
Minimality of Solution Update in Conflict

Resolution: An Application of Revision

Programming to von Neumann-Morgenstern

Approach

Inna Pivkina1 and Vladik Kreinovich2

1Department of Computer Science

New Mexico State University

Las Cruces, NM 88003

ipivkina@cs.nmsu.edu

2Department of Computer Science

University of Texas at El Paso

El Paso, TX 79968

vladik@cs.utep.edu

Abstract

In a 1944 book that started game theory (and mathematical approach
to conflict resolution), von Neumann and Morgenstern proposed the no-
tion of a solution. When the situation changes, the old solution is often no
longer a solution, so it needs to be updated. In practical applications, it is
usually desirable to keep the solution change “minimal” in some reason-
able sense. We show that for a seemingly straightforward formalization
of this minimality, checking whether a change is minimal is NP-hard. We
also show that by representing the notion of a solution as a collection of
revision rules, we can produce a reasonable notion of minimality for which
there exists a feasible algorithm for checking minimality of update.

1



1 Conflict Resolution: Brief Introduction to von
Neumann-Morgenstern (NM) Approach and

Formulation of the Problem

1.1 Main ideas and resulting definitions

To assist in conflict resolution, i.e., to help several participants (players), with
different goals, to come to an agreement, von Neumann and Morgenstern [14]
invented game theory; for a more modern state of basic concepts, see, e.g., [5, 16].

The main idea behind their approach to conflict resolution is as follows. A
normal way to resolve a conflict situation with many players is that first, several
players find a compromise between their goals, so they form a coalition; these
coalitions merge, split, etc., until we get a coalition that is sufficiently strong to
impose its decision on the others (this is, e.g., the way a multi-party parliament
usually works).

The main problem with this coalition formation is that sometimes it goes on
and on and never seems to stop: indeed, when a powerful coalition is formed,
outsiders can often ruin it by promising more to some of its minor players;
thus, a new coalition is formed, etc. This long process frequently happens in
multi-party parliaments.

How to stop this seemingly endless process? In real economic life, not all
outputs and not all coalitions that are mathematically possible are considered:
there exist legal restrictions (like anti-trust law) and ethical restrictions (like
“good business practice”) that represent the ideas of social justice, social ac-
ceptance, etc. Von Neumann and Morgenstern called these restrictions the
“standard of behavior”. So, in real-life conflict situations, we look not for an
arbitrary outcome, but only for the outcome that belongs to some a priori fixed
set S of “socially acceptable” outcomes, i.e., outcomes that are in accordance
with the existing “standard of behavior”. This set S is called a solution, or
NM-solution.

For this standard of behavior to work, we must require two things:

• First, as soon as we have achieved a “socially acceptable” outcome (i.e.,
outcome x from the set S), no new coalition can force a change in this
decision (as long as we stay inside the social norm, i.e., inside the state
S).

• Second, if some coalition proposes an outcome that is not socially accept-
able, then there must always exist a coalition powerful enough to enforce
a return to the social norm.

In this framework, conflict resolution consists of two stages:

• first, the society selects a “standard of behavior” (i.e., a NM solution S);

• second, the players negotiate a compromise solution within the selected
set S.

2



Let us describe Neumann-Morgenstern’s formalization of the idea of “standard
of behavior.”

Let us denote the total number of players by n. For simplicity, we will
identify players with their ordinal numbers, and thus, identify the set of all
players with a set N = {1, . . . , n}. In these terms, a coalition is simply a subset
C ⊆ N of the set N of all players.

Let us denote the set of all possible outcomes by X .
To formalize the notion of an NM-solution, we need to describe the enforce-

ment abilities of different coalitions. The negotiating power of each coalition C
can be described by its ability, given an outcome x, to change it to some other
outcome y. We will denote this ability by x <C y. In these terms, the above
requirements on a “standard of behavior” S can be formalized as follows:

Definition 1 By a conflict situation, we mean a triple (N, X, {<C}C⊆N),
where:

N is a finite set whose elements are called players or participants;

X is a set whose elements are called outcomes;

<C for every coalition C (i.e., for every subset C ⊆ N), is a binary relation
on the set X.

A set S ⊆ X is called a NM-solution if it satisfies the following two conditions:

1. If x, y ∈ S, then for every coalition C, x 6<C y.

2. If x 6∈ S, then there exists a coalition C and an outcome y ∈ S for which
x <C y.

One can easily see that the definition of an NM-solution depends only on
the union

< =
⋃

C

<C

of binary relations <C that correspond to different coalitions. Thus, we can
reformulate this definition as follows:

Definition 2 Let (N, X, {<C}C⊆N) be a conflict situation. We say that an
outcome y dominates an outcome x (and denote it by x < y) if there exists a
coalition C for which x <C y.

Definition 3 A subset S ⊆ X of the set of all outcomes is called a NM-solution
if it satisfies the following two conditions:

1. if x and y are elements of S, then y cannot dominate x;

2. if x doesn’t belong to S, then there exists an outcome y belonging to S that
dominates x (x < y).

