Justification and Debugging of
Answer Set Programs in
ASP-PROLOG

Omar Elkhatib, Enrico Pontelli, Tran Cao Son

Knowledge representation, Logic, and Advanced Programming Laboratory
Department of Computer Science
New Mexico State University

Answer Set Programming (ASP)

e ASP: Logic Programming under answer set semantics
e New Logic Programming Paradigm

e Semantics of a Program = collection of answer sets (sets of
atoms)

ules
| <Ay, A, N0tBy, .., not B,

as constraints on admissible answer sets

e Answer Sets of a Program P correspond to the solution of the
problem

e Good Implementations (e.g., Smodels, DLV)
e However, No Debugging systems exists.




Debugging of ASP

e Very hard, because of its highly declarative
nature.

e Most of the computational details are
hidden from the programmer.

e Hard to understand the reasons of the
solver’s outcomes.

e Tracing is one way of Debugging ASP:
e Large search trees
e Intermixed proofs of different atoms

Justification of ASP

e Justification is a new approach:
e Creates proof graphs for each true atom
e Creates counter-examples for false atoms

e Originally developed for well-founded
semantics in XSB.

e In ASP, it provides a proof of why an atom
IS or is not in an answer set.

e We develop justification for ASP and
integrate it into the ASP-PROLOG System.

4




ASP-PROLOG System

e |t provide a tight and semantically well-defined

integration of Prolog and Answer Set Programming
(ASP).

e The combined system enhances the expressive
power of ASP:
e Dynamic ASP modules (add/remove rules)
e Reasoning about ASP modules from Prolog

e Reasoning about collections of answer sets from
Prolog

e The system is developed using the module and
class capabilities of CIAO Prolog.

System Download: www.cs.nmsu.edu/~okhatib/as
Under Linux.

Justification of ASP Programs

e For ASP P and model M:

e True literal L means:
e Lin MifLisan atom (L=a).
e L notin M If L is a negated atom (L=not a).
e False literal L means:
e L notin Mif L is an atom (L=a).
e L in Mif L is a negated atom (L=not a).
e Arule ris active if all literals in body of r are true wrt M.
e Locally consistent explanation (LCE):

« AeM: {(A,M) = set of the bodies of the active rules that
have A as head (i.e., reasons for A’s truth)

« AgM: {(A,M) = a collection of literals such that we have
exactly one false literal per rule for all rules which has
head A (i.e., reasons for A’s falsity)




Justification Example

+

:.- W
M ={a,b,c,d}
C(a,M)={{b}.{c}}.

&(d,M)={{b}}.
&(s:M)={{w}}.

Positive cycles problem.

Justification of ASP

Justification of ASP P is a graph J=(V,E).
o IfAiInM:
« If Ais a fact then (A,fact) in E.

« If there is rule r : all literals in body of r are not in a
positive cycle with A, then (A, B) in E, VB in body of r.

- No other outgoing edges from A are possible.

e If Anotin M:
« If no rule defined for A then (A,no_support)eE

- For each rule r with head A, choose one false literal B in
body of r, then (A,B) in E.
- No other outgoing edges from A are possible.




Justification Example
a:- notb. /%

b :- not a.

a.-e. atrue dfalse btrue c false
e .-a.

Cc:-a ’

d bfalse

. b a, false

M1={a,c,e}.
M2={b,d}.

M1 Justification M2 Justification

Positive and negative cycles.

r-Justification

e Break all negative cycles.

e Define: Assumption Set 49(M)= set of all
atoms that satisfy the following conditions:
« Atom A is false wrt M.
+ A appears in negation formin P.
- A appears in a negative cycle in E

e R-justification:
Add: If Ae_4sthen (A, assume)eE.




r-Justification Example

a - not b.
(+ + Y
[bie]

d,false

M2={b,d}.
AS(M1)={b}.
'/ZlS(M 2):{8.} M1 Justification M2 Justification

System Implementation

e Justification is integrated into ASP-PROLOG.
e Justification is written in CIAO-PROLOG.

e Iparse/smodels is used to find answer set
models.

e Predicate added for programmer:
e Justify atoms(model_name, atom_list).
e Output: text format and graph format (uDrawGraph).
e System shows the rules that cause the justification.

e System can handle all type of Iparse/smodels
rule: cardinality, weight and choice rules.




ASP-PROLOG System Overview

ASP modules

. -

Prolog modules

.—»

New Prolog modules

Interaction Prolog - ASP

Prolog ASP program
modules

Justify_atoms
Justification

New Prolog
modules

uDrawGraph




Example

a:-2{b, c, notd}2.
b :- not f. ' :

f:- notb. M Y
cig. ] [
g. - '

d:-note. F

e :- not d.

e [assump] [t
M2={b,c,g,e}.
M3={f,c,g,d}.
M4={f,c,g,e,a}.

M1 justification graph M2 justification graph

Conclusion & Future Work

e Justification is one type of debugging. It is
used in this paper to justify ASP models.

e Partial justification of answer sets is under
investigation. Allow users to justify atoms
in the middle of computation.

e Work is in progress to present the non-
ground rules defining the atom.




