
Defining Well-Founded Semantics for Revision

Programming

Inna V. Pivkina

Department of Computer Science, New Mexico State University

P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA

Abstract

Revision programming is a formalism to describe and enforce constraints on
belief sets, databases, and more generally, on arbitrary sets. In this paper we
describe four approaches to defining well-founded semantics of revision programming
and approximating justified revisions. The first two approaches are obtained via
embeddings of revision programs into logic programs. The other two approaches are
specific to revision programming and provide approximations for justified revisions.

1 Introduction

Revision programming is a formalism to describe and enforce constraints on belief sets,
databases, and more generally, on arbitrary sets. Revision programming formalism was
introduced by Marek and Truszczyński in [MT95, MT98]. The main concepts in the
formalism are initial database, revision program, and justified revisions. Initial database
is a set of atoms. It represents initial state of a belief set or a database. Constraints
are represented by sets of revision rules (revision programs). Revision rules could be
quite complex and are usually in a form of conditions (for instance, if these elements are
present and those elements are absent, then this element must be absent). In addition to
being a logical constraint, a revision rule specify a preferred way to satisfy the constraint.
Justified revisions semantics assigns to any database a set (possibly empty) of revisions.
Each revision satisfies the constraints, and all deletions and additions of elements in a
transition from initial database to the revision are derived from revision rules.

Revision programming formalism is closely related to logic programming with stable
model semantics. First, it was shown that logic programs with stable model semantics
can be represented as revision programs with justified revision semantics ([MT98]). Then,
Przymusinski and Turner proposed an embedding of revision programs into logic programs
which involved an explicit representation of an initial database as part of the logic program
([PT97]). Later, an embedding of revision programs into logic programs which did not
increase the size of the program was presented in ([MPT99]). The embedding is based on
a so called Shifting Theorem ([MPT99]), which reflects the symmetry between ins and
outs in revision programming.

1

Justified revisions semantics for revision programming has some drawbacks. First, an
initial database may have none, one, or several justified revisions. This does not fit into a
standard paradigm where a single “intended” model is desired. Second, deciding whether
justified revisions exist is NP -complete problem.

Similar issues apply to logic programming with stable model semantics. One of the
proposals to address the issue for logic programming was made by van Gelder, Ross, and
Schlipf ([VRS88], [VRS91]). They assigned to an arbitrary logic program a single intended
3-valued model, a well-founded model. In this model, any logic program partitions the set
of atoms into three groups: the well-founded atoms, the unfounded atoms, and the rest.
An important feature of the well-founded semantics is that it is computable in polynomial
time and, in some cases even in linear time ([BSJ95]).

In this paper we propose four approaches to defining well-founded semantics for re-
vision programs and approximating justified revisions. First we consider two definitions
of well-founded semantics which can be obtained via the two embeddings of revision pro-
grams into logic programs (Przymusinski–Turner translation and embedding via Shifting
Theorem). We show that they are, in general, not comparable. Then, we propose a
definition which is specific to revision programming. This definition allows us to specify
well-founded revision literals if justified revisions exist. However, if there are no justi-
fied revisions, this approach may just tell us that there are no justified revisions and no
well-founded revision literals are defined in such a case. This approach provides a good
approximations for justified revisions since all well-founded revision literals are satisfied by
justified revisions. The last approach also provides approximations for justified revisions
or allows to conclude that they do not exist.

This work was started in [Piv01].

2 Preliminaries

In this section we give formal definition of revision programs with justified revision se-
mantic and some of their properties as presented in [MT98, MT95].

Elements of some finite universe U are called atoms. Subsets of U are called databases.
Expressions of the form in(a) or out(a), where a is an atom, are called revision literals.
Revision literals will be denoted by greek letters α, etc. For a revision literal in(a), its
dual is the revision literal out(a). Similarly, the dual of out(a) is in(a). The dual of a
revision literal α is denoted by αD.

For any set of atoms B ⊆ U , we define

Bc = {in(a) : a ∈ B} ∪ {out(a) : a /∈ B}.

We can think of Bc as a complete representation of B since for every atom a ∈ U , Bc

shows whether a is in B or not.
For any set of literals L, we define

L+ = {a ∈ U : in(a) ∈ L}, L− = {a ∈ U : out(a) ∈ L}.

2

A set of revision literals L is coherent if it does not contain a pair of dual literals, that is,
L+ ∩ L− = ∅. Given a database I and a coherent set of revision literals L, we define

I ⊕ L = (I \ L−) ∪ L+.

Notice that if L is coherent, then (I \ L−) ∪ L+ = (I ∪ L+) \ L−.
A revision rule is an expression of one of the following two types:

in(a)← in(a1), . . . , in(am), out(b1), . . . , out(bn) (1)

or
out(a)← in(a1), . . . , in(am), out(b1), . . . , out(bn), (2)

where a, ai and bi are atoms. Rules of the first type are called in-rules and rules of
the second type are called out-rules. Revision rules have a declarative interpretation as
constraints on databases. For instance, an in-rule (1) imposes on a database the following
condition: a is in the database, or at least one ai, 1 ≤ i ≤ m, is not in the database, or
at least one bj, 1 ≤ j ≤ n, is in the database.

Revision rules also have a computational (imperative) interpretation that expresses a
preferred way to enforce a constraint. Namely, assume that all data items ai, 1 ≤ i ≤ m,
belong to the current database, say I, and none of the data items bj, 1 ≤ j ≤ n, belongs
to I. Then, to enforce the constraint (1), the item a must be added to the database
(removed from it, in the case of the constraint (2)), rather than some item ai removed or
some item bj added.

If a revision rule r is of the type (1), then the head of r, denoted head(r), is the
revision literal in(a). If r is of the type (2), then the head of r, denoted head(r), is the
revision literal out(a). If r is a revision rule of the type (1) or (2), then body of r is the
set body(r) = {in(a1), . . . , in(am), out(b1), . . . , out(bn)}.

A revision program is a collection of revision rules.
A set of atoms B ⊆ U is a model of (or satisfies) a revision literal in(a) (resp., out(a)),

if a ∈ B (resp., a 6∈ B). A set of atoms B is a model of (or satisfies) a revision rule r if
either B is not a model of at least one revision literal from the body of r, or B is a model
of head(r). A set of atoms B is a model of (or satisfies) a revision program P if B is a
model of every rule in P .

Let P be a revision program. The necessary change of P , NC(P), is the least model
of P , when treated as a Horn program built of independent propositional atoms of the
form in(a) and out(b). The necessary change describes all insertions and deletions that
are enforced by the program, independently of the initial database.

The collection of all revision literals describing the elements that do not change their
status in the transition from a database I to a database R is called the inertia set for I
and R, and is defined as follows:

I(I, R) = {in(a): a ∈ I ∩ R} ∪ {out(a): a /∈ I ∪R}.

By the reduct of P with respect to a pair of databases (I, R), denoted by PI,R, we mean
the revision program obtained from P by eliminating from the body of each rule in P

3

all revision literals in I(I, R). The necessary change of the program PI,R provides a
justification for some insertions and deletions. These are exactly the changes that are a
posteriori justified by P in the context of the initial database I and a putative revised
database R.

Definition 1 A database R is a P -justified revision of I if the necessary change of PI,R

is coherent and if R = I ⊕NC(PI,R). 4

There is an alternative definition of P -justified revisions also presented in [MT98]. It
is based on a different notion of a reduct – a counterpart of the Gelfond-Lifschitz reduct
in logic programming ([GL88]).

Definition 2 ([GL88]) Let P be a logic program. The reduct of P relative to M , P M ,
is obtained from P by

1. removing all clauses which contain “not q” such that q is true in M ,

2. deleting all negative premises “not q” (for all q ∈ U) from the remaining clauses.
4

Definition 3 ([MT98]) Let P be a revision program, and let I and R be two databases.
The GL-reduct of P with respect to (I, R) (denoted PR|I) is obtained from P by

1. eliminating from P every rule whose body is not satisfied by R (the resulting program
is denoted by PR),

2. eliminating each literal that is satisfied by I from the body of each rule in PR. 4

Each of the reducts, PI,R and PR|I, can be used to define the notion of P -justified
revision, as the following theorem shows.

Theorem 1 ([MT98]) Let P be a revision program and let I and R be two databases.
The following two conditions are equivalent:

• NC(PI,R) is coherent and R = I ⊕NC(PI,R),

• NC(PR|I) is coherent and R = I ⊕NC(PR|I).

For justified revisions, the necessary changes of both reducts are the same:

Theorem 2 ([MT98]) Let P be a revision program and R be a P -justified revision of
I. Then, NC(PI,R) = NC(PR|I) = head(PR).

In the paper we will frequently use the following characterizations also given in [MT98].

Theorem 3 ([MT98]) The following conditions are equivalent:
1. A database R is a P -justified revision of a database I,
2. NC(P ∪ {α←: α ∈ I(I, R)}) = Rc;
3. NC(PI,R) ∪ I(I, R) = Rc.

The following lemma shows that a least model of a Horn program does not change if
we add to the program rules which are satisfied by the least model.

Lemma 1 Let M be a least model of a Horn program P and a model of a Horn program
P ′. Then, M is the least model of P ∪ P ′.

4

2.1 Well-founded semantics.

The stable model semantics does not fit into a standard paradigm of logic programming
languages. While standard approaches assign to a logic program a single “intended”
model, stable model semantics assigns to a program a family (possibly empty) of “in-
tended” models.

Proposals to address the issue for stable model semantics were of two types. Proposals
of the first type attempt to salvage the notion of a single intended model at a cost of
narrowing down the class of programs or weakening the semantics. Apt, Blair and Walker
[ABW88] introduced the notion of stratification, a syntactic restriction on logic programs
with negation. They assigned to each stratified program a single intended model, a perfect
model.

Proposal of the second type for stable model semantics was made by van Gelder,
Ross and Schlipf ([VRS88], [VRS91]). They assigned to an arbitrary logic program a
single intended 3-valued model, a well-founded model. In this model, any logic program
partitions the set of atoms into three groups: the well-founded atoms, the unfounded
atoms, and the rest.

Definition 4 For any program P , the operator γP is defined by the equation

γP (X) = Least(P X). 4

The operator γP is anti-monotone.

Proposition 1 If T is an anti-monotone operator then

1. T 2 is monotone;

2. T (lfp(T 2)) = gfp(T 2)) and T (gfp(T 2)) = lfp(T 2));

3. for any fixpoint X of T , lfp(T 2) ⊆ X ⊆ gfp(T 2).