3



1.2 Important case: cooperative games

The most thoroughly analyzed conflict situations are so-called cooperative
games, in which cooperation is, in principle, profitable to all players. An out-
come is usually described by the gains x1 ≥ 0, . . . , xn ≥ 0 (called utilities) of all
the players. In these terms, each outcome x ∈ X is an n−dimensional vector
(x1, . . . , xn) called a payoff vector. The total amount of gains of all the players
is bounded by the maximal amount of money that the players can gain by co-
operating; this amount is usually denoted by v(N). In these terms, the set of
all possible outcomes is the set of all vectors xi for which

∑

xi ≤ v(N).
For cooperative games, the “enforcing” binary relation <C is usually de-

scribed as follows: For every coalition C, we can determine the largest possible
amount of money v(C) that this coalition can gain in the hypothetical situation
when all its members work together and all the others work against them. The
function v that assigns the value v(C) to each coalition C is called a character-
istic function of the game.

The values v(C) that correspond to different coalitions C must satisfy the
following natural requirement: If two disjoint coalitions C and C′ join forces,
they can gain at least the same amount of money as when they acted separately.
Thus, v(C ∪ C′) ≥ v(C) + v(C′).

In terms of a characteristic function, a coalition can force the transition from
x to y if the following two conditions hold:

• first, when C can gain for itself this new amount of money, i.e., when the
total amount of money gained by the coalition C in the outcome y does
not exceed v(C);

• second, when all players from the coalition C gain by going from x to y
(xi < yi for all i ∈ C), and are thus interested in this transition.

Let us describe such conflict situations formally:

Definition 4 Let n be a positive integer and N = {1, . . . , n}. By a cooperative
game, we mean a function v : 2N → [0,∞) for which v(C ∪C′) ≥ v(C) + v(C′)
for disjoint C and C′. For each cooperative game, we can define the conflict
situation (N, X, {<C}) as follows:

• X is the set of all n−dimensional vectors x = (x1, . . . , xn) for which xi ≥ 0
and

∑

xi = v(N).

• x <C y if
∑

{yi | i ∈ C} ≤ v(C) and xi < yi for all i ∈ C.

Von Neumann and Morgenstern have shown that NM-solutions exist for
many reasonable cooperative games, and have conjectured that such a solution
exists for every cooperative game. It turned out later that there exist games
without NM-solutions (see [10, 16]); however, for many practical conflict situa-
tions, solutions do exist.

It is worth mentioning that while from the purely mathematical viewpoint,
the set X of possible outcomes can be infinite, in practice, we only have a finite

4



number of possible outcomes. In other words, in practical applications, we can
always assume that the set X of possible outcomes is finite.

1.3 Von Neumann-Morgenstern solution: computational
complexity

From the practical viewpoint, once we have a finite set X and a binary relation
<, we must be able to find an NM-solution, i.e., a set S ⊂ X that satisfies the
two conditions from the Definition 3. Since not all conflict situations have an
NM-solution, it is also important to check whether, for a given conflict situation,
such a solution exists at all.

It is known that the problem of checking the existence of an NM-solution is
NP-complete. Indeed, we can represent the conflict situation as a graph, with
outcomes as vertices and x < y if and only if there is an edge from x to y. In
graph terms, an NM-solution is a minimum independent dominating set, or a
kernel. The problem of checking the existence of such a kernel is NP-complete.
This result was first proven in [1]; see also [3] and [17] (Problem 9.5.10).

For a general overview of complexity of different conflict resolution notions,
see, e.g., [18] and references therein.

1.4 Solution update: why it is necessary, and why it
should be minimal

In traditional applications of game theory, researchers assume that the notion
of a standard of behavior is fixed. This is a reasonable assumption when we
solve conflict problems independently of one another.

In real life, preferences of different groups <C change with time. As a result,
the same set S that, for the previous preference relation <(0), represented a
socially enforceable “standard of behavior”, stops being enforceable; so, we must
update the original set S(0) so that the resulting set S is socially enforceable
(i.e., is an NM-solution) with respect to the new relation <. In other words, we
must find a set S that is a NM-solution in the sense of Definition 3.

As we have mentioned, for the same relation <, there are usually many dif-
ferent NM-solutions. Which one should we select? From the societal viewpoint,
every change in “standard of behavior” is, to some extent, stressful. Change is
unavoidable – the original set S no longer works – but we should try our best
to make this change as painless as possible. In other words, we must make sure
that all the changes that we propose are indeed necessary, i.e., that the proposed
change is minimal (in some reasonable sense).

In conflict situations, often, there are a lot of suggestions of how to make
the change. It is therefore very important to check that a proposed change is
indeed minimal.

This is the problem that we will solve in the present paper.

5



2 Straightforward Approach to Defining Up-
date Minimality and its Limitations

2.1 Towards formulating the problem in precise terms

To describe this problem in precise terms, we must formalize what it means for
a change to be minimal. A natural way to describe the overall change from the
original set S(0) to the new set S is to simply list all the changes one by one, i.e.,
to list all the elements that stopped being socially acceptable (i.e., elements of
S(0) that are not in S) and all the elements that started being socially acceptable
(i.e., elements of S that are not in S(0)). If we can get an NM-solution S′ 6= S
by selecting only some of these changes, then, clearly, the transition from S(0)

to S is not minimal.
What does it mean “by selecting some of the changes”? In mathematical

terms, the set of all the outcomes that were added to S(0) is the set difference
S − S(0), and the set of all the outcomes that were deleted from S(0) is the
set difference S(0) − S. Similarly, for the alternative set S′, the set of all the
outcomes that were added to S(0) is the set difference S′ − S(0), and the set
of all the outcomes that were deleted from S(0) is the set difference S(0) − S′.
Thus, if S′ is obtained by selecting only some of the changes, this means that
S′ − S(0) ⊆ S − S(0) and S(0) − S′ ⊆ S(0) − S.

