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Abstract. In this paper we extend thBevision Programmindgramework—a
logic-based framework to express and maintain constramknowledge bases—
with different forms ofpreferencesPreferences allow users to introduce a bias in
the way agents update their knowledge to meet a given senstraints. In par-
ticular, they provide a way to select one between alteradgiasible revisions and
they allow for the generation of revisions in presence offlatiing constraints,

by relaxing the set of satisfied constraingsft constraints A methodology for
computing preferred revisions using answer set programisipresented.

1 Introduction

Multi-Agents Systems (MAS) require coordination mechargdo facilitate dynamic
collaboration of the intelligent components, with the gofaheeting local and/or global
objectives. In the case of MAS, the coordination structiveutd provide communi-
cation protocols to link agents having inter-related ofiyes and it should facilitate
mediation and integration of exchanged knowledge [7]. f2déimed coordination ar-
chitectures (e.g., mediator-based architectures) asasdlllly distributed architectures
(e.g., distributed knowledge networks) face the problemosi-monotonically updating
agent’s theories to incorporate knowledge derived frofieddht agents. The problem is
compounded by the fact that incoming knowledge could beradittory—either con-
flicting with the local knowledge or with other incoming item-incomplete, or unre-
liable. Recently a number of formalisms have been propasgdl] 2, 20, 8] to support
dynamic updates of (propositional) logic programming tihes) they provide conve-
nient frameworks for describing knowledge base updatesedisas constraints to en-
sure user-defined principles of consistency. These typlesoflisms have been proved
effective in the context of MAS (e.qg., [12]).

One of such formalisms for knowledge base updat&eigsion ProgrammindRe-
vision programming is a formalism to describe and enforagstraints on belief sets,
databases, and more generally, on arbitrary knowledgesb@se revision program-
ming formalism was introduced in [15, 16]. In this framewgteinitial databaserep-
resents the initial state of a belief set or a knowledge bAsevision programis a
collection ofrevision rulesused to describe constraints on the content of the database.
Revision rules could be quite complex and are usually in tinfof conditions. For
instance, a typical revision rule may express a conditiet, tifi certain elements are



present in the database and some other elements are absengnother given ele-
ment must be absent from (or present in) the database. Bevigies offer a natural
way of encoding policies for the integration of agent-gated knowledge (e.g., in a
mediator-based architecture) or for the management afagent exchanges.

In addition to being a declarative specification of a comstran a knowledge base,
a revision rule also has a computational interpretatiordiegting a way to satisfy
the constraint. Justified revisions semantics assignsyt&m@amwledge base a (possibly
empty) family ofrevisions Each revision represents an updated version of the origi-
nal knowledge base, that satisfies all the constraints geaMby the revision program.
Revisions are obtained by performing additions and deletid elements from the orig-
inal knowledge base, according to the content of the ravigites. Each revision might
be chosen as an update of the original knowledge base e tevision program.

The mechanisms used by revision programming to handle epddita knowledge
base or belief set may lead to indeterminate situations.cohstraints imposed on the
knowledge base are interpretedsd constraintsthat have to be met at all costs; nev-
ertheless this is rather unnatural in domains where oveirlgpand conflicting consis-
tency constraints may be present (e.g., legal reasonifjgddgpliers and broker agents
in a supply chain [13])—leading to the generatiomofacceptable revisions. Similarly,
situations with under-specified constraints or incompketewledge may lead to revi-
sion programs that providaultiplealternative revisions for the same initial knowledge
base. While such situations might be acceptable, there any wases where a single
revision is desired—e.g., agents desire to maintain a eniigw of a knowledge base.

Preferencegrovide a natural way to address these issues; preferetmedtze re-
vision programmer to introduce a bias, and focus the geioeraf revisions towards
more desirable directions. Preferences between revisidas and/or preferences be-
tween the components of the revisions can be employed totskteway revisions are
computed, ruling out undesirable alternatives and defgaibnflicting constraints. The
use of preference structures has been gaining relevanbe MAS community as key
mechanism in negotiation models for MAS coordination aeatiures [9, 11].

In this work we propose extensions of revision programmimaf fprovide gen-
eral mechanisms to express different classes of prefesencestified by the needs of
knowledge integration in MAS. The basic underlying mecekancommon to the ex-
tensions presented in this work is the idea of allowing @ass revision rules to be
treated assoft revision rulesA revision might be allowed even if it does not satisfy
all the soft revision rules but only selected subsets of theser preferences express
criteria to select the desired subsets of soft revisiorstule

Our first approach (Section 3) is based on the usewsion programs with pref-
erences where dynamic partial orders are established betweenetfision rules. It
provides a natural mechanism to select preferred ways opating revisions, and to
prune revisions that are not deemed interesting. This agprs analogous to the or-
dered logic program (a.k.a. prioritized logic program)ggeh explored in the context
of logic programming (e.g., [6, 5]). In a labeled revisiomgram, the revision program
and the initial knowledge base are enriched lopatrol program which expresses pref-
erences onrules. The control program may include revidierals as well as conditions
on the initial knowledge base. Given an initial knowledgedyahe control program and



the revision program are translated into a revision progséu@re regular justified revi-
sions semantics is used. This approach provides prefecapadilities similar to those
supported by the MINERVA agent architecture [12].

The second approach (Section 4) generalizes revision gmogythrough the intro-
duction ofweights(or costg associated to the components of a revision program (revi-
sion rules and/or database atoms). The weights are aimed\atling general criteria
for the selection of subsets of the soft revision rules todmesiered in the computa-
tion of the revisions of the initial database. Differentipw@s in assigning weights are
considered, allowing for the encoding of very powerful prehce criteria (e.g., revi-
sions that differ from the initial database in the least namdf atoms). This level of
preference management addresses many of the preferengeenegnts described in
the MAS literature (e.g., [11]).

For each of the proposed approaches to the managementeifgreés, we provide
an effective implementation schema based on translatiandwer set programming—
specifically to thesnmodel s [17] language. This leads to effective ways to compute
preferredrevisions for any initial database w.r.t. a revision prognaith preferences.

The main contribution of this work is the identification ofrfies of preferences
that are specifically relevant to the revision programmiagggigm and justified by the
needs of knowledge maintenance and integration in MAS, badntvestigation of the
semantics and implementation issues deriving from thé&ioduction.

2 Preliminaries: Revision Programming

In this section we present the formal definition of revisioagrams with justified revi-
sion semantics and some of their properties [16, 15, 14].

Elements of some finite univergéare calledatoms Subsets ot/ are calleddata-
basesExpressions of the forim(a) or out(a), wherea is an atom, are callegvision
literals. For a revision literain(a), its dualis the revision literabut(a). Similarly, the
dual of out(a) is in(a). The dual of a revision literak is denoted byn?”. A set of
revision literalsL is coherentf it does not contain a pair of dual literals. For any set of
atomsB C U, we denoteB® = {in(a) : a € B} U{out(a) : a ¢ B}. A revision rule
is an expression of one of the following two types:

out(a) < in(ay),...,in(ay),out(by),...,out(b,), (2

)

in(a) < in(a1),...,in(ay),out(by),..., out(by,) or Q)

wherea, a; andb; are atoms. Aevision progranis a collection of revision rules. Revi-
sion rules have a declarative interpretation as constraimtiatabases. For instance, rule
(1) imposes the following conditiom:is in the database, or at least ane1 < i < m,
is notin the database, or at least dijel < j < n, isin the database.

