Designing of Nonmonotonic Inductive Logic Programming Systems

Chongbing Liu

October 24, 2005

Outlines

Basic Algorithms and Properties

Sequential Learning Algorithm

Parallelization

Basic Algorithms and Properties

Necessary conditions

Learn from a single positive example

Learn from a single negative example

Learn from a set of examples

General properties

Necessary Conditions

Given

B: a program, H: a rule, E: a ground literal.

Proposition

 $B \cup \{H\} \models E \text{ and } B \models H \Longrightarrow B \models E (i)$

From (i), we can prove

- $B \not\models E \text{ and } B \cup \{H\} \models E \Longrightarrow B \not\models H$ (*ii*) (*E*: positive example)
- $B \models E \text{ and } B \cup \{H\} \not\models E \Longrightarrow B \not\models H \text{ (iii) (E: negative example)}$

Trivial hypothese

- let $M^+ = M \cup \{not \ l \mid l \notin M \text{ and } l \in \mathcal{HB}\}$, where M is the stable model of B and \mathcal{HB} is the Herbrand model of B.
- $B \not\models H$ implies $M^+ \not\models H$.
- let $\Gamma = \{K \in M^+ \mid K \text{ is relevant to } E \text{ and is involved } inB \cup \{E\}\}.$
- since $M^+ \models \Gamma$, we have $M^+ \not\models r_0$ where $r_0 \models \leftarrow \Gamma$.
- integrity constraint r₀ =← Γ is a trivial valid (ground) candidate of H.

Learning from a single positive example

algorithm: Learn-single-pos

Input: a categorical program B, a ground atom E (positive) Output: a rule R

- 1. compute the answer set M of B and its expansion set M^+ ;
- 2. construct the integrity constraint $\leftarrow \Gamma$ from M^+ ;
- 3. produce a rule $E \leftarrow \Gamma'$ by shifting *not* E in Γ ