Designing of
Nonmonotonic Inductive LogicC

Programming Systems
Chongbing Liu

October 24, 2005

Outlines

B Basic Algorithms and Properties

B Sequential Learning Algorithm

B Parallelization

Basic Algorithms and Properties

Necessary conditions

Learn from a single positive example

Learn from a single negative example

Learn from a set of examples

General properties

Necessary Conditions
Given
B: a program, H: a rule, E: a ground literal.
Proposition
BU{H}=Eand B=H == B}=FE (i)
From (i), we can prove
BlW¥=FE and BU{H}=FE == B H (ii) (E: positive example)
Bl=F and BU{H} = E = B &= H (ui) (F: negative example)

Trivial hypothese

o let Mt = MU{not Il |l & M and | € HB}, where M is the
stable model of B and HB is the Herbrand model of B.

e B~ H implies MT [~ H.
o letm ={K € MT | K is relevant to E and isinvolved inBU{E}}.
e since MT =T, we have MT [~ ro where rg =« .

e integrity constraint ro =« I is a trivial valid (ground) candi-
date of H.

Learning from a single positive example

algorithm: Learn-single-pos
Input: a categorical program B, a ground atom E (positive)

Output: a rule R
1. compute the answer set M of B and its expansion set M™;
2. construct the integrity constraint «— I from M™;
3. produce a rule E «— I’ by shifting not E in I

4. generate a general rule R where RO = (L + ") for some theta.

Learning from a single positive example

Illustration
Given:
B = {bird(X) « penguin(X). bird(tweety). penguin(polly).}
E = {&@flies(tweety).}
Note: B = not flies(tweety).

Steps:

1. compute answer set M of B and expansion set MT:

e stable model of B (same as that of B not E):
M = { bird(tweety). bird(polly). penguin(polly). }

e expansion of M:
M = { bird(tweety). bird(polly). penguin(polly).
not penguin(tweety). not flies(tweety). not flies(polly). }

2. construct the integrity constraint I from M™:
— bird(tweety), not penguin(tweety), not flies(tweety).

3. produce a rule E «— I’ by shifting not E in I":
ro = flies(tweety) < bird(tweety), not penguin(tweety).

4. generate a general rule :
H = flies(X) «— bird(X), not penguin(X).
(simplified as ab(xz) + penguin(x).

Learning from a single positive example

Properties
B: categorical program,
FE: positive example,
R: learned rule by algorithm Learnsingle-pos

Properties:
- B~ R.
- pred(head(R)) = pred(FE).

- if R is negative-cycle-free and its head predicate appears nowhere
in B, then BU{R} is also categorical.

- if R is negative-cycle-free and its head predicate appears nowhere
in B, then BU{R} = E.

Learning from a single negative example

algorithm: Learn-single-neg
Input:
a categorical program B, a ground atom E (negative example),
a target predicate K(...) on which pred(E) strongly and negatively
depends in B.

Output: a rule R
1. compute the answer set M of B and its expansion set MT;
2. construct the integrity constraint «— I from M™;
3. produce the rule K(...) « I'" by shifting not K(...) in I";

4. obtain I by dropping from I’ every literal | whose predicate
pred(l) strongly and netagively depends on K(...) in B.

5. generate a general rule R from K(...) « I'" such that
RO = K(...) < " for some 6.

Learning from a single negative example

Illustration

Given:

B : flies(x) < bird(x),not ab(x),
bird(x) «— penguin(x),
bird(tweety),
penguin(polly).

E: o©flies(polly).

target predicate: ab
Note: B = flies(polly).
Steps:

1. compute answer set M of B and expansion set MT:
. omitted ...

2. construct the integrity constraint «— I from M™:
— bird(polly), penguin(polly), flies(polly), not ab(polly).

3. produce the rule K(...) « I'" by shifting not K(...) in I":
ab(polly) < bird(polly), penguin(polly), flies(polly).

4. dropping from I’ every literal [whose predicate pred(l) strongly
and netagively depends on predicate ab:

ab(polly) < bird(polly), penguin(polly).

