
Integrated Cellular and Gene Interaction Model for Cell Migration  
in Embryonic Development  

Hien Nguyen and Mingzhou (Joe) Song 
Department of Computer Science 

New Mexico State University 
Las Cruces, NM 88003, USA 

hinguyen@cs.nmsu.edu, joemsong@cs.nmsu.edu 
 
 

Abstract—The relationship between cellular behaviors and 
protein concentrations is central for embryonic development. 
An integrated cellular and gene interaction model is proposed 
to reveal this relationship. Protein concentrations vary 
spatiotemporally based on locations of cell, gene-gene 
interactions and the diffusion mechanism. On the other hand, 
cellular behaviors differentiate spatially, driven by cell-cell 
communication and protein concentrations in each cell. The 
model integrates a variation of the reaction-diffusion equation 
at the gene expression level and a particle-based cellular model 
based on the differential adhesion hypothesis for cell sorting at 
the cellular level. Cell sorting based on the adhesion hypothesis 
and patterns of inhibitory genes were simulated to illustrate 
the model. This model provides a more comprehensive basis to 
explain pattern formation during embryogenesis, than existing 
approaches that ignore the cellular components 

Keywords- embryonic multi-scale modelling; differential 
adhesion; reaction-diffusion equations 

I.  INTRODUCTION 
Embryonic development is a complex process in which 

the life form progresses from a single homogeneous cell to 
an embryo composed of heterogeneous cells. To describe 
such an intricate process, many models [2, 3, 5, 7, 11] have 
been developed to investigate gene interactions at the 
molecular level, to account for spatiotemporal patterns of 
gene expression at the cellular level during embryogenesis. 
One category of widely used mathematical models is based 
on the reaction-diffusion mechanism. These models have 
been established for a variety of biological phenomena, 
including animal coats [12], human brain development [1], 
and gene regulatory interactions [5]. A well-studied example 
is stripe formation in the fruit fly embryo, where the 
reaction-diffusion mechanism is used to describe the 
dynamic behaviors of maternal genes [2, 5, 10, 11]. 

In developmental biology, the reaction-diffusion 
mechanism is applicable thanks to the assumption that gene 
expressions, regulating each other, can diffuse freely in 
space. In the case of Drosophila, the assumption is valid at 
the blastoderm stage when the cell membrane has not 
formed.  Thus the corresponding cleavage cycles from 10 to 
13 are well investigated [2,3,5,10,11]. Unfortunately, the 
assumption becomes problematic when the spatial boundary 
formed by a cell is considered. Firstly, gene regulation, for 
transcription, translation, and post-translation, mostly occurs 

inside the cell. Hence, genes can only regulate each other 
where a cell exists and conditions in the cell are right. 
Secondly, expressed gene products cannot freely diffuse 
because of the enclosing cell membranes.  Therefore, cells 
have a critical impact on gene interactions. In the mean 
while, cells have their own operations, including mitosis, 
migration, communication with other cells, and death. Not 
surprisingly, these behaviors are heavily regulated by gene 
expressions in the cell. How cells and gene expressions 
behave regarding each other as an integrated system is a 
profound question in biology. 

Intuitively, models that consider both the cell and gene 
expression at the same time are better to capture their 
dynamic behaviors. This kind of models can be found in the 
field of artificial life. Bentley [13] developed an 
Evolutionary Developmental System (EDS), which 
considered a cell as an agent with receptors to sense the 
environment and effectors to perturb the environment. The 
molecular parameters, including synthesis rate, diffusion 
rate, decay rate, transcription factors, etc., are all contained 
in the artificial genome. The EDS was successful in studying 
evolved mechanisms to construct some basic patterns. 
Fleischer [16] developed a complicated system called 
simulation testbed, in which physical, chemical and electrical 
factors were modeled in cell-cell communication. Agarwal 
[15] provided a Cell Programming Language (CPL) to 
specify and simulate a variety of biological phenomena. In 
his thesis, he also provided an implementation of cell 
motility using differential adhesion with fixed cell affinity. 
More recently, Jiang et al. [9] proposed a multi-scale model 
which uses the Cellular Potts Model for intercellular 
interactions, and PDE for intracellular and extracellular 
interactions.  Although these mentioned models study both 
cells and proteins, Fleischer [16] and Agarwal [15] aimed to 
discover evolutionary mechanisms to apply to computer 
systems and/or algorithms, while Jiang [9] applied the model 
for the growth of (avascular) tumor, where cells occupied all 
of the space and cell affinity is not affected by gene 
regulations (only cyclic proteins are considered in 
intracellular PDE). 