Revision rules also have a computational (imperativeyjpntgation that expresses
a way to enforce a constraint. Assume that all data item$ < i < m, belong to the
current database, sdy and none of the data itends, 1 < j < n, belongs tal. Then,
to enforce the constraint (1), the itesrmust be added to the database (removed from
it, in the case of the constraint (2)), rather than removaug{ng) some item; (b;).



Given a revision rule, by head(r) andbody(r) we denote the literal on the left
hand side and the set of literals on the right hand side oftheespectively.

A set of atomsB C U is amodelof (or satisfie} a revision literalin(a) (resp.,
out(a)), if a € B (resp.a ¢ B). A set of atoms3 is amodelof (or satisfie} a revision
rule r if either B is not a model of at least one revision literal from the body obr
B is a model ofhead(r). A set of atomsB is amodelof a revision progran® if B is
a model of every rule irP. Let P be a revision program. Theecessary changsf P,
NC(P), is the least model oP, when treated as a Horn program built of independent
propositional atoms of the forin (a) andout(b).

The collection of all revision literals describing the elemts that do not change
their status in the transition from a databds® a databas is called theinertia set
for I andR, and is defined as follows:

Inertia(I, R) = {in(a):a € IN R} U {out(a):a ¢ I UR}.

By the reductof P with respect to a pair of databases R), denoted byPr g, we
mean the revision program obtained frdtrby eliminating from the body of each rule
in P all literals inlnertia(I, R). The necessary change of the progtBjr provides a
justification for some insertions and deletions. These raetyy the changes that aae
posteriorijustified by P in the context of the initial databadeand a putative revised
database?.

Given a databaskand a coherent set of revision literdlswe define

I®L=(I\{a€cU:out(a) € L})U{a € U:in(a) € L}.

Definition 1 ([16]). A databaseR is a P-justified revisionof databasd if the neces-
sary change of; g is coherentand iR = I & NC(Pr r).

Basic properties of justified revisions include the follogi[16]:

1. If a database is a P-justified revision off, thenR is a model ofP.

2. If a databasés satisfies a revision progra then B is a uniqueP-justified revi-
sion of itself.

3. If R is a P-justified revision ofl, thenR + I is minimal in the family{B + I :
B is a model ofP }—whereR + I denotes the symmetric difference®fand!. In
other words, justified revisions of a database differ midigrfaom the database.
Another important property of revision programs is thattaier transformations

(shiftg preserve justified revisions [14]. For each $8t C U, a W-transformation
is defined as follows ([14]). If is a literal of the formin(a) or out(a), then

aP, whena e W

Tw(a) = {a, whena ¢ W.

Given a sef_ of literals,Tyw (L) = {Tw(«a): « € L}. For example, itV = {a, b}, then
Tw ({in(a), out(b),in(c)}) = {out(a),in(b),in(c)}. Given a sed of atoms Ty (4) =

{a:in(a) € Tw(A°)}. In particular, for any databade T7(I) = ). Given a revision
programP, Ty (P) is obtained fromP by applyingTw to every literal inP. The
Shifting Theorem [14] states that for any databalkard.J, databasé is a P-justified



revision of I if and only if 77 s (R) is aTr- j(P)-justified revision of/. The Shifting
Theorem provides a practical way [14] to compute justifiadsiens using answer set
programming engines (e.g.nodel s [17]). It can be done by executing the following
steps.
1. Given arevision progratA and an initial databasg we can apply the transforma-
tion 7'y to obtain the revision prograffi; (P) and the empty initial database.
2. Ty (P) can be converted into a logic program with constraints bjapg revision
rules of the type (1) by

a< ai,...,am,not by, ...,not by, )
and replacing revision rules of the type (2) by constraints
— a,ay,...,0y,notby,...,notb,. 4)

We denote the logic program with constraints obtained fraevésion progrant)
via the above conversion By(Q).
. Givenlp(T;(P)) we can compute its answer sets.
4. Finally, the transformatiofi; can be applied to the answer sets to obtainfhe
justified revisions of .

w

3 Revision programs with preferences

In this section, we introduceevision programs with preferencethat can be used to
deal with preferences between rules of a revision prograenb®gin with an example

to motivate the introduction of preferences between remisules. We then present the
syntax and semantics and discuss some properties of nepsa@rams with prefer-

ences.

3.1 Motivational example

Assume that we have a number of agentsas, . .., a,. The environment is encoded
through a set of parameteps, p», . . ., pr. The agents perceive parameters of the en-
vironment, and provide perceived data (observations) wnéraller. The observations
are represented using atoms of the foutxerv(Par, Value, Agent), where Par is

the name of the observed parametésjue is the value for the parameter, adgent

is the name of the agent providing the observation.

The controller combines the data received from agents t@tepits view of the
world, which includes exactly one value for each paramé&tee.views of the world are
described by atomsvorld(Par, V alue, Agent), whereV alue is the current value for
the parametePar, and Agent is the name of the agent that provided the last accepted
value for the parameter. The initial database containsa wiethe world before the
new observations arrive. A revision program, denotedbys used to update the view
of the world, and is composed of rules of the type:

in(observ(Par,Value, Agent))
which describe all new observations; and rules of the fatgwwo types:



in(world(Par,Value,Agent)- in(observ(Par,Value,Agent)) (@
out(world(Par,Value,Agent)- in(world(Par,Valuel,Agentl)), (b)
(where Agent Agentl or Value£ Valuel).

Rules of type (a) allow to generate a new value for a paranoétervorld view from a
new observation. Rules of type (b) are used to enforce thétfatonly one observation
per parameter can be used to update the view.

Itis easy to see that if the value of each parameter is perddiyexactly oneagent
and the initial world view of the controller is coherent, theachP-justified revision
reflects the controller's world view that integrates its tggbservations whenever they
arrive. However,P does not allow any justified revisions when there are two tgen
which perceive different data for the same parameter atimedime. We illustrate this
problem in the following scenario. Let us assume we have wemtsa; andas, both
provide observations for the parameter nanestiperaturedenoting the temperature
in the room. Initially, the controller knows thatorld(temperature76, s»). At a later
time, it receives two new observations

in(observ(temperature?4, a,)) <
in(observ(temperature72, as)) <

There is noP-justified revision for this set of observations as the nsagschange
with respect to it is incoherent, it includes(world(temperature74, a,)) (because of
(a) and the first observation) aodt(world(temperature74, a,)) (because of (a), (b),
and the second observation).

The above situation can be resolved by placing a prefereateelen the values
provided by the agents. For example, if we know that aggrihas a better temper-
ature sensor than agedt, then we should tell the controller that observationsof
are preferred to those af . This can be described by adding preferences of the form:
prefer(r2,r1), whererl andr2 are names of rules of type (a) containimgandas,,
respectively. With the above preference, the controlleughbe able to derive a jus-
tified revision which would contaimorld(temperature72, a»). If the agentu, has a
broken temperature sensor and does not provide tempeodiseevations, the value of
temperaturewill be determined by:; and the world view will be updated correctly by
P.

The above preference represents a fixed order of rule’scgtigh in creating re-
visions. Sometimes, preferences might be dynamic. As ampbeg we may prefer the
controller to keep using temperature observations fronséimee agent if available. This
can be described by preferences of the form:

prefer(rl,r2) < world(temperature,Value,) € I, in(observ(temperature,NewValug));
prefer(r2,rl)«+ world(temperature,Value;) € I, in(observ(temperature,NewValug));

where rl and r2 are names of rules of type (a) containingndas respectively, and
is an initial database (a view of the world before the new plad®ns arrive).

