
Revising Knowledge in Multi-Agent Systems Using
Revision Programming with Preferences

Inna Pivkina, Enrico Pontelli, Tran Cao Son

Department of Computer Science
New Mexico State Universityfipivkinajepontelljtsong@cs.nmsu.edu

Abstract. In this paper we extend theRevision Programmingframework—a
logic-based framework to express and maintain constraintson knowledge bases—
with different forms ofpreferences. Preferences allow users to introduce a bias in
the way agents update their knowledge to meet a given set of constraints. In par-
ticular, they provide a way to select one between alternative feasible revisions and
they allow for the generation of revisions in presence of conflicting constraints,
by relaxing the set of satisfied constraints (soft constraints). A methodology for
computing preferred revisions using answer set programming is presented.

1 Introduction

Multi-Agents Systems (MAS) require coordination mechanisms to facilitate dynamic
collaboration of the intelligent components, with the goalof meeting local and/or global
objectives. In the case of MAS, the coordination structure should provide communi-
cation protocols to link agents having inter-related objectives and it should facilitate
mediation and integration of exchanged knowledge [7]. Centralized coordination ar-
chitectures (e.g., mediator-based architectures) as wellas fully distributed architectures
(e.g., distributed knowledge networks) face the problem ofnon-monotonically updating
agent’s theories to incorporate knowledge derived from different agents. The problem is
compounded by the fact that incoming knowledge could be contradictory—either con-
flicting with the local knowledge or with other incoming items—incomplete, or unre-
liable. Recently a number of formalisms have been proposed [16, 4, 2, 20, 8] to support
dynamic updates of (propositional) logic programming theories; they provide conve-
nient frameworks for describing knowledge base updates as well as constraints to en-
sure user-defined principles of consistency. These types offormalisms have been proved
effective in the context of MAS (e.g., [12]).

One of such formalisms for knowledge base updates isRevision Programming. Re-
vision programming is a formalism to describe and enforce constraints on belief sets,
databases, and more generally, on arbitrary knowledge bases. The revision program-
ming formalism was introduced in [15, 16]. In this framework, theinitial databaserep-
resents the initial state of a belief set or a knowledge base.A revision programis a
collection ofrevision rulesused to describe constraints on the content of the database.
Revision rules could be quite complex and are usually in the form of conditions. For
instance, a typical revision rule may express a condition that, if certain elements are

present in the database and some other elements are absent, then another given ele-
ment must be absent from (or present in) the database. Revision rules offer a natural
way of encoding policies for the integration of agent-generated knowledge (e.g., in a
mediator-based architecture) or for the management of inter-agent exchanges.

In addition to being a declarative specification of a constraint on a knowledge base,
a revision rule also has a computational interpretation—indicating a way to satisfy
the constraint. Justified revisions semantics assigns to any knowledge base a (possibly
empty) family of revisions. Each revision represents an updated version of the origi-
nal knowledge base, that satisfies all the constraints provided by the revision program.
Revisions are obtained by performing additions and deletions of elements from the orig-
inal knowledge base, according to the content of the revision rules. Each revision might
be chosen as an update of the original knowledge base w.r.t. the revision program.

The mechanisms used by revision programming to handle updates of a knowledge
base or belief set may lead to indeterminate situations. Theconstraints imposed on the
knowledge base are interpreted ashard constraints, that have to be met at all costs; nev-
ertheless this is rather unnatural in domains where overlapping and conflicting consis-
tency constraints may be present (e.g., legal reasoning [18], suppliers and broker agents
in a supply chain [13])—leading to the generation ofnoacceptable revisions. Similarly,
situations with under-specified constraints or incompleteknowledge may lead to revi-
sion programs that providemultiplealternative revisions for the same initial knowledge
base. While such situations might be acceptable, there are many cases where a single
revision is desired—e.g., agents desire to maintain a unique view of a knowledge base.

Preferencesprovide a natural way to address these issues; preferences allow the re-
vision programmer to introduce a bias, and focus the generation of revisions towards
more desirable directions. Preferences between revisionsrules and/or preferences be-
tween the components of the revisions can be employed to select the way revisions are
computed, ruling out undesirable alternatives and defeating conflicting constraints. The
use of preference structures has been gaining relevance in the MAS community as key
mechanism in negotiation models for MAS coordination architectures [9, 11].

In this work we propose extensions of revision programming that provide gen-
eral mechanisms to express different classes of preferences—justified by the needs of
knowledge integration in MAS. The basic underlying mechanism common to the ex-
tensions presented in this work is the idea of allowing classes of revision rules to be
treated assoft revision rules. A revision might be allowed even if it does not satisfy
all the soft revision rules but only selected subsets of them; user preferences express
criteria to select the desired subsets of soft revision rules.

Our first approach (Section 3) is based on the use ofrevision programs with pref-
erences, where dynamic partial orders are established between the revision rules. It
provides a natural mechanism to select preferred ways of computing revisions, and to
prune revisions that are not deemed interesting. This approach is analogous to the or-
dered logic program (a.k.a. prioritized logic program) approach explored in the context
of logic programming (e.g., [6, 5]). In a labeled revision program, the revision program
and the initial knowledge base are enriched by acontrol program, which expresses pref-
erences on rules. The control program may include revision literals as well as conditions
on the initial knowledge base. Given an initial knowledge base, the control program and

the revision program are translated into a revision programwhere regular justified revi-
sions semantics is used. This approach provides preferencecapabilities similar to those
supported by the MINERVA agent architecture [12].

The second approach (Section 4) generalizes revision programs through the intro-
duction ofweights(or costs) associated to the components of a revision program (revi-
sion rules and/or database atoms). The weights are aimed at providing general criteria
for the selection of subsets of the soft revision rules to be considered in the computa-
tion of the revisions of the initial database. Different policies in assigning weights are
considered, allowing for the encoding of very powerful preference criteria (e.g., revi-
sions that differ from the initial database in the least number of atoms). This level of
preference management addresses many of the preference requirements described in
the MAS literature (e.g., [11]).

For each of the proposed approaches to the management of preferences, we provide
an effective implementation schema based on translation toanswer set programming—
specifically to thesmodels [17] language. This leads to effective ways to compute
preferredrevisions for any initial database w.r.t. a revision program with preferences.

The main contribution of this work is the identification of forms of preferences
that are specifically relevant to the revision programming paradigm and justified by the
needs of knowledge maintenance and integration in MAS, and the investigation of the
semantics and implementation issues deriving from their introduction.

2 Preliminaries: Revision Programming

In this section we present the formal definition of revision programs with justified revi-
sion semantics and some of their properties [16, 15, 14].

Elements of some finite universeU are calledatoms. Subsets ofU are calleddata-
bases. Expressions of the formin(a) or out(a), wherea is an atom, are calledrevision
literals. For a revision literalin(a), its dual is the revision literalout(a). Similarly, the
dual of out(a) is in(a). The dual of a revision literal� is denoted by�D . A set of
revision literalsL is coherentif it does not contain a pair of dual literals. For any set of
atomsB � U , we denoteB = fin(a) : a 2 Bg [fout(a) : a =2 Bg: A revision rule
is an expression of one of the following two types:

in(a) in(a1); : : : ; in(am); out(b1); : : : ; out(bn) or (1)

out(a) in(a1); : : : ; in(am); out(b1); : : : ; out(bn); (2)

wherea, ai andbi are atoms. Arevision programis a collection of revision rules. Revi-
sion rules have a declarative interpretation as constraints on databases. For instance, rule
(1) imposes the following condition:a is in the database, or at least oneai, 1 � i � m,
is not in the database, or at least onebj , 1 � j � n, is in the database.

Revision rules also have a computational (imperative) interpretation that expresses
a way to enforce a constraint. Assume that all data itemsai, 1 � i � m, belong to the
current database, sayI , and none of the data itemsbj , 1 � j � n, belongs toI . Then,
to enforce the constraint (1), the itema must be added to the database (removed from
it, in the case of the constraint (2)), rather than removing (adding) some itemai (bj).

Given a revision ruler, by head(r) andbody(r) we denote the literal on the left
hand side and the set of literals on the right hand side of the , respectively.

