
Highly Efficient Incremental Estimation of Gaussian Mixture
Models for Online Data Stream Clustering

Mingzhou Songa,b and Hongbin Wangb

aDepartment of Computer Science, Queens College of CUNY, Flushing, NY 11367, USA;
bComputer Science Ph.D. Program, Graduate Center of CUNY, New York, NY 10016, USA

ABSTRACT

We present a probability-density-based data stream clustering approach which requires only the newly arrived
data, not the entire historical data, to be saved in memory. This approach incrementally updates the density
estimate taking only the newly arrived data and the previously estimated density. The idea roots on a theorem
of estimator updating and it works naturally with Gaussian mixture models. We implement it through the
expectation maximization algorithm and a cluster merging strategy by multivariate statistical tests for equality
of covariance and mean. Our approach is highly efficient in clustering voluminous online data streams when com-
pared to the standard EM algorithm. We demonstrate the performance of our algorithm on clustering a simulated
Gaussian mixture data stream and clustering real noisy spike signals extracted from neuronal recordings.

Keywords: Data stream clustering, Gaussian mixture models, expectation maximization, density merging

1. INTRODUCTION

The data stream clustering problem is defined as “to maintain a consistently good clustering of the sequence
observed so far, using a small amount of memory and time”.1 The emphasis is limited time and memory relatively
to the amount of data. Time-critical applications such as neuronal signal monitoring require realtime clustering.
Memory-critical ones, for example, business transactions of a large retail company over the years, require massive
data clustering with limited memory. Other applications are both time and memory critical.

We consider recent data as all the data available in the memory from the data stream. We define historical
data as the data observed in the data stream so far, which include the recent data. Except for the portion of recent
data, historical data are not available in memory. We call unprocessed recent data newly arrived data. If the
entire historical data were available in memory, Gaussian mixture model would have been effectively estimated
using the Expectation Maximization (EM) algorithm. For voluminous data streams, however, the EM algorithm
is not efficient. For a data stream without complete historical records, the EM or any of its known variations
is not applicable. We argue in this paper that we can adapt probability density based clustering algorithms
to solve data stream clustering problems much more efficiently than applying the EM on the entire historical
data. We apply the standard EM algorithm only on newly arrived data. Our incremental Gaussian mixture
model estimation algorithm merges Gaussian components that are statistically equivalent. The equivalence of two
Gaussian components are determined by the W statistic for equality of covariance and the Hotelling’s T 2 statistic
for equality of mean. The sufficient statistics of mean and covariance for a multivariate normal distribution make
it possible to perform the tests and merging without resort to historical data.

Our idea is novel in the sense that we merge density components rather than data. With the strategy of
merging data, the k-center problem has been addressed by efficiently maintaining clusters of small diameter as new
points are inserted without keeping all historical data.2 The authors propose a deterministic and randomized
incremental clustering algorithm–the randomized doubling algorithm–with a provably good performance. It
works in phases, each consisting of a merging and an updating stage. In the merging stage, the algorithm reduces
the number of clusters by combining selected pairs; in the updating stage, the algorithm accepts new updates and
tries to maintain at most k clusters without increasing the radius of the clusters or violating certain constraints.

Further author information: (Send correspondence to M.S.)
M.S.: E-mail: msong@cs.qc.edu, Telephone: 1 718 997 3584
H.W.: E-mail: hwang2@gc.cuny.edu

A phase ends when the number of clusters exceeds k. Guha et al give a constant-factor approximation algorithm
for the k-median data stream clustering problem.1 This algorithm makes a single pass over the data using small
space. The medians are obtained hierarchically and clusters are built upon the intermediate medians. In contrast
to the spatial clustering algorithms,1, 2 our clustering is density based. For density based clustering, the most
effective method has been mixture models solved by the EM algorithm. The incremental EM and the lazy EM
have been proposed to accelerating the EM using partial E-steps,3 which are significantly more efficient for large
and high dimensional databases. The former algorithm iterates through data blocks in a cyclic way. Each E-step
updates only a part of conditional expectation for the complete data log-likelihood. For all other data blocks,
previously computed log likelihood is reused. The initial pass needs all the data. The latter algorithm attempts
to periodically identify significant cases and focuses on this subset of data. It has to keep all historical data in
memory, which is the major limitation of both algorithms. Other papers have also reported on or are related to
the data stream clustering problem.4–9 But none of them has elaborated on an incremental estimation algorithm
for Gaussian mixture models for online data stream clustering, which constitutes the topic of this paper.