Comment. These two conditions can be described by a single one S(0)∆S′ ⊆

S(0)∆S, where A∆B
def
= (A − B) ∪ (B − A) denotes the symmetric difference

between the sets A and B.

Thus, we arrive at the following definition:

Definition 5 Let X be a finite set, let < be a binary relation on X, and let
S(0) ⊂ X. We say that an NM-solution S is a minimal update of S(0) if there
exist no NM-solution S′ 6= S for which S′ − S(0) ⊆ S − S(0) and S(0) − S′ ⊆
S(0) − S.

The question becomes: given X , <, S(0), and an NM-solution S, how can
we check whether S is indeed a minimal update of S(0)?

2.2 Problem: straightforward minimality checking is not
efficient

Since the set X is finite, we can, in principle, check minimality by simply check-
ing, for all possible proper subsets of the set of all the changes, whether making
only changes from this subset will still lead to an NM-solution. The problem
with this straightforward approach is that it may take too long: if we denote by
c the number of changes between S(0) and S, then we need to check all 2c − 1
proper subsets of the corresponding set of changes (to be more precise, 2c − 2
since we know that the empty set – corresponding to no changes at all – does
not work). For large c, performing 2c − 2 steps is not computationally feasible.

6



As we will show, this is not because we could not find a faster algorithm:
the problem of checking whether a given NM-solution is a minimal update is
NP-hard:

Theorem 1 The problem of checking whether a given NM-solution S is a min-
imal update of a given set S(0) is coNP-complete.

Proof. Minimality means that for every set S′ 6= S, if S′ − S(0) ⊆ S − S(0)

and S′ − S ⊆ S(0) − S, then S′ is not an NM-solution. Every set S′ ⊆ X =
{x1, . . . , xn} can be represented as a sequence of bits b1, . . . , bn, where bi = 1
if and only if xi ∈ S′. Checking whether S′ − S(0) ⊆ S − S(0) and S′ − S ⊆
S(0) − S, and whether a set S′ is an NM-solution requires polynomial time.
Thus, minimality can be described as ∀x1 . . .∀xnP for some polynomial-time
property P ; thus, minimality property belongs to the class coNP.

To prove that checking minimality is coNP-complete – or, equivalently, that
checking non-minimality is NP-complete – it is therefore sufficient to reduce a
known NP-complete problem to the problem of checking non-minimality. As
such a problem, we will take the above-mentioned problem of checking the
existence of an NM-solution (kernel).

Let us show how to organize the desired reduction. Let X0 = {x1, . . . , xn}
be a finite set with a binary relation <0. Let us extend X0 by adding a new
element x0 that dominates everyone else and is dominated by everyone else,
i.e., let us take X = X0 ∪ {x0} and a < b if and only if one of following three
situations happen:

• a <0 b;

• a ∈ X0 and b = x0;

• a = x0 and b ∈ X0.

For this new conflict situation, the set S = {x0} is clearly an NM-solution. Let
us show that for S(0) = X0, the set S is not a minimal NM-solution if and only
if the original conflict situation (X0, <0) has an NM-solution – this will be the
desired reduction.

Indeed, by definition, the fact that S is not a minimal NM-solution means
that there exists an NM-solution S′ 6= S for which S′ − S(0) ⊆ S − S(0) and
S(0)−S′ ⊆ S(0)−S. Let us show that both inclusions are true for every possible
set S′ ⊆ X .

• Let us start with the first inclusion. Since S(0) = X0 and S = {x0}, we
have S − S(0) = {x0}. For every other set S′ ⊆ X , we have S′ − S(0) ⊆
X−S(0) = X−X0 = {x0}, thus, we will always have S′−S(0) ⊆ S−S(0).

• In our case, S(0) − S = X0 − {x0} = X0 = S(0), so from S(0) − S′ ⊆ S(0),
we conclude that S(0) − S′ ⊆ S(0) − S.

7



Thus, S = {x0} is not a minimal NM-solution if and only if the conflict situation
(X, <) has a different NM-solution S′. Let us show that such a solution S′ 6= S
exists if and only if the original conflict situation (X0, <0) has a solution.

Indeed, if the original conflict situation (X0, <0) has an NM-solution S0 ⊆
X0, then this same S0 is also an NM-solution for the enlarged conflict situation
(X, <). Indeed, the elements from S0 do not dominate each other, and they
dominate every outcome from X − S0; since every element from X0 dominates
x0, the set S0 dominates x0 as well. Thus, S0 is an NM-solution for (X, <).

Vice versa, let S′ 6= S be an NM-solution for (X, <). If x0 ∈ S0, then, since
x0 dominates all elements of X0 and elements of a solution cannot dominate
each other, S′ cannot contain any element from X0. Thus, in this case, S′ =
{x0} = S. So, if S′ 6= S, this means that S′ cannot contain x0, i.e., S′ must be a
subset of X0. Since S′ is an NM-solution for the enlarged conflict situation, we
conclude that no two elements of S′′ dominate each other, and every element of
X − S′ – in particular, every element of X0 − S′ – is dominated by an element
from S′. Thus, S′ is also an NM-solution for the original conflict situation
(X0, <0). The reduction is proven, and hence the theorem is true.

2.3 What we are planning to do

We have just shown that for a straightforward definition of update minimality,
checking minimality is difficult. Thus, we need to provide a better definition of
update minimality, a definition for which checking minimality of an update is
feasible.