By Proposition 1, the operator γ2
P is monotone, and has a least fixpoint and a greatest

fixpoint.
The well-founded semantics of a logic program is defined as follows.

Definition 5 The atoms that belong to the least fixpoint of γ2
P are well-founded relative

to P . The atoms that do not belong to the greatest fixpoint of γ2
P are unfounded relative

to P . The remaining atoms are called unknown. 4

Proposition 2 ([Lif96]) Any stable model for a logic program P

• includes all atoms that are well-founded relative to P , and

• includes no atoms unfounded relative to P .

Theorem 4 ([VRS88]) If every atom is either well-founded or unfounded relative to a
logic program P then the set of well-founded atoms is the only stable model for P .

5

An important feature of the well-founded semantics is that it is computable in poly-
nomial time, in some cases even in linear time ([BSJ95]).

In revision programming a database may admit none, one or many revisions. What if
we want to have a single “intended” model?

In the beginning of Section 2.1 we mentioned two types of approaches to address the
same issue in logic programming. Because of the similarities between revision program-
ming and logic programming the same approaches can be used for revision programming.
Marek and Truszczyński in [MT98] presented a solution of the first type: they restrict class
of revision programs to those that have the desired property: to every initial database
they assign a unique justified revision.

Definition 6 ([MT98]) A revision program is safe if for every literal α ∈ head(P),
αD 6∈ var(P). 4

Definition 7 ([MT98]) A revision program P is stratified if there exists {Pt}0<t<n, a
partition of P , such that for every 0 < t < n:

1. Pt is safe, and

2. if α ∈ head(Pt) then α, αD 6∈ ∪q<tvar(Pq). 4

Safe and stratified revision programs have exactly one justified revision for every initial
database.

A solution of the second type is a well-founded semantics for revision programs, where
each revision problem (revision program and initial database) is assigned a single 3-valued
model on the set of revision literals. In this paper we discuss different ways of defining
well-founded semantics for revision programs.

3 Definitions induced by embeddings into logic pro-

gramming.

Revision programs and logic programs are closely related, as we discussed in [MPT99].
Therefore, given a revision problem, we can translate it into a logic program, find the
well-founded semantics for the logic program, and declare the result to be a well-founded
model of the revision program. The two ways of embedding of revision programs into logic
programs presented in [PT97] and [MPT99] give rise to two definitions of well-founded
semantics for revision programs. In this section we present these two definitions and show
that they are indeed different.

3.1 A definition obtained via the Przymusinski–Turner transla-

tion

In this section we use the Przymusinski–Turner embedding of revision programs into logic
programs described in [PT97] to compute well-founded semantics for revision programs.

6

The Przymusinski–Turner translation of a revision program RP and an initial database
BI into a logic program is as follows.

Definition 8 ([PT97]) The translation of the revision program RP and the initial
database BI into a logic program is defined as the logic program P(RP, BI) = PI∪PN∪RP
over K consisting of the following three subprograms:

Initial Knowledge Rules PI : All atoms q ∈ BI are initially in and all atoms s 6∈ BI

are initially out:

PI = {inI(q)← : q ∈ BI} ∪ {outI(s)← : s 6∈ BI};

Inertia Rules PN : If q was initially in (respectively, out) then after revision it remains
in (respectively, out) unless it was forced out (respectively, in):

PN = {in(q)← inI(q), not out(q) ; out(q)← outI(q), not in(q) : q ∈ U};

Revision Rules RP : All the revision rules that belong to the original revision program
RP . 4

The translation P(RP, BI) contains the original revision program RP , a complete
explicit representation of the initial database as a set of facts, and inertia rules that
specify that atoms do not change their status unless they are forced to.

The translation defines an embedding of revision programming into logic programming
with stable model semantics.

Theorem 5 (Przymusinski and Turner [PT97]) Let RP be a revision program and
BI be an initial database. There is a one-to-one correspondence between RP -justified revi-
sions of BI and coherent stable models of its translation P(RP, BI) into a logic program.

More precisely, to every RP -justified revision BR of BI there corresponds a unique
coherent stable model M of P(RP, BI) such that:

BR = {q : in(q) ∈M}, U \BR = {q : out(q) ∈M},

and, conversely, for each coherent stable model M of P(RP, BI) the set BR = {q : in(q) ∈
M} is an RP -justified revision of BI .

Given a revision program P and a database I, we compute the translation of P and
I into a logic program, P(P, I) (as specified in Definition 8). Recall that P(P, I) is
a logic program over a propositional language K with the set of propositional letters
{in(q) : q ∈ U} ∪ {out(q) : q ∈ U} ∪ {inI(q) : q ∈ U} ∪ {outI(q) : q ∈ U}. To find a well-
founded semantics for P(P, I) we compute a least fixpoint and a greatest fixpoint of the
operator γ2

P(P,I). Then, for every revision literal l ∈ {in(q) : q ∈ U}∪{out(q) : q ∈ U} we
can tell whether it is well-founded, unfounded or unknown relative to the logic program
P(P, I). Therefore, we can define a well-founded semantics of revision programs (which
we denote WFSPT) as follows.

7

Definition 9 (WFSPT) Let P be a revision program. Let I be an initial database. The
revision literals that belong to the least fixpoint of γ2

P(P,I) are well-foundedPT relative to

P and I. The revision literals that do not belong to the greatest fixpoint of γ2
P(P,I) are

unfoundedPT relative to P and I. The remaining revision literals are called unknownPT .
4

Let us illustrate the definition by an example.

Example 1 Let I = ∅. Consider

P : out(a) ← out(b)

in(b) ← out(a)

in(a) ←

The logic program P = P(P, I) is the following.

P : outI(a) ←

outI(b) ←

in(a) ← inI(a), not out(a)

in(b) ← inI(b), not out(b)

out(a) ← outI(a), not in(a)

out(b) ← outI(b), not in(b)

out(a) ← out(b)

in(b) ← out(a)

in(a) ←

Thus, lfp(γ2
P) = {outI(a), outI(b), in(a)}, gfp(γ2

P) = {outI(a), outI(b), in(a), out(a),
in(b), out(b)}. Therefore, the only well-foundedPT revision literal is in(a). There are no
unfoundedPT revision literals. Revision literals out(a), in(b), and out(b) are unknownPT .

The following result shows that the definition agrees with intuitions. Namely, that
well-founded revision literals must be satisfied by all justified revisions, and no justified
revision may satisfy an unfounded revision literal.

Theorem 6 Let P be a revision program. Let I be an initial database. Then, any P -
justified revision of I

• satisfies all revision literals that are well-foundedPT relative to P and I, and

• satisfies no revision literals unfoundedPT relative to P and I.

Proof.
Let R be a P -justified revision of I. Let l be a revision literal. By Theorem 5, there exists
a unique coherent stable model M of P(P, I) such that R = {q : in(q) ∈M}.

8

If l is well-foundedPT relative to P and I, then, by definition, it belongs to the least
fixpoint of γ2

P(P,I). Hence, l is well-founded relative to P(P, I). Thus, by Proposition 2,
l ∈M . Since M is coherent, this implies that l is satisfied by R.

Similarly, if l is unfoundedPT relative to P and I, then it does not belong to the greatest
fixpoint of γ2

P(P,I). Hence, l is unfounded relative to P(P, I). Thus, by Proposition 2,
l 6∈M . Consequently, l is not satisfied by R. 2

Corollary 1 If for some a ∈ U both in(a) and out(a) are well-foundedPT relative to P
and I, then there are no P -justified revisions of I.

Proof.
By the theorem, if a justified revision exists it must satisfy both in(a) and out(a). No
database has such a property. 2

WFSPT assigns to every revision literal a value (well-founded, unfounded or unknown).
We can think of it as assigning to each atom a ∈ U a pair 〈α, β〉, where α, β ∈ {well-
founded, unfounded, unknown}, and α (resp. β) is the value of in(a) (resp. out(a)). The
following theorem shows that not all pairs 〈α, β〉 are valid assignments under WFSPT .

Theorem 7 Let P be a revision program. Let I be a database. Then, for any atom
a ∈ U , if a revision literal in(a) (respectively, a revision literal out(a)) is unfoundedPT

then the revision literal out(a) (respectively, in(a)) is well-foundedPT .

Proof.
Assume that in(a) is unfoundedPT relative to P and I. That means that in(a) does not
belong to the greatest fixpoint of γ2

P(P,I). Let us show that out(a) belongs to the least

fixpoint of γ2
P(P,I).

Case 1: a ∈ I. Since inI(a)← is in P(P, I), inI(a) is in all fixpoints of γ2
P(P,I).

The logic program P(P, I) contains the rule

in(a)← inI(a), not out(a).

Assume that out(a) is not in the least fixpoint. Then, in(a) must be in the greatest
fixpoint. But this contradicts the assumption that in(a) is unfoundedPT relative to P
and I. Consequently, out(a) must be in the least fixpoint.
Case 2: a 6∈ I. Then, outI(a) is in all fixpoints of γ2

P(P,I).

The logic program P(P, I) contains the rule

out(a)← outI(a), not in(a).

By our assumption, in(a) is not in the greatest fixpoint. Therefore, out(a) must be in
the least fixpoint.

We showed that if in(a) is unfoundedPT relative to P and I, then out(a) is well-
foundedPT .

Similarly, we can show that if out(a) is unfoundedPT relative to P and I, then in(a)
is well-foundedPT . 2

9

Table 1: Possible combinations of values for literals in(a) and out(a) under WFSPT .

in(a) out(a) revision program P
T T {in(a)← ; out(a)← }
T U {in(a)← ; out(a)← out(b) ; in(b)← out(b) }
T F {in(a)← }
U T {out(a)← ; in(a)← out(b) ; in(b)← out(b) }
U U {in(a)← out(a) }
U F Impossible by Theorem 7
F T {}
F U Impossible by Theorem 7
F F Impossible by Theorem 7

Theorem 7 implies that there are no more than six pairs of values from {well-founded,
unfounded, unknown} which an atom can have under WFSPT . If we denote “well-
founded” by T, “unfounded” by F, and “unknown” by U, then these pairs are 〈T, T〉,
〈T, U〉, 〈T, F〉, 〈U, T〉, 〈U, U〉, 〈F, T〉. Every one of these six pairs can be achieved.
Table 1 provides examples of six revision programs which with an empty initial database
give these six different assignments for atom a under WFSPT . Therefore, we can think of
WFSPT as a three-valued model on a set of revision literals, or as a six-valued model on
a set of atoms.