Here we define some notations. Let T be the discrete time when the random data point XT in Rd is observed.
Here d represents the number of dimensions. We regard XT as a random vector. Let gT : Rd → R be an estimator
of the true probability density function (p.d.f.) p0(x) based on the data points observed from the beginning time
1 to time T . We omit the superscript T when the value of T is not specified. Let gN (x) be an estimator of p0(x)
based on the historical data X1, · · · , XN . Let gN+M (x) be an estimator of p0(x) based on both the historical
data X1, · · · , XN and the newly arrived data XN+1, · · · , XN+M . The data stream clustering problem that we
will address is: obtain gN+M (x) from gN (x) and the M newly arrived data sample xN+1, · · · , xN+M . Here we
assume that the cluster of each data point can be uniquely determined by g(x).

We organize the content as follows. We give the theoretical foundation of our algorithm in Section 2. We
introduce the algorithm for incrementally updating a GMM in Section 3. In Section 4, we illustrate the perfor-
mance of the algorithm on clustering simulated Gaussian mixture data and clustering spike signals from neurons.
Finally, we conclude our paper and point out further work in Section 5.

2. THE ESTIMATOR UPDATING THEOREM

Let g(x) be gN (x). Let q(x) be an estimator of p0(x) based on XL+1, · · · , XN+M . g(x) and q(x) are very
likely different but obviously related to each other because they share the data XL+1, · · · , XN . Let t(x) be an
estimator of p0(x) based on X1, X2, · · · , XL, which are the data points removed from consideration of q(x). Let
a(x) an estimator of p0(x) based on XN+1, XN+2, · · · , XN+M , which are the newly arrived data points included
in q(x). Under the assumption that the data points are independently and identically distributed (i.i.d.), we
establish a theorem that dictates the way q(x) is updated from g(x) without exact knowledge of the overlapped
data XL+1, · · · , XN . When L,M << N , the theorem to be established will have direct impact on significantly
improving the efficiency of the density estimation.

Theorem 1 (Estimator Updating Theorem). For the estimators t(x), g(x), a(x) and q(x) previously defined on
data points in four time intervals within [1, N + M], we have

q(x) =
Ng(x)− Lt(x) + Ma(x)

N − L + M
(1)

This theorem is inspired by a relation among the empirical cumulative distribution functions (c.d.f.s). The
empirical c.d.f.s T (x), Q(x), G(x), A(x), corresponding to t(x), q(x), g(x) and a(x), respectively, are

Q(x) =
| {xn ≤ x|n = L + 1, L + 2, · · · , N + M} |

N − L + M

G(x) =
| {xn ≤ x|n = 1, 2, · · · , N} |

N

T (x) =
| {xn ≤ x|n = 1, 2, · · · , L} |

L

A(x) =
| {xn ≤ x|n = N + 1, N + 2, · · · , N + M} |

M

From the four definitions above, we have evidently

LT (x) + (N − L + M)Q(x) = NG(x) + MA(x)

Thus, we obtain

Q(x) =
NG(x)− LT (x) + MA(x)

N − L + M

If we could differentiate the above equation w.r.t. x, then we would get exactly Eq. (1). Unfortunately the
differentiation can not be applied due to the non-smoothness of the empirical c.d.f. Here we have just offered an
intuition behind the theorem claim. Now we prove the theorem using another strategy dealing directly with the
p.d.f.s.

Proof. Let f(x) be the estimator of p0(x) based on Xi for i = 1, 2, · · · , N + M . We assume that the index i
has a uniform distribution over [1, N + M] with the probability mass function P (i) = 1

N+M , for i ∈ [1, N + M].
By the definition of joint probability

f(x) = f(x|1 ≤ i ≤ N)P (1 ≤ i ≤ N) + f(x|N + 1 ≤ i ≤ N + M)P (N + 1 ≤ i ≤ N + M)

Since g(x) and a(x) are estimators based on X1, · · · , XN and XN+1, · · · , XN+M respectively, we have

f(x|1 ≤ i ≤ N) = g(x)

and
f(x|N + 1 ≤ i ≤ N + M) = a(x)

In addition,

P (1 ≤ i ≤ N) =
N

N + M

and
P (N + 1 ≤ i ≤ N + M) =

M

N + M

Thus we obtain
f(x) = g(x)

N

N + M
+ a(x)

M

N + M
(2)

Similarly, we can get

f(x) = t(x)
L

N + M
+ q(x)

N − L + M

N + M
(3)

Eliminating f(x) from Eqs. (2) and (3), we find the original claim Eq. (1) true.