In this paper, we propose a definition based on the ideas of revision program-
ming, a formalism developed by V. W. Marek and M. Truszczyński to describe
updates in databases and knowledge bases (see, e.g., [11, 12]).

As a side effect, we describe the possibility of using similar ideas in physics:
namely, to prediction problem in relativistic space-time (when space-time is
non-Euclidean).

3 Revision Programming and Its Application to
NM Approach

3.1 Revision programming: basic preliminary definitions

In this subsection, we present the basic definition of revision programming [11,
12].

The knowledge forming a general database or knowledge base can be de-
scribed as a finite collection of atomic statements (“atoms”) of the type “pa-
tient A has blood pressure 180/110” or “the robot is in Room A”, etc. For most
databases, the set U of all possible atomic statements is usually (large but)
finite. This finite set is called a Universe of discourse, or Universe, for short.

Formally, we can simply say that we have a finite set U ; its elements are
called atomic statements, or simply atoms. Subsets of U are called databases.

8



To describe changes in databases, we will use the following notations: in(a)
means that the atom a is a part of the database, and out(a) means that the
atom a is not a part of the database. Expressions of the form in(a) or out(a)
are called revision literals.

For a revision literal α of the type in(a), its dual αD is the revision literal
out(a). Similarly, the dual of out(a) is in(a). A set of revision literals L is
coherent if it does not contain a pair of dual literals.

For any set of atoms B ⊆ U , we denote the corresponding set of revision
literals by Bc = {in(a) : a ∈ B} ∪ {out(a) : a /∈ B}.

A revision rule is an expression of one of the following two types:

in(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn) or (1)

out(a)← in(a1), . . . , in(am),out(b1), . . . ,out(bn), (2)

where a, ai, and bj are atoms. The revision literal on the left hand side of ← is
called the head of the rule r and denoted by head(r). The set of all the literals
on the right hand side of ← is called the body of the rule r and denoted by
body(r).

Each rule has two possible interpretations.
In declarative interpretation, a revision rule is viewed as a constraint on the

database. For instance, rule (1) imposes the following condition: if the database
contains all m atoms a1, . . . , am, and does not contain any of the n elements
b1, b2, . . . , bn, then the database must contain a.

In computational (imperative) interpretation, a revision rule expresses a way
to enforce a constraint. Assume that all atoms ai, 1 ≤ i ≤ m, belong to the
current database B, and none of the atoms bj , 1 ≤ j ≤ n belongs to B. Then,
to enforce the constraint (1), the atom a must be added to the database.

Similarly, in the case of the constraint (2), the atom a must be removed from
the database. A collection of revision rules is also called a revision program.

It is worth mentioning that in the declarative interpretation, when we for-
mulate a rule of the type (1), what we are saying, in effect, is that either a is
in the database B, or at least one of the atoms ai, 1 ≤ i ≤ m, is not in the
database, or at least one bj, 1 ≤ j ≤ n, is in the database. From the declarative
viewpoint, there is no difference between the rule (1) and, e.g., the rule

out(a1)← in(a2), . . . , in(am),out(a),out(b1), . . . ,out(bn) (3)

However, from the computational viewpoint, there is a difference between
the rules (1) and (3).

Indeed, in principle, if the original database B does not satisfy the rule,
then we make this rule true in two possible ways: we can force the conclusion
head(r) of the implication r to be true (as we did), or we can make the premise
body(r) of the rule r to be false, by removing one of the atoms ai or by adding
one of the atoms bj. In revision programming, the rule specifies not only what
constraint we want to be satisfied, but also how exactly we want this rule to be
enforced. The rule (1) says that if the implication expressed by the rule is not

9



true, i.e., if the premise is true and a is not in the database, we should add a to
the database. If, in a similar situation, we want to delete a1 from the databases,
then we should formulate the corresponding rule in the form (3).

Revision programming also enables us to describe the situations in which we
allow several different ways of revising the database. For example, in the above
case, if we want to allow both adding the atom a and deleting the atom a1,
then we can describe this by adding both rules (1) and (3) to the corresponding
collection of revision rules.

Let us now describe this formally. For a database B ⊆ U and an atom
a ∈ U , the revision literal in(a) is true if a ∈ B and false if a /∈ B. Similarly,
the revision literal out(a) is true if a /∈ B and false if a ∈ B. We say that
a collection P of revision rules is satisfied by B (or, alternatively, that B is a
model of P ) if all the implications r ∈ P are true in this interpretation.

3.2 Towards a new definition of a “minimal” change: the
notion of a justified revision

Revision programming formalizes the notion of a “minimal” revision as a revi-
sion in which every change must be justified, so that there will be no unneces-
sary, unjustified changes. The main idea behind the corresponding definition of
a justified revision (see, e.g., [11, 12]) is as follows.

• Let I ⊆ U be an initial database, i.e., the initial set of atoms.

• Let P be a collection of revision rules, i.e., a set of rules (of the type (1)
or (2)) that the revised database must satisfy.

• Let R ⊆ U be a revised database that satisfies all the rules from P .

When is R a “justified” revision of I?
As we have mentioned, from the viewpoint of revision literals, the initial

database I can be described as a collection Ic of statements in(a) corresponding
to all a ∈ I and statements out(a) corresponding to all atoms a 6∈ I. Similarly,
the revised database R can be described as a collection Rc of statements in(a)
corresponding to all a ∈ R and statements out(a) corresponding to all atoms
a 6∈ R. We want to define a reasonable notion of the minimal update. Intuitively,
the word “minimal” means that many of the statements in(a) and out(a) that
were initially true remain true in the revised database, in other words, that the
set Rc should be “close” to the set Ic.