3.2 A definition obtained via Shifting Theorem

Another translation of revision programs into logic programs was described in [MPT99].
It is based on the Shifting Theorem. Similarly to the previous section, we take a revision
program, translate it into a logic program, find the well-founded semantics of the logic
program and declare the corresponding revision literals to be well-founded, unfounded
or unknown. The main difference with the Przymusinski–Turner translation is that the
Shifting Theorem allows us to translate revision problems into logic programs with con-
straints. Therefore, in addition to the well-founded semantics of the logic program part
of the translation, we also use the constraints and the principle of inertia to define a
well-founded semantics for revision programs.

We start by defining well-founded semantics in terms of revision programs only without
explicitly mentioning translation into logic programs. Later we show that this definition is
equivalent to the one obtained by translation into logic program and applying constraints
to the result.

Let P be a revision program. Let I be an initial database.

Definition 10 For a set of revision literals X define the reduct of (P , I) relative to X
(denoted by (P, I)X) to be the revision program obtained from P by

1. removing every rule r ∈ P such that body(r) ∩ {lD : l ∈ X \ Ic} 6= ∅,

10

2. deleting from the body of each remaining rule any revision literal that is in I c. 4

Definition 11 For a revision program P and a database I, the operator γP,I from sets of
revision literals to sets of revision literals is defined by the equation

γP,I(X) = NC((P, I)X),

where NC((P, I)X) is the necessary change of (P, I)X . 4

Proposition 3 Let P be a revision program, let I be a database. Let X be a set of
revision literals. Let I ′ ⊆ Ic. Then, (P, I)X = (P, I)X\I′ and γP,I(X) = γP,I(X \ I ′).

Proof.
Since I ′ ⊆ Ic, we have that X \ Ic = (X \ I ′) \ Ic. Thus, according to the definition of the
reduct (P, I)X , we have that (P, I)X = (P, I)X\I′. Therefore, γP,I(X) = NC((P, I)X) =
NC((P, I)X\I′) = γP,I(X \ I ′). 2

Proposition 4 For any revision program P and initial database I, the operator γP,I is
anti-monotone.

Proof.
Let X1 and X2 be sets of revision literals, X1 ⊆ X2. Then, X1 \ Ic ⊆ X2 \ Ic. Hence,
{lD : l ∈ X1 \ Ic} ⊆ {lD : l ∈ X2 \ Ic}. Therefore, (P, I)X2 ⊆ (P, I)X1. Consequently,
γP,I(X2) ⊆ γP,I(X1). 2

Since γP,I is anti-monotone, the operator γ2
P,I is monotone. By the Knaster-Tarski

Theorem, γ2
P,I has a least fixpoint and a greatest fixpoint.

Definition 12 (WFSSh) Let P be a revision program. Let I be a database. The revision
literals that belong to the lfp(γ2

P,I) ∪ {l ∈ Ic : lD 6∈ gfp(γ2
P,I)} are well-foundedSh relative

to (P, I). The revision literals that do not belong to the gfp(γ2
P,I) ∪ Ic are unfoundedSh

relative to (P, I). The remaining revision literals are unknownSh relative to (P, I). 4

The following example illustrates the definition.

Example 2 Let I = ∅. Consider

P : out(a) ←

out(b) ←

in(b) ← out(a)

in(a) ← out(b)

Then, lfp(γ2
P,I) = {out(a), out(b)}, and gft(γ2

P,I) = {out(a), out(b), in(a), in(b)}.
Therefore, revision literals out(a), out(b) are well-foundedSh, no revision literals are
unfoundedSh, revision literals in(a), in(b) are unknownSh.

11

Theorem 8 Let Π be a logic program. Let W be a set of well-founded atoms relative to Π.
Let N be a set of unfounded atoms relative to Π. Then, {in(a) : a ∈ W}∪{out(a) : a ∈ N}
is the set of well-foundedSh revision literals relative to (rp(Π), ∅), and {in(a) : a ∈ N} is
the set of unfoundedSh revision literals.

Proof.
For a rule r ∈ rp(Π), body(r)∩ {lD : l ∈ X \ ∅c} 6= ∅ if and only if the body of r contains
a revision literal out(b) for some in(b) ∈ X. This is the case only when the logic program
clause lp(r) has the literal not b in the body for b ∈ X+, where X+ = {a ∈ U : in(a) ∈ X}.
Therefore, the first step in the definition of the reduct (rp(Π), ∅)X corresponds to the first
step of the definition of the reduct ΠX+

. That is, r ∈ rp(Π) is deleted on the first step of
computing (rp(Π), ∅)X if and only if the corresponding logic program clause lp(r) ∈ Π is
deleted on the first step of computing ΠX+

.
In the second step of the definition of (rp(Π), ∅)X all revision literals of the form out(a)

(a ∈ U) are deleted from the remaining rules. It corresponds to deleting all atoms with
negation as failure from the bodies of the remaining logic program clauses. Consequently,
rp(ΠX+

) = (rp(Π), ∅)X .
Since the revision program (rp(Π), ∅)X has only revision literals of the form in(a)

(a ∈ U), γΠ(X+) = γrp(Π),∅(X) for any set of revision literals X. Therefore, Y ⊆ U is a
fixpoint of γ2

Π if and only if {in(a) : a ∈ Y } is a fixpoint of γ2
rp(Π),∅.

By definition, well-foundedSh revision literals relative to (rp(Π), ∅) are

lfp(γ2
rp(Π),∅) ∪ {l ∈ ∅

c : lD 6∈ gfp(γ2
rp(Π),∅)} =

{in(a) : a ∈ lfp(γ2
Π)} ∪ {out(a) : in(a) 6∈ gfp(γ2

rp(Π),∅)} =

{in(a) : a ∈ W} ∪ {out(a) : a 6∈ gfp(γ2
Π)} =

{in(a) : a ∈ W} ∪ {out(a) : a ∈ N}.

By definition, unfoundedSh revision literals relative to (rp(Π), ∅) are revision literals
that do not belong to the gfp(γ2

rp(Π),∅) ∪ Ic. Hence, {in(a) : in(a) 6∈ gfp(γ2
rp(Π),∅)} is the

set of unfoundedSh revision literals. However,

{in(a) : in(a) 6∈ gfp(γ2
rp(Π),∅)} =

{in(a) : a 6∈ gfp(γ2
Π)} = {in(a) : a ∈ N}.

This finishes the proof. 2

Lemma 2 Let P be a revision program. Let I be an initial database. Let R be a P -
justified revision of I. Let X be a set of heads of PR. Then, X is a fixpoint of γP,I.

Proof.
By definition of P -justified revision, R = I ⊕NC(PR|I). By Theorem 2, X = NC(PR|I).
Thus, R = I ⊕X.

Let us compare the reducts (P, I)X and PR|I. Recall, that PR|I (Definition 3) is
obtained from P by

12

1. removing every rule r ∈ P whose body is not satisfied by R;

2. deleting from the body of each remaining rule any revision literal that is in I c.

Assume that rule r ∈ P is removed during the first step of computation of the reduct
(P, I)X . By definition of the reduct, there exists revision literal l such that lD ∈ body(r),
l ∈ X, and l 6∈ Ic. From R = I ⊕ X and l ∈ X it follows that R |= l. Hence, R 6|= lD.
Consequently, the body of rule r is not satisfied by R. Hence, r is removed during the first
step of computation of the reduct PR|I. The second steps of computation of the reducts
(P, I)X and PR|I are the same. Therefore, PR|I ⊆ (P, I)X .

Assume that rule r ∈ P is removed during the first step of computation of the reduct
PR|I. It means that there exists literal l in the body of r such that R 6|= l. Thus, R |= lD.
Since R = I ⊕X, only the following three cases are possible.

1. lD ∈ X and lD ∈ Ic. Since X is coherent, l 6∈ X. If there are no other literals
that cause r to be deleted during the first step of computation of (P, I)X , then the
reduct (P, I)X contains rule r′ which is obtained from r by deleting from the body
all revision literals that are in Ic. Note, that r′ contains l in the body.

2. lD ∈ X and lD 6∈ Ic. Hence, lD ∈ X \ Ic, and l = (lD)D is in the body of r. Thus,
rule r is deleted during the first step of computation of the reduct (P, I)X.

3. lD 6∈ X, lD ∈ Ic, and l 6∈ X. Similarly to case 1, if r is not deleted during the first
step of computation of (P, I)X , then the reduct (P, I)X contains rule r′ which is
obtained from r by deleting from the body all revision literals that are in I c. Note,
that r′ contains l in the body.

4. lD ∈ X and lD 6∈ Ic. Hence, lD ∈ X \ Ic, and l = (lD)D is in the body of r. Thus,
rule r is deleted during the first step of computation of the reduct (P, I)X.

5. lD 6∈ X, lD ∈ Ic, and l 6∈ X. Similarly to case 1, if r is not deleted during the first
step of computation of (P, I)X , then the reduct (P, I)X contains rule r′ which is
obtained from r by deleting from the body all revision literals that are in I c. Note,
that r′ contains l in the body.

From the above observations it follows that (P, I)X = (PR|I)∪S, where S is a set of rules
(possibly empty) with the property that every rule r ∈ S contains in its body a literal l
such that l 6∈ X. We have that X = NC(PR|I). Since all rules in S have literals that
are not in X in their bodies, NC((P, I)X) = NC((PR|I) ∪ S) = NC(PR|I) = X. Thus,
γP,I(X) = NC((P, I)X) = X. 2

Theorem 9 Let P be a revision program. Let I be an initial database. Then, any P -
justified revision of I

• satisfies all revision literals that are well-foundedSh relative to P and I, and

• satisfies no revision literals unfoundedSh relative to P and I.

13

Proof.
By definition of P -justified revision, R = I ⊕NC(PR|I). Let X be a set of heads of PR.
By Theorem 2, X = NC(PR|I). Thus, R = I ⊕X.

By Lemma 2 X is a fixpoint of γP,I. Therefore, X is a fixpoint of γ2
P,I.

By Proposition 1, lfp(γ2
P,I) ⊆ X ⊆ gfp(γ2

P,I).
Let l be a well-foundedSh revision literal relative to P and I. By definition, l ∈

lfp(γ2
P,I) ∪ {l ∈ Ic : lD 6∈ gfp(γ2

P,I)}. There are two possible cases.

Case 1: l ∈ lfp(γ2
P,I). Then, l ∈ X. Hence, R = I ⊕X implies R |= l.

Case 2: l ∈ Ic and lD 6∈ gfp(γ2
P,I). Then, lD 6∈ X. Hence, R = I ⊕X implies R |= l.