Corollary 2 (Density of Entire History). For estimators gN (x), gN+M (x) and a(x) previously defined on data
points in the three time intervals within [1, N + M], we have

gN+M (x) =
N

N + M
gN (x) +

M

N + M
a(x) (4)

Proof. In Eq. (1), let L = 0, then q(x) is identical to gN+M (x), the estimator of p0(x) based on the entire
historical data so far. g(x) is just another notation of gN (x). By the Estimator Updating Theorem, Eq. (4)
follows immediately.

3. UPDATING A GAUSSIAN MIXTURE MODEL WITH NEWLY ARRIVED DATA

Corollary 2 implies that in order to obtain an exact up-to-date density estimate, it is only necessary to use
the newly arrived data without historical data. This fact is significant in that it will dramatically reduce the
requirement for data storage and improve the efficiency of clustering. By Eq. (2), we can estimate a(x) based
on the newly arrived data first and then apply convex combination on a(x) and gN (x) to produce gN+M (x).
The drawback of this näıve application of Eq. (2) is that the estimated p.d.f. would not be compact and may be
subject to overfitting to the data. The estimated p.d.f. by gT (x) will contain an increasing number of components
as time goes on.

We adopt the Gaussian mixture model (GMM) for both g(x) and a(x) because the clustering of data points
is straightforward with a GMM. A less obvious but crucial reason is that the sufficient statistics of a Gaussian
component can be updated without using all historical data. The p.d.f. of a GMM is written as

K∑
k=1

πkφ(x|µk,Σk)

with
K∑

k=1

πk = 1, 0 ≤ πk ≤ 1 for k = 1, · · · ,K

where φ(x|µ,Σ) is the p.d.f. of a multivariate normal distribution with mean vector µ and covariance matrix Σ:

φ(x|µ, Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
We represent gN (x) by a GMM with parameters:

πj , µj ,Σj , j = 1, · · · ,Kg

and a(x) by a GMM with parameters:
πk, µk,Σk, k = 1, · · · ,Ka

where Kg and Ka are the numbers of components in each GMM respectively. To simplify notation, we use j to
index components in gN (x) and k to components in a(x), exclusively.

To maintain the compactness of a GMM and avoid overfitting, we design a strategy to merge statistically
equivalent components into one. Here we do not employ any dependency among data blocks. We incrementally
apply the EM algorithm on newly arrived data to produce the best estimator g(x). We first obtain a GMM for
a(x) from the newly arrived data xN+1, · · · , xN+M . Number of components Ka in a(x) is selected using the
Bayesian Information Criterion (BIC) defined by

−2 logL(xN+1, xN+2, · · · , xN+M) + ν log M

where L is the likelihood of a(x) for the data and ν is the degrees of freedom of the parameters. For a(x),
a d-dimensional GMM with Ka components, ν is [Ka(d + 1)(d + 2)/2] − 1. According to the GMM of a(x),
we separate the newly arrived data into Ka clusters. Let Dk be the collection of data in cluster k. Let Mk

be the number of data points in Dk. For each cluster k, we will determine if it has a statistically equivalent
covariance, using W statistic, and mean, using Hotelling’s T 2 statistic, with any of the components in gN (x).
We test mean equality after covariance equality because the Hotelling’s T 2 test assumes equality of covariances.
If any equivalent component j is found, then we create a new component in gN+M (x) by merging the component
j of gN (x) with the component k of a(x). If not, we will add the component k of a(x) as a new component
to gN+M (x) with an adjusted weight. All the remaining components in gN (x) will be added to gN+M (x) with
weight adjusted accordingly. In the end, we merge statistically equivalent components in gN+M (x) with a similar
strategy. The overall algorithm is shown as Alg. 1.

