrix of this cluster. We use S0 to represent
the covariance matrix of a historical cluster. In this test, we
determine if Sx is statistically equal to S0. The null
hypothesis H0 is Sx ¼ S0. The data are first transformed
by Y ¼ L�10 X , where L0 is a lower triangular matrix
obtained by Cholesky decomposition of S0. An equivalent
null hypothesis H 00 becomes Sy ¼ I , where Sy is the
covariance matrix of Y and I is d-dimensional identity
matrix. The W statistic [6] induces a method to achieve the
test without inverting the sample covariance matrix,
defined by

W ¼
1

d
tr½ðSy � IÞ2� �

d

n

1

d
trðSyÞ

� �2
þ

d

n
, (3)

where Sy is the sample covariance matrix of Y and trð�Þ is
the trace of a matrix. Under the null hypothesis of
covariance equality, the statistic ðnW � dÞd=2þ d is
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Fig. 2. Two-dimensional marginals of the two 4-D grid p.d.f.s for spike shapes and signal segments, respectively. Each dimension corresponds to one of

the first four principal components for spike shapes and signal segments, respectively. (a) Two-dimensional marginals of P(ZjX is a spike) for spike shapes.

(b) Two-dimensional marginals of the p.d.f. for all segments in a signal as a measure of repetitiveness.

Fig. 3. Spike detection on a simulated signal. The letter D indicates the peak location of a detected spike; the letter T marks the peak location of a

groundtruth spike. (a) Correct detections. (b) A miss-detection. (c) A false-alarm.
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asymptotically w2 distributed with dðd þ 1Þ=2 degrees of
freedom.

3.2. Equality-of-mean test

If the two covariance matrices are statistically equiva-
lent, equality of mean is further checked using Hotelling’s
T2 statistic [4] nðx̄� m0Þ

>S�1x ðx̄� m0Þ, where Sx and x̄ are
the sample covariance and mean of a cluster, and m0 is the
mean of another cluster with equal covariance. Under the
null hypothesis of mean equality, ððn� dÞ=dðn� 1ÞÞT2 has
F distribution with d numerator and n� d denominator
degrees of freedom. In case of singularity of Sx due to small
sample size, we use S0 to replace Sx.

If they pass both tests, the two components are merged
to create a new one in the updated model for all clusters.
Each remaining component in the current time window is
added to the updated model. New components in the
updated model are merged further if they are equivalent.
The mean and covariance of a merged cluster can be
estimated directly [13] from the covariance and means of
the two clusters as if done with all historical data. Thus,
past data are not needed for the processing, which enables
clustering in realtime without historical signals.
4. Experimental results on simulated and real spike signals

We simulated a spike signal lasting 7 s at a 40 kHz
sampling rate, using real spikes as templates. The spike
detection result is shown in Fig. 3. In this example, there
were 15 mis-detected and 5 false-alarm spikes among a
total of 165 spike events, corresponding to a recall of 91%
and a precision of 97%. The average time difference
between the matched spikes is 0.068ms with a standard
error of 0.41ms.
We performed spike detection on a signal recorded at

40 kHz from a monkey (by courtesy of Plexon Inc.). Fig. 4
presents the result at different time scales, which is
consistent with what an expert would expect.
The incremental clustering result, displayed in

Fig. 5, accomplished good separation on a real spike
signal.
However, we found that some spatially close clusters

likely from the same neuron were not merged, e.g. the
diamond and triangle clusters. Although they have
different densities, it appears that a Gaussian or an
elliptical distribution would emerge if they were combined.
We are resolving this issue by working beyond the second-
order statistics.
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Fig. 4. Detected spike on a real signal. The letter D indicates spike peak locations. (a) Detected spikes. (b) A closer look. (c) An even closer look.

Fig. 5. Five spike clusters from a real signal, shown in two of the four

dimensions.
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5. Conclusion and future work

The nonparametric approach to spike detection dis-
penses with the requirement of templates or parametric
forms for a spike in question. This gain is garnished with a
nonparametric p.d.f. of spike shapes. The incremental
strategy to realtime spike clustering is a major response to
the demand from neural prosthetic applications. It facil-
itates reliable decoding using the complete second-order
statistics.
There are plenty of opportunities to extend the reported

work further. The incremental clustering can be enhanced
by introducing higher-order statistics into cluster repre-
sentation, for which we are establishing a theoretical
framework. In a neural prosthetic device, the recordings
are multi-channel with potential overlapping among
neuronal spikes. It apparently poses great challenges to
both nonparametric spike detection and incremental
clustering.
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