Specifically, we would like to require that every difference between these sets
Ic and Rc is justified by the rules from P . Once we fix the literals in(a) and
out(a) that do not change – they form the set Ic ∩Rc – we can then apply the
rules from P and deduce other revision literals. Let us describe this deduction
is detail. We want to describe the set S of all the revision literals that can be
deduced from Ic ∩Rc by using the rules P .

This set can be obtained by using the following natural algorithm. At each
stage k of this algorithm, we have a set Sk that contains both the original revision

10



literals from Ic∩Rc and some literals that we deduced from the original ones by
using the rules. At each stage of the algorithm, this set will grow until we get
all the literals that can be thus deduced. We start with the set S0 = Ic ∩ Rc.
Once we have Sk, we proceed as follows: For each rule r, we check that all the
literals from the body (premise) of this rule are already derived, i.e., are already
in the set Sk. If they are, we check that the head head(r) (conclusion) of this
rule is in Sk; if head(r) is not in Sk, we mark this literal head(r) as deducible.

• If after reviewing all the rules, it turns out that we did not mark anything,
we stop and return Sk as the desired set S of all literals that can be deduced
from the original ones by using the rules from P .

• Otherwise, if some new literals were marked, we add the marked (de-
ducible) literals to the set Sk. The resulting enlarged set will be the set
Sk+1.

We want every literal from Rc to be thus justified. In other words, we want the
resulting set S to coincide with Rc.

The above algorithm for computing what can be deduced is well known in
logic programming (see, e.g., [8, 9]); the resulting set S is called the least model
of the collection consisting of the rules P and of the facts Ic ∩Rc. If we denote
the least model of a collection P of rules and facts by L(P ), then we arrive at
the following definition:

Definition 6 Let I, R ⊆ U be databases, and let P be the set of rules of type
(1) and (2). We say that R is a P -justified revision of I (or simply justified
revision, for short) if Rc = L(P ∪ (Ic ∩Rc)).

By definition of the least model L, one can easily see that if Rc is a justified
revision, then it satisfies all the rules from the original collection P .

3.3 It is possible to efficiently check whether a given re-
vision is justified

It is known that the above algorithm requires polynomial (actually quadratic)
time. Indeed, at each stage, we either stop, or add at least one new literal from
the head (conclusion) of one of the rules. Thus, the overall number of stages
cannot exceed the number of rules in the collection P , hence it cannot exceed
the length n of the original description of the problem.

At each stage, we check each literal from each rule. This checking cannot
take longer than the the size of the rules; thus, each stage requires O(n) com-
putational steps. Therefore, the algorithm consists of O(n) stages with O(n)
steps each, to the total of O(n) ·O(n) = O(n2) computational steps.

Thus, with this new definition of update minimality, we not only get a rea-
sonable definition of a justified revision, but we also get a polynomial-time
algorithm for checking whether a given revision is indeed justified.

11



Comment. It is worth mentioning that by using a more sophisticated algo-
rithm, we can actually compute the least model in linear time [2, 6, 19].

Comment. It is known [11, 12] that every justified revision R is also minimal
in the sense of the above straightforward definition: there exists no set R′ 6= R
that satisfies all the rules from P and for which R′−I ⊆ R−I and I−R′ ⊆ I−R.

3.4 Application of revision programming to NM-solutions

In order to apply the above definition to the notion of an NM-solution, we must
describe this notion in the form of “revision rules” (1) and (2). The definition
of the NM-solution consists of two parts:

1. if x and y are elements of S, then y cannot dominate x;

2. if x does not belong to S, then there exists an outcome y belonging to S
that dominates x (x < y).

The first condition can be described by listing, for each pair x < y, the rules

out(x)← in(y);

out(y)← in(x).

The first rule says that if x < y and x is an element of S, then y cannot be an
element of S. The second rule says that if x < y and y is an element of S, then
x cannot be an element of S.

The second condition can be described as follows. For every element x ∈ X ,
let y1, . . . , ym be the list of all elements that dominate x; then, we must add the
rule

in(x)← out(y1), . . . ,out(ym)

and also m rules

in(yj)← out(x),out(y1),out(y2), . . . ,out(yj−1),out(yj+1), . . . ,out(ym)

corresponding to j = 1, . . . , m.
The first rule says that if an element x is not dominated by any outcome

from the set S, then x must itself belong to S – because otherwise the second
condition in the definition of an NM-solution will not be satisfied. The other m
rules say that if x doesn’t belong to S, and of all the outcomes yi that dominate
x, all – with the possible exception of one of them yj – do not belong to S,
then this remaining dominating outcome yj must belong to S – again, because
otherwise, there will be no outcome y belonging to S that dominates x.

12



4 Revision Programming Can Be Also Used to
Find NM-Solutions

In the previous section, we described how revision programming can be used to
check whether a given NM-solution is indeed a justified revision of the previously
known solution.

It is also possible to use revision programming to find such justified revisions.
Of course, as we have mentioned, the problem of finding an NM-solution is,
in general, NP-complete, so we cannot hope that the resulting algorithm will
always work fast; however, for small size problems, this algorithm is usually
reasonably efficient.