3.2 Syntax and Semantics

A labeled revision progranis a pair(P, £) whereP is a revision program and is
a function which assigns to each revision ruleAra unique name (label). The label



of aruler € P is denotedC(r). The rule with a label is denoted-(1). We will use
head(l), body(l) to denotehead(r(l)) andbody(r(l)) respectively. The set of labels
of all revision rules fromP is denotedC(P). That is,L(P) = {L(r) : r € P}. For
simplicity, for each ruleyy + ay, ..., a, of P, we will write:

l:apg < ai,...,an

to indicate that is the value assigned to the rule by the functibn
A preferenceon rules in(P, £) is an expression of the following form
preferl,,ly) « initially (o, ..., ax), kg1, ..., Qn, (5)
wherely, I; are labels of rules i, a; ..., a,, are revision literalsk > 0, n > k.

Informally, the preference (5) mean that if revision litera; ..., a; are satisfied
by the initial database and literadg, 11, . .., a, are satisfied by a revision, then we
prefer to use rule(l;) over ruler(ly). More precisely, if the body of rule(l;) is
satisfied then rule(l,) is defeated and ignored. ¥bdy(l,) is not satisfied then rule
r(ly) is used.

A revision program with preferencésa triple(P, £, S), where(P, £) is a labeled
revision program and is a set of preferences on rules(iR, £). We refer toS as the
control program since it plays an important role on whatswlen be used in construct-
ing the revisions.

A revision program with preferencé®, £, S) can be translated into an ordinary
revision program as follows. Léf“(¥) be the universe obtained frobi by adding
new atoms of the formk(1), defeated), prefer(l,,1,) for all I, 1,1, € L(P). Given
an initial databasé, we define a new revision prografv-! overUU~(P) as the revision
program consisting of the following revision rules:

e for eachl € £(P), the revision progran®*-! contains the two rules

head(l) < body(l),in(ok(l)) (6)
in(ok(l)) + out(defeated)) (7)
e for each preferencerefer(ly, l2) « initially (a1, ..., o), ags1,...,a, in S such

thata; ..., a; are satisfied by, PS:! contains the rules

in(prefer(ly, l2)) < apr1,...,qn (8)
in(defeated-)) < body(l1),in(preferly,l2)) 9)

Following the compilation approach in dealing with preferes, we define the no-
tion of (P, £, S)-justified revisions of an initial databageas follows.

Definition 2. A databaseR is a (P, £, S)-justified revisionof I if there existsk' C
U~(P) such thatR' is a P -justified revision of, andR = R' N U.

The next example illustrates the definition of justified séums with respect to re-
vision programs with preferences.



Example 1.Let P be the program containing the rules

r1 : in(world(temperature76, a,)) < in(observ(temperature?6, a;)).
ro : in(world(temperature77, ay)) < in(observ(temperature?7, as)).

and the sefS of preferences consists of a single preferepeger(ry,r,). Let I} =
{observ(temperature76, a, ), observ(temperature77, a;) } be the initial database. The
revision programP°:11 is the following:

in(world(temperature76, a;)) < in(observ(temperature76,a;)), in(ok(ry))
in(world(temperature?7, as)) < in(observ(temperature?7, az)),in(ok(r2))
in(ok(ry)) « out(defeatedr;))
in(ok(rz)) « out(defeatedr:))
m(prefer(rl re))
in(defeate@r)) < in(observ(temperature76, a;)),

in(prefer(ry, r2))

Sincel; has only oneP*'": -justified revision,
R — { observ(temperature76, a, ), observ(temperature77, a), }
! world(temperature76, a; ), prefer(ry,r2), ok(r1) defeate(jrg
thenl; has only ond P, £, S)-justified revision{world(temperature76, a;)}*.
Now, consider the case where the initial database is
I, = {observ(temperature77, az)}.
The revision progran®-2 = P51, Sincel, has only oneP*:!2-justified revision,
R — world(temperature77, a2), observ(temperature77, as), }
2= prefer(ry,ra), ok(r1), ok(ra) '
we can conclude thd has only on€ P, £, S)-justified revision,
{world(temperature77, as)}*.
Notice the difference in the two cases: in the first case, fulie defeated and cannot
be used in generating the justified revision. In the secosd bath rules can be used.

3.3 Properties

Justified revision semantics for revision programs withfgnences extends justified
revision semantics for ordinary revision programs. Morecisely:

Theorem 1. A databaseR is a (P, £, }))-justified revision ofl if and only ifR is a
P-justified revision of .

Proof.

(=) LetRbe a(P, L, ()-justified revision ofl . By definition, there exist®’ C U*(F)
such thatR' is a P?!-justified revision off, andR = R' N U. By definition of a
justified revision N C((P%') x/) is coherent, an&’ = TS NC((P%); r/). Revision
programP? consists of the rules of the form (6) and (7) only. Therefétedoes not
contain atoms of the forrdefeated) (I € £(P)). Thus,(P%!); g consists of rules

head(l') < body(l"),in(ok(1")) (foralll’ € Pr g)
in(ok(l)) + (foralll € L(P))
1 We omit the observations from the revised database.



Hence NC((P%"); r)) = NC(Pr.r)U{ok(l) : 1 € L(P)}. SinceNC((P®")r r/) is
coherentNC(Pr r) is coherent, too. If we take intersection withof left- and right-
hand sides of equatioR’ = I ® NC((P*); /), we getR = I @& NC(P; ). By
definition, R is a P-justified revision off .

(<) Let R be aP-justified revision ofl. ConsiderR’ = R U {ok(l) : I € L(P)}.
Let us show thaR' is a P%-justified revision ofl. Indeed nertia(1, R') contains all
revision literals of the fornout(defeated)). Therefore( P%7); . consists of rules

head(l') < body(1'),in(ok(1")) (foralll' € Pr R)
in(ok(l)) + (foralll € L(P))

Thus, NC((P%!); p) = NC(Pr.r) U {in(ok(l)) : I € L(P)}. Consequently] @
NCO((P*!; p) = (I ® NC(Prg)) U{ok(l) : 1 € L(P)} = RU{ok(l) : | €
L(P)} = R'. By definition,R’ is aP?!-justified revision ofl. Hence R is a(P, L, §)-
justified revision off. |
We will now investigate other properties of revision pragsawith preferences. Be-
cause of the presence of preferences, it is expected thaveof (P, L, S)-justified
revision ofI is a model ofP. This can be seen in the next example.

Example 2.Let P be the program
r1 :in(a) < out(d) ro 1 in(b) < out(a)

and the sefS consists of two preferencegrefer(r;, ;) andprefer(ry, r1). Then,d is
(P, L, S)-justified revision of} (both rules are defeated) but not a modePof

The above example also shows that circular preferences@rtes whose bodies
can be satisfied simultaneously, may lead to a situation valiesuch rules will defeat
each other, and therefore, none of the rules involved wilised in computing justified
revisions. This situation corresponds to a conflict amorejgvences. For instance, in
the above example a conflict is between a preference to-ugestead ofr, and a
preference to use, instead ofr;. In order to satisfy the preferences both rules need to
be removed.

The next theorem shows that for egdP £, S)-justified revisionR of I, the subset
of rules in P that are satisfied by, is uniquely determined. To formulate the theo-
rem, we need some more notation. Liebe a subset o7 ("). By P|; we denote the
program consisting of the rulesn P such that

e ok(L(r)) € J,or
e ok(L(r)) ¢ J andbody(r) \ J¢ # 0.

Theorem 2. For every P! -justified revisionR of I, the correspondindP, £, S)-
justified revisionk N U of I is a model of progran®| .