A set of atomsB � U is a modelof (or satisfies) a revision literalin(a) (resp.,
out(a)), if a 2 B (resp.,a 62 B). A set of atomsB is amodelof (or satisfies) a revision
rule r if eitherB is not a model of at least one revision literal from the body ofr, orB is a model ofhead(r). A set of atomsB is amodelof a revision programP if B is
a model of every rule inP . LetP be a revision program. Thenecessary changeof P ,NC(P), is the least model ofP , when treated as a Horn program built of independent
propositional atoms of the formin(a) andout(b).

The collection of all revision literals describing the elements that do not change
their status in the transition from a databaseI to a databaseR is called theinertia set
for I andR, and is defined as follows:

Inertia(I; R) = fin(a): a 2 I \ Rg [fout(a): a =2 I [Rg:
By the reductof P with respect to a pair of databases(I; R), denoted byPI;R, we
mean the revision program obtained fromP by eliminating from the body of each rule
in P all literals in Inertia(I; R). The necessary change of the programPI;R provides a
justification for some insertions and deletions. These are exactly the changes that area
posteriori justified byP in the context of the initial databaseI and a putative revised
databaseR.

Given a databaseI and a coherent set of revision literalsL, we defineI � L = (I n fa 2 U : out(a) 2 Lg) [fa 2 U : in(a) 2 Lg:
Definition 1 ([16]). A databaseR is aP -justified revisionof databaseI if the neces-
sary change ofPI;R is coherent and ifR = I �NC(PI;R).
Basic properties of justified revisions include the following [16]:

1. If a databaseR is aP -justified revision ofI , thenR is a model ofP .
2. If a databaseB satisfies a revision programP thenB is a uniqueP -justified revi-

sion of itself.
3. If R is aP -justified revision ofI , thenR � I is minimal in the familyfB � I :B is a model ofPg—whereR� I denotes the symmetric difference ofR andI . In

other words, justified revisions of a database differ minimally from the database.

Another important property of revision programs is that certain transformations
(shifts) preserve justified revisions [14]. For each setW � U , a W -transformation
is defined as follows ([14]). If� is a literal of the formin(a) or out(a), thenTW (�) = ��D ; whena 2 W�; whena =2 W .

Given a setL of literals,TW (L) = fTW (�):� 2 Lg. For example, ifW = fa; bg, thenTW (fin(a); out(b); in()g) = fout(a); in(b); in()g. Given a setA of atoms,TW (A) =fa: in(a) 2 TW (A)g. In particular, for any databaseI , TI(I) = ;. Given a revision
programP , TW (P) is obtained fromP by applyingTW to every literal inP . The
Shifting Theorem [14] states that for any databasesI andJ , databaseR is aP -justified

revision ofI if and only if TI�J(R) is aTI�J(P)-justified revision ofJ . The Shifting
Theorem provides a practical way [14] to compute justified revisions using answer set
programming engines (e.g.,smodels [17]). It can be done by executing the following
steps.

1. Given a revision programP and an initial databaseI , we can apply the transforma-
tion TI to obtain the revision programTI(P) and the empty initial database.

2. TI(P) can be converted into a logic program with constraints by replacing revision
rules of the type (1) bya a1; : : : ; am; not b1; : : : ; not bn (3)

and replacing revision rules of the type (2) by constraints a; a1; : : : ; am; not b1; : : : ; not bn: (4)

We denote the logic program with constraints obtained from arevision programQ
via the above conversion bylp(Q).

3. Givenlp(TI(P)) we can compute its answer sets.
4. Finally, the transformationTI can be applied to the answer sets to obtain theP -

justified revisions ofI .

3 Revision programs with preferences

In this section, we introducerevision programs with preferences, that can be used to
deal with preferences between rules of a revision program. We begin with an example
to motivate the introduction of preferences between revision rules. We then present the
syntax and semantics and discuss some properties of revision programs with prefer-
ences.

3.1 Motivational example

Assume that we have a number of agentsa1; a2; : : : ; an. The environment is encoded
through a set of parametersp1; p2; : : : ; pk. The agents perceive parameters of the en-
vironment, and provide perceived data (observations) to a controller. The observations
are represented using atoms of the form:observ(Par; V alue;Agent), wherePar is
the name of the observed parameter,V alue is the value for the parameter, andAgent
is the name of the agent providing the observation.

The controller combines the data received from agents to update its view of the
world, which includes exactly one value for each parameter.The views of the world are
described by atoms:world(Par; V alue;Agent), whereV alue is the current value for
the parameterPar, andAgent is the name of the agent that provided the last accepted
value for the parameter. The initial database contains a view of the world before the
new observations arrive. A revision program, denoted byP , is used to update the view
of the world, and is composed of rules of the type:

in(observ(Par; V alue;Agent))
which describe all new observations; and rules of the following two types:

in(world(Par,Value,Agent)) in(observ(Par,Value,Agent)) (a)
out(world(Par,Value,Agent)) in(world(Par,Value1,Agent1)), (b)

(where Agent6= Agent1 or Value6= Value1).

Rules of type (a) allow to generate a new value for a parameterof a world view from a
new observation. Rules of type (b) are used to enforce the fact that only one observation
per parameter can be used to update the view.

It is easy to see that if the value of each parameter is perceived byexactly oneagent
and the initial world view of the controller is coherent, then eachP -justified revision
reflects the controller’s world view that integrates its agent observations whenever they
arrive. However,P does not allow any justified revisions when there are two agents
which perceive different data for the same parameter at the same time. We illustrate this
problem in the following scenario. Let us assume we have two agentsa1 anda2, both
provide observations for the parameter namedtemperaturedenoting the temperature
in the room. Initially, the controller knows thatworld(temperature; 76; s2). At a later
time, it receives two new observations

in(observ(temperature; 74; a1))
in(observ(temperature; 72; a2))

There is noP -justified revision for this set of observations as the necessary change
with respect to it is incoherent, it includesin(world(temperature; 74; a1)) (because of
(a) and the first observation) andout(world(temperature; 74; a1)) (because of (a), (b),
and the second observation).

The above situation can be resolved by placing a preference between the values
provided by the agents. For example, if we know that agenta2 has a better temper-
ature sensor than agenta1, then we should tell the controller that observations ofa2
are preferred to those ofa1. This can be described by adding preferences of the form:
prefer(r2; r1), wherer1 andr2 are names of rules of type (a) containinga1 anda2,
respectively. With the above preference, the controller should be able to derive a jus-
tified revision which would containworld(temperature; 72; a2). If the agenta2 has a
broken temperature sensor and does not provide temperatureobservations, the value of
temperaturewill be determined bya1 and the world view will be updated correctly byP .

The above preference represents a fixed order of rule’s application in creating re-
visions. Sometimes, preferences might be dynamic. As an example, we may prefer the
controller to keep using temperature observations from thesame agent if available. This
can be described by preferences of the form:

prefer(r1,r2) world(temperature,Value,a1) 2 I, in(observ(temperature,NewValue,a1));
prefer(r2,r1) world(temperature,Value,a2) 2 I, in(observ(temperature,NewValue,a2));

where r1 and r2 are names of rules of type (a) containinga1 anda2 respectively, andI
is an initial database (a view of the world before the new observations arrive).

3.2 Syntax and Semantics

A labeled revision programis a pair(P;L) whereP is a revision program andL is
a function which assigns to each revision rule inP a unique name (label). The label

of a ruler 2 P is denotedL(r). The rule with a labell is denotedr(l). We will usehead(l), body(l) to denotehead(r(l)) andbody(r(l)) respectively. The set of labels
of all revision rules fromP is denotedL(P). That is,L(P) = fL(r) : r 2 Pg. For
simplicity, for each rule�0 �1; : : : ; �n of P , we will write:l : �0 �1; : : : ; �n
to indicate thatl is the value assigned to the rule by the functionL.

A preferenceon rules in(P;L) is an expression of the following form

prefer(l1; l2) initially(�1; : : : ; �k); �k+1; : : : ; �n; (5)

wherel1; l2 are labels of rules inP , �1 : : : ; �n are revision literals,k � 0, n � k.
Informally, the preference (5) mean that if revision literals �1 : : : ; �k are satisfied

by the initial database and literals�k+1; : : : ; �n are satisfied by a revision, then we
prefer to use ruler(l1) over ruler(l2). More precisely, if the body of ruler(l1) is
satisfied then ruler(l2) is defeated and ignored. Ifbody(l1) is not satisfied then ruler(l2) is used.