This algorithm is based on the fact that certain transformations (called
shifts) preserve justified revisions [11]. For each set W ⊆ U , a W -transfor-
mation is defined as follows:

• For every revision literal α (i.e., a literal of the form in(a) or out(a)), we
define

TW (α)
def
=

{

αD when a ∈W
α when a /∈W .

• For every set L of revision literals, we define TW (L) as the result of ap-
plying the transformation TW to all the literals from this set L, i.e., as

TW (L)
def
= {TW (α) |α ∈ L}.

• Similarly, for every set A of atoms, we define TW (A) as follows:

TW (A) = {a | in(a) ∈ TW (Ac)}.

• Finally, for a collection P of revision rules, we define TW (P ) as the result
of applying TW to every literal in P .

The Shifting Theorem [11] states that for any two databases I and J , database
R is a P -justified revision of I if and only if TI∆J(R) is a TI∆J(P )-justified
revision of J .

Let I be an initial database, and let P be a given collection of revision rules.
Then, the resulting algorithm for finding a justified revision of I is as follows:

1. Apply the transformation TI to P to obtain TI(P ) (corresponding to the
empty initial database J = ∅).

2. Convert TI(P ) into a logic program with constraints by replacing revision
rules of the type (1) by

a← a1, . . . , am, not b1, . . . , not bn (4)

and replacing revision rules of the type (2) by constraints

← a, a1, . . . , am, not b1, . . . , not bn. (5)

We will denote the resulting logic program with constraints by lp(TI(P )).

13



3. Apply an “answer set” programming engine (e.g., smodels [15]) to the
program lp(TI(P )). These engines return a collection of sets of atoms
called answer sets.

4. Finally, apply the transformation TI to the answer sets produced by the
engine.

As shown in [11], the resulting sets will be exactly P -justified revisions of I.
Since we have shown that the problem of finding an NM-solution can be

described in terms of revision rules, we can therefore use this algorithm to find
NM-solutions.

5 Possible Applications to Physics

5.1 Prediction problem – one of the main problems of
physics

A similar problem occurs in physics. One of the main problem of physics is
the problem of predicting the future state of the world, i.e., the problem of
predicting the future values of all the physical quantities. Another important
problem is the problem of describing how the world came to be what it is, i.e.,
the problem of describing the past values of all the physical variables.

To solve both problems, physicists use physical equations. Physical equa-
tions describe how the values of the physical quantities – in particular, the values
of physical fields at different spatial points – change with time. A traditional
approach of mathematical physics is to start with the values of all the physical
variables and fields at some moment of time t0, and then use the physical equa-
tions to predict the values of these variables and fields at all possible moments
of time. This approach was first explicitly formulated by Cauchy, therefore this
prediction problem is usually called, in mathematical physics, a Cauchy problem.
For many meaningful physical equations, it is know that we can take arbitrary
initial conditions for t = t0, and the equations will enable us to uniquely predict
the values of the corresponding quantities and fields for all moments of time.

In the traditional formulation of the Cauchy problem, we know the values
f(x1, x2, x3, t) of all physical variables f at all the spatial points x = (x1, x2, x3)
at the same moment of time t = t0. In other words, we know the values of
these variables at all the points from a set {(x, t0) |x ∈ R3} – a 3-dimensional
(hyper-)plane in our 4-dimensional space-time.

5.2 What is a Cauchy surface: a brief physical introduc-
tion

In many practical situations, instead of knowing the values f(x1, x2, x3, t) of
physical quantities at different spatial points x at the same moment of time t0,
we know the values of f at different points x at different moments of time. For
example, in stellar dynamics and cosmology, we know the physical fields around

14



the Earth at the present moment of time t0; however, as far as distant stars and
galaxies are concerned, since the light takes time to travel from them to us, the
only direct information that we get about the situation there is the information
of how these fields looked like when the light was emitted. In other words, we
know the state near the Earth now, the state at Alpha Centauri – which is 4
light years away – four years ago, we know the state of the distant stars in our
Galaxy 10-30 thousands years ago, and we know the state of the quasars 10-20
billion years ago.

In all such cases, we know the values of the physical field at all the points
p = (x, t) from some set S that is different from the plane t = t0. We would like
to make sure that the set S still enables us to arbitrarily set up values for all the
points p ∈ S and then uniquely predict the values of all the physical fields for
all other points from space-time. Not all sets S have this property; for example:

• If we take the whole space-time as S, then we cannot arbitrarily set up
values at different points p ∈ S. Indeed, once we select the past values,
the physical equations will allow us to uniquely predict the future values
and therefore, we cannot set these future values independently of the past
ones.

• On the other extreme, if we use only a few causally unrelated space-time
points as S, we will be able to arbitrarily set up the values of physical
fields at these points, but we will not be able to determine the values at
other points uniquely.

Physicists call sets that satisfy the conditions of arbitrariness and uniqueness
Cauchy surfaces; see, e.g., [4]. In more precise physical terms, a set S is called
a Cauchy surface if, first, we can arbitrarily set the values for p ∈ S (and be
consistent), and second, the values at p ∈ S uniquely determine the values for
all other points.

The problem of checking whether a given set of space-time points is indeed
a Cauchy surface is especially difficult – and especially important – in cosmol-
ogy, when we have to take into consideration that the space-time is curved, its
topology is, in general, different from the “flat” topology of the usual physical
4-dimensional space-time R3 ×R.