Proof. Consider a ruler in P|g. Let us prove thaR N U is a model ofr. If body(r)
is not satisfied byk N U, thenr is trivially satisfied byR N U. Assume thabody(r)
is satisfied byR N U. Since all revision literals iody(r) belong toU*¢, body(r) is
satisfied byR, andbody(r) \ R¢ = (. By definition of P/, ruler’

r' = head(r) + body(r),in(ok(L(r)))



belongs toP*:!. By definition of P|g, ok(L(r)) € R. Hence,body(r') is satisfied
by R. By definition of a(P, L, S)-justified revision,R is a model ofP*:’. Therefore,
head(r') = head(r) is satisfied byR. Sincehead(r) € U¢, it is satisfied byR N U.
Thus,R N U is a model. ConsequentlyR N U is a model ofP| z. O

In the rest of this subsection, we discuss some propert&gtarantee that each
(P, L, S)-justified revision off is a model of the prograr?. We concentrate on con-
ditions on the set of preferencés Obviously, Example 2 suggests thashould not
contain a cycle between rules. The next example shows tipaeiérences are placed
on a pair of rules such that the body of one of them is satisfieentthe other rule is
fired, then this may result in revisions that are not modetb@fprogram.

Example 3.Let P be the program
ry :in(a) < in(b) o : in(d) < out(a)

and the set of preferencsconsists oprefer(rs, r1). Then,{b, d} is (P, L, S)-justified
revision of{b} but is not a model oP.

We now define precisely the conditions that guarantee ttsifipd revisions of
revision programs with preferences are models of the i@vigrograms as well. First,
we define when two rules are disjoint, i.e., when two rulesncabe used at the same
time in creating revisions.

Definition 3. Let (P, £, S) be a revision program with preferences. Two rutes’ of
P aredisjointif one of the following conditions is satisfied:

1. (head(r))P € body(r') and (head(r"))P € body(r); or

2. body(r) U body(r') is incoherent.

We say that a set of preferenceséectingf it contains only preferences between
disjoint rules.

Definition 4. Let (P, L, S) be a revision program with preference$.is said to be a
set ofselecting preferencékfor every preference

prefer(r,r') < Iy,..., 1

in S, rulesr andr’ are disjoint.

Finally, we say that a set of preferences is cycle-free iftthrsitive closure of the
preference relatiopreferdoes not contain a cycle.

Definition 5. Let(P, £, S) be arevision program with preferences and= {(r1,r2) |
prefer(ry, r2) occurs as head of a preferenceS§rand (body (r1 )Ubody(r2)) is coherent.
S is said to becycle-freeif for every ruler of P, (r,r) does not belong to the transitive
closure< of <s.

Lemma 1. Let (P, L, S) be a revision program with preferences whetes a set of
selecting preferences. L&be a(P, L, S)-justified revision of . For every ruler in P
such thathead(r) ¢ R® andbody(r) C R there exists a rule’ such that(r', r) €<g,
head(r') & R, andbody(r') C R°.



Proof. Let R' C UX(P) be aP!-justified revision off such that? = R'NU (it exists
by definition of a(P, £, S)-justified revision). Becauskead(r) ¢ R° andbody(r) C
R¢, we have thatlefeate¢r) € R'. Hence, there exists a rutein P and a preference

prefer(r’,r) « 11,...,1

in S such that{l;,...,lx} C R® andbody(r') C R°. Sincebody(r) C R° and
body(r') C R¢, the sef(body(r') Ubody(r)) is coherent. Thereforér’, r) €<gs. Rules

r andr’ are disjoint becausg is a set of selecting preferences. Condition 2 in the
definition of disjoint rules for andr’ is not satisfied becaugéody (') U body(r)) is
coherent. Hence, condition 1 must be satisfied. Nantékyd(r))? € body(r') and
(head(r'))P € body(r). Becauséody(r) C R andR° does not contain a pair of dual
literals, we conclude thatead(r') ¢ R°. This proves the lemma. |

The next theorem shows that the conditions on the set of @mefesS guarantee
that preferred justified revisions are models of the origiegision program.

Theorem 3. Let (P, £, S) be a revision program with preferences whérés a set of
selecting preferences and is cycle-free. For edtyL, S)-justified revisionR of I, R
is a model ofP.

Proof. Let » be a rule inP. If body(r) is not satisfied byR then ruler is trivially
satisfied byR. Assume thabody(r) is satisfied byR. That is,body(r) C R°. We need
to prove that in this caskead(r) € R°. Assume the contrarfead(r) ¢ R°. By
Lemma 1, we know that there exists a rulesuch thatr,,r) €<g, body(r;) C R¢,
andhead(r1) ¢ R¢. Applying Lemma 1 one more time, we conclude that there gxist
arulery such that(ro, 1) €<g, body(r2) C R, andhead(r2) ¢ R¢, etc. In other
words, this implies that there exists an infinite sequence- r,71,...,7%, Tkt1,-- -
such that(r;;1,7;) €<s. SinceP is finite, we can conclude that there exists some
t > s such that; = r,. This implies that(r;, ;) €<%, i.e., S is not cycle-free. This
contradicts the assumption thétis cycle-free. In other words, our assumption that
head(r) ¢ R° is wrong. This proves the theorem. O
The next theorem discusses the shifting property of rewipimgrams with prefer-
ences. We extend the definition Bf -transformationto a set of preferences on rules.
Given a preference on rulesof the form (5), itsiW -transformation is the preference

Given a set of preferences its W -transformation i€'w (S) = {Tw(p) : p € S}.

Theorem 4. Let(P, L, S) be a revision program with preferences. For every two data-
basesl; and I, a databaseR, is a (P, L, S)-justified revision off; if and only if
Tr-1,(Ry)isa(Tr,-1,(P), L, Tr, -1,(S))-justified revision ofl,.

Proof. LetW = I; + I>.

(=) LetR; be a(P, L, S)-justified revision ofl;. By definition, there exist®} such
that R} is a P5I1-justified revision ofl and R, = R} N U. It is straightforward to
see thaflyy (PS11) = Ty (P)Tw(5):>| This together with the Shifting Theorem [14]



implies thatTy (R}) is a Ty (P)™w (9):T2-justified revision ofTyy (I;) = I,. Notice
thatTw (R}) N U = Tw(R1). ThereforeTw (R:1) is a(Tw (P), £, Tw (S))-justified
revision ofI5.

(<) The proof in the other direction is similar. |

4  Soft revision rules with weights

Preferences between rules (Section 3) can be useful in sit twa ways. They can
be used to recover from incoherency when agents providegistent data, as in the
example from Section 3.1. They can also be used to elimimate sevisions. The next
example shows that in some situations, this type of prete®is rather weak.

Example 4.Consider again the example from Section 3.1, with two agenenda,
whose observations are used to determine the value of thengéertemperaturelLet

us assume now that anda, are of the same quality, i.@emperaturecan be updated
by one of the observations yielded by anda, . This means that there is no preference
between the rule of type (a) (feg) and the rule of type (a) (far,) and vice versa. Yet,
as we can see, allowing both rules to be used in computingethigions will not allow
the controller to update its world view when the observatiare inconsistent.

The problem in the above example could be resolved by grgupia rules of the
type (a) into a set and allowing only one rule from this setgaibed in creating revisions
if the presence of all the rules does not allow justified rievis.

Inspired by the research in constraint programming, we ggepo address the sit-
uation when there are no justified revisions by dividing asiem programP in two
parts,HR andSR, i.e.,P = HR U SR. Rules fromH R andSR are callechard rules
andsoft rules respectively. The intuition is that rules i R must be satisfied by each
revision, while revisions may satisfy only a subsefdt if it is impossible to satisfy all
of them. The subset of soft rules that is satisfied, Saghould be optimal with respect
to some comparison criteria. In this section, we investigatveral criteria—each one
is discussed in a separate subsection.