A revision program with preferencesis a triple(P;L; S), where(P;L) is a labeled
revision program andS is a set of preferences on rules in(P;L). We refer toS as the
control program since it plays an important role on what rules can be used in construct-
ing the revisions.

A revision program with preferences(P;L; S) can be translated into an ordinary
revision program as follows. LetUL(P) be the universe obtained fromU by adding
new atoms of the formok(l), defeated(l), prefer(l1; l2) for all l; l1; l2 2 L(P). Given
an initial databaseI , we define a new revision programPS;I overUL(P) as the revision
program consisting of the following revision rules:� for eachl 2 L(P), the revision programPS;I contains the two ruleshead(l) body(l); in(ok(l)) (6)

in(ok(l)) out(defeated(l)) (7)� for each preferenceprefer(l1; l2) initially(�1; : : : ; �k); �k+1; : : : ; �n in S such
that�1 : : : ; �k are satisfied byI , PS;I contains the rules

in(prefer(l1; l2)) �k+1; : : : ; �n (8)

in(defeated(l2)) body(l1); in(prefer(l1; l2)) (9)

Following the compilation approach in dealing with preferences, we define the no-
tion of (P;L; S)-justified revisions of an initial databaseI as follows.

Definition 2. A databaseR is a (P;L; S)-justified revisionof I if there existsR0 �UL(P) such thatR0 is aPS;I-justified revision ofI , andR = R0 \ U .

The next example illustrates the definition of justified revisions with respect to re-
vision programs with preferences.

Example 1.LetP be the program containing the rulesr1 : in(world(temperature; 76; a1)) in(observ(temperature; 76; a1)):r2 : in(world(temperature; 77; a2)) in(observ(temperature; 77; a2)):
and the setS of preferences consists of a single preferenceprefer(r1; r2). Let I1 =fobserv(temperature; 76; a1); observ(temperature; 77; a2)g be the initial database. The
revision programPS;I1 is the following:

in(world(temperature; 76; a1)) in(observ(temperature; 76; a1)); in(ok(r1))
in(world(temperature; 77; a2)) in(observ(temperature; 77; a2)); in(ok(r2))

in(ok(r1)) out(defeated(r1))
in(ok(r2)) out(defeated(r2))

in(prefer(r1; r2))
in(defeated(r2)) in(observ(temperature; 76; a1));

in(prefer(r1; r2))
SinceI1 has only onePS;I1-justified revision,R1 = � observ(temperature; 76; a1); observ(temperature; 77; a2);world(temperature; 76; a1); prefer(r1; r2); ok(r1); defeated(r2)�,

thenI1 has only one(P;L; S)-justified revision,fworld(temperature; 76; a1)g1.
Now, consider the case where the initial database isI2 = fobserv(temperature; 77; a2)g:

The revision programPS;I2 = PS;I1 . SinceI2 has only onePS;I2-justified revision,R2 = �world(temperature; 77; a2); observ(temperature; 77; a2);
prefer(r1; r2); ok(r1); ok(r2) �

,

we can conclude thatI2 has only one(P;L; S)-justified revision,fworld(temperature; 77; a2)g1:
Notice the difference in the two cases: in the first case, ruler2 is defeated and cannot
be used in generating the justified revision. In the second case both rules can be used.

3.3 Properties

Justified revision semantics for revision programs with preferences extends justified
revision semantics for ordinary revision programs. More precisely:

Theorem 1. A databaseR is a (P;L; ;)-justified revision ofI if and only ifR is aP -justified revision ofI .

Proof.()) LetR be a(P;L; ;)-justified revision ofI . By definition, there existsR0 � UL(P)
such thatR0 is a P ;;I -justified revision ofI , andR = R0 \ U . By definition of a
justified revision,NC((P ;;I)I;R0) is coherent, andR0 = I�NC((P ;;I)I;R0). Revision
programP ;;I consists of the rules of the form (6) and (7) only. Therefore,R0 does not
contain atoms of the formdefeated(l) (l 2 L(P)). Thus,(P ;;I)I;R0 consists of ruleshead(l0) body(l0); in(ok(l0)) (for all l0 2 PI;R)

in(ok(l)) (for all l 2 L(P))
1 We omit the observations from the revised database.

Hence,NC((P ;;I)I;R0) =NC(PI;R)[fok(l) : l 2 L(P)g. SinceNC((P ;;I)I;R0) is
coherent,NC(PI;R) is coherent, too. If we take intersection withU of left- and right-
hand sides of equationR0 = I � NC((P ;;I)I;R0), we getR = I � NC(PI;R). By
definition,R is aP -justified revision ofI .(() Let R be aP -justified revision ofI . ConsiderR0 = R [fok(l) : l 2 L(P)g.
Let us show thatR0 is aP ;;I-justified revision ofI . Indeed,Inertia(I; R0) contains all
revision literals of the formout(defeated(l)). Therefore,(P ;;I)I;R0 consists of ruleshead(l0) body(l0); in(ok(l0)) (for all l0 2 PI;R)

in(ok(l)) (for all l 2 L(P))
Thus,NC((P ;;I)I;R0) = NC(PI;R) [fin(ok(l)) : l 2 L(P)g. Consequently,I �NC((P ;;I)I;R0) = (I � NC(PI;R)) [fok(l) : l 2 L(P)g = R [fok(l) : l 2L(P)g = R0. By definition,R0 is aP ;;I-justified revision ofI . Hence,R is a(P;L; ;)-
justified revision ofI . 2
We will now investigate other properties of revision programs with preferences. Be-
cause of the presence of preferences, it is expected that notevery (P;L; S)-justified
revision ofI is a model ofP . This can be seen in the next example.

Example 2.LetP be the programr1 : in(a) out(b) r2 : in(b) out(a)
and the setS consists of two preferences:prefer(r1; r2) andprefer(r2; r1). Then,; is(P;L; S)-justified revision of; (both rules are defeated) but not a model ofP .

The above example also shows that circular preferences among rules whose bodies
can be satisfied simultaneously, may lead to a situation whenall such rules will defeat
each other, and therefore, none of the rules involved will beused in computing justified
revisions. This situation corresponds to a conflict among preferences. For instance, in
the above example a conflict is between a preference to user1 instead ofr2 and a
preference to user2 instead ofr1. In order to satisfy the preferences both rules need to
be removed.

The next theorem shows that for each(P;L; S)-justified revisionR of I , the subset
of rules inP that are satisfied byR, is uniquely determined. To formulate the theo-
rem, we need some more notation. LetJ be a subset ofUL(P). By P jJ we denote the
program consisting of the rulesr in P such that� ok(L(r)) 2 J , or� ok(L(r)) 62 J andbody(r) n J 6= ;.
Theorem 2. For everyPS;I-justified revisionR of I , the corresponding(P;L; S)-
justified revisionR \ U of I is a model of programP jR.

Proof. Consider a ruler in P jR. Let us prove thatR \ U is a model ofr. If body(r)
is not satisfied byR \ U , thenr is trivially satisfied byR \ U . Assume thatbody(r)
is satisfied byR \ U . Since all revision literals inbody(r) belong toU , body(r) is
satisfied byR, andbody(r) nR = ;. By definition ofPS;I , ruler0r0 = head(r) body(r); in(ok(L(r)))

belongs toPS;I . By definition ofP jR, ok(L(r)) 2 R. Hence,body(r0) is satisfied
by R. By definition of a(P;L; S)-justified revision,R is a model ofPS;I . Therefore,head(r0) = head(r) is satisfied byR. Sincehead(r) 2 U , it is satisfied byR \ U .
Thus,R \ U is a modelr. Consequently,R \ U is a model ofP jR. 2

In the rest of this subsection, we discuss some properties that guarantee that each(P;L; S)-justified revision ofI is a model of the programP . We concentrate on con-
ditions on the set of preferencesS. Obviously, Example 2 suggests thatS should not
contain a cycle between rules. The next example shows that ifpreferences are placed
on a pair of rules such that the body of one of them is satisfied when the other rule is
fired, then this may result in revisions that are not models ofthe program.