To describe the Cauchy surfaces in the general setting, physicists use the
notion of causality relation ≺ between points in space-time: for every two space-
time points a and b, the relation a ≺ b means that a change in a can affect the
observed characteristics at a point b. In Newtonian space-time, in which there is
no limitation on how fast signals can travel, a ≺ b simply means that a = (x, t)
is in the past of b = (y, s), i.e., that t < s. In special relativity, where there is a
bound (speed of light c) on how fast signals can travel, the relation a < b between
the two points a = (x, t) and b = (y, s) means that not only t < s, but during
the time between t and s the signal must be able to finish its travel the distance
d(x, y) between the corresponding spatial points x and y. In other words, in
special relativity, a = (x, t) ≺ b = (y, s) if and only if s ≥ t + c−1 · d(x, y). In
general, the causality relation can be even more complex.

15



5.3 Cauchy surface: towards a precise definition

How can we describe the above physical definition in precise mathematical
terms? Based on the above physical meaning of this notion, we can say that for
a set S to be a Cauchy surface, this set must satisfy the following two conditions:

First, we cannot have two points a, b ∈ S that causally affect each other (i.e.,
a ≺ b).

Indeed, otherwise, once we set up a value of a physical field at a point a, this
setting may affect the value of the same field at a point b and therefore, we can
no longer independently set values at points a and b. So, in this case, the first
(“arbitrariness”) condition in the definition of a Cauchy surface is not satisfied.

Second, for every space-time point a, there must exist a point b ∈ S that is
causally related with a, i.e., either a ≺ b or b ≺ a.

Indeed, otherwise, by definition of the causality relation, no matter what
values we set up for all b ∈ S, these values will not affect the values of physical
quantities at a point a. As a result, the setting of values for all b ∈ S will not
uniquely determine the value at a. So, in this case, the second (“uniqueness”)
condition in the definition of a Cauchy surface is not satisfied.

5.4 Relationship between Cauchy surface and NM-
solution

As we have mentioned, in order to solve the main problems of physical predic-
tion, we must know a Cauchy surface. It is therefore important to find a Cauchy
surface based on a given causality relation.

Although this problem seems to be very far away from conflict resolution
problems with which we have been dealing so far, computationally, there is a
relation. Indeed, one can see that the above definition of a Cauchy surface is,
in effect, a particular case of the notion of NM-solution: in Definition 3, we can
take, as X , the set of all space-time points and as the domination relation <,
the relation “a ≺ b or b ≺ a”. Therefore, from the computational viewpoint,
the problem of finding a Cauchy surface is a particular case of the problem of
finding a NM-solution.

Of course, from the physical viewpoint, space-time is a continuum, it has
infinitely many points; however, in computations, we can only represent finitely
many points. In the simplest case, these points form a rectangular grid; in move
sophisticated numerical techniques, we can have more complicated finite sets of
points.

Therefore, from the computational viewpoint, the problem of finding a
Cauchy surface is a particular case of the problem of finding the NM-solution
for a given finite set X with an ordering <.

16



5.5 Cauchy surface updates: why they are necessary, why
they should be minimal, and how to check this mini-
mality

As we have mentioned, the problem of finding the appropriate Cauchy surface
is especially important in cosmology. Cosmology is an attempt to describe
the global structure of the Universe based on known observations and physical
laws. In contrast to other more down-to-Earth areas of physics, in cosmology,
we have much fewer observations to use. Not surprisingly, even when a group
of researchers agrees on a qualitative general structure of space-time (such as a
Friedmann-Lemaitre solution to a more sophisticated Mix-master universe; see,
e.g., [13]), the numerical (quantitative) characteristics are only known with a
large uncertainty. As a result, what we usually know is not a single space-time
model, but rather a family of close models.

To analyze the physics of the Universe as a whole, it is therefore desirable
to make predictions not just in one of these models, but in all of them, to make
sure that the predictions we make are indeed valid for all possible models. For
that, we must find a Cauchy surface in each of these models.

Since the models are close to each other, it is reasonable to expect that the
corresponding Cauchy surfaces are also close to each other. In other words,
once we have found a Cauchy surface S for one of these models M = (X, <),
the Cauchy surface S′ for other models M ′ = (X, <′) can be viewed as updates
of S.

From the computational viewpoint, it is desirable to re-use M -related com-
putations as much as possible when performing computations with M ′. There-
fore, it is desirable to select S′ that is, in some sense, minimally different from
the original Cauchy surface S.

So, before we start using S′, it is desirable to check whether the update from
S to S′ is indeed minimal in some reasonable sense, i.e., in other words, to check
whether it is possible or not to not make some of the changes and still get a
Cauchy surface.

On the surface, this problem sounds very different from the conflict-related
problems that we were solving in the main part of this text, but from the purely
computational viewpoint, this is exactly the problem that we dealt with:

• we have a definition of a Cauchy surface S (that is, for <′=≺′ ∪ ≻′,
exactly NM-solution),

• we have the original set S that is not a Cauchy surface for this relation
<′;

• we have a new set S′ that is a Cauchy surface with respect to <′.

We must check whether the transition from S to S′ is indeed minimal in some
sense.

Since this new Cauchy-surface problem turns out to be a particular case of
the problem that we already know how to formalize and solve, we can use the

17



same definition and algorithm to solve this new problem, i.e., to define what
it means for a Cauchy surface update to be minimal and to check whether the
Cauchy surface update is indeed minimal in this sense.