4.1 Maximal number of rules

Let P = HR U SR. Our goal is to find revisions that satisfy all rules fraiR and
the most number of rules frorfiR. Example 4 motivates the search for this type of
revisions. In the next definition, we make this precise.

Definition 6. R is a (H R, SR)-preferred justified revision of if Risa(HR U S) -
justified revision off for someS C SR, and for all S’ C SR such thatS’ has more
rules thanS, there are nd H R U S')-justified revisions of.

Preferred justified revision can be computed, under the maixhnumber of rules
criteria, by extending the translation of revision progsatimanswer set programming,
to handle the distinction between hard and soft rules. Thectibe is to determine
(HR U S)-justified revisions of an initial databade whereS is a subset ofSR of
maximal size such thdfl R U S)-justified revisions exist.



The idea is to make use of two language extensions proposdielsnodel s
system: choice rules amahxi ni ze statements. Intuitively, each soft rule can be either
accepted or rejected in the program used to determine oegisLet us assume that
the rules inT;(SR) have been uniguely numbered. For each initial datatiasee
translateP = HRUSR into ansnodel s programlp(T;(HR))Ulp' (Tr(SR)) where
Ip'(T1(SR)) is defined as follows. If the rule numbein 77 (SR) is

in(a) < in(p1),...,iN(pm),0ut(sy),...,out(sy,)
then the following rules are addedii@ (T (SR))

{rule;} : — p1,...,pm,n0t $1,...,n0t Sp.

out(a) < in(p1),...,iN(pm),0ut(s1),...,0ut(sy)

is the rule numbet in T7(SR), then the following rules are addedits (77 (SR))

{rule;} : — p1,...,pm,n0t $1,...,n0t $p.

whererule; is a distinct new atom. Finally, we need to enforce the faat the desire

to maximize the number & R rules that are satisfied. This corresponds to maximizing
the number ofrule; that are true in the computed answer sets. This can be girectl
expressed by the following statement:

maxi m ze{ruley,...,rule;}. (10)

wherek is the number of rules i§ R. The way howsnpdel s system processesx-

i m ze statement is as follows. It first searches a single model antspt. After that,
snodel s prints only "better” models. The last model tretodel s prints will cor-
respond to § HR, SR)-preferred justified revision of. Notice that this is the only
occurrence ofraxi i ze in the translation which is a requirement for the correct-han
dling of this constructirsnodel s.

4.2 Maximal subset of rules

A variation of definition from Section 4.1 can be obtained wirstead of satisfying
maximal number of soft rules it is desired to satisfy a maxisudoset of soft rules. In
other words, givelP = HR U SR, the goal is to find revisions that satisfy all rules
from H R and a maximal subset (with respect to set inclusion) of rirtes SR. The
precise definition follows.

Definition 7. Ris a(HR, SR)-preferred- justified revision of if Risa(HR U S) -
justified revision ofl for someS C SR, and for all S’ if S ¢ S’ C SR, then there are
no (HR U S’)-justified revisions of.

The procedure described in Section 4.1 allows to computeam of(H R, SR)-
preferred justified revisions which has maximal number of soft rulessfiad.



4.3 Weights

An alternative to the maximal subset of soft rules is to assigights to the revisions
and then select those with the maximal (or minimal) weighthis section, we consider
two different ways of assigning weights to revisions. Firge assign weight to rule.
Next, we assign weight to atoms. In both cases, the goal imtbdisubsef of SR
such that the prograif R U S has revisions whose weight is maximal.

Weighted rules.Each ruler in SR is assigned a weight (a numbeuj(r). Intuitively,
w(r) represents the importancegfi.e., the more the weight of a rule the more impor-
tant it is to satisfy it.

Example 5.Let us reconsider the example from Section 3.1. Rules ofype ta) are
treated as soft rules, while the rules of type (b) are treaseldard rules. We can make
use of rule weights to select desired revisions. For exanifde observed parameter
value falls outside expected value range for the paranmieteay suggest that an agent
that provided the observation has a faulty sensor. Thus, ayeprefer observations that
are closer to the expected range. This can be expressedduyadsg) to each rule of
the type (a) the weight

w(r) = min{0, MaxEV — Value} + min{0, Value — MinEV},
whereMaxEV andMinEV are maximum and minimum expected valuesRair.
Let us define the rule-weighted justified revision of a prograith weights for rules.

Definition 8. R is called a rule-weightedH R, SR)-justified revision off if the fol-
lowing two conditions are satisfied:
1. there exists a set of rul&sC SR s.t. Ris a(H R U S)-justified revision of , and
2. forany setof rule$’ C SR, if R' is a(H R U S')-justified revision of , then the
sum of weights of rules ifi’ is less or equal than the sum of weights of rules§'in

Let us generalize the implementation in the previous sestio consider weighted
rules. The underlying principle is similar, with the diféerce that the selection of soft
rules to include is driven by the goal of maximizing the totedight of the soft rules
that are satisfied by the justified revision. The only changeneed to introduce w.r.t.
the implementation is in themxi m ze statement. Let us assume thati) denotes
the weight associated to thith SR rule. Then, instead of the rule (10) the following
maximize statement is generated:

mexi m zefrule; = w(l),ruley = w(2),...,rule; = w(k)].
Weighted atoms.Instead of assigning weights to rules, we can also assigghiseto
atoms in the universg. Each atonu in the universé/ is assigned a weight(a) which
represented the degree we would like to keep it unchangegttie more the weight of
an atom the less we want to change its status in a databaseeXhexample presents
a situation where this type of preferences is desirable.

Example 6.Let us return to the example from Section 3.1 with the samétioar of
rules in hard and soft rules as in Example 5. Let us assumettbathoice of which



observation to use to update the view of the world is baseti®principle that stronger
values for the parameters are preferable, as they denotergyst signal. This can be
encoded by associating weights of the form

w(world(Param,V alue, Sensor)) = —Value
and minimizing the total weight of the revision.

Let us define preferred justified revision for programs witkigit atoms.

Definition 9. R is called an atom-weightedd R, S R)-justified revision of if the fol-
lowing two conditions are satisfied:
1. there exists a set of rul&sC SR s.t. Ris a(H R U S)-justified revision of , and
2. forany set of rules’ C SR, if Q isa(HR U S')-justified revision of, then the
sum of weights of atoms ih+ @ is greater than or equal to the sum of weights of
atomsin/ + R.

Atom-weighted revisions can be computed ussimpdel s. In this case the selec-
tion of the SR rules to be included is indirectly driven by the goal of miiging the
total weight of the atoms id + R, if I is the initial database ang is the justified
revision. We make use of the following observation: giverésion programP and
an initial databasé, if T;(R) is aT;(P)-justified revision off), thenT;(R) = I + R.
Thanks to this observation, the computation of the weighhefdifference between the
original database andR-justified revision can be computed by determining tin@l
weight of the true atoms obtained from the answer set gesebfat thel; (P) program.

The program used to compute preferred revisions is encddethdy to what is
done for the case of maximal number of rules or weighted riles each soft rule is
encoded usingnodel s’s’ choice rules. The only difference is that instead of nmaki
use of amaxi m ze statement, we make use ofrani m ze statement of the form:

m ni m zela; = w(a),as = w(as),...,a, = w(ay,)] (11)

whereay, . .., a, are all the atoms id/.