Instead of designing biologically inspired computing 
systems, our ultimate goal is to develop modeling to explain 
accurately biological patterns. In this paper, we illustrate our 
model by simulating cell migration at the cellular level and 
the inhibitory gene interaction at the molecular level. The 
cell migration is simulated based on the differential adhesion 
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hypothesis; and the inhibitory interaction is simulated using 
the reaction-diffusion mechanism. Our simulation shows 
that, in terms of pattern formation, the integrated model 
gives more dynamic results from non-cell-based gene 
expression models. Broadly speaking, such a model will be 
more comprehensive than the typical non-cell specific 
models used for gene networks and pattern formation. 

II. THE INTEGRATED CELLULAR AND MOLECULAR 
MODEL 

We define an integrated cellular and molecular model, 
whose system diagram is shown in Figure 1.   

The system consists of two interconnected subsystems, 
one at the gene expression level and the other at the cellular 
level.  The gene expressions level subsystem is responsible 
for dynamics of gene regulation. This lower-level subsystem 
accepts cell positions from the cellular level subsystem as an 
input. In turn, the higher-level subsystem, responsible for 
dynamics of cell movements, takes the spatiotemporal data 
of protein concentrations as the input. In general, the 
integrated system can be learned by parameter estimation in 
gene regulatory network reconstruction, as well as in pattern 
formation. 

In our model, we make the following main assumptions. 
Firstly, the proteins can diffuse one place to another place in 
the neighborhood. In the presence of cells, the diffusion rate 
would be much lower than when no cells appear to block. 
Secondly, cells move based on the differential adhesion 
hypothesis. This hypothesis was proposed by Malcom 
Steinberg in 1964 [6], stating cells sort in the way that 
maximizes the adhesion energy. Thirdly, we assume that the 
adhesion of a cell depends on a particular kind of protein 
(which is the cadherins family in reality). And most 
importantly, space and time are discrete. 

This proposed model allows us to explore gene 
regulatory interactions in a broader embryonic 
developmental stage, e.g., not restricted to the blastoderm 

 

 
 

Figure 1. System diagram of the integrated cellular and molecular model.  
The model includes the cellular subsystem and the molecular subsystem. 

stage. In addition, it also allows us to investigate cell 
movement in a more dynamical way. 

A. Cellular and Molecular States of a System 
The space of the embryo is divided into a grid of sites. 

Each site is a location where at most one cell can be present. 
A site has several neighboring sites with which it has 
contact. Given a site s and a time step t, we define the 
following functions. 

The function C(s,t) to indicate the presence of a cell at 
site s and time t is defined as  

 C : Site X Time ! {0,1} 
 C(s,t) =    1 , if a cell is present 
              0 , if no cell is found 
 
The function P(s,t,i) to specify the concentration of ith 

protein at site s and time t is defined as 
P : Site X Time X ℵ ! ℜ ,  
ℵ : natural numbers ;  ℜ : real numbers 
P(s,t,i) ≥ 0  ∀s,t,i           

B. Cellular and Molecular Interactions 
According to the differential adhesion hypothesis, 

different cells have different adhesion. We assign to each cell 
an adhesive factor, which is proportionate to the 
concentration of the kth protein. The adhesion energy 
between two cells is the product of their adhesive factors.  

The adhesive factor AF(s,t) of site s at time t is defined as 
follows: 
 AF : Site X Time ! ℜ 
 AF(s,t) = P(s,t,k)* C(s,t)  
where k indicates the kth protein that controls the adhesion. 

The adhesive energy AE(s1,s2,t) between two sites s1 and 
s2 at a time t is defined as  

AE : Site X Site X Time  ! ℜ 
 AE(s1,s2,t) = AF(s1,t)*AF(s2,t) 

The swap operation between two sites s1 and s2 is 
described as follows  

Case C(s1,t) = 0 AND C(s2,t) = 0 : Skip   
Case C(s1,t) = 1 AND C(s2,t) = 0 :  
 Exchange C(s1,t) and C(s2,t) 

  P(s2,t,i) " P(s2,t,i) + P(s1,t,i) ∀i 
 P(s1,t,i) " 0 ∀i 
Case C(s1,t) = 0 AND C(s2,t) = 1 :  
 Exchange C(s1,t) and C(s2,t) 