Therefore, R satisfies all well-foundedSh revision literals.
Let l be an unfoundedSh revision literal relative to P and I. By definition, l 6∈

gfp(γ2
P,I) ∪ Ic. Thus, l 6∈ Ic and l 6∈ X. In other words, lD ∈ Ic and (lD)D 6∈ X. This

implies that R |= lD. Hence, R 6|= l. Consequently, R satisfies no unfoundedSh revision
literals. 2

In the rest of the section we show that well-foundedSh semantics is equivalent to well-
founded semantics obtained by translation into logic program (via Shifting theorem) and
applying constraints to the result.

Theorem 10 (Shifting preserves WFSSh) Let P be a revision program. Let I, J be
databases. Let W = I ÷ J be symmetric difference of I and J . Then, F , U , N are
sets of well-foundedSh, unknownSh, and unfoundedSh revision literals relative to (P, I),
respectively, if and only if TW (F), TW (U), TW (N) are sets of well-foundedSh, unknownSh,
and unfoundedSh revision literals relative to (TW (P), J), respectively.

Proof.
The W -transformation can be viewed as a renaming of propositional atoms of the form
in(a) and out(b) which preserves duality. That is, TW (αD) = (TW (α))D. If we apply TW

simultaneously to P , I and any set of revision literals X, and compute (TW (P), TW (I))TW (X),
then the result will coincide with TW ((P, I)X).

When calculating the necessary change, we treat literals as propositional atoms of the
form in(a) and out(b). The W -transformation can be viewed as a renaming of these
atoms. If we rename all atoms in the Horn program, find the least model of the obtained
program, and then rename the atoms back, we will get the least model of the original
program.

In other words,
NC((P, I)X) = TW (NC(TW ((P, I)X))).

Therefore, for any X, γP,I(X) = TW (γTW (P),TW (I)(TW (X))). Hence, lfp(γ2
P,I) =

TW (lfp(γ2
TW (P),TW (I))) and gfp(γ2

P,I) = TW (gfp(γ2
TW (P),TW (I))). This implies the state-

ment of the theorem. 2

The following result shows that for a revision program P and a database I, WFSSh

relative to (P, I) can be obtained from WFSSh relative to (P ′, I) where P ′ = {r ∈ P :
head(r) 6∈I}.

14

Theorem 11 Let P be a revision program. Let F , N be sets of well-foundedSh and
unfoundedSh revision literals relative to (P, I), respectively. Let P ′ = {r ∈ P : head(r) 6∈I}.
Let P ′′ = P \ P ′. Let F ′, N ′ be sets of well-foundedSh and unfoundedSh revision lit-
erals relative to (P ′, I), respectively. Then, F = F ′ ∪ {out(a) : out(a) ← body ∈
P ′′, and body is satisfied by F ′+} and N = N ′.

Proof.
Let X be a set of revision literals. Clearly, (P, I)X = (P ′, I)X ∪ (P ′′, I)X . By the def-
inition of the reduct (P, I)X , bodies of the rules in (P, I)X contain no revision liter-
als from Ic. The only way to get literals form I c in NC((P, I)X) is through rules in
(P ′′, I)X . Therefore, we get that NC((P, I)X) = NC((P ′, I)X) ∪ {l ∈ Ic : l ← body ∈
(P ′′, I)X , and body is satisfied by NC((P ′, I)X)}.

By definition,
γP,I(X) = NC((P, I)X).

Therefore, we get that for any set X of revision literals,
γP,I(X) = γP ′,I(X) ∪ {l ∈ Ic : l ← body ∈ (P ′′, I)X , and body is satisfied by γP ′,I(X)}.

Let us substitute Y = γP,I(X) instead of X in the above equation. We get
γP,I(Y) = γP ′,I(Y) ∪ {l ∈ Ic : l ← body ∈ (P ′′, I)Y , and body is satisfied by γP ′,I(Y)}.
Let us consider left-hand side (LHS) and right-hand side (RHS) of the equation.
LHS = γP,I(Y) = γP,I(γP,I(X)) = γ2

P,I(X).
Since Y = γP ′,I(X) ∪ {l ∈ Ic : l ← body ∈ (P ′′, I)X , and body is satisfied by γP ′,I(X)},
by Proposition 3, we get γP ′,I(Y) = γP ′,I(γP ′,I(X)) = γ2

P ′,I(X). Therefore,

RHS = γ2
P ′,I(X) ∪ {l ∈ Ic : l ← body ∈ (P ′′, I)γP,I(X), and body is satisfied by γ2

P ′,I(X)}.
LHS=RHS implies that
γ2

P,I(X) = γ2
P ′,I(X)∪{l ∈ Ic : l ← body ∈ (P ′′, I)γP,I(X), and body is satisfied by γ2

P ′,I(X)}.
Let Y be a set of revision literals of the form in(a). One can show that Y is a fixpoint

of γ2
P ′,∅ if and only if Y ∪{out(a) : out(a)← body ∈ (P ′′, ∅)Y , and body is satisfied by Y }

is a fixpoint of γ2
P,∅. 2

Theorem 12 Let P be a revision program. Let I be an initial database. Let F , U , N
be sets of well-foundedSh, unknownSh, and unfoundedSh revision literals relative to (P, I),
respectively. Let P ′ be a set of in-rules from TI(P). Let Π be a logic program Π = lp(P ′).
Let F ′, U ′, N ′ be sets of well-founded, unknown, and unfounded atoms relative to Π,
respectively. Then, the following is satisfied.
F = NC({TI(in(a))←: a ∈ F ′}) ∪ {α : α← body ∈ P, α ∈ Ic}.

Proof.
Let us consider the process of computing well-founded semantics as a process of computing
the least fixed points of corresponding operators. For well-founded semantics relative
to (P, I), it is computing lfp(γ2

P,I), and for well-founded semantics relative to Π, it is
computing lfp(γ2

Π).
One can prove that by induction on k. 2

15

3.3 Comparison of the two definitions

In this section we compare the two definitions of well-founded semantics for revision
programs from Section 3.1 and Section 3.2.

We say that one well-founded semantics is better (or more informative) than the other
one on a particular instance of a revision problem if the union of well-founded and un-
founded revision literals in the first semantics contains the union of well-founded and
unfounded revision literals in the second semantics.

We present examples that show that these definitions are indeed different and neither
of them is always better than the other. In particular, WFSSh is more informative than
WFSPT in Example 4, whereas WFSPT is better than WFSSh in Example 3.

The following example shows that WFSPT may be more informative than WFSSh.

Example 3 Let I = ∅. Consider

P : in(a) ← out(b)

in(b) ← out(a)

out(b) ←

1. Compute WFSSh. We have: lfp(γ2
P,I) = {out(b)}, and gft(γ2

P,I) = {in(a), in(b), out(b)}.
Hence, well-foundedSh revision literals are {out(b)}. There are no unfoundedSh re-
vision literals.

2. Compute WFSPT . The logic program P = P(P, I) is the following.

P : outI(a) ←

outI(b) ←

in(a) ← inI(a), not out(a)

out(a) ← outI(a), not in(a)

in(b) ← inI(b), not out(b)

out(b) ← outI(b), not in(b)

in(a) ← out(b)

in(b) ← out(a)

out(b) ←

Thus, lfp(γ2
P) = gfp(γ2

P) = {outI(a), outI(b), in(a), out(b)}. Therefore, revi-
sion literals in(a), out(b) are well-foundedPT . Revision literals out(a), in(b) are
unfoundedPT .

Consequently, WFSPT is more informative than WFSSh relative to P and I.
It is easy to see that R = {a} is a P -justified revision of I. WFSPT allows us to

conclude that a must be in possible revisions, and b must be out. Whereas WFSSh only
implies that P -justified revisions of ∅ must satisfy out(b).

The following example shows that WFSSh may be more informative than WFSPT .

16

Example 4 Let I = ∅. Consider

P : in(a) ← out(b)

in(b) ← out(a)

in(c) ← out(d)

in(d) ← out(c), out(f)

out(f) ← in(a), in(b)

in(f) ←

in(a) ← in(c), in(f)

1. Compute WFSSh. We start with ∅ and obtain iterations of γP,∅:

∅ 7→

in(a)
in(b)
in(c)
in(d)

out(f)
in(f)

7→ {in(f)} 7→

in(a)
in(b)
in(c)

out(f)
in(f)

7→

in(c)
in(f)
in(a)

7→

in(a)
in(c)
in(f)

.

Thus, lfp(γ2
P,I) = gft(γ2

P,I) = {in(a), in(c), in(f)}. Hence, in(a), in(c), in(f),
out(b), out(d) are well-foundedSh. Revision literals in(b), in(d) are unfoundedSh.

2. Compute WFSPT . The logic program P = P(P, ∅) is the following.

P : outI(a) ←

outI(b) ←

outI(c) ←

outI(d) ←

outI(f) ←

in(a) ← inI(a), not out(a)

out(a) ← outI(a), not in(a)

in(b) ← inI(b), not out(b)

out(b) ← outI(b), not in(b)

in(c) ← inI(c), not out(c)

out(c) ← outI(c), not in(c)

in(d) ← inI(d), not out(d)

out(d) ← outI(d), not in(d)

in(f) ← inI(f), not out(f)

out(f) ← outI(f), not in(f)

in(a) ← out(b)

in(b) ← out(a)

17

in(c) ← out(d)

in(d) ← out(c), out(f)

out(f) ← in(a), in(b)

in(f) ←

in(a) ← in(c), in(f)

We have the following computation (iterations of γP starting from ∅):

∅ 7→

{

outI(a), outI(b), outI(c), outI(d), outI(f), out(a), out(b),
out(c), out(d), out(f), in(a), in(b), in(c), in(d), in(f)

}

7→

7→

outI(a), outI(b),
outI(c), outI(d),
outI(f), in(f)

7→

outI(a), outI(b), outI(c), outI(d), outI(f),
out(a), out(b), out(c), out(d), in(a),

in(b), in(c), out(f), in(f), in(d)

.

Thus, lfp(γ2
P) = {in(f)} ∪ {outI(x) : x ∈ {a, b, c, d, f}} and gft(γ2

P) = {out(a),
out(b), out(c), out(d), in(a), in(b), in(c), out(f), in(f), in(d)} ∪ {outI(x) : x ∈
{a, b, c, d, f}}. Therefore, the only well-foundedPT revision literal is in(f). There
are no unfoundedPT revision literals.

Consequently, WFSSh is more informative than WFSPT relative to P and I.
Moreover, WFSSh allows us to conclude that the only P -justified revision of ∅ is R =

{a, c, f}. Whereas WFSPT only imply that P -justified revisions of ∅ must satisfy in(f).

4 Definition specific to revision programming

In this section we give a definition of well-founded semantics which is specific for revision
programming.