4.4 Minimal size difference

In this subsection, we consider justified revisions thathainimal size difference with
initial database. The next example shows that this is dasiia different situations.

Example 7.Assume that a department needs to form a committee to worloore s
problem. Each of the department faculty members has hisrare conditions on the
committee members which need to be satisfied. The head oéfferttnent provided an
initial proposal for members of the committee. The task i®ton a committee which
will satisfy all conditions imposed by the faculty membensl avill differ the least from
the initial proposal — the size of the symmetric differeneéAren the initial proposal
and its revision is minimal.

In this problem we have a set of agents (faculty members) ebalhich provides
its set of requirements (revision rules). The goal is tasfatll agent’s requirements in
such a way that the least number of changes is made to thed thitiabase (proposal).



Assume that faculty members are Ann, Bob, Chris, David, f@nild Frank. Con-
ditions that they impose on the committee are the following:

Ann: in(Bob) < out(Chris)
in(Chris) < out(Bob)
Bob : out(David) < in(Bob)
Chris : out(Ann) < out(David)
David : in(David) < in(Chris), out(Ann)

The initial proposal i = {Ann, David}. Then, there is one minimal size differ-
enceP-justified revisions off, which is Ry = {Ann, David, Bob}. The size of the
differenceR; + I'is 1.

Ordinary P-justified revisions off also includeR, = {Bob} with size of the dif-
ferenceR, + I equal to 3.

The next definition captures what is a minimal size diffejastified revision.

Definition 10. R is called a minimal size differende-justified revision of if the fol-
lowing two conditions are satisfied:
1. Ris a P-justified revision of/, and
2. for anyP-justified revisionk’, the number of atoms iR + I is less than or equal
to the number of atoms iR’ + 1.

Minimal size difference justified revision can be computedlmost the same way
as for atom-weighted justified revisions. The intuition it instead of minimizing
the total weight off +~ R (where[ is the initial database anB is a P-justified re-
vision), we would like to minimize the size df + R. This can be accomplished by
replacing them ni mi ze statement (11) with the followingi ni mi ze statement:

m nimze{ay,as,...,an}
whereay, ..., a, are all the atoms /.

5 Related work

Since revision programming is strongly related to the Iqggiegramming formalisms
[15,14, 19], our work is related to several works on reaspmiith preferences in logic
programming. In this section, we discuss the differencessimilarities between our
approach and some of the research in this area. In logic amuging, preferences
have been an important source for “correct reasoning”itiaély, a logic program is
developed to represent a problem, with the intention tlsasémantics (e.g., answer
set or well-founded semantics) will yield correct answershe specific problem in-
stances. Adding preferences between rules is one way tinaliencounter-intuitive (or
unwanted) results. Often, this also makes the programre@sienderstand and more
elaboration tolerant. In the literature on logic programgwith preferences, we can
find at least two distinct ways to handle preferences. Thedpproach is to compile
the preferences into the program (e.g., [10, 6]): given gianm P with a set of prefer-
encegref, a new prograanref is defined whose answer set semantics is used as the



preferred semantics df with respect tqoref. The second approach deals with prefer-
ences between rules by defining a new semantics for logioanagwith preferences
(e.g., [5,21]). The advantage of the first approach is thdaeéts not require the introduc-
tion of a new semantics — thus, answer set solvers can beasedipute the preferred
semantics. The second approach, on the other hand, pravidese direct treatment of
preferences.

Section 3 of this paper follows the first approach. We defineten of revision pro-
gram with preferencesvhich is a labeled revision program with preferences betwe
the rules. Given a revision program with preferences, westede it into an ordinary re-
vision program, and we define justified revisions w.r.t. texé@gion program with pref-
erences as justified revisions w.r.t. the revision progrémained by translation. Our
treatment of preferences is similar to that in [10, 6, 1]. éction 4, we introduce dif-
ferent types of preferences that can be dealt with more g@piately by following the
second approach.

We will now discuss the relationship between our approachathers in greater
detail. We will compare revision programs with preferena@h ordered choice logic
programs [21] and preferred answer sets [5]. Both framesvatlow preferences be-
tween rules — similar to oypreferrelation — to be added to programs (choice logic
programs [21], and extended logic programs [5]). The mdfiedince between our ap-
proach and the approaches in [5, 21] lies in that we adopt dhepdation approach
while preferences in [5, 21] are dealt with using the secq@ach.

Ordered choice logic programs are introduced in [21] for alindy decision mak-
ing with dynamic preferences. An ordered choice logic prog(OCLP)P is a pair
(C, =) whereC is a set of choice logic programs whose rules are of the férm B
whereA andB are finite sets of atoms anlis a partial order o€’ Intuitively, atoms
in A represent alternatives and are assumed to be xor’ed togEdeh member of’
is called a component d?. Intuitively, < specifies an order in which the components
of P are preferred. This ordering is used to select rules thabeaapplied to generate
stable models of’. Given an interpretatiot, a ruler is defeated with respect tb
if there exist(s) some not less preferred rule(s) that caappdied in/ whose head(s)
contain(s) alternatives to the literals in the head-.oThe stable model semantics of
OCLP is defined in the same fashion of the original stable heslaantics, i.e., given
an interpretationV/ of P, a reduction ofP with respect toM — which is a positive
logic program — is defined; and/ is a stable model oP iff M is the stable model of
the reduction ofP with respect taM. It is worth noticing that in the first step of the
reduction, defeated rules with respeciifoare removed fronP. The syntax difference
between OCLP and revision program with preferences doealioot a detailed com-
parison between the two approaches. However, we note theP@dllows the second
approach to deal with preferences while our revision pnogsréth preferences uses the
compilation approach. It is also interesting to notice thiaén the head of every rule in
a OCLP progranP has exactly one element then the preference order does ket ma
any difference in computing stable modelsitince there are no defeated rules. This
could lead to a situation where has a stable modéll and P contains two rules; and
', which belong to two componentg and P;, respectivelyP; is more specific than
P;, bodies of both- andr’ are satisfied in/, and bothr andr’ are fired. Our formal-



ization makes sure that this situation never happens (d(& tnd (7)). For example,
consider the progra® = (C, <) with

O:{Pl,P2}, Plz{p(—}, P2:{q(_}’ and j:{P1<P2}.

Then,{p, ¢} is a stable model of this program. On the other hand, the sporeding
revision program with preferencé®’, £, S) with

P' ={ry :in(p) +, r2 :in(q) +}, and S = {preferry,rs)}

has only{p} as its uniqué P’, £, S)-justified revision ofj.

In[5], preferred answer sets for prioritized logic progsanith preferences between
rules are defined. A new semantics is introduced that satiftfie two principles for
priorities: one represents a meaning postulate for the tpreference” and the other is
related to relevance. A detailed discussion on the diffegsrand similarities between
preferred answer sets for prioritized logic programs ahéicapproaches to preferences
handling in logic programming can be found in [5]. For a pitined logic programs
(P, <), whereP is an extended logic program ardis a preference ordering between
rules of P, the semantics in [5] requires that4f is a preferred answer set P, <)
then A is an answer set oP. Furthermore A is generated by applying the rules in
the order specified by.. Because this is not a requirement in compilation approach,
it is not surprising to see that the approach we have takeeabwiith preferences in
labeled revision programs yield different results compagutio preferred answer sets.
For example, consider the progrdif, <) with

P={ri:p« notq, ra:q+«}, and <= {ry <ra}.

Then, (P, <) does not have a preferred answer set because its only ansigy}s
cannot be generated by first applying the riijeand then the rule,. On the other
hand, the corresponding labeled progr@™, £, S) with

P' = {ry :in(p) < out(q), r2 : in(q) <}, and S = {prefer(ry,r2)}

will have only {p} as its uniqug(P’, £, S)-justified revision off) because rule, is
defeated.