  P(s1,t,i) " P(s1,t,i) + P(s2,t,i) ∀i 
 P(s2,t,i) " 0 ∀i 
Case C(s1,t)  = 1 AND C(s2,t) = 1 :  

Exchange P(s1,t,i) and P(s2,t,i) ∀i 
The energy E(s1, s2) obtained when swapping two sites 

s1 and s2 is calculated as follows: 
 E: Site X Site ! ℜ 
 E(s1,s2) =     

),(AE),(AE),(AE),(AE 2121 nmmn ssssssss %%%% −−+  
where sm represents the neighbor sites of s2 except for s1 , 
and sn represents the neighbor sites of s1 except for s2. 
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Cell movement is performed at every time step, by a cell 
site updating algorithm described as follows: 

1:  set all sites unvisited 
2:  repeat until all sites are visited 
3:     randomly select an unvisited site s 
4:        select the neighbor site s’ such that 

E(s,s’) = 
  s of odneighborho in the 

k
k

)smaxE(s,
s∀

 

5:      swap s and s’ 
6:     mark s as visited 
 

Also, at each time step, the protein concentrations at a 
site are also updated by the following differential equations: 

)h - j)t,(s,P*m(S**t)C(s,
dt

i)t,dP(s,
iij%= σ   

+ % D(s,sk,t)* ( P(sk,t,i) – P(s,t,i) )    
 + χ* P(s,t,i)    
where 

σ : synthesis rate 
S : sigmoid function S(x) = 1/ (1+e-x) 
mij: coefficients representing the relationship between 
ith and jth proteins 
hi: threshold for protein synthesis 
D(s,sk,t): diffusion rate between s and sk at time t 
χ : degradation rate. 
 

The first term represents protein synthesis; the second 
term diffusion of protein molecules; the third term protein 
degradation.  This differential equation is implicit for mRNA 
to protein transcription, but captures protein-protein 
interactions. 

The diffusion rate D(s1,s2,t) depends on whether cells are 
present at sites s1 and s2. It is defined as follows: 

D: Site X Site X Time ! ℜ 
D(s1,s2,t) = (1-C(s1,t))*(1-C(s2,t))*d1  

  + [C(s1,t)*(1-C(s2,t)) + C(s2,t)*(1-C(s1,t))]*d2 
 + C(s1,t)*C(s2,t)*d3  
where d1, d2, d3 are diffusion rates for the three cases 
respectively.  The first term represents the case when cells 
exist at neither site; the second term when one cell is 
present; the third case for existence of both cells. 

III. SIMULATION STUDIES 
We carried out three simulation studies to illustrate 

various aspects and capabilities of our integrated model. In 
the first study, we present the cell sorting simulation in an 
isolated cellular level subsystem. The result is conformable 
to the biological phenomenon that led to the adhesion. The 
second study shows the inhibitory interaction of two genes in 
an isolated gene expression level subsystem. The third study 
presents the simulation result for an integrated system that 
includes both components in the previous two studies. 

A.  Cell Sorting based on the Adhesion Hypothesis at the 
Cellular Level 

 
The adhesion hypothesis originated from the experiments 

of Townes and Holtfreter in 1955 [6]. In their experiments, 
they extracted cells from different layers of amphibian 
embryos after the neural tube had formed and mixed them 
together. Then they observed that the cells aggregated to 
form layers as in the original embryos. 

We artificially created multiple types of cells with 
different adhesion factors to test if our model can conform to 
the adhesion hypothesis. The number of cells of each type is 
assigned randomly, and the adhesion factors satisfy the 
aggregation condition of the adhesion hypothesis.  

Global pattern formation due to the cell adhesion is 
illustrated in Figure 2. Although the cells were randomly 
distributed spatially, consistent global patterns are formed 
after cell adhesion is modeled. This study demonstrates the 
capability of the proposed model in capturing cell adhesion 
behaviors at the cellular level. 

B. Expression and Regulation among Inhibitory Genes at 
the Molecular Level 
Now we inspect our model at the gene expression level 

without considering the cellular level. We assume that cells 
are distributed all over the embryos. Hence, genes can 
interact at all sites. C(s,t) is set to 1 for all s and t. Cell 
motion is switched off.  