4.1 Well-founded semantics for revision programming

Definition 13 Given a revision program P and a set of literals A, the revision program
Simpl(P, A) is obtained from P by

1. removing all rules r ∈ P such that body(r) ∩ {lD : l ∈ A} 6= ∅;

2. remove all rules with heads from A;

3. remove from the bodies of the remaining rules all revision literals that are in A. 4

Lemma 3 Let P1, P2 be revision programs. Let A1, A2 be sets of revision literals. Then,

1. Simpl(P1 ∪ P2, A1) = Simpl(P1, A1) ∪ Simpl(P2, A2), and

2. Simpl(P1, A1 ∪ A2) = Simpl(Simpl(P1, A1), A2).

18

Definition 14 Let us define a sequence of triples (Pk, Ak, Xk), k = 0, 1, . . ., as follows.

• k = 0. Let P0 = P , A0 = ∅, X0 = ∅.

• k ≥ 1. If k = 2i + 1 (i ∈ N), then A′2i+1 = NC(P2i).
Else if k = 2i (i ∈ N), then A′2i = {l ∈ Ic : (lD 6∈ X2i−1) & (l 6∈ A2i−1) & (lD 6∈
A2i−1)}.
Let Ak = Ak−1 ∪ A′k.
If Ak is incoherent then for all k′ ≥ k let Ak′ = Ak, Xk′ = ∅, and Pk′ = Pk−1.
Otherwise, let Pk = Simpl(Pk−1, A

′
k), Xk = γPk,I(Xk−1). 4

To illustrate the notion, let us compute a sequence of triples for the following example.

Example 5 Let I = ∅. Consider

P : out(a) ←

in(a) ← out(b)

in(b) ← out(a)

in(c) ← in(a), in(b)

out(d) ← out(c)

in(d) ← out(e)

in(e) ← out(d)

in(f) ← in(d), in(e)

out(g) ← out(f)

in(g) ← out(h)

in(h) ← out(g)

in(i) ← in(g), in(h)

We have the following computation:

A0 = ∅, X0 = ∅, P0 = P 7→

A1 =

{

out(a)
in(b)

}

, P1 =

out(d) ← out(c)
in(d) ← out(e)
in(e) ← out(d)
in(f) ← in(d), in(e)

out(g) ← out(f)
in(g) ← out(h)
in(h) ← out(g)
in(i) ← in(g), in(h)

, X1 =

out(d),
in(d),
in(e),
in(f),
out(g),
in(g),
in(h),
in(i)

7→

19

7→ A2 =

out(a)
in(b)
out(c)

, P2 =

out(d) ←
in(d) ← out(e)
in(e) ← out(d)
in(f) ← in(d), in(e)

out(g) ← out(f)
in(g) ← out(h)
in(h) ← out(g)
in(i) ← in(g), in(h)

, X2 =
{

out(d)
}

7→

7→ A3 =

out(a),
in(b),
out(c),
out(d),
in(e)

, P3 =

out(g) ← out(f)
in(g) ← out(h)
in(h) ← out(g)
in(i) ← in(g), in(h)

, X3 =

out(g)
in(g)
in(h)
in(i)

7→

7→ A4 =

out(a),
in(b),
out(c),
out(d),
in(e),
out(f)

, P4 =

out(g) ←
in(g) ← out(h)
in(h) ← out(g)
in(i) ← in(g), in(h)

, X4 =
{

out(g)
}

7→

7→ A5 =
{

out(a), in(b), out(c), out(d), in(e), out(f), out(g), in(h)
}

, P5 = ∅, X5 = ∅.

For i ≥ 6, Ai =
{

out(a), in(b), out(c), out(d), in(e), out(f), out(g), in(h), out(i)
}

,
Pi = ∅, and Xi = ∅.

Lemma 4 Let P be a revision program. Let I be an initial database. Let R be a P -
justified revision of I. Then, Rc = γP,I(R

c) ∪ I(I, R).

Proof.
By Theorem 3, Rc = NC(PI,R)∪ I(I, R). By definition, γP,I(R

c) = NC((P, I)Rc

). Let us
show that NC((P, I)Rc

) = NC(PI,R).
Indeed, the reduct PI,R is obtained from P by removing from the bodies of rules literals

from I(I, R). Consider the second step in the definition of the reduct (P, I)Rc

. Assume
that a revision literal l is removed from the body of a rule r. Then, l ∈ I c. If l 6∈ Rc, then
lD ∈ Rc \ Ic, and rule r would have been removed at the first step of the definition of the
reduct (P, I)Rc

. Hence, l ∈ Rc, and thus, l ∈ I(I, R). Therefore, at the second step of the
definition of the reduct (P, I)Rc

, literals from I(I, R) are removed from the bodies of the
remaining rules. Thus, (P, I)Rc

⊆ PI,R.
Bodies of the rules which are removed during the first step of the definition of the

reduct (P, I)Rc

are not satisfied by Rc. Since NC(PI,R) ⊆ Rc, they are not satisfied
by NC(PI,R), too. The necessary change of a program remains the same if we remove
from the program rules that are not satisfied by the necessary change. Consequently,
NC((P, I)Rc

) = NC(PI,R). Therefore, Rc = γP,I(R
c) ∪ I(I, R). 2

20

Lemma 5 Let P be a revision program. Let I be an initial database. Let R be a P -justified
revision of I. Let A be a set of literals such that A ⊆ Rc. Let P ′ = Simpl(P, A) ∪ {l ←:
l ∈ A}. Then, R is a P ′-justified revision of I.

Proof.
By Theorem 3,

NC(P ∪ {α←: α ∈ I(I, R)}) = Rc.

By definition of the necessary change, Rc is the least model of P ∪ {α ←: α ∈ I(I, R)}
when treated as a Horn program built of independent propositional atoms of the form
in(a) and out(b).

Since A ⊆ Rc, rules {l ←: l ∈ A} are satisfied in Rc. Therefore by Lemma 1,

NC(P ∪ {α←: α ∈ I(I, R)}) = NC(P ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}).

Let Q = P∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}. We have NC(Q) = Rc. It is easy to see
that applying steps 1, 2, and 3 from the definition of Simpl(P, A) to the part P of the
program Q does not change the least model of the program. In other words,

NC(Q) = NC(Simpl(P, A) ∪ {l←: l ∈ A} ∪ {α←: α ∈ I(I, R)}).

Thus, Rc = NC(P ′ ∪ {α ←: α ∈ I(I, R)}). Therefore, by Theorem 3, R is a P ′-justified
revision of I. 2

Lemma 6 Let P be a revision program. Let I be an initial database. Let A = NC(P).
Let P ′ = Simpl(P, A) ∪ {l ←: l ∈ A}. Then, R is a P -justified revision of I if and only
if R is a P ′-justified revision of I.

Proof.
(=⇒) Let R be a P -justified revision of I. Then, by Theorem 3,

NC(P ∪ {α←: α ∈ I(I, R)}) = Rc.

Thus, A ⊆ Rc. By Lemma 5, R is a P ′-justified revision of I.
(⇐=) Let R be a P ′-justified revision of I. Then,

NC(Simpl(P, A) ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}) = Rc.

Notice that we can “undo” steps 3, 2, 1 in the definition of Simpl(P, A) without changing
the necessary change of the program

(Simpl(P, A) ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}).

Thus,
Rc = NC(P ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}).

Since A = NC(P), we get that

NC(P ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}) = NC(P ∪ {α←: α ∈ I(I, R)}).

Consequently, Rc = NC(P ∪ {α ←: α ∈ I(I, R)}). Therefore, by Theorem 3, R is a
P -justified revision of I. 2

21

Lemma 7 Let Q be a revision program. Let I be an initial database. Let X be a set of
revision literals such that for every R which is a Q-justified revision of I, Rc ⊆ X∪Ic. Let
A = {l ∈ Ic : lD 6∈ X}. Let Q′ = Simpl(Q, A) ∪ {l ←: l ∈ A}. Then, R is a Q-justified
revision of I if and only if R is a Q′-justified revision of I.

Proof.
(=⇒) Let R be a Q-justified revision of I. Then, Rc ⊆ X ∪ Ic. Let us show that A ⊆ Rc.
Let l ∈ A. Then, l ∈ Ic and lD 6∈ X. Since Ic does not contain dual revision literals,
l ∈ Ic implies lD 6∈ Ic. Hence, lD 6∈ X ∪ Ic. Thus, lD 6∈ Rc. That is, l ∈ Rc. Therefore,
A ⊆ Rc. By Lemma 5, R is a Q′-justified revision of I.
(⇐=) Let R be a Q′-justified revision of I. Then,

NC(Simpl(Q, A) ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}) = Rc.

Notice that we can “undo” steps 3, 2, 1 in the definition of Simpl(Q, A) without changing
the necessary change of the program

(Simpl(Q, A) ∪ {l←: l ∈ A} ∪ {α←: α ∈ I(I, R)}).

Thus,
Rc = NC(Q ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}).

Let us show that
{l ←: l ∈ A} ⊆ {α←: α ∈ I(I, R)}). (3)

Indeed, let l ∈ A. Then, l ∈ Rc and l ∈ Ic. Therefore, l ∈ I(I, R). Consequently,
equation (3) holds. We get that

NC(Q ∪ {l ←: l ∈ A} ∪ {α←: α ∈ I(I, R)}) = NC(Q ∪ {α←: α ∈ I(I, R)}).

Hence, Rc = NC(Q ∪ {α ←: α ∈ I(I, R)}). Therefore, by Theorem 3, R is a Q-justified
revision of I. 2

Theorem 13 Let P be a revision program. Let I be an initial database. Let (Pk, Ak, Xk),
k ≥ 0, be the sequence of triples constructed according to the Definition 14. Then, for
every k ≥ 0 the following holds.

1. R is a P -justified revision of I if and only if R is a (Pk ∪ {l ← : l ∈ Ak})-justified
revision of I.

2. For every R which is a P -justified revision of I, the following holds. If k = 2i then
(Xk ∪ Ak) ⊆ Rc, and if k = 2i + 1 then Rc ⊆ (Xk ∪ Ak ∪ Ic).

Proof.
By induction on k.

Basis step (k = 0). Both statements 1 and 2 trivially hold because P0 = P , A0 = ∅,
X0 = ∅.

22

Inductive step. Assume that the statement of the theorem is true for k − 1. We need
to prove that it holds for k (k ≥ 1).

Case 1. Let k = 2i + 1. By inductive hypothesis,
(1) R is a P -justified revision of I if and only if R is a (P2i ∪ {l ← : l ∈ A2i})-justified
revision of I, and
(2) for every R which is a P -justified revision of I, (X2i ∪ A2i) ⊆ Rc.