We notice that the preferences in the above examples, viewddr the revision
program framework, are non-selecting preferences (Defind), and justified revi-
sions are not models of the program. Theorem 3 discussesditioonunder which
(P, L, S)-justified revisions are models of the original progr&nWe show next that
under this condition and when only preferences with emptlidmare used, our frame-
work coincides with preferred answer sets for prioritizegit programs [5].

Before we introduce the theorem about the relationship éetwevision program
with preferences and preferred answer sets for priorilizgid programs, we need some
more notation. First, we will assume that for every revigiwagram with preferences
(P, L,S), S is a set of selecting preferences, cycle-free, and the bodach pref-
erence of the form (5) irf is empty. We will refer to such programs asatic revi-
sion programs with preferenceBor such a program, we define a corresponding prior-
itized logic progranQ(P) = (Ip(P), <) wherelp(P) is defined as in Section 2 and
<= {(ll,lg) : prefer(ll,lg) € S}



Theorem 5. Let (P, £, S) be a static revision program with preferences. Thénis
a (P, L, S)-justified revision of the empty databasefiffis a preferred answer set of
Q(P) as defined in [5].

The proof of this property can be found in the appendix.

Our work in this paper is also strongly related to dynamiédggogramming (DLP)
[4]. DLP is introduced as a mean to update knowledge baséegiiljat contain gener-
alized logic programming rules. Roughly, a DLP is an ordéistdf generalized logic
programs, where each represents the properties of the kdge/lbase at a time mo-
ment. The semantics of a DLP — taking into consideration aesecg of programs up
to a time pointt — specifies which rules should be applied to derive the sththeo
knowledge base &t It has been shown that DLP generalizes revision progragin
DLP has been extended to deal with preferences [3, 1]. A DUR prieferences, or a
prioritized DLP, is a pair(P, R) of two DLPs; P is a labeled DLP whose language
does not contain the binary predicateand R is a DLP whose language contains the
binary predicate< and whose set of constants includes all the rule labels froth b
programs. Intuitively( P, R) represents a knowledge at different time moments — the
same way a DLP does — with the exception that there are prefesebetween rules
in (P, R). An atom of the formr; < r, represents the fact that rute is preferred to
rulers. The semantics of prioritized DLP makes sure that the peefax order between
rules is reflected in the set of consequences derivable fnenkriowledge base. More
precisely, for two conflicting rules; andr,, if 7y < ry is derived, then the conse-
quence of the rule,; should be preferred over the consequence,oPrioritized DLP
deals with preferences using the compilation approactadt) the approach coincides
with that of preferred answer sets for extended logic pnogrgb] when the DLP con-
sists of a single program as shown in [3]. In this sense, tlogifized DLP approach is
similar to the approach described in Section 3, in which wetada revision program
a preference relation between its rules and define the semarfita revision program
with preferences following the compilation approach. Iltdars from our discussion
in the previous paragraph that revision programming wittfgnences and DLP with
preferences will yield different results in certain siioat. Other difference between
our work and prioritized DLP lies in that we consider othquag of preferences (e.qg.,
maximal number of applicable rules, weighted rules, weidrgtoms, or minimal size
difference) and prioritized DLP does not. We plan to invgsstie the use of these types
of preferences in DLP in the future.

Finally, DLP is also used as the main representation langdaga multi-agent
architecture in [12]. In this paper, we take the first stepaias this direction by using
revision programming with preferences to represent ansbreabout beliefs of multi-
agents in a coordinated environment. A detailed comparistnMINERVA is planned
in the near future.

6 Conclusions

The notion of preference has found pervasive applicationhé context of knowl-
edge representation and commonsense reasoning in MASdraléarge number of
approaches have been proposed to improve the knowledgesespiation capabilities



of logic programming by introducing different forms of peeénces. In this paper, we
presented a novel extension of the revision programmimgdreork which provides the
foundations for expressing very general types of prefasnereferences provide the
ability to “defeat” the use of certain revision rules in thengputation of the revisions;
this allows us to either reduce the number of revisions gaadr(eventually leading to
a single revision), or to generate revisions even in thegoes of conflicting revision
rules.

We proposed different preference schemes, starting frostatively dynamic par-
tial order between revision rulegegision programs with preferencggand then moving
to a more general notion of weights, associated to revisit@srand/or database atoms.
Soft revision rules can be dynamically included or excluffech the generation of re-
visions depending on optimization criteria based on thegttsi of the revision (e.g.,
minimization of the total weight associated to the revi}idie provided motivating
examples for the different preference schemes, along witieeise description of how
preferred revisions can be computed usingghedel s answer set inference engine.

7 Appendix

In this section we give a proof of Theorem 5, that under certanditions, the justified
revisions of labeled revision programs with preferencdsaide with the preferred
answer sets of prioritized logic programs introduced in [5]

A prioritized logic program is a pair(P, <) whereP is a logic program anek
is a preference relation among rules®f The semantics ofP, <) is defined by its
preferred answer setanswer sets oP satisfying some conditions determined &y
We will first recall the notion of preferred answer sets frdsih [A binary relationR
on a setS is calledstrict partial order (or order) if R is irreflexive and transitive. An
orderR is total if for every paira,b € S, either(a,b) € R or (b,a) € R; R is well-
foundedf every setX C S has a minimal elemenf? is well-orderedif it is total and
well-founded.

Let P be a collection of rules of the form

r: lo<1li,....0m, notlyyq1,..., notl,
wherel;'s are ground literals. Literalg, .. .,[,, are called thererequisitesof r. If
m = 0 thenr is said to beprerequisite freeA rule r is defeatedby a literall if [ = [;
forsomei € {m + 1,...,n},; r is defeated by a set of literal§ if X contains a literal
that defeats. A programP is prerequisite fredf every rule in P is prerequisite free.
For a progranP and a set of literals(, thereduct of P with respect taX, denoted by
X P, is the program obtained fro by

— deleting all rules with prerequisifesuch thai ¢ X; and
— deleting all prerequisites of the remaining rules.

2 |n this appendix, by a logic program we mean a propositiongicl program. This is because
we only work with propositional revision programs.



Definition 11. [5] Let (P, <) be a prioritized logic program wher® is prerequisite
free and< is a total order among rules d?. An answer se$ of P is a preferred answer
set of(P, <) if C.(A) = A where (i)C<(A) is the smallest set of ground literals that
is logically closed (wrtP); (i) ;-, Si € C<(A); and (iii) the sequencs; is defined
as follows:

So=10

Ur, S: if rn is defeated by J7—' S;
or ry, Is defeated byl andhead(r,) € A
Sp =

U= Si U {head(r,)} otherwise
andr,, is thent” rule in the order<.

For an arbitrary prioritized logic program P, <), a set of literalsA is called a pre-
ferred answer set ofP, <) if it is a preferred answer set ¢f* P, <')) for some total
order <’ that extends' < which inherits from by the mapyf : 4P — P, i.e.,riA<r
if and only if f(r}) < f(ry) wheref(r') is the first rule inP with respect to< such
thatr' is obtained from- through the reductiort.

Now we are ready to give the proof of Theorem 5.

Theorem 5Let (P, £, S) be a static revision program with preferences. ThBns a
(P, L, S)-justified revision of the empty database if and onli i a preferred answer
set ofQ(P).