Example 3.LetP be the programr1 : in(a) in(b) r2 : in(d) out(a)
and the set of preferencesS consists ofprefer(r2; r1). Then,fb; dg is (P;L; S)-justified
revision offbg but is not a model ofP .

We now define precisely the conditions that guarantee that justified revisions of
revision programs with preferences are models of the revision programs as well. First,
we define when two rules are disjoint, i.e., when two rules cannot be used at the same
time in creating revisions.

Definition 3. Let (P;L; S) be a revision program with preferences. Two rulesr; r0 ofP aredisjoint if one of the following conditions is satisfied:

1. (head(r))D 2 body(r0) and(head(r0))D 2 body(r); or
2. body(r) [body(r0) is incoherent.

We say that a set of preferences isselectingif it contains only preferences between
disjoint rules.

Definition 4. Let (P;L; S) be a revision program with preferences.S is said to be a
set ofselecting preferencesif for every preference

prefer(r; r0) l1; : : : ; lk
in S, rulesr andr0 are disjoint.

Finally, we say that a set of preferences is cycle-free if thetransitive closure of the
preference relationpreferdoes not contain a cycle.

Definition 5. Let(P;L; S) be a revision program with preferences and<S= f(r1; r2) j
prefer(r1; r2) occurs as head of a preference inS and(body(r1)[body(r2)) is coherentg.S is said to becycle-freeif for every ruler ofP , (r; r) does not belong to the transitive
closure<�S of<S .

Lemma 1. Let (P;L; S) be a revision program with preferences whereS is a set of
selecting preferences. LetR be a(P;L; S)-justified revision ofI . For every ruler in P
such thathead(r) 62 R andbody(r) � R there exists a ruler0 such that(r0; r) 2<S ,head(r0) 62 R, andbody(r0) � R.

Proof. LetR0 � UL(P) be aPS;I-justified revision ofI such thatR = R0\U (it exists
by definition of a(P;L; S)-justified revision). Becausehead(r) 62 R andbody(r) �R, we have thatdefeated(r) 2 R0. Hence, there exists a ruler0 in P and a preference

prefer(r0; r) l1; : : : ; lk
in S such thatfl1; : : : ; lkg � R and body(r0) � R. Sincebody(r) � R andbody(r0) � R, the set(body(r0)[body(r)) is coherent. Therefore,(r0; r) 2<S . Rulesr and r0 are disjoint becauseS is a set of selecting preferences. Condition 2 in the
definition of disjoint rules forr andr0 is not satisfied because(body(r0) [body(r)) is
coherent. Hence, condition 1 must be satisfied. Namely,(head(r))D 2 body(r0) and(head(r0))D 2 body(r). Becausebody(r) � R andR does not contain a pair of dual
literals, we conclude thathead(r0) 62 R. This proves the lemma. 2

The next theorem shows that the conditions on the set of preferencesS guarantee
that preferred justified revisions are models of the original revision program.

Theorem 3. Let (P;L; S) be a revision program with preferences whereS is a set of
selecting preferences and is cycle-free. For every(P;L; S)-justified revisionR of I , R
is a model ofP .

Proof. Let r be a rule inP . If body(r) is not satisfied byR then ruler is trivially
satisfied byR. Assume thatbody(r) is satisfied byR. That is,body(r) � R. We need
to prove that in this casehead(r) 2 R. Assume the contrary,head(r) 62 R. By
Lemma 1, we know that there exists a ruler1 such that(r1; r) 2<S , body(r1) � R,
andhead(r1) 62 R. Applying Lemma 1 one more time, we conclude that there exists
a ruler2 such that(r2; r1) 2<S , body(r2) � R, andhead(r2) 62 R, etc. In other
words, this implies that there exists an infinite sequencer0 = r; r1; : : : ; rk; rk+1; : : :
such that(rj+1; rj) 2<S . SinceP is finite, we can conclude that there exists somet > s such thatrt = rs. This implies that(rt; rt) 2<�S , i.e.,S is not cycle-free. This
contradicts the assumption thatS is cycle-free. In other words, our assumption thathead(r) 62 R is wrong. This proves the theorem. 2

The next theorem discusses the shifting property of revision programs with prefer-
ences. We extend the definition ofW -transformationto a set of preferences on rules.
Given a preference on rulesp of the form (5), itsW -transformation is the preferenceTW (p) = prefer(l1; l2) initially(TW (�1); : : : ; TW (�k)); TW (�k+1); : : : ; TW (�n):
Given a set of preferencesS, itsW -transformation isTW (S) = fTW (p) : p 2 Sg.
Theorem 4. Let (P;L; S) be a revision program with preferences. For every two data-
basesI1 and I2, a databaseR1 is a (P;L; S)-justified revision ofI1 if and only ifTI1�I2(R1) is a (TI1�I2(P);L; TI1�I2(S))-justified revision ofI2.
Proof. LetW = I1 � I2.()) LetR1 be a(P;L; S)-justified revision ofI1. By definition, there existsR01 such
thatR01 is aPS;I1-justified revision ofI andR1 = R01 \ U . It is straightforward to
see thatTW (PS;I1) = TW (P)TW (S);I2 . This together with the Shifting Theorem [14]

implies thatTW (R01) is aTW (P)TW (S);I2-justified revision ofTW (I1) = I2. Notice
thatTW (R01) \ U = TW (R1). Therefore,TW (R1) is a (TW (P);L; TW (S))-justified
revision ofI2.(() The proof in the other direction is similar. 2
4 Soft revision rules with weights

Preferences between rules (Section 3) can be useful in at least two ways. They can
be used to recover from incoherency when agents provide inconsistent data, as in the
example from Section 3.1. They can also be used to eliminate some revisions. The next
example shows that in some situations, this type of preferences is rather weak.

Example 4.Consider again the example from Section 3.1, with two agentsa1 anda2
whose observations are used to determine the value of the parametertemperature. Let
us assume now thata1 anda2 are of the same quality, i.e.,temperaturecan be updated
by one of the observations yielded bya1 anda2. This means that there is no preference
between the rule of type (a) (fora1) and the rule of type (a) (fora2) and vice versa. Yet,
as we can see, allowing both rules to be used in computing the revisions will not allow
the controller to update its world view when the observations are inconsistent.

The problem in the above example could be resolved by grouping the rules of the
type (a) into a set and allowing only one rule from this set to be used in creating revisions
if the presence of all the rules does not allow justified revisions.

Inspired by the research in constraint programming, we propose to address the sit-
uation when there are no justified revisions by dividing a revision programP in two
parts,HR andSR, i.e.,P = HR [SR. Rules fromHR andSR are calledhard rules
andsoft rules, respectively. The intuition is that rules inHR must be satisfied by each
revision, while revisions may satisfy only a subset ofSR if it is impossible to satisfy all
of them. The subset of soft rules that is satisfied, sayS, should be optimal with respect
to some comparison criteria. In this section, we investigate several criteria—each one
is discussed in a separate subsection.

4.1 Maximal number of rules

Let P = HR [SR. Our goal is to find revisions that satisfy all rules fromHR and
the most number of rules fromSR. Example 4 motivates the search for this type of
revisions. In the next definition, we make this precise.

Definition 6. R is a (HR;SR)-preferred justified revision ofI if R is a (HR [S) -
justified revision ofI for someS � SR, and for allS0 � SR such thatS0 has more
rules thanS, there are no(HR [S0)-justified revisions ofI .

Preferred justified revision can be computed, under the maximal number of rules
criteria, by extending the translation of revision programs to answer set programming,
to handle the distinction between hard and soft rules. The objective is to determine(HR [S)-justified revisions of an initial databaseI , whereS is a subset ofSR of
maximal size such that(HR [S)-justified revisions exist.

