
1

1

A complete reasoning procedure in the 
presence of incomplete information

Presented by Tu Phan

2

Outline

Reasoning under Incomplete Information
Possible World Semantics vs Approximation Semantics

An alternative approach

Application to Conformant Planning

Related work

Conclusion



2

3

A running example
Bomb-in-the-toilet domain

one package, one toilet
the package may or may not 
contain a bomb
dunking the package causes the 
bomb to be disarmed if it is 
armed
flushing the toilet makes it 
unclogged

Question: 
Whether or not the bomb is 
disarmed after flushing the 
toilet and then dunking the 
package

Domain Description D1 (in 
language A)

executable dunk if ¬clogged
dunk causes ¬armed if armed
dunk causes clogged
flush causes ¬clogged

Initial condition: I1 = ∅

Question: (D1,I1) ╞ ¬armed after 
[flush;dunk]?

4

Reasoning under Incomplete Information
Possible World Semantics vs. Approximation Semantics

armed
clogged

armed
¬clogged

¬armed
¬clogged

¬armed
clogged

armed
¬clogged

¬armed
¬clogged

¬armed
clogged

flush

dunk

¬clogged

clogged

Possible World Semantics Approximation Semantics

(D1,I1) ╞P ¬clogged after [flush]
(D1,I1) ╞P ¬armed after [flush;dunk]

(D1,I1) ╞a ¬clogged after [flush]
(D1,I1) not╞a ¬armed after [flush;dunk]

flush

dunk



3

5

Reasoning under Incomplete Information
Possible World Semantics vs Approximation Semantics

Possible World 
Semantics

more answers
(D1,I1) ╞p ¬armed after
[flush;dunk]

less efficient: at any 
time, number of 
possible worlds may be 
very big

Approximation 
Semantics

less answers:
(D1,I1) not╞a ¬armed 
after [flush;dunk]

more efficient: 
consider only one 
partial state at a time

sound but incomplete 
w.r.t. possible world 

6

Alternative Approach

Based on the approximation semantics

In the beginning, consider a set of partial 
states rather than a single one

done by partitioning over the truth values of 
some unknown fluents



4

7

Alternative Approach
Partition over {armed} Partition over {clogged}

(D1,I1) ╞A ¬clogged after [flush]
(D1,I1) ╞A ¬armed after [flush;dunk]

(D1,I1) ╞A ¬clogged after [flush]
(D1,I1) not╞A ¬armed after [flush;dunk]

armed ¬armed

armed
¬clogged

¬armed
¬clogged

¬armed
clogged

flush

dunk

clogged ¬clogged

¬clogged

clogged

flush

dunk

armed ¬armed

armed
¬clogged

¬armed
¬clogged

¬armed
clogged

flush

dunk

clogged ¬clogged

¬clogged

clogged

flush

dunk

Question: 

1. What makes it different between armed 
and clogged?

2. What fluent(s) should be chosen to 
partition the initial partial state?

8

Decisive sets of fluents

A set of unknown fluents is decisive if it 
can be used to partition the initial partial 
state in order for ╞A to be complete 

E.g.: 
{armed},{armed,clogged} are decisive
{clogged} is not decisive



5

9

Algorithm for computing a decisive set 
of fluents

Objectives
computationally efficient
returned decisive set should be as small as 
possible

help reduce the search space

Method
Based on the concept of dependencies

10

Dependencies

A literal l depends on a literal 
l1 if either

l = l1

¬l depends on ¬l1

there exists a causes l if p
s.t. l1 ∈ p, or

there exists l2 such that l 
depends on l2 and l2 depends 
on l1

Domain
executable dunk if
¬clogged
dunk causes ¬armed if
armed
dunk causes clogged
flush causes ¬clogged

Dependencies
Ω(armed) = {armed, 
¬armed}
Ω(clogged) = {clogged}



6

11

Computing a decisive set of fluents

Decisive(D,I)
Initialize F = ∅
Compute the dependency relationship
For each unknown fluent f

if there exists l s.t. l depends on both f and ¬f then
F = F ∪ {f}

return F

Theorem:
Decisive(D,I) is a decisive set of fluents, provided that every action 
has at most one executability condition