Proof. Let U be the set of all atoms that appear in the progfam

(=) Let R be a(P, L, S)-justified revision of the empty database. We have hét a
model of P (Theorem 3). Hence? satisfies the rules @p(P). Furthermore, there exist
a PS%-justified revisionR’ such thatR’' N U = R.

We will first show thatR is a minimal set of literals satisfying the rulesipf P).
Assume the contrary, that there exi8fsC R such thatM satisfies the rules dp(P).
Considera € R\ M. Sincea € R, there exists a rule of P5? such thatiead(r) =
in(a),in(a) € NC(P&’IQ,), andbody(r) is satisfied byR’. Because € P, we have that
ok(r) € R'. Hence]p(r) € Ip(P) and the body of is satisfied byR. This contradicts
the fact thatM is closed undetp(P). This allows us to conclude tha&t is an answer
set of P.

It remains to be shown thdt is a preferred answer set @p(P), <). Consider the
prioritized progran{ (Ip(P)), <') where®(ip(P)) is the reduct ofp(P) with respect
to R and<' inherits from< (as defined in Definition 11). It follows from the definition
of the reduct that if- € (Ip(P)) andr is not defeated by? thenhead(r) € R.

We need to show thak is a preferred answer set 0f (Ip(P)), <'). Let <* be the
transitive closure ok’, RN = {r | r € (B(Ip(P)), r is not defeated by andr does
not occur in<*}, andRD = {r | r € (B(Ip(P)), r is defeated byk andr does not
occur in<*}. Letrng,..., rny,, be an enumeration RN andrdy, ..., rd,, be an

) ) ) )

enumeration of2 D. We define an ordering” on the rules of #(ip(P)) as follows.



—r <" <l

—rn; <"'rnjforl <i<j<n;

— rng,, <" rforroccursin<*;

rd; <" rd;forl <i < j <ny;and

— r <" rd; for r occurs in<* andl < i < ng;

We have thak" is a total order on the set of rules 6fip(P)). Letry,...,r,, be
the sequence of rules &f(Ip(P)), ordered by<". Let Sy, ..., S, be the sequence of
sets of literals defined fdf (Ip(P)) with respect to<”. It is easy to see that becauRe
is an answer set dP, | J;*, S; C R. Thus, we only need to show that for everg R,
there exist < j < m suchthat € S;.

Consider an arbitrary € R. It follows from the definition of answer set that there
exists some rule of Ip(P) such thatiead(r) = a andbody(r) is satisfied byR. This
implies that the reduct’ of » belongs tof (Ip(P)). Clearly,r’ is not defeated byz.
Without the lost of generality, we can assume that r,; is the first rule in the sequence
of the rules of?(Ip(P)) whose head ia. Together with the fact th@i;é Si C R, we
can conclude thdtead(r) € S;. Thus, we have thak C [J;~, S;. This, together with
the fact thatR is an answer set dp(P), shows thatR is a preferred answer set of
(Ip(P), <).

(<) Let R be a preferred answer set 6f(P), i.e., R is a preferred answer set of
(Ip(P), <') for some total ordex:’ that extends<.

First, because is an answer set dp(P) we have thaf? is a P-justified revision
of ). LetIN' = Inertia(@, R) = {out(a) : a ¢ R}. We have that

R={a€U:in(a) e NC(Pyr)}
whereP; g consists of rules of the form
head(r) < body(r) \ IN'

wherer € P and where, by definitionVC(P ) is the least model of; z, when
treated as a Horn program built of independent propositiattens of the formin(a)
andout(b). Let

d(R) = {defeatetr) | r € P,3r'.[r' < r, R satisfiedody(r')]},
ok(R) = {ok(r) | r € P, defeatedr) ¢ d(R)}

and

R =RUd(R)Uok(R)US.
We will show thatR' is a PS:-justified revision off. Because the initial database is
empty, we have that

Inertia(, R') = {out(a) : a € U*P) ¢ R'}.

To simplify the presentation, let us dendnertia((), R') by IN. From the construction
of R', we have thafl N' = TN n {out(a) : a € U}.

We will now construct the program®’ = qu’]g,. We have thatP’ consists of the
following rules:



(@) head(r) « body(r)\ IN,in(ok(r)) wherer is a rule inP, body(r) \ IN is the set
of literals occurring irbody (r) which do not occur i N.

(b) in(ok(r)) < out(defeatedr)) \ IN;

(c) in(prefen(r,r')) « if prefer(r,r') € S;

(d) in(defeatedlr)) < body(r') \ IN,in(preferr’,r)) if prefenr',r)) € S.

We will now show thatR' is P’-justified revision of the empty database. It follows from
Definition 1 that we need to show th&t = {a : in(a) € NC(P')}. Leta € R'. We
consider four cases:

— a = ok(r) for somer. By construction of?’, we have that € R' iff defeatel) ¢
d(R) iff defeatedr) ¢ R' iff out(defeatedr)) € IN iff in(ok(r)) € NC(P');

— a = prefer(r,r'). From the construction oR’, a € R’ iff prefer(r,r’) € S iff
in(prefer(r, ') «+ belongs toP’ iff in(prefer(r,r')) € NC(P').

— a € U. We will show that for everyu € U, in(a) € NC(P') iff « € R and
out(a) € NC(P') iff a ¢ R'. Observe that for every rule of the type (a) we have
thathead(r) < body(r) \ IN' belongs to the programfy ;. Thereforea € R
(resp.a ¢ R) implies thatin(a) € NC(Py r) (resp.out(a) € NC(Py r)). LetT
be the fix point operator that is used in computing the leagidint of the program
Py r. We have that: € R (resp.a ¢ R) if and only if there exists a minimal
numberk such thatin(a) € T*(Py z) andin(a) ¢ T(Py g) fori < k (resp.
out(a) € T*(Py r) andout(a) & T?(Py g) fori < k). We can prove by induction
overk thatin(a) € NC(P') (resp.out(a) € NC(P")):

e Base:k = 0 implies thatin(a) = head(r) is a fact inPy . Hence,jn(a) +
in(ok(r)) is arule inP’. We would like to show thatk(r) € R'. Assume the
contrary,ok(r) ¢ R'. This implies that there exists a ruté in P such that
prefer(r’,r) € S andR satisfiedody(r'). BecauséP, L, S) is static, we have
that (i) body(r') U body(r) is incoherent; or (i) head(r))P € body(r') and
(head(r'))P € body(r). Since the body of is empty, (i) cannot happen. If
(i) happens, we have thd cannot satisfy the body of due to the fact that
R is a P-justified revision off). This implies that our assumption is incorrect,
i.e.,ok(r) € R'. From the first item, we have thak(r) is a fact inP’. Thus,
in(a) € NC(P'). Similar argument allows us to conclude thabiit(a) €
T°(0) thenout(a) € NC(P').

e Step: Assume that we have proved the conclusionifowe need to show that
if in(a) € T*'(Py r), thenin(a) € NC(P'). Similar to the base case, we
can show that there exists a ruler P such thatiead(r) = in(a),
body(r) \ IN C NC(P') andin(ok(r)) € NC(P'). This allows us to con-
clude thain(a) € NC(P'). The same argumentholds faut(a) € T*+! (P g).
This proves the inductive step.

— a = defeatedr) for somer. Then,a € R’ if and only if there exists a rule’,
prefer(r’,r) € S such that the body of is satisfied byR. Thus,body(r') \ IN is
satisfied byR’, i.e.,in(defeatedr)) € NC(P').

The above items show thate R’ if and only if {a | in(a) € NC(P')}. This implies
thatR' is a P5%-justified revision of), i.e. R is a(P, £, S)-justified revision of). O
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