5. generate a general rule H:
ab(xz) < bird(z), penguin(x).
(simplified as ab(x) «— penguin(x).

Note: Now since ab(polly) is true, not ab(penguin) is false. There-
fore, the newly learned theory prevents the first rule in B from
deriving flies(polly).

Learning from a single negative example

Properties

2

categorical program,

S

negative example,

~

. target predicate,
R: learned rule by algorithm Learnsingle-pos

Properties:
_ BFER
- pred(head(R))#pred(F), instead, pred(head(R)) = K.

- if R is negative-cycle-free, then B U {R} is not necessarily
categorical.

- if BU{RA} = R and BU{R} is consistent, then BU{R} = E.

Learning from a set of examples

all positive examples

1. Let B be a categorical program, and R; is a rule learned from
B and a positive example E;, 1 <1< n.

If each R; is negativ-cycle-free and pred(E;) appears nowhere
in B, then BU{R1,...,R,} = FEi.

2. Let B be a categorical program, E; and E> be positive ex-
amples such that pred(FE1) and pred(E>) appear nowhere in
B.

Suppose rule R; learned from B and FE; is negative-cycle-free,
and rule Ry learned from B U {R1} and E» is negative-cycle-
free.

Then BU{R1, Ry} = E;(: =1,2). (monotonicity)

10

Learning from a set of examples

all negative examples

11

Learning from a set of examples

mixed set of positive and negative examples

may not necessarily produce a solution which satisfies both
positive and negative examples.

in incremental learning mode, the order in which the exam-
ples are taken, does matter. (obvious in multiple-predicate
learning, less obvious in single-predicate learning)

12

General Properties

Both positive and negative examples may lead to new rules
learned.

Based on answer set semantics, so have both abductive and
inductive nature.

Example-driven learning, therefore bottom-up search in gen-
eral.

(Induction in noncategorical programs) Suppose program
B has anser sets S1,...,S5,, and rule R; is obtained by algorithm
Learn-single-pos using B and a same positiv example E. If
each R; is negative-cycle-free and pred(E) appears nowhere in
B, then BU{R;i,...,R,} = FE.

No modifications to the rules as background knowledge. But
the result of induction often has the same effect as modifying
rules in a program, given appropriate program transformation
techniques. For instance, let B ={p «— ¢q,». ¢.} and E = p.
Then algorithm Learn-single-pos will learn a rule

p < q, not r.

However, this rule and the first rule in B can be merged as
p <— g, which is equivalent to the rule obtained by dropping r
from the first rule in B.

Since the learned theory may contain a lot of redundencies, it
seems that we really need some robust program transforma-
tion procedures.

This feature allows the batch learning systems to incorporate
some prior knowledge, which was not allowed in traditional
batch learning.

batch learning is preferred to incremental learning, since it
leads to less redundant theories.

13

Sequential Learning Algorithms

Incremental Learning

Initialize < to {{J} or some prior knowledge
repeat
read the next (positive or negative) example
while X is not correct w.r.t. the examples read so far
if de~ s.t. T =e
learn a rule from 3 and e~ using Learn-single-neg
add the learned rule to =
if JeT s.t. X et
learn a rule from X and et using Learn-single-pos
add the learned rule to >
simplify >
until no examples left to read.

14

Sequential Learning Algorithms

Batch Learning

Initialize ~ to {J} or some prior knowledge
while there are positive examples uncovered by >
learn a rule R from X and a randomly selected et
find a best consistent rule R’ between [0 and R
using algorithm Learn-single-pos
remove positive examples covered by R’
add the rule R’ to X
simplify >
while there are negative examples
learn a rule R from > and a randomly selected e~
using algorithm Learn-single-neg
remove e~
add the rule R to =
simplify >

15

Parallel Learning Algorithms

master processor :
Initialize > to {J} or some prior knowledge
partition the positive examples to p processors
replicate all negative examples to all processors
broadcast > to all the worker processors
collect learned >; from processor i
merge >;'s and simplify them into a new *
worker processor i :
receive its partition of positive examples
and all the negative examples
learn a theory >-; sequentially
send > ; to the master

16