We need to prove that
(3) R is a P -justified revision of I if and only if R is a (P2i+1∪{l ← : l ∈ A2i+1})-justified
revision of I, and
(4) for every R which is a P -justified revision of I, Rc ⊆ (X2i+1 ∪ A2i+1 ∪ Ic).

By definition, A′2i+1 = NC(P2i), A2i+1 = A2i ∪ A′2i+1, P2i+1 = Simpl(P2i, A′2i+1),
X2i+1 = γP2i+1,I(X2i).

Proof of (3):
Consider revision program Q = P2i ∪ {l ← : l ∈ A2i}. Since P2i does not contain in the
bodies of its rules literals from A2i∪AD

2i, we get that NC(Q) = NC(P2i∪{l ← : l ∈ A2i}) =
NC(P2i)∪A2i = A′2i+1∪A2i = A2i+1. Also, P2i+1 = Simpl(P2i, A

′
2i+1) = Simpl(P2i, A2i+1).

From this and the fact that A2i ⊆ A2i+1, it follows that

P2i+1 ∪ {l ← : l ∈ A2i+1} =

Simpl(P2i, A2i+1) ∪ {l← : l ∈ A2i+1} =

Simpl(P2i ∪ {l ← : l ∈ A2i}, A2i+1) ∪ {l← : l ∈ A2i+1} =

Simpl(Q, NC(Q)) ∪ {l ← : l ∈ NC(Q)}.

Therefore, by Lemma 6, R is a (P2i∪{l ← : l ∈ A2i})-justified revision of I if and only if R
is a P2i+1 ∪ {l← : l ∈ A2i+1}-justified revision of I. Now, using the inductive assumption
(1), we get statement (3).

Proof of (4):
Assume that R is a P -justified revision of I. By definition, X2i+1 = γP2i+1,I(X2i). It is
easy to see that

X2i+1 ∪ A2i+1 = γP2i+1,I(X2i) ∪ A2i+1 =

γ(P2i+1∪{l← :l∈A2i+1}),I(X2i ∪ A2i).

Let P ′ = P2i+1 ∪ {l ← : l ∈ A2i+1}. By (3), R is a P ′-justified revision of I. Since γ is
anti-monotone and (X2i ∪ A2i) ⊆ Rc, we get that

γP ′,I(R
c) ⊆ γP ′,I(X2i ∪ A2i).

Hence,
γP ′,I(R

c) ∪ Ic ⊆ γP ′,I(X2i ∪ A2i) ∪ Ic.

Therefore, by Lemma 4,

Rc = γP ′,I(R
c) ∪ I(I, R) ⊆ γP ′,I(X2i ∪ A2i) ∪ Ic = X2i+1 ∪ A2i+1 ∪ Ic.

Case 2. k = 2i, k ≥ 2. By inductive hypothesis,
(5) R is a P -justified revision of I if and only if R is a (P2i−1∪{l ← : l ∈ A2i−1})-justified

23

revision of I, and
(6) for every R which is a P -justified revision of I, Rc ⊆ (X2i−1 ∪ A2i−1 ∪ Ic).

We need to prove that
(7) R is a P -justified revision of I if and only if R is a (P2i ∪ {l ← : l ∈ A2i})-justified
revision of I, and
(8) for every R which is a P -justified revision of I, (X2i ∪ A2i) ⊆ Rc.

By definition, A′2i = {l ∈ Ic : lD 6∈ X2i−1 & l 6∈ A2i−1 & lD 6∈ A2i−1}, A2i = A2i−1∪A′2i,
P2i = Simpl(P2i−1, A′2i), X2i = γP2i,I(X2i−1).

Proof of (7):
Let Q = P2i−1 ∪ {l ← : l ∈ A2i−1}. Let X = X2i−1 ∪ A2i−1. Then, from (5) and (6) it
follows that for every R which is a Q-justified revision of I, Rc ⊆ X ∪ Ic.

Let A = {l ∈ Ic : lD 6∈ X}. Let Q′ = Simpl(Q, A) ∪ {l← : l ∈ A}. By Lemma 7, R is
a Q-justified revision of I if and only if R is a Q′-justified revision of I. Using (5) we get
that R is a P -justified revision of I if and only if R is a Q′-justified revision of I.

Therefore, to prove (7) we need to show that Q′ = P2i ∪ {l ← : l ∈ A2i}.
Indeed,

Q′ = Simpl(Q, A) ∪ {l ← : l ∈ A} =

= Simpl(P2i−1 ∪ {l ← : l ∈ A2i−1}, A) ∪ {l← : l ∈ A} =

= Simpl(P2i−1, A) ∪ Simpl({l ← : l ∈ A2i−1}, A) ∪ {l ← : l ∈ A} =

= Simpl(P2i−1, A) ∪ {l ← : l ∈ A2i−1 \ A} ∪ {l ← : l ∈ A} =

= Simpl(P2i−1, A) ∪ {l ← : l ∈ A2i−1 ∪ A}.

By definition, A = {l ∈ Ic : lD 6∈ X} = {l ∈ Ic : lD 6∈ X2i−1 & lD 6∈ A2i−1}. Consequently,
A = A′2i∪{l ∈ Ic : lD 6∈ X2i−1 & lD 6∈ A2i−1 & l ∈ A2i−1}. Thus, A2i−1∪A = A2i−1∪A′2i =
A2i. Hence,

Q′ = Simpl(P2i−1, A) ∪ {l ← : l ∈ A2i}.

Also, if a revision literal l ∈ A2i−1, then l and lD do not appear in the bodies of the
rules from P2i−1, and l does not appear in the heads of the rules from P2i−1. Therefore,
Simpl(P2i−1, A) = Simpl(P2i−1, A \ A2i−1) = Simpl(P2i−1, A

′
2i) = P2i. Consequently,

Q′ = P2i ∪ {l ← : l ∈ A2i}.

This finishes the proof of (7).
Proof of (8):

Assume that R is a P -justified revision of I. By definition, X2i = γP2i,I(X2i−1). It is easy
to see that

X2i ∪ A2i = γP2i,I(X2i−1) ∪ A2i = γ(P2i∪{l← :l∈A2i}),I(X2i−1 ∪ A2i−1).

Let P ′ = P2i ∪ {l ← : l ∈ A2i}. By (7), R is a P ′-justified revision of I. Since γ is
anti-monotone and Rc ⊆ (X2i−1 ∪ A2i−1 ∪ Ic), we get that

γP ′,I(R
c) ⊇ γP ′,I(X2i−1 ∪ A2i−1 ∪ Ic).

24

From the definition of γ it follows that

γP ′,I(X2i−1 ∪ A2i−1 ∪ Ic) = γP ′,I(X2i−1 ∪ A2i−1).

Hence,
γP ′,I(R

c) ⊇ γP ′,I(X2i−1 ∪ A2i−1) = X2i ∪ A2i.

By Lemma 4, Rc = γP ′,I(R
c) ∪ I(I, R). Therefore,

Rc ⊇ γP ′,I(R
c) ⊇ X2i ∪ A2i.

That is, (8) holds. 2

Corollary 2 Let R be a P -justified revision of I. Then, for every k ≥ 0, R |= Ak.

Proof.
By Theorem 13, R is a (Pk ∪ {l← : l ∈ Ak})-justified revision of I. Hence, R |= Ak. 2

Corollary 3 If in the sequence of triples (Pk, Ak, Xk) there exists k such that Ak is in-
coherent, then there are no P -justified revisions of I.

Proof.
Follows from Corollary 2. 2

Lemma 8 In the Definition 14, X2i ⊆ A′2i+1 for i ≥ 0.

Proof.
If i = 0, then X0 = ∅. Thus, X0 ⊆ A′1.

Let i ≥ 1. Then, by definition, A′2i+1 = NC(P2i), and X2i = γP2i,I(X2i−1). By defi-
nition of operator γ, X2i = NC((P2i, I)X2i−1). By definition of the reduct, (P2i, I)X2i−1 is
obtained from P2i by

1. removing every rule r ∈ P2i such that body(r) ∩ {lD : l ∈ X2i−1 \ Ic} 6= ∅,

2. deleting from the body of each remaining rule any revision literal that is in I c.

Therefore, for every rule r ∈ (P2i, I)X2i−1 , there is a rule r′ ∈ P2i, such that r′ is not
removed during step 1 of computing the reduct (P2i, I)X2i−1, its head head(r) = head(r′)
and body(r) ⊆ body(r′). We will prove that in fact, body(r) = body(r′).

Assume the contrary. Assume that l ∈ body(r′) and l 6∈ body(r). Then, by the second
step of the definition of the reduct, l ∈ Ic. Hence, lD 6∈ Ic.

Let us show that lD ∈ X2i−1. Assume the contrary, that lD 6∈ X2i−1. Because of the
properties of Simpl transformation, if l ∈ A2i−1 or lD ∈ A2i−1, then l can not be in the
body of a rule in P2i. However, l ∈ body(r′), where r′ ∈ P2i. Therefore, l 6∈ A2i−1 and
lD 6∈ A2i−1. Then, by construction of triples (Pk, Ak, Xk), l ∈ {l ∈ Ic : lD 6∈ X2i−1&l 6∈
A2i−1&lD 6∈ A2i−1}. That is, l ∈ A′2i. Hence, by properties of Simpl transformation, l

25

can not be in the body of a rule from P2i. This contradicts the fact that l ∈ body(r′) and
r′ ∈ P2i. Consequently, lD ∈ X2i−1.

We have: lD 6∈ Ic and lD ∈ X2i−1. Thus, lD ∈ X2i−1\I
c. At the same time, l ∈ body(r′).

According to step 1 in the definition of the reduct (P2i, I)X2i−1 , rule r′ will be removed.
This contradicts the fact that r′ is not removed during step 1 of computing the reduct
(P2i, I)X2i−1 . Therefore, for every rule r ∈ (P2i, I)X2i−1 , there is a rule r′ ∈ P2i, such that
head(r) = head(r′) and body(r) = body(r′). Hence, NC((P2i, I)X2i−1) ⊆ NC(P2i). In
other words, X2i ⊆ A′2i+1. 2

Corollary 4 In Definition 14, for every i ≥ 0, X2i ∪ A2i ⊆ X2i+2 ∪ A2i+2.