The idea is to make use of two language extensions proposed bythe smodels
system: choice rules andmaximize statements. Intuitively, each soft rule can be either
accepted or rejected in the program used to determine revisions. Let us assume that
the rules inTI(SR) have been uniquely numbered. For each initial databaseI , we
translateP = HR[SR into ansmodels programlp(TI(HR))[lp0(TI(SR)) wherelp0(TI(SR)) is defined as follows. If the rule numberi in TI(SR) is

in(a) in(p1); : : : ; in(pm); out(s1); : : : ; out(sn)
then the following rules are added tolp0(TI(SR))fruleig : � p1; : : : ; pm; not s1; : : : ; not sn:a : � rulei
whererulei is a distinct new atom. Similarly, if

out(a) in(p1); : : : ; in(pm); out(s1); : : : ; out(sn)
is the rule numberi in TI(SR), then the following rules are added tolp0(TI(SR))fruleig : � p1; : : : ; pm; not s1; : : : ; not sn:: � rulei; a:
whererulei is a distinct new atom. Finally, we need to enforce the fact that we desire
to maximize the number ofSR rules that are satisfied. This corresponds to maximizing
the number ofrulei that are true in the computed answer sets. This can be directly
expressed by the following statement:

maximizefrule1; : : : ; rulekg: (10)

wherek is the number of rules inSR. The way howsmodels system processesmax-
imize statement is as follows. It first searches a single model and prints it. After that,
smodels prints only ”better” models. The last model thatsmodels prints will cor-
respond to a(HR;SR)-preferred justified revision ofI . Notice that this is the only
occurrence ofmaximize in the translation which is a requirement for the correct han-
dling of this construct insmodels.

4.2 Maximal subset of rules

A variation of definition from Section 4.1 can be obtained when instead of satisfying
maximal number of soft rules it is desired to satisfy a maximal subset of soft rules. In
other words, givenP = HR [SR, the goal is to find revisions that satisfy all rules
from HR and a maximal subset (with respect to set inclusion) of rulesfrom SR. The
precise definition follows.

Definition 7. R is a (HR;SR)-preferred� justified revision ofI if R is a (HR [S) -
justified revision ofI for someS � SR, and for allS0 if S � S0 � SR, then there are
no (HR [S0)-justified revisions ofI .

The procedure described in Section 4.1 allows to compute only one of(HR;SR)-
preferred� justified revisions which has maximal number of soft rules satisfied.

4.3 Weights

An alternative to the maximal subset of soft rules is to assign weights to the revisions
and then select those with the maximal (or minimal) weight. In this section, we consider
two different ways of assigning weights to revisions. First, we assign weight to rule.
Next, we assign weight to atoms. In both cases, the goal is to find a subsetS of SR
such that the programHR [S has revisions whose weight is maximal.

Weighted rules.Each ruler in SR is assigned a weight (a number),w(r). Intuitively,w(r) represents the importance ofr, i.e., the more the weight of a rule the more impor-
tant it is to satisfy it.

Example 5.Let us reconsider the example from Section 3.1. Rules of the type (a) are
treated as soft rules, while the rules of type (b) are treatedas hard rules. We can make
use of rule weights to select desired revisions. For example, if an observed parameter
value falls outside expected value range for the parameter,it may suggest that an agent
that provided the observation has a faulty sensor. Thus, we may prefer observations that
are closer to the expected range. This can be expressed by associating to each ruler of
the type (a) the weightw(r) = minf0;MaxEV � V alueg+minf0; V alue�MinEV g;
whereMaxEV andMinEV are maximum and minimum expected values forPar.
Let us define the rule-weighted justified revision of a program with weights for rules.

Definition 8. R is called a rule-weighted(HR;SR)-justified revision ofI if the fol-
lowing two conditions are satisfied:

1. there exists a set of rulesS � SR s.t.R is a (HR [S)-justified revision ofI , and
2. for any set of rulesS0 � SR, if R0 is a (HR [S0)-justified revision ofI , then the
sum of weights of rules inS0 is less or equal than the sum of weights of rules inS.

Let us generalize the implementation in the previous sections to consider weighted
rules. The underlying principle is similar, with the difference that the selection of soft
rules to include is driven by the goal of maximizing the totalweight of the soft rules
that are satisfied by the justified revision. The only change we need to introduce w.r.t.
the implementation is in themaximize statement. Let us assume thatw(i) denotes
the weight associated to theith SR rule. Then, instead of the rule (10) the following
maximize statement is generated:

maximize[rule1 = w(1); rule2 = w(2); : : : ; rulek = w(k)℄:
Weighted atoms.Instead of assigning weights to rules, we can also assign weights to
atoms in the universeU . Each atoma in the universeU is assigned a weightw(a) which
represented the degree we would like to keep it unchanged, i.e., the more the weight of
an atom the less we want to change its status in a database. Thenext example presents
a situation where this type of preferences is desirable.

Example 6.Let us return to the example from Section 3.1 with the same partition of
rules in hard and soft rules as in Example 5. Let us assume thatthe choice of which

observation to use to update the view of the world is based on the principle that stronger
values for the parameters are preferable, as they denote a stronger signal. This can be
encoded by associating weights of the formw(world(Param; V alue; Sensor)) = �V alue
and minimizing the total weight of the revision.

Let us define preferred justified revision for programs with weight atoms.

Definition 9. R is called an atom-weighted(HR;SR)-justified revision ofI if the fol-
lowing two conditions are satisfied:

1. there exists a set of rulesS � SR s.t.R is a (HR [S)-justified revision ofI , and
2. for any set of rulesS0 � SR, if Q is a (HR [S0)-justified revision ofI , then the
sum of weights of atoms inI � Q is greater than or equal to the sum of weights of
atoms inI � R.

Atom-weighted revisions can be computed usingsmodels. In this case the selec-
tion of theSR rules to be included is indirectly driven by the goal of minimizing the
total weight of the atoms inI � R, if I is the initial database andR is the justified
revision. We make use of the following observation: given a revision programP and
an initial databaseI , if TI(R) is aTI(P)-justified revision of;, thenTI(R) = I � R.
Thanks to this observation, the computation of the weight ofthe difference between the
original database and aP -justified revision can be computed by determining thetotal
weight of the true atoms obtained from the answer set generated for theTI(P) program.

The program used to compute preferred revisions is encoded similarly to what is
done for the case of maximal number of rules or weighted rules, i.e., each soft rule is
encoded usingsmodels’s’ choice rules. The only difference is that instead of making
use of amaximize statement, we make use of aminimize statement of the form:

minimize[a1 = w(a1); a2 = w(a2); : : : ; an = w(an)℄ (11)

wherea1; : : : ; an are all the atoms inU .

4.4 Minimal size difference

In this subsection, we consider justified revisions that have minimal size difference with
initial database. The next example shows that this is desirable in different situations.

Example 7.Assume that a department needs to form a committee to work on some
problem. Each of the department faculty members has his or her own conditions on the
committee members which need to be satisfied. The head of the department provided an
initial proposal for members of the committee. The task is toform a committee which
will satisfy all conditions imposed by the faculty members and will differ the least from
the initial proposal — the size of the symmetric difference between the initial proposal
and its revision is minimal.

In this problem we have a set of agents (faculty members) eachof which provides
its set of requirements (revision rules). The goal is to satisfy all agent’s requirements in
such a way that the least number of changes is made to the initial database (proposal).

Assume that faculty members are Ann, Bob, Chris, David, Emily and Frank. Con-
ditions that they impose on the committee are the following:Ann : in(Bob) out(Chris)

in(Chris) out(Bob)Bob : out(David) in(Bob)Chris : out(Ann) out(David)David : in(David) in(Chris); out(Ann)
The initial proposal isI = fAnn;Davidg. Then, there is one minimal size differ-

enceP -justified revisions ofI , which isR1 = fAnn;David;Bobg. The size of the
differenceR1 � I is 1.

OrdinaryP -justified revisions ofI also includeR2 = fBobg with size of the dif-
ferenceR2 � I equal to 3.

The next definition captures what is a minimal size differentjustified revision.

Definition 10. R is called a minimal size differenceP -justified revision ofI if the fol-
lowing two conditions are satisfied:

1. R is aP -justified revision ofI , and
2. for anyP -justified revisionR0, the number of atoms inR�I is less than or equal
to the number of atoms inR0 � I .

Minimal size difference justified revision can be computed in almost the same way
as for atom-weighted justified revisions. The intuition is that instead of minimizing
the total weight ofI � R (whereI is the initial database andR is a P -justified re-
vision), we would like to minimize the size ofI � R. This can be accomplished by
replacing theminimize statement (11) with the followingminimize statement:

minimizefa1; a2; : : : ; ang
wherea1; : : : ; an are all the atoms inU .