It is worth mentioning that the Cauchy surface problem is a particular case
of the NM-solution problem, a case in which the “dominance” relation < is
symmetric. Because of this symmetry, the Cauchy surface problem is somewhat
easier to solve than the general problem of finding the NM-solution. Indeed,
as we have mentioned, the general problem of finding the NM-solution is NP-
complete. In contrast, we can find a Cauchy surface in polynomial (actually
cubic) time by using the following straightforward algorithm.

In this algorithm, at each stage k, we have a set Sk with the property that
no two points from this set dominate each other. At each stage of the algorithm,
this set will grow until it forms the desired Cauchy surface. We start with an
empty set S0 = ∅. Once we have Sk, we proceed as follows: we check whether
every point a 6∈ Sk is dominated by one of the points from Sk.

• If all the points a 6∈ Sk are indeed dominated, then Sk is a Cauchy surface,
so we stop.

• Otherwise, once we find a point a 6∈ Sk that is not dominated, we add this
point to Sk, and consider a new set Sk+1 = Sk ∪ {a}. It is easy to see
that, due to the symmetry of the dominance relation, no two points from
the new set Sk+1 dominate each other.

At each stage, we either stop, or add a new point to the original empty set.
Thus, the overall number of stages cannot exceed the number of elements in the
original set X , hence it cannot exceed the length n of the original description
of the graph (X, <). On each stage, for each of ≤ n points a 6∈ Sk, we must
check whether it is dominated by ≤ n points b ∈ Sk; thus, each stage requires
O(n2) computational steps. Therefore, the algorithm consists of O(n) stages
with O(n2) steps each, to the total of O(n) · O(n2) = O(n3) computational
steps.

Acknowledgments

I.P. was partly supported by the NSF grants EIA-9810732 and EIA-0220590.
V.K. was supported in part by NASA under cooperative agreement NCC5-209,
by the Future Aerospace Science and Technology Program (FAST) Center for
Structural Integrity of Aerospace Systems, effort sponsored by the Air Force
Office of Scientific Research, Air Force Materiel Command, USAF, under grant
F49620-00-1-0365, by NSF grants EAR-0112968 and EAR-0225670, by the Army
Research Laboratories grant DATM-05-02-C-0046, and by the SC2003 Minority
Serving Institutions Participation Grants.

18



References

[1] V. Chvatal, On the computational complexity of finding a kernel, Center
de Recherches Mathématiques, Université de Montréal, Technical Report
CRM-300, 1973.

[2] W. Dowling and J. Gallier, “Linear Time Algorithms for Testing the Sat-
isfiability of Propositional Horn Formulae”, Journal of Logic Programming,
1984, Vol. 3, pp. 267–284.

[3] M. E. Garey and D. S. Johnson, Computers and intractability: a guide to
the theory of NP-completeness, Freeman, San Francisco, 1979.

[4] R. Geroch, “Domain of dependence”, Journal of Mathematical Physics, 1970,
Vol. 11, pp. 437–449.

[5] J. C. Harshanyi, “An equilibrium-point interpretation of the von Neumann-
Morgenstern solution and a proposed alternative definition”, In: John von
Neumann and modern economics, Claredon Press, Oxford, 1989, pp. 162–
190.

[6] A. Itai and J. Makowsky, On the complexity of Herbrand’s theorem, Tech-
nical Report No. 243, Department of Computer Science, Israel Institute of
Technology, Haifa, 1982.

[7] V. Kreinovich, “Random sets unify, explain, and aid known uncertainty
methods in expert systems”, in J. Goutsias, R. P. S. Mahler, and
H. T. Nguyen (eds.), Random Sets: Theory and Applications, Springer-
Verlag, N.Y., 1997, pp. 321–345.

[8] V. Lifschitz, “Foundations of logic programming”, In: Principles of Knowl-
edge Representation, CSLI Publications, Stanford, CA, 1996, pp. 69–127.

[9] J. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, 1984.

[10] W. F. Lucas, “The proof that a game may not have a solution”, Trans.
Amer. Math. Soc., 1969, Vol. 136, pp. 219–229.

[11] V. W. Marek, I. Pivkina, and M. Truszczyński, “Revision programming
= logic programming + constraints, Proceedings of the 12th International
Workshop on Computer Science Logic CSL’98, Springer-Verlag Lecture
Notes in Computer Science, 1999, Vol. 1584, pp. 73–89.

[12] V. W. Marek and M. Truszczyński, “Revision programming”, Theoretical
Computer Science, 1998, Vol. 190, pp. 241–277.

[13] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Free-
man and Company, San Francisco, 1973.

[14] J. von Neumann and O. Morgenstern, Theory of games and economic be-
havior, Princeton University Press, Princeton, NJ, 1944.

19



[15] I. Niemelä and P. Simons, “Efficient implementation of the well-founded
and stable model semantics”, In: Proceedings of the 1996 JICSLP, MIT
Press, 1996, pp. 289–303.

[16] G. Owen, Game theory, Academic Press, N.Y., 1982.

[17] C. H. Papadimitriou, Computational Complexity, Addison Wesley, San
Diego, 1994.

[18] C. H. Papadimitriou, “Algorithms, games, and the Internet”, Proceedings
of ACM Symposium on Theory of Computing STOC’01, Hersonissos, Crete,
Greece, July 6–8, 2001.

[19] M. G. Scutellá, “A note on Dowling and Gallier’s top-down algorithm for
propositional Horn satisfiability”, Journal of Logic Programming, 1990, Vol.
8, pp. 265–273.

20