Proof.
By Definition 14, A2i ⊆ A2i+2. By Lemma 8, X2i ⊆ A2i+1 ⊆ A2i+2. Hence, X2i ∪ A2i ⊆
X2i+2 ∪ A2i+2. 2

Definition 15 Let P be a revision program. Let I be an initial database. Let (Pk, Ak, Xk),
k = 0, 1, . . . be a sequence of triples as defined in Definition 14. Let F = ∪i≥0(X2i ∪A2i).
If F is coherent, then revision literals from F are called well-founded with respect to P
and I. 4

Theorem 14 Let P be a revision program. Let I be initial database. Then, any P -
justified revision of I satisfies all revision literals that are well-founded with respect to P
and I.

Proof.
Let R be a P -justified revision of I. Let l be a revision literal that is well-founded with
respect to P and I. By definition, l ∈ ∪i≥0(X2i∪A2i). Hence, there exists i ≥ 0 such that
l ∈ (X2i ∪ A2i). By Theorem 13, (X2i ∪ A2i) ⊆ Rc. Therefore, l ∈ Rc. In other words, R
satisfies l. 2

By Theorem 13, if F is not coherent in the definition 15, then there are no P -justified
revisions of I.

Key features of the well-founded semantics of revision programs specified by Defini-
tion 15:

1. As soon as it is establish that a revision literal and its dual are both well-founded,
no further computation of well-founded semantics is done.

2. There is no need for unfounded revision literals. If a literal l 6∈ I c is shown to be
unfounded then is dual lD automatically becomes well-founded by inertia. (In logic
programming they only talk about unfounded atoms which correspond to revision
literals not in Ic.)

26

4.1.1 Towards simplifying the definition

Lemma 9 Let P be a revision program. Let I be an initial database. Let (Pk, Ak, Xk),
k ≥ 0, be the sequence of triples constructed according to the Definition 14. Then, for
every k ≥ 0, if Ak is coherent then Pk = Simpl(P, Ak).

Proof.
By induction on k.

Basis step (k = 0). The statement holds because both P0 and Simpl(P, A0) are equal
to P .

Inductive step. Assume that the statement of the theorem is true for k − 1. That is,
Pk−1 = Simpl(P, Ak−1). We need to prove that it holds for k (k ≥ 1).

By definition, if Ak is coherent, then Pk = Simpl(Pk−1, A
′
k). By inductive assumption,

we get Pk = Simpl(Simpl(P, Ak−1), A
′
k). By Lemma 3, Simpl(Simpl(P, Ak−1), A

′
k) =

Simpl(P, Ak−1 ∪ A′k). By definition, Ak = Ak−1 ∪ A′k. Therefore, Pk = Simpl(P, Ak). 2

4.2 Comparison with definitions induced by embeddings

The following is an example when the new definition of well-founded semantics gives a
better result than WFSSh.

Example 6 Let I = ∅. Consider revision program from Example 3

P : in(a) ← out(b)

in(b) ← out(a)

out(b) ←

We have the following computation:

A0 = ∅, P0 = P, X0 = ∅ 7→

7→ A1 =

{

out(b),
in(a)

}

, P1 = ∅, X1 = ∅.

The WFSSh for P was found in Example 3. It is less informative than the new defi-
nition of WFS.

The following is an example when the new definition of well-founded semantics gives
better result than WFSPT .

Example 7 Let I = ∅. Consider revision program from Example 4

P : in(a) ← out(b)

in(b) ← out(a)

in(c) ← out(d)

in(d) ← out(c), out(f)

out(f) ← in(a), in(b)

in(f) ←

in(a) ← in(c), in(f)

27

We have the following computation:

A0 = ∅, P0 = P, X0 = ∅ 7→

7→ A1 =
{

in(f)
}

, P1 =

in(a) ← out(b)
in(b) ← out(a)
in(c) ← out(d)

out(f) ← in(a), in(b)
in(a) ← in(c)

, X1 =

in(a),
in(b),
in(c),
out(f)

7→

7→ A2 =

{

in(f),
out(d)

}

, P2 =

in(a) ← out(b)
in(b) ← out(a)
in(c) ←

out(f) ← in(a), in(b)
in(a) ← in(c)

, X2 =

{

in(c),
in(a)

}

7→

7→ A3 =

in(f),
out(d),
in(c),
in(a)

, P3 =
{

out(f) ← in(b)
}

, X3 = ∅ 7→

7→ A4 =

in(f),
out(d),
in(c),
in(a),
out(b)

, P4 = ∅, X4 = ∅.

The WFSPT for P was found in Example 4. It is less informative than the new
definition of WFS.

5 Yet another definition

Let P be a revision program. Let I be an initial database.

Definition 16 For a set of revision literals X define the reduct of [P , I] relative to X
(denoted by [P, I]X) to be the revision program obtained from P by

1. removing every rule r ∈ P such that body(r) ∩ {lD : (l ∈ X \ Ic) ∧ (lD 6∈ X)} 6= ∅,

2. deleting from the body of each remaining rule any revision literal that is in I c \ {l ∈
Ic : (l ∈ X) ∧ (lD ∈ X)}. 4

Notice that the above definition can be rewritten in the following way.

Definition 17 For a set of revision literals X define the reduct of [P , I] relative to X
(denoted by [P, I]X) to be the revision program obtained from P by

1. removing every rule r ∈ P such that body(r) ∩ {l : (lD ∈ X \ Ic) ∧ (l 6∈ X)} 6= ∅,

28

2. deleting from the body of each remaining rule any revision literal that is in {l ∈ I c :
lD 6∈ X}. 4

Proposition 5 Definition 16 and Definition 17 are equivalent.

Proof.
Steps 1 in both definitions are the same, only in Definition 16 we use lD to represent
a literal while in Definition 17 we use l. Let us show that conditions in steps 2 of the
definitions are equivalent when step 1 is executed. In Definition 17, {l ∈ I c : lD 6∈
X} = Ic \ {l ∈ Ic : (lD ∈ X)}. Thus, we need to show that after execution of step
1, (lD ∈ X) is equivalent to (l ∈ X) ∧ (lD ∈ X). Let r ∈ P . Assume that r was not
removed in step 1. Then, body(r) ∩ {l : (lD ∈ X \ Ic) ∧ (l 6∈ X)} = ∅. Assume that
revision literal l ∈ body(r)∩ Ic. Since r was not removed at step 1 we have that condition
(lD ∈ X \ Ic) ∧ (l 6∈ X) is not true. Assume that lD ∈ X. Since l ∈ Ic, literal lD 6∈ Ic.
Therefore, lD ∈ X \ Ic. Because condition (lD ∈ X \ Ic)∧ (l 6∈ X) is false, we have l ∈ X.
Therefore, after execution of step 1, condition tD ∈ X in step 2 implies l ∈ X. Thus,
conditions in steps 2 of the definitions are equivalent when step 1 is executed. 2

The intuitive meaning of these definitions of the [P, I]X reduct is as follows. A revision
literal α (α = in(a) or α = out(a) for some a ∈ U) is satisfied by a justified revision if
it is a head of a rule which fires while computing the revision or it is satisfied by initial
database I and status of a does not change while computing the revision. We say that
in the first case α is derived and in the second case α remains satisfied by inertia. This
results in two different treatments of revision literals which are satisfied by I and occur
in a body of a rule. If there is a possibility for such a literal to be derived then it remains
in the body of the rule in the weak reduct. If there is no possibility for the literal to be
derived then it is either removed from the body or the rule itself is removed from the
reduct.

Definition 18 For a revision program P and an initial database I, the operator γ[P,I]

from sets of revision literals to sets of revision literals is defined by the equation

γ[P,I](X) = NC([P, I]X),

where NC([P, I]X) is the necessary change of [P, I]X. 4

In general, operator γ[P,I] is not anti-monotone as we can see from the following ex-
ample.

Example 8 Let I = ∅. Consider

P : out(a) ←

in(b) ← out(a)

Let X1 = {in(a)} and X2 = {in(a), out(a)}. Then, γ[P,I](X1) = {out(a)} and γ[P,I](X2) =
{out(a), in(b)}. Clearly, X1 ⊆ X2 and γ[P,I](X1) ⊆ γ[P,I](X2). Therefore, operator γ[P,I]

is not anti-monotone.

29

Lemma 10 If X is coherent, then γ[P,I](X) = γP,I(X).

Proof.
If l ∈ X \ Ic and X is coherent, then lD 6∈ X. Therefore, {lD : (l ∈ X \ Ic)∧ (lD 6∈ X)} =
{lD : l ∈ X \ Ic). Also, {l ∈ Ic : (l ∈ X) ∧ (lD ∈ X)} = ∅. Hence, (P, I)X = [P, I]X. This
implies that γ[P,I](X) = NC([P, I]X) = NC((P, I)X) = γP,I(X). 2

Definition 19 Let P be a revision program. Let I be an initial database. Let X0 = ∅
and Xk = γ[P,I](Xk−1) for k > 0. 4

To illustrate the notion, let us compute a sequence of Xk for the following example.

Example 9 Let I = ∅. Consider

P : out(a) ←

in(a) ← out(b)

in(b) ← out(a)

in(c) ← in(a), in(b)

out(d) ← out(c)

in(d) ← out(e)

in(e) ← out(d)

in(f) ← in(d), in(e)

out(g) ← out(f)

in(g) ← out(h)

in(h) ← out(g)

in(i) ← in(g), in(h)

We have the following sequence:
X0 = ∅,

X1 = {out(a), in(a), in(b), in(c), out(d), in(d), in(e), in(f), out(g), in(g), in(h), in(i)},

[P, I]X1 =

out(a) ←
in(b) ← out(a)
in(c) ← in(a), in(b)
in(e) ← out(d)
in(f) ← in(d), in(e)
in(h) ← out(g)
in(i) ← in(g), in(h)

, X2 = {out(a), in(b)},

30

[P, I]X2 =

out(a) ←
in(b) ←
in(c) ← in(a), in(b)

out(d) ←
in(d) ←
in(e) ←
in(f) ← in(d), in(e)

out(g) ←
in(g) ←
in(h) ←
in(i) ← in(g), in(h)

, X3 =

out(a),
in(b),

out(d),
in(d),
in(e),
in(f),
out(g),
in(g),
in(h),
in(i)

,

[P, I]X3 =

out(a) ←
in(b) ←
in(c) ← in(a), in(b)

out(d) ←
in(e) ← out(d)
in(f) ← in(d), in(e)
in(h) ← out(g)
in(i) ← in(g), in(h)

, X4 =

out(a),
in(b),

out(d),
in(e)

,

[P, I]X4 =

out(a) ←
in(b) ←
in(c) ← in(a), in(b)

out(d) ←
in(e) ←
in(f) ← in(d), in(e)

out(g) ←
in(g) ←
in(h) ←
in(i) ← in(g), in(h)

, X5 =

out(a),
in(b),

out(d),
in(e),
out(g),
in(g),
in(h),
in(i)

,

[P, I]X5 =

out(a) ←
in(b) ←
in(c) ← in(a), in(b)

out(d) ←
in(e) ←
in(f) ← in(d), in(e)

out(g) ←
in(h) ← out(g)
in(i) ← in(g), in(h)

, X6 =

out(a),
in(b),

out(d),
in(e),
out(g),
in(h)

,

31

[P, I]X6 =

out(a) ←
in(b) ←
in(c) ← in(a), in(b)

out(d) ←
in(e) ←
in(f) ← in(d), in(e)

out(g) ←
in(h) ←
in(i) ← in(g), in(h)

, X7 =

out(a),
in(b),

out(d),
in(e),
out(g),
in(h)

.