Figure 3 is the gene expression pattern formation over 
time of the two inhibitory genes.  Until time step 5, the 
inhibited gene product (the blue one) can grow up at the 
middle of embryo because the regulating gene product (the 
maroon one) is not present in this region. After that, the 
regulating gene products spread all over the embryo, because 

 
(a)

 

 
          (b) 
           
Figure 2. Cellular pattern formation during cell sorting.  Dots 
represent cells.  Blue cells have the strongest adhesion factor; red 
ones have intermediate adhesion factors; and the black ones have the 
weakest adhesion factors. (a) Cells sorting with two types of cells. 
Left: initial configuration. Right: sorted configuration. (b) Cell sorting 
with three types of cells. Left: initial configuration. Right: sorted 
configuration. 
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 (a) 

 
 (b) 

Figure 3. Expression pattern formation due to inhibitory gene interactions without cellular information. The inhibited protein is represented by light 
blue, the more concentrated the darker.  The following parameters are used in generating the patterns: σ=1, d1= 0.05, d2=0.03, d3=0.01, χ = 0.05,  hi = 0, 
m = -20 (inhibition coefficient). (a) The inhibited gene expression. (b) The regulating gene expression. From left to right: the change of the gene 
expression concentration over time. 

 
 (a) 

 

 
 (b) 

 

 
 (c) 

 
Figure 4. Pattern formation due to both inhibitory gene interaction at the expression level and cell sorting at the cellular level.  The following parameters 
were used in generating the patterns: σ=1, d1= 0.05, d2=0.03, d3=0.01, χ = 0.05, hi = 0, m = -20 (inhibition coefficient).  (a) The inhibited gene 
expression. (b) The regulating gene expression. (c) The cell distribution. 

of the diffusion as well as the transcription. Therefore, the 
inhibited gene product is suppressed but fades away because 
of the degradation.  

C. Integrated Gene Interactions and Cell Sorting 
In this simulation study, we integrate the cellular and 

the molecular level subsystems. As in the study in 3.2, the 
inhibited gene product is initially randomly distributed 
while the regulating one is initially concentrated at the ends 
of the embryo. To consider also the cellular subsystem, gene 
products can only be enhanced at locations where a cell is 
present. The cell adhesion factor is controlled by a third 
gene product, which takes part in regulatory interactions by 
the following coefficients: m31 = 5, m32 = 3, and m33=0 (no 
self regulation). 

Figure 4 shows the spatiotemporal progression of 
pattern formation. Considering the cellular constraints 
caused the proteins not to concentrate as in Figure 3. The 
simulation also shows that the stripe pattern is not present 
anymore. This study demonstrates the challenge of 
considering both cellular and molecular components in a 
model. 

The pattern of the cell distribution shows local 
engulfment of cells. That is an expected pattern under the 
adhesion hypothesis. However, cell movements also require 
other conditional factors than adhesion, such as neighbor 
density or cell shape.  Therefore, adhesion-only models may 
produce unrealistic patterns. 

IV. DISCUSSION 
We have proposed an integrated spatiotemporal model 

for gene interaction and cell sorting using reaction-diffusion 
mechanism and differential adhesion hypothesis. The core 
idea we explored is to couple two levels of abstraction, i.e., 
molecular and cellular, to model diffusion considering cell 
boundaries and adhesion alteration based on protein 
concentrations. We have created an integrated model to 
generate spatiotemporal patterns to mimic some aspects of 
embryo development. Each subsystem is consistent with 
basic biological principles; the entire model can account for 
some complex spatial pattern formation. More importantly, 
as both molecular and cellular levels are considered, the 
model can be applied to a variety of biological processes. 
We have demonstrated its utility as a basis for pattern 
formation during embryogenesis.  Particularly, it can be 
applied in those developmental stages when proteins do not 
freely diffuse, providing a first step to study the embryo 
after the blastoderm stage.  

However, spatiotemporal data for both gene products 
and cells are necessary to train this proposed model. This 
has posed challenges in biological data acquisition, as well 
as computational modeling. In addition to adhesion, other 
biological processes may also influence cell movement. 
Although integrating other cell behaviors such as division 
and differentiation can lead to more realistic models, it also 
makes system modeling challenging.  These issues are 
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generally recognized and have received attention from 
research community.  

Our current and future work develops along the 
following directions.  Since the model is applicable to three-
dimensional spaces in principle, a future task is to extend the 
current two-dimensional implementation of the model to 
three dimensions in space. Another direction is to extend the 
modeling work in gene networks to incorporate spatial 
constraints due to the existence of cells.  With these efforts 
and increasingly available spatiotemporal data of gene 
expression at cellular resolution, we look forward to gaining 
more insight on the cellular and molecular mechanisms 
underlying diverse cell behaviors. 
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