Algorithm 1 Incremental Gaussian Mixture Model Estimation
1: INPUT: GMM gN (x), newly arrived data xN+1, · · · , xN+M

2: OUTPUT: GMM gN+M (x)
3: Perform EM algorithm to estimate the Gaussian mixture model a(x) from the new data xN+1, · · · , xN+M , with

number of components Ka determined by BIC
4: Assign each new data xm to the most likely component according to the conditional probability

Prob(k|xm), k = 1, · · · , Ka

5: for each component k in a(x) do
6: Let Dk be the collection of all data in component k
7: for component j with mean µj and covariance Σj in gN (x) do
8: Calculate the W statistic to determine if Dk has equal covariance with Σj

9: if Dk has passed the covariance test then
10: Perform the Hotelling’s T 2 test to determine if Dk has the same mean µj

11: if Dk has passed the mean test then
12: Consider components k in a(x) and j in gN (x) identically distributed
13: Compute the log likelihood of component j in gN (x) for Dk to break possible ties
14: end if
15: end if
16: end for
17: end for
18: for each pair of equivalent components in gN (x) and a(x) do
19: Create a new component in gN+M (x) by merging the pair using Eqs. (6,7, 8)
20: end for
21: for each remaining component k in a(x) do
22: Assign this component to gN+M (x) with an updated weight using Eq. (9)
23: end for
24: for each remaining component j in gN (x) do
25: Assign this component to gN+M (x) with an updated weight using Eq. (10)
26: end for
27: Merge statistically equivalent components in gN+M (x)
28: return gN+M (x)

3.1. Testing for Equality to a Covariance Matrix
In this test, we determine if the covariance matrix of a sample x1, x2, · · · , xn ∈ Rd of size n is statistically equal
to a given covariance matrix Σ0. The null hypothesis H0 is Σx = Σ0. The sample is assumed to be multivariate
normal. We will also require Σ0 to be positive definite. The data are first transformed by

yi = L−1
0 xi, i = 1, · · · , n

where L0 is a lower triangular matrix obtained by Cholesky decomposition of Σ0, that is, Σ0 = L0L
>
0 . An

equivalent null hypothesis H ′
0 becomes Σy = I, where I is d-dimensional identity matrix. The W statistic is

given by:10

W =
1
d
tr[(Sy − I)2]− d

n

[
1
d
tr(Sy)

]2

+
d

n
(5)

where Sy is the sample covariance of y, and tr(·) is the trace of a matrix. Under the null hypothesis, the test
statistic nWd

2 has an asymptotic χ2 distribution with d(d + 1)/2 degrees of freedom, that is,

nWd

2
∼ χ2

d(d+1)/2

Ledoit and Wolf have shown that the above asymptotic is true as both d and n go to infinity,10 known as (n, d)-
consistent. The authors also performed Monte Carlo simulation to confirm the finite sample size behavior of the
W statistic. The computation of W statistic does not involve the inverse of sample covariance matrix, implying
that the test can still be performed when the sample covariance matrix is singular.

3.2. Testing for Equality to a Mean Vector

Once the covariance of the sample x1, x2, · · · , xn ∈ Rd is tested to be equal to a given matrix Σ0, we determine
whether the sample mean is equal to a given vector µ0. The null hypothesis H0 is µ = µ0. Hotelling’s T 2 test is
a procedure for multivariate normal data, which is a natural extension to the univariate F -test. The T 2 statistic
is defined by n(x̄− µ0)>S−1(x̄− µ0),11 where S is the sample covariance. Under the null hypothesis, n−d

d(n−1)T
2

has F distribution with d numerator degrees of freedom and n− d denominator degrees of freedom, that is,

n− d

d(n− 1)
T 2 ∼ Fd,n−d

In the T 2 statistic, the inverse of sample covariance is necessary. In case of small sample size, we can use Σ0 in
the covariance test to replace S.

3.3. Merging or Creating Components

If Dk passed both covariance and mean tests for component j of gN (x), we consider component k of a(x) has
statistically equivalent distribution with component j of gN (x). We merge them to create a component in
gN+M (x) with mean µ, covariance matrix Σ and weight π. By definitions of mean and covariance, we can derive:

µ =
Nπjµj + Mkµk

Nπj + Mk
(6)

Σ =
NπjΣj + MkΣk

Nπj + Mk
+

Nπjµjµ
>
j + Mkµkµ>k

Nπj + Mk
− µµ> (7)

π =
Nπj + Mk

N + M
(8)

For component j of gN (x), the expected number of points in this cluster is Nπj . The sufficient statistics we
need here are the sample mean vectors µj , µk, sample covariance matrices Σj ,Σk, weight πj , and sample sizes
N,M,Mk. Therefore, we have completely avoided historical data without losing any information with regard to
the GMM. In case that Dk has passed both covariance and mean tests for two or more different components in
gN (x), we pick the component that has the maximum log likelihood for Dk.