12

Example
Domain D1                                                               Initial Partial State: I1 = ∅

executable dunk if ¬clogged
dunk causes ¬armed if armed
dunk causes clogged
flush causes ¬clogged

Dependencies
Ω(armed) = {armed, ¬armed}                       Ω(clogged) = {clogged}
Ω(¬armed) = {¬armed,armed}                     Ω(¬clogged) = {¬clogged}

DECISIVE(D1,I1) = {armed} 
armed depends on both armed and ¬armed
no literal l such that l depends on both clogged and ¬clogged



7

13

New approach properties

Sound and complete

More compact than possible world 
semantics in many cases

Computing a decisive set of fluents can be 
done in polynomial time

14

What are missing?
What if we have more than one executability condition for an action

Solution: Dependencies between actions and literals

What if we have more than one initial partial state, for example
initially f | g

Solution:
For each partial state, partition it using the same procedure for computing a 
decisive set

Static causal laws:
At present, we only have the result for domains with static causal laws 
whose body contains at most one literal



8

15

Application – Conformant Planning

Problem
Given: an action theory (D,I), and a set G  of 
literals

Find: a sequence of actions that, when executed in 
any possible initial state, always achieves G

Our approach
If the goal is {-clogged} then do not need to 
partition I
Modify algorithm DECISIVE(D,I) so as to take 

16

Computing a decisive set of fluents

Decisive(D,I,G)
Initialize F = ∅
Compute the dependency relationship
For each unknown fluent f

if there exists l ∈ G s.t. l depends on both f and ¬f 
then

F = F ∪ {f}
return F

Theorem:
Decisive(D,I,G) is a decisive set of fluents for 
planning problem (D,I,G)



9

17

Computing a decisive set
Example

Domain D1                                                               Initial Partial State: I1 = ∅
executable dunk if ¬clogged
dunk causes ¬armed if armed
dunk causes clogged
flush causes ¬clogged

Dependencies
Ω(armed) = {armed, ¬armed}                       Ω(clogged) = {clogged}
Ω(¬armed) = {¬armed,armed}                     Ω(¬clogged) = {¬clogged}

DECISIVE(D1,I1,{clogged}) = ∅
no fluent f such that clogged depends on both f and ¬f

DECISIVE(D1,I1,{¬armed}) = {armed} 
¬armed depends on both armed and ¬armed

18

CPA+ - A Conformant Planner

SCAN AND PARSER
MODULE

PREPROCESSING 
MODULE

Computing a decisive set 
of fluents

SEARCH MODULE
Heuristic: number of 

fulfilled subgoals

Problem
Description

Solutions

CPA+



10

19

CPA+ - Performance

11.096 (1.517)190TOAB102.5619035.83190bomb(100,10)

1.92 (0.232)90TOAB4.04905.3990bomb(50,10)

0.048 (0.008)1015.003 (0.079)10AB0.05100.310bomb(10,10)

6.805 (1.41)195TOAB113.951956.92195bomb(100,5)

1.054 (0.196)95TOAB4.7951.6695bomb(50,5)

0.026 (0.005)156.006 (0.07)15AB0.07150.0915bomb(10,5)

3.758 (1.322)199TOAB121.81993.89199bomb(100,1)

0.506 (0.169)99TOAB5.33990.5199bomb(50,1)

0.009 (0.002)191.519 (0.06)192.61190.05190.0119bomb(10,1)

TimePLTimePLTimePLTimePLTimePL
CPA+CPA*PONDCFFKACMBPProblem

Bomb in the toilet domain CPA*: using possible world semantics
CPA+: using the new approach
PL: Plan length; TO: Time out; AB: Abnormal Termination
Times are in seconds

20

Related Work
Approximations

[Son & Chitta, AI 2001]
[Son, Tu & Chitta, LPNMR 2004]
[Son, Tu, Gelfond & Ricardo, AAAI 2005]
[Son, Tu, Gelfond & Ricardo, LPNMR 2005]

Irrelevant Information
[Nebel, Dimopoulos & Koehler, ECP 1997]

Reduced sets of actions
[Haslum & Johnsson, ICAPS 2000]

Isolated sets of actions and fluents
[Lifschitz & Ren 2004]



11

21

Conclusion

New Approach
Sound and Complete
Efficient

Application to conformant planning
A conformant planner competitive with other 
state-of-the-art planners