5 Related work

Since revision programming is strongly related to the logicprogramming formalisms
[15, 14, 19], our work is related to several works on reasoning with preferences in logic
programming. In this section, we discuss the differences and similarities between our
approach and some of the research in this area. In logic programming, preferences
have been an important source for “correct reasoning”. Intuitively, a logic program is
developed to represent a problem, with the intention that its semantics (e.g., answer
set or well-founded semantics) will yield correct answers to the specific problem in-
stances. Adding preferences between rules is one way to eliminate counter-intuitive (or
unwanted) results. Often, this also makes the program easier to understand and more
elaboration tolerant. In the literature on logic programming with preferences, we can
find at least two distinct ways to handle preferences. The first approach is to compile
the preferences into the program (e.g., [10, 6]): given a programP with a set of prefer-
encespref, a new programPpref is defined whose answer set semantics is used as the

preferred semantics ofP with respect topref. The second approach deals with prefer-
ences between rules by defining a new semantics for logic programs with preferences
(e.g., [5, 21]). The advantage of the first approach is that itdoes not require the introduc-
tion of a new semantics — thus, answer set solvers can be used to compute the preferred
semantics. The second approach, on the other hand, providesa more direct treatment of
preferences.

Section 3 of this paper follows the first approach. We define a notion ofrevision pro-
gram with preferences, which is a labeled revision program with preferences between
the rules. Given a revision program with preferences, we translate it into an ordinary re-
vision program, and we define justified revisions w.r.t. the revision program with pref-
erences as justified revisions w.r.t. the revision program obtained by translation. Our
treatment of preferences is similar to that in [10, 6, 1]. In section 4, we introduce dif-
ferent types of preferences that can be dealt with more appropriately by following the
second approach.

We will now discuss the relationship between our approach and others in greater
detail. We will compare revision programs with preferenceswith ordered choice logic
programs [21] and preferred answer sets [5]. Both frameworks allow preferences be-
tween rules — similar to ourprefer relation — to be added to programs (choice logic
programs [21], and extended logic programs [5]). The main difference between our ap-
proach and the approaches in [5, 21] lies in that we adopt the compilation approach
while preferences in [5, 21] are dealt with using the second approach.

Ordered choice logic programs are introduced in [21] for modeling decision mak-
ing with dynamic preferences. An ordered choice logic program (OCLP)P is a pair(C;�) whereC is a set of choice logic programs whose rules are of the formA B
whereA andB are finite sets of atoms and� is a partial order onC. Intuitively, atoms
in A represent alternatives and are assumed to be xor’ed together. Each member ofC
is called a component ofP . Intuitively,� specifies an order in which the components
of P are preferred. This ordering is used to select rules that canbe applied to generate
stable models ofP . Given an interpretationI , a ruler is defeated with respect toI
if there exist(s) some not less preferred rule(s) that can beapplied inI whose head(s)
contain(s) alternatives to the literals in the head ofr. The stable model semantics of
OCLP is defined in the same fashion of the original stable model semantics, i.e., given
an interpretationM of P , a reduction ofP with respect toM – which is a positive
logic program – is defined; and,M is a stable model ofP iff M is the stable model of
the reduction ofP with respect toM . It is worth noticing that in the first step of the
reduction, defeated rules with respect toM are removed fromP . The syntax difference
between OCLP and revision program with preferences does notallow a detailed com-
parison between the two approaches. However, we note that OCLP follows the second
approach to deal with preferences while our revision program with preferences uses the
compilation approach. It is also interesting to notice thatwhen the head of every rule in
a OCLP programP has exactly one element then the preference order does not make
any difference in computing stable models ofP since there are no defeated rules. This
could lead to a situation whereP has a stable modelM andP contains two rules,r andr0, which belong to two componentsPi andPj , respectively,Pj is more specific thanPi, bodies of bothr andr0 are satisfied inM , and bothr andr0 are fired. Our formal-

ization makes sure that this situation never happens (due to(6) and (7)). For example,
consider the programP = (C;�) withC = fP1; P2g; P1 = fp g; P2 = fq g; and �= fP1 � P2g:
Then,fp; qg is a stable model of this program. On the other hand, the corresponding
revision program with preferences(P 0;L; S) withP 0 = fr1 : in(p) ; r2 : in(q) g; and S = fprefer(r1; r2)g
has onlyfpg as its unique(P 0;L; S)-justified revision of;.

In [5], preferred answer sets for prioritized logic programs with preferences between
rules are defined. A new semantics is introduced that satisfies the two principles for
priorities: one represents a meaning postulate for the term“preference” and the other is
related to relevance. A detailed discussion on the differences and similarities between
preferred answer sets for prioritized logic programs and other approaches to preferences
handling in logic programming can be found in [5]. For a prioritized logic programs(P;<), whereP is an extended logic program and< is a preference ordering between
rules ofP , the semantics in [5] requires that ifA is a preferred answer set of(P;<)
thenA is an answer set ofP . Furthermore,A is generated by applying the rules in
the order specified by<. Because this is not a requirement in compilation approach,
it is not surprising to see that the approach we have taken to deal with preferences in
labeled revision programs yield different results comparing to preferred answer sets.
For example, consider the program(P;<) withP = fr1 : p not q; r2 : q g; and <= fr1 < r2g:
Then,(P;<) does not have a preferred answer set because its only answer set fqg
cannot be generated by first applying the ruler1 and then the ruler2. On the other
hand, the corresponding labeled program(P 0;L; S) withP 0 = fr1 : in(p) out(q); r2 : in(q) g; and S = fprefer(r1; r2)g
will have only fpg as its unique(P 0;L; S)-justified revision of; because ruler2 is
defeated.

We notice that the preferences in the above examples, viewedunder the revision
program framework, are non-selecting preferences (Definition 4), and justified revi-
sions are not models of the program. Theorem 3 discusses a condition under which(P;L; S)-justified revisions are models of the original programP . We show next that
under this condition and when only preferences with empty bodies are used, our frame-
work coincides with preferred answer sets for prioritized logic programs [5].

Before we introduce the theorem about the relationship between revision program
with preferences and preferred answer sets for prioritizedlogic programs, we need some
more notation. First, we will assume that for every revisionprogram with preferences(P;L; S), S is a set of selecting preferences, cycle-free, and the body in each pref-
erence of the form (5) inS is empty. We will refer to such programs asstatic revi-
sion programs with preferences. For such a program, we define a corresponding prior-
itized logic programQ(P) = (lp(P); <) wherelp(P) is defined as in Section 2 and<= f(l1; l2) : prefer(l1; l2) 2 Sg.

Theorem 5. Let (P;L; S) be a static revision program with preferences. Then,R is
a (P;L; S)-justified revision of the empty database iffR is a preferred answer set ofQ(P) as defined in [5].

The proof of this property can be found in the appendix.
Our work in this paper is also strongly related to dynamic logic programming (DLP)

[4]. DLP is introduced as a mean to update knowledge bases that might contain gener-
alized logic programming rules. Roughly, a DLP is an orderedlist of generalized logic
programs, where each represents the properties of the knowledge base at a time mo-
ment. The semantics of a DLP – taking into consideration a sequence of programs up
to a time pointt – specifies which rules should be applied to derive the state of the
knowledge base att. It has been shown that DLP generalizes revision programming [4].
DLP has been extended to deal with preferences [3, 1]. A DLP with preferences, or a
prioritized DLP, is a pair(P;R) of two DLPs;P is a labeled DLP whose language
does not contain the binary predicate< andR is a DLP whose language contains the
binary predicate< and whose set of constants includes all the rule labels from both
programs. Intuitively,(P;R) represents a knowledge at different time moments – the
same way a DLP does – with the exception that there are preferences between rules
in (P;R). An atom of the formr1 < r2 represents the fact that ruler1 is preferred to
ruler2. The semantics of prioritized DLP makes sure that the preference order between
rules is reflected in the set of consequences derivable from the knowledge base. More
precisely, for two conflicting rulesr1 andr2, if r1 < r2 is derived, then the conse-
quence of the ruler1 should be preferred over the consequence ofr2. Prioritized DLP
deals with preferences using the compilation approach. In fact, the approach coincides
with that of preferred answer sets for extended logic programs [5] when the DLP con-
sists of a single program as shown in [3]. In this sense, the prioritized DLP approach is
similar to the approach described in Section 3, in which we add to a revision program
a preference relation between its rules and define the semantics of a revision program
with preferences following the compilation approach. It follows from our discussion
in the previous paragraph that revision programming with preferences and DLP with
preferences will yield different results in certain situations. Other difference between
our work and prioritized DLP lies in that we consider other types of preferences (e.g.,
maximal number of applicable rules, weighted rules, weighted atoms, or minimal size
difference) and prioritized DLP does not. We plan to investigate the use of these types
of preferences in DLP in the future.