For each remaining component k in a(x) that does not have a statistically equivalent component in gN (x),
we create a new component in gN+M (x) with mean µ = µk and covariance Σ = Σk, but with a weight of

π =
Mk

N + M
(9)

For each remaining component j in gN (x) that does not have a statistically equivalent component in a(x),
we create a new component in gN+M (x) with mean µ = µj and covariance Σ = Σj , but with a weight of

π =
Nπj

N + M
(10)

4. EXPERIMENTAL RESULTS

We simulated data stream of 2000 points from a two-dimensional three-component GMM. The window size is
500. In the hypothesis testing for merging, the α-level is 0.02∗. Figure 1 shows window by window clusters
found by our algorithm: Figures 1 (a),(b),(d),(f) display clusters obtained using only data within each of the
four windows; Figures 1(c),(e),(g) display clusters obtained after merging historical clusters with the current
clusters. Figure 1(h) shows the final clusters with the density contour overlaid. The data points belonging to
different clusters are marked by different symbols. From the pictures, we can tell that clustering within each of
the four windows were all achieved correctly. Merging in Figs. 1(c) and (g) was also successful. However, the
merging in Fig. 1(e) apparently failed because the yellow dots and purple triangles should really belong to the

−2 0 2 4 6 8 10

0
2

4
6

8

x1

x2

(a) Clustering in 1st Window

−2 0 2 4 6 8 10

0
2

4
6

8

x1

x2

(b) Clustering in 2nd Win-
dow

−2 0 2 4 6 8 10

0
2

4
6

8

x1

x2

(c) Merging (a) and (b)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8

x1

x2

(d) Clustering in 3rd Win-
dow

−2 0 2 4 6 8 10

−
2

0
2

4
6

8

x1

x2

(e) Merging (c) and (d)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8

x1

x2

(f) Clustering in 4th Window

−2 0 2 4 6 8 10
−

2
0

2
4

6
8

x1

x2

(g) Merging (e) and (f)

−2 0 2 4 6 8 10

−
2

0
2

4
6

8

x1

x2

−2 0 2 4 6 8 10

−
2

0
2

4
6

8

(h) Final Clustering with
Density Contour Plots

Figure 1. Clusters On Simulated Gaussian Mixture Data Stream With Density Contour Plots

same cluster. This is an indication that further statistics beyond means and covariances for each cluster may be
necessary to completely capture the information of each cluster.

A spike train is an extracellular action potential signal recorded with a probe, implanted in an animal subject
under certain experimental condition. A spike train may be a superimposition of signals from several different
neurons. An accurate model for a spike train is an additive mixture of serval time series. We assume no overlap
between individual spikes. The spike train was separated into different windows by our preprocessing software
implemented in C++. The candidate spikes were detected according to a low threshold in a spike window. The
data points in each window formed a vector. There were 477 vectors in the data stream. Each vector had 200
dimensions. We reduced the dimension from 200 to 4 using principal component analysis. The window for newly
arrived data contained 300 vectors. Figure 2 shows the clusters obtained by our algorithm: (a) shows the clusters
obtained with the initial window; (b) shows the clusters obtained using the first window of newly arrived data; (c)
shows the clusters after the final window. Figure 2(d) shows the solution by the standard EM algorithm applied
on the entire data of the same spike train. In both figures, we only show the first two principal components.
Figure 3 shows spike shapes of different clusters, obtained by our incremental algorithm, overlaid in one window.
Each color indicates a different cluster corresponding to Fig. 2(c). Although for complex cluster shapes it differed
with standard EM using all data, our algorithm produced a reasonable solution overall. The narrow long cluster
was recognized as one cluster by the standard EM, but was broken into two by our incremental algorithm. The
two clusters (purple triangle and the red diamond) in Fig. 2(c), which appeared to be the same and put in one
cluster by standard EM in Fig. 2(d), were not merged by our incremental algorithm. From the spike shape plot
in Fig. 3, we do observe certain differences between the black and the blue spikes and between the purple and
the red spikes, suggesting that our clusters may catch some fine shape details.