Since X6 = X7 we have Xk = {out(a), in(b), out(d), in(e), out(g), in(h)} for k ≥ 6.

Theorem 15 Let P be a revision program. Let I be an initial database. Let R be a P -
justified revision of I. Then, for all k ≥ 0, the following holds. If k = 2i then X2i ⊆ Rc.
If k = 2i + 1 then Rc ⊆ X2i+1 ∪ Ic.

Proof.
By induction on k.

Basis step (k = 0). X0 = ∅ ⊆ Rc.
Inductive step. Assume that the statement of the theorem is true for k − 1. We need

to prove that it holds for k (k ≥ 1).
Case 1. Let k = 2i + 1. By inductive hypothesis, X2i ⊆ Rc. Since Rc is coherent, X2i

is also coherent. By lemma 10, X2i+1 = γP,I(X2i). Operator γP,I is anti-monotone. Hence,
γP,I(R

c) ⊆ γP,I(X2i). Therefore, γP,I(R
c)∪Ic ⊆ γP,I(X2i)∪Ic = X2i+1∪Ic. Let X be a set

of heads of PR. By Theorem 2, R = I ⊕X. Therefore, Rc = X ∪ (Ic \X). By definition,
γP,I(R

c) = NC((P, I)Rc

). In step 1 of computing the reduct (P, I)Rc

every rule r ∈ P such
that body(r) ∩ {lD : l ∈ (Rc) \ Ic} 6= ∅. However, {lD : l ∈ (Rc) \ Ic} = {lD : l ∈ X \ Ic}.
Hence, (P, I)Rc

= (P, I)X . Thus, γP,I(R
c) = NC((P, I)Rc

) = NC((P, I)X) = γP,I(X). By
Lemma 2, γP,I(X) = X. Therefore, γP,I(R

c) = X. We have:

Rc = X ∪ (Ic \X) ⊆ X ∪ Ic = γP,I(R
c) ∪ Ic ⊆ X2i+1 ∪ Ic.

Hence, Rc ⊆ X2i+1 ∪ Ic.
Case 2. Let k = 2i + 2. By inductive hypothesis, Rc ⊆ X2i+1 ∪ Ic. We need to prove

that X2i+2 ⊆ Rc. By the definition of justified revisions and by Theorem 1, NC(PR|I) is
coherent and R = I⊕NC(PR|I). By definition, X2i+2 = NC([P, I]X2i+1). Let us compare
the reducts [P, I]X2i+1 and PR|I. In both reducts some rules are removed in step 1 and
some literals from the bodies of the remaining rules are deleted in step 2.

In step 2 of computing the reduct PR|I all literals from Ic are deleted from the bodies
of remaining rules. In step 2 of computing the reduct [P, I]X2i+1 some subset of literals in
Ic is deleted. Therefore, if a rule r is not removed during step 1 of computing PR|I and
[P, I]X2i+1 , then its body in PR|I will be a subset of its body in [P, I]X2i+1.

Assume that a rule r ∈ P was removed during step 1 of computing PR|I, but was
not removed during step 1 of computing [P, I]X2i+1 . Then, by definition of PR|I, there is
a revision literal tD ∈ body(r) which is not satisfied by R. Thus, tD 6∈ Rc and t ∈ Rc.
Since Rc ⊆ X2i+1 ∪ Ic, we have that t ∈ X2i+1 ∪ Ic. On the other hand, by definition of

32

[P, I]X2i+1 , tD 6∈ {lD : (l ∈ X2i+1 \ Ic) ∧ (lD 6∈ X2i+1)}. Therefore, either t 6∈ (X2i+1 \ Ic)
or (t ∈ X2i+1 \ Ic) ∧ (tD ∈ X2i+1).

Case 2.1: t 6∈ (X2i+1 \ Ic). Hence, t 6∈ X2i+1. However, t ∈ X2i+1 ∪ Ic. Therefore,
t ∈ Ic. Thus, tD 6∈ Ic. This implies that tD will remain in the body of rule r after step 2
of computing the reduct [P, I]X2i+1 .

Case 2.2: (t ∈ X2i+1\I
c)∧(tD ∈ X2i+1). Hence, tD ∈ Ic and (t ∈ X2i+1)∧(tD ∈ X2i+1).

Therefore, tD ∈ {l ∈ Ic : (l ∈ X2i+1) ∧ (lD ∈ X2i+1)}. This implies that tD will remain in
the body of rule r after step 2 of computing the reduct [P, I]X2i+1 .

Therefore, every rule that was removed during step 1 of computing PR|I, but was not
removed during step 1 of computing [P, I]X2i+1 contains revision literals in its body that
are not satisfied by R. For any such rule to fire during computation of NC([P, I]X2i+1)
there must be a rule in [P, I]X2i+1 which allows to derive a literal that is not satisfied
by R. Hence, there must exist a rule, say r, in [P, I]X2i+1 , body of which contains only
literals satisfied by R, and head(r) is a literal that is not satisfied by R, which fires
during computation of NC([P, I]X2i+1). From our comparisons of PR|I and [P, I]X2i+1 it
follows that this rule r must be in PR|I as well and it must fire during computation of
NC(P R|I). Therefore head(r) must be satisfied by R. This contradicts the fact that
head(r) is not satisfied by R. Therefore, none of the rules that were removed during step
1 of computing PR|I, but were not removed during step 1 of computing [P, I]X2i+1 fire
during computation of NC([P, I]X2i+1). This together with our earlier observation that if
a rule r is not removed during step 1 of computing PR|I and [P, I]X2i+1 , then its body in
PR|I will be a subset of its body in [P, I]X2i+1 , implies that NC([P, I]X2i+1) ⊆ NC(P R|I).
Consequently, X2i+2 = NC([P, I]X2i+1) ⊆ NC(P R|I) ⊆ Rc. 2

Corollary 5 Let P be a revision program. Let I be an initial database. If there exists i
such that X2i contains a pair of dual revision literals, then no P -justified revisions of I
exists.

Theorem 15 and its corollary show that {Xk}k=0,1,... can be used to approximate
justified revisions or conclude that no justified revisions exist. Let L =

⋃∞
i=0 X2i and

U =
⋂∞

i=0 X2i+1. If R is a P -justified revision of I, then U ⊆ Rc and Rc ⊆ U ∪ Ic.
The following example illustrates a case when for some i, X2i contains a pair of dual

revision literals. Then the sequence {X2i}i=0,1,..., in general, is not monotonic.

Example 10 Let I = ∅. Consider

P : in(a) ←

in(z) ← out(a)

in(b) ← out(z)

in(c) ← out(b)

out(a) ← in(b), out(c)

We have the following sequence:
X0 = ∅,

33

X1 = {in(a), in(z), in(b), in(c), out(a)}, },

[P, I]X1 =
{

in(a) ←
}

, X2 = {in(a)},

[P, I]X2 =

in(a) ←
in(b) ←
in(c) ←

out(a) ← in(b)

, X3 = {in(a), in(b), in(c), out(a)},

[P, I]X3 =

in(a) ←
in(z) ← out(a)
in(b) ←

, X4 = {in(a), in(b)},

[P, I]X4 =

in(a) ←
in(b) ←

out(a) ← in(b)

, X5 = {in(a), in(b), out(a)},

[P, I]X5 =

in(a) ←
in(z) ← out(a)
in(b) ←

out(a) ← in(b)

, X6 = {in(a), in(b), out(a), in(z)},

[P, I]X6 =

{

in(a) ←
out(a) ← in(b)

}

, X7 = {in(a)} = X2, X8 = X3.

Notice, that X6 contains a pair of dual revision literals. This indicates that there are
no P -justified revisions of I, which is indeed the case. The sequence {X2i}i=0,1,... is not
monotonic since X6 6⊆ X8.

References

[ABW88] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of deductive databases and logic programming. Papers
from the workshop held in Washington, D.C., August 18–22, 1986, pages 89–148, Palo
Alto, CA, 1988. Morgan Kaufmann.

[BSJ95] K. Berman, J. Schlipf, and J.Franco. Computing the well-founded semantics faster.
In Logic Programming and Nonmonotonic Reasoning (Lexington, KY, 1995), volume
928 of Lecture Notes in Computer Science, pages 113–125, Berlin, 1995. Springer.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In R. Kowalski
and K. Bowen, editors, Proceedings of the 5th International Symposium on Logic
Programming, pages 1070–1080, Cambridge, MA, 1988. MIT Press.

[Lif96] V. Lifschitz. Foundations of logic programming. In Principles of Knowledge Repre-
sentation, pages 69–127. CSLI Publications, 1996.

[MPT99] W. Marek, I. Pivkina, and M. Truszczyński. Revision programming = logic pro-
gramming + integrity constraints. In Computer Science Logic, 12th International
Workshop, CSL’98, volume 1584 of Lecture Notes in Computer Science, pages 73–89.
Springer-Verlag, 1999.

34

[MT95] W. Marek and M. Truszczyński. Revision programming, database updates and in-
tegrity constraints. In Proceedings of the 5th International Conference on Database
Theory — ICDT 95, volume 893 of Lecture Notes in Computer Science, pages 368–
382. Berlin: Springer-Verlag, 1995.

[MT98] W. Marek and M. Truszczyński. Revision programming. Theoretical Computer Sci-
ence, 190(2):241–277, 1998.

[Piv01] I.V. Pivkina. Revision programming: a knowledge representation formalism. PhD
thesis, University of Kentucky, 2001.

[PT97] T. C. Przymusinski and H. Turner. Update by means of inference rules. Journal of
Logic Programming, 30(2):125–143, 1997.

[VRS88] A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded se-
mantics for general logic programs. In Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1988)
(March 21-23, 1988, Austin, Texas), pages 221–230, New York, 1988. ACM Press.

[VRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

35