Finally, DLP is also used as the main representation language for a multi-agent
architecture in [12]. In this paper, we take the first step towards this direction by using
revision programming with preferences to represent and reason about beliefs of multi-
agents in a coordinated environment. A detailed comparisonwith MINERVA is planned
in the near future.

6 Conclusions

The notion of preference has found pervasive applications in the context of knowl-
edge representation and commonsense reasoning in MAS. Indeed a large number of
approaches have been proposed to improve the knowledge representation capabilities

of logic programming by introducing different forms of preferences. In this paper, we
presented a novel extension of the revision programming framework which provides the
foundations for expressing very general types of preferences. Preferences provide the
ability to “defeat” the use of certain revision rules in the computation of the revisions;
this allows us to either reduce the number of revisions generated (eventually leading to
a single revision), or to generate revisions even in the presence of conflicting revision
rules.

We proposed different preference schemes, starting from a relatively dynamic par-
tial order between revision rules (revision programs with preferences), and then moving
to a more general notion of weights, associated to revision rules and/or database atoms.
Soft revision rules can be dynamically included or excludedfrom the generation of re-
visions depending on optimization criteria based on the weights of the revision (e.g.,
minimization of the total weight associated to the revision). We provided motivating
examples for the different preference schemes, along with aprecise description of how
preferred revisions can be computed using thesmodels answer set inference engine.

7 Appendix

In this section we give a proof of Theorem 5, that under certain conditions, the justified
revisions of labeled revision programs with preferences coincide with the preferred
answer sets of prioritized logic programs introduced in [5].

A prioritized logic program2 is a pair(P;<) whereP is a logic program and<
is a preference relation among rules ofP . The semantics of(P;<) is defined by its
preferred answer set- answer sets ofP satisfying some conditions determined by<.
We will first recall the notion of preferred answer sets from [5]. A binary relationR
on a setS is calledstrict partial order (or order) if R is irreflexive and transitive. An
orderR is total if for every paira; b 2 S, either(a; b) 2 R or (b; a) 2 R; R is well-
foundedif every setX � S has a minimal element;R is well-orderedif it is total and
well-founded.

LetP be a collection of rules of the formr : l0 l1; : : : ; lm; not lm+1; : : : ; not ln
whereli’s are ground literals. Literalsl1; : : : ; lm are called theprerequisitesof r. Ifm = 0 thenr is said to beprerequisite free. A rule r is defeatedby a literall if l = li
for somei 2 fm+ 1; : : : ; ng; r is defeated by a set of literalsX if X contains a literal
that defeatsr. A programP is prerequisite freeif every rule inP is prerequisite free.
For a programP and a set of literalsX , thereduct ofP with respect toX , denoted byXP , is the program obtained fromP by

– deleting all rules with prerequisitel such thatl 62 X ; and
– deleting all prerequisites of the remaining rules.

2 In this appendix, by a logic program we mean a propositional logic program. This is because
we only work with propositional revision programs.

Definition 11. [5] Let (P;<) be a prioritized logic program whereP is prerequisite
free and< is a total order among rules ofP . An answer setS ofP is a preferred answer
set of(P;<) if C<(A) = A where (i)C<(A) is the smallest set of ground literals that
is logically closed (wrt.P); (ii)

S1i=0 Si � C<(A); and (iii) the sequenceSi is defined
as follows:S0 = ;Sn =8>>>><>>>>:Sn�1i=0 Si if rn is defeated by

Sn�1i=0 Si
or rn is defeated byA andhead(rn) 2 ASn�1i=0 Si [fhead(rn)g otherwise

andrn is thenth rule in the order<.

For an arbitrary prioritized logic program(P;<), a set of literalsA is called a pre-
ferred answer set of(P;<) if it is a preferred answer set of(AP;<0)) for some total
order<0 that extendsA< which inherits from< by the map:f : AP ! P , i.e.,r01A<r02
if and only iff(r01) < f(r02) wheref(r0) is the first rule inP with respect to< such
thatr0 is obtained fromr through the reductionA.

Now we are ready to give the proof of Theorem 5.

Theorem 5 Let (P;L; S) be a static revision program with preferences. Then,R is a(P;L; S)-justified revision of the empty database if and only ifR is a preferred answer
set ofQ(P).
Proof. LetU be the set of all atoms that appear in the programP .

()) LetR be a(P;L; S)-justified revision of the empty database. We have thatR is a
model ofP (Theorem 3). Hence,R satisfies the rules oflp(P). Furthermore, there exist
aPS;;-justified revisionR0 such thatR0 \ U = R.

We will first show thatR is a minimal set of literals satisfying the rules oflp(P).
Assume the contrary, that there existsM � R such thatM satisfies the rules oflp(P).
Considera 2 R nM . Sincea 2 R, there exists a ruler of PS;; such thathead(r) =
in(a), in(a) 2 NC(PS;;;;R0), andbody(r) is satisfied byR0. Becauser 2 P , we have thatok(r) 2 R0. Hence,lp(r) 2 lp(P) and the body ofr is satisfied byR. This contradicts
the fact thatM is closed underlp(P). This allows us to conclude thatR is an answer
set ofP .

It remains to be shown thatR is a preferred answer set of(lp(P); <). Consider the
prioritized program(R(lp(P)); <0) whereR(lp(P)) is the reduct oflp(P) with respect
toR and<0 inherits from< (as defined in Definition 11). It follows from the definition
of the reduct that ifr 2R (lp(P)) andr is not defeated byR thenhead(r) 2 R.

We need to show thatR is a preferred answer set of(R(lp(P)); <0). Let<� be the
transitive closure of<0, RN = fr j r 2 (R(lp(P)); r is not defeated byR andr does
not occur in<�g, andRD = fr j r 2 (R(lp(P)); r is defeated byR andr does not
occur in<�g. Let rn1; : : : ; rnn1 be an enumeration ofRN andrd1; : : : ; rdn2 be an
enumeration ofRD. We define an ordering<00 on the rules of(R(lp(P)) as follows.

– r <00 r0 if r <� r0;
– rni <00 rnj for 1 � i < j � n1;
– rnn1 <00 r for r occurs in<�;
– rdi <00 rdj for 1 � i < j � n2; and
– r <00 rdi for r occurs in<� and1 � i � n2;

We have that<00 is a total order on the set of rules ofR(lp(P)). Let r1; : : : ; rm be
the sequence of rules ofR(lp(P)), ordered by<00. LetS0; : : : ; Sm be the sequence of
sets of literals defined forR(lp(P)) with respect to<00. It is easy to see that becauseR
is an answer set ofP ,

Smi=0 Si � R. Thus, we only need to show that for everya 2 R,
there exists0 � j � m such thata 2 Sj .

Consider an arbitrarya 2 R. It follows from the definition of answer set that there
exists some ruler of lp(P) such thathead(r) = a andbody(r) is satisfied byR. This
implies that the reductr0 of r belongs toR(lp(P)). Clearly,r0 is not defeated byR.
Without the lost of generality, we can assume thatr0 = rl is the first rule in the sequence
of the rules ofR(lp(P)) whose head isa. Together with the fact that

Sl�1i=0 Si � R, we
can conclude thathead(r) 2 Sl. Thus, we have thatR � Smi=0 Si. This, together with
the fact thatR is an answer set oflp(P), shows thatR is a preferred answer set of(lp(P); <).
(() Let R be a preferred answer set ofQ(P), i.e., R is a preferred answer set of(lp(P); <0) for some total order<0 that extends<.