∗We chose a α-level smaller than 0.05 to correct the multiple simultaneous test effect.

−1000 0 500 1000 2000

−
15

00
−

50
0

0
50

0
15

00

PC1

P
C

2

(a) Initial Clustering

−4000 −2000 0 1000

−
20

00
0

10
00

20
00

PC1

P
C

2

(b) First Window

−4000 −2000 0 1000

−
20

00
0

10
00

20
00

PC1

P
C

2

(c) Final Clustering

−4000 −2000 0 1000 2000

−
20

00
−

10
00

0
10

00
20

00

PC1

P
C

2

(d) Cluster Obtained with All Data by Stan-
dard EM

Figure 2. Clustering On Real Neural Spike Train Data Stream

5. CONCLUSION AND FUTURE WORK

We have presented an algorithm for online data stream clustering by merging components in GMM that are
statistically equivalent. Instead of keeping all historical data, we have exploited the statistical structures of
data streams using only newly arrived data. The experimental results have demonstrated that the algorithm is
applicable to real world problems such as neuronal spike shape clustering.

Our algorithm does show a tendency to produce more clusters than the standard EM algorithm. Sometimes
two clusters really belonging to one Gaussian component cannot be merged, because they do have different
density individually. A better Gaussian component might have emerged had the two clusters been combined.
We anticipate a collection of nearly sufficient statistics to be employed to improve the merging. We will address
this issue in the next step.

Techniques directly improving the efficiency of the EM algorithm are fundamentally important and can be
integrated into our framework.3, 12

The estimator updating theorem implies, in a more general setting, we may have to remove a component when

0 500 1000 1500 2000 2500

−10
00

−50
0

0
500

100
0

Spike Window Data Alignment

time

spik
e d

ata

Figure 3. Overlay Of Spike Shapes In Different Clusters Obtained By The Incremental Algorithm

updating a density. It is not immediately obvious how the removal can be achieved, which we may investigate
further.

Points in a data stream are usually dependent. Models that consider this dependency such as Markov models
and regression models may also improve the performance of our algorithm.13

ACKNOWLEDGMENTS

The authors thank Plexon Inc. at Dallas, TX for providing the neuronal spike train data set.

REFERENCES
1. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data streams,” in IEEE Symposium on

Foundations of Computer Science, pp. 359–366, 2000.
2. M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental clustering and dynamic information

retrieval,” in Proc. 29th Symposium on Theory of Computing, pp. 626–635, 1997.
3. B. Thiesson, C. Meek, and D. Heckerman, “Accelerating EM for large databases,” Tech. Rep. MSR-TR-99-

31, Microsoft Research, Redmond, WA, May 1999. Revised Feb. 2001.
4. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving data streams,” in

Proc. 29th Int’l Conf. on Very Large Data Bases, Sept. 2003.
5. P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc. 6th ACM SIGKDD Int’l Conf. on

Knowledge Discovery and Data Mining, pp. 71–80, 2000.
6. V. Ganti, J. Gehrke, and R. Ramakrishnan, “Mining data streams under block evolution,” SIGKDD Explor.

Newsl. 3(2), pp. 1–10, 2002.
7. G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in Proc. 7th ACM SIGKDD

Int’l Conf. on Knowledge Discovery and Data Mining, pp. 97–106, 2001.
8. G. Manku and R. Motwani, “Approximate frequency counts over data streams,” in Proc. 28th Int’l Conf.

on Very Large Data Bases, 2002.
9. G. J. McLachlan and D. Peel, “Robust cluster analysis via mixtures of multivariate t-distributions,” in

Lecture Notes in Computer Science Vol. 1451, pp. 658–666, Springer-Verlag, 1998.
10. O. Ledoit and M. Wolf, “Some hypothesis tests for the covariance matrix when the dimension is large

compared to the sample size,” The Annals of Statistics 30(4), pp. 1081–1102, 2002.
11. H. Hotelling, “The generalization of Student’s ratio,” Annals of Mathematical Statistics 2, pp. 360–378,

1931.

12. J. Q. Li and A. R. Barron, “Mixture density estimation,” in Advances in Neural Information Processing
Systems 12, S. A. Solla, T. K. Leen, and K.-R. M eds., MIT Press, 2000.

13. K. Fokianos and B. Kedem, “Regression theory for categorical time series,” Statistical Science 18, pp. 357–
376, Aug. 2003.