First, becauseR is an answer set oflp(P) we have thatR is aP -justified revision
of ;. Let IN 0 = Inertia(;; R) = fout(a) : a 62 Rg. We have thatR = fa 2 U : in(a) 2 NC(P;;R)g
whereP;;R consists of rules of the formhead(r) body(r) n IN 0
wherer 2 P and where, by definition,NC(P;;R) is the least model ofP;;R, when
treated as a Horn program built of independent propositional atoms of the formin(a)
andout(b). Letd(R) = fdefeated(r) j r 2 P; 9r0:[r0 < r;R satisfiesbody(r0)℄g;ok(R) = fok(r) j r 2 P; defeated(r) 62 d(R)g;
and R0 = R [d(R) [ok(R) [S:
We will show thatR0 is aPS;;-justified revision of;. Because the initial database is
empty, we have that

Inertia(;; R0) = fout(a) : a 2 UL(P) 62 R0g:
To simplify the presentation, let us denoteInertia(;; R0) by IN . From the construction
of R0, we have thatIN 0 = IN \ fout(a) : a 2 Ug.

We will now construct the programP 0 = PS;;;;R0 . We have thatP 0 consists of the
following rules:

(a) head(r) body(r)n IN; in(ok(r)) wherer is a rule inP , body(r)n IN is the set
of literals occurring inbody(r) which do not occur inIN .

(b) in(ok(r)) out(defeated(r)) n IN ;
(c) in(prefer(r; r0)) if prefer(r; r0) 2 S;
(d) in(defeated(r)) body(r0) n IN; in(prefer(r0; r)) if prefer(r0; r)) 2 S.

We will now show thatR0 isP 0-justified revision of the empty database. It follows from
Definition 1 that we need to show thatR0 = fa : in(a) 2 NC(P 0)g. Let a 2 R0. We
consider four cases:

– a = ok(r) for somer. By construction ofR0, we have thata 2 R0 iff defeated(r) 62d(R) iff defeated(r) 62 R0 iff out(defeated(r)) 2 IN iff in(ok(r)) 2 NC(P 0);
– a = prefer(r; r0). From the construction ofR0, a 2 R0 iff prefer(r; r0) 2 S iff

in(prefer(r; r0) belongs toP 0 iff in(prefer(r; r0)) 2 NC(P 0).
– a 2 U . We will show that for everya 2 U , in(a) 2 NC(P 0) iff a 2 R0 and

out(a) 2 NC(P 0) iff a 62 R0. Observe that for every rule of the type (a) we have
thathead(r) body(r) n IN 0 belongs to the programP;;R. Therefore,a 2 R
(resp.a 62 R) implies thatin(a) 2 NC(P;;R) (resp.out(a) 2 NC(P;;R)). Let T
be the fix point operator that is used in computing the least fixpoint of the programP;;R. We have thata 2 R (resp.a 62 R) if and only if there exists a minimal
numberk such thatin(a) 2 T k(P;;R) and in(a) 62 T i(P;;R) for i < k (resp.
out(a) 2 T k(P;;R) andout(a) 62 T i(P;;R) for i < k). We can prove by induction
overk that in(a) 2 NC(P 0) (resp.out(a) 2 NC(P 0)):� Base:k = 0 implies thatin(a) = head(r) is a fact inP;;R. Hence,in(a)

in(ok(r)) is a rule inP 0. We would like to show thatok(r) 2 R0. Assume the
contrary,ok(r) 62 R0. This implies that there exists a ruler0 in P such that
prefer(r0; r) 2 S andR satisfiesbody(r0). Because(P;L; S) is static, we have
that (i) body(r0) [body(r) is incoherent; or (ii)(head(r))D 2 body(r0) and(head(r0))D 2 body(r). Since the body ofr is empty, (i) cannot happen. If
(ii) happens, we have thatR cannot satisfy the body ofr0 due to the fact thatR is aP -justified revision of;. This implies that our assumption is incorrect,
i.e.,ok(r) 2 R0. From the first item, we have thatok(r) is a fact inP 0. Thus,
in(a) 2 NC(P 0). Similar argument allows us to conclude that ifout(a) 2T 0(;) thenout(a) 2 NC(P 0).� Step: Assume that we have proved the conclusion fork. We need to show that
if in(a) 2 T k+1(P;;R), thenin(a) 2 NC(P 0). Similar to the base case, we
can show that there exists a ruler orP such thathead(r) = in(a),body(r) n IN � NC(P 0) and in(ok(r)) 2 NC(P 0). This allows us to con-
clude thatin(a) 2 NC(P 0). The same argument holds forout(a) 2 T k+1(P;;R).
This proves the inductive step.

– a = defeated(r) for somer. Then,a 2 R0 if and only if there exists a ruler0,
prefer(r0; r) 2 S such that the body ofr0 is satisfied byR. Thus,body(r0) n IN is
satisfied byR0, i.e., in(defeated(r)) 2 NC(P 0).

The above items show thata 2 R0 if and only if fa j in(a) 2 NC(P 0)g. This implies
thatR0 is aPS;;-justified revision of;, i.e.R is a(P;L; S)-justified revision of;. ut

References

1. J.J. Alferes, P. Dell’Acqua, and L.M. Pereira. A compilation of updates plus references. In
Logics in Artificial Intelligence, European Conference, pages 62–73. Springer, 2002.

2. J.J. Alferes, F. Banti, A. Brogi, J.A. Leite. Semantics for Dynamic Logic Programming: A
Principle-Based Approach. InLPNMR, pages 8–20. Springer Verlag, 2004.

3. J.J. Alferes and L.M. Pereira. Updates plus preferences.In Logics in Artificial Intelligence,
European Workshop (JELIA), pages 345–360. Springer, 2000.

4. J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska,and T.C. Przymusinski. Dynamic
Updates of Non-monotonic Knowledge Bases.JLP, 45, 2000.

5. G. Brewka and T. Eiter. Preferred answer sets for extendedlogic programs.Artificial Intel-
ligence, 109(1–2):297–356, 1999.

6. E. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic
programs.Theory and Practice of Logic Programming, 3(2):129–187, March 2003.

7. H.E. Durfee.Coordination of Distributed Problem Solvers. Kluwer Academic Press, 1988.
8. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Using Methods of Declarative Logic Pro-

gramming for Intelligent Information Agents.TPLP, 2(6), 2002.
9. P. Faratin and B. Van de Walle. Agent Preference Relations: Strict, Indifferent, and Incom-

parable. InAAMAS. ACM, 2002.
10. M. Gelfond and T.C. Son. Prioritized default theory. InSelected Papers from the Work-

shop on Logic Programming and Knowledge Representation 1997, pages 164–223, Springer
Verlag, LNAI 1471, 1998.

11. P. La Mura and Y. Shoham. Conditional, Hierarchical, Multi-agent Preferences. InTARK
VII, 1998.

12. J.A. Leite, J.J. Alferes, and L.M. Pereira. MINERVA: a Dynamic Logic Programming Agent
Architecture. InIntelligent Agents VIII, pages 141–157. Springer Verlag, 2002.

13. J. Liu and Y. Ye.E-Commerce Agents. Lecture Notes in AI, Springer Verlag, 2001.
14. W. Marek, I. Pivkina, and M. Truszczyński. Revision programming = logic programming +

integrity constraints. InComputer Science Logic, Springer Verlag, 1999.
15. W. Marek and M. Truszczyński. Revision programming, database updates and integrity

constraints. InICDT, pages 368–382. Springer Verlag, 1995.
16. W. Marek and M. Truszczyński. Revision programming.Theoretical Computer Science,

190(2):241–277, 1998.
17. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable model

semantics. InJICSLP, pages 289–303. MIT Press, 1996.
18. H. Prakken.Logical Tools for Modeling Legal Arguments. Kluwer Publishers, 1997.
19. T. Przymusinski and H. Turner. Update by means of Inference rules. InLPNMR, pages

156–174. Springer Verlag, 1995.
20. C. Sakama and K. Inoue. Updating Extended Logic Programsthrough Abduction. InLP-

NMR, pages 147–161. Springer Verlag, 1999.
21. M. De Voss and D. Vermeir. A Logic for Modeling Decision Making with Dynamic Pref-

erences, InLogics in Artificial Intelligence, European Workshop (JELIA), pages 391–406.
Springer, 2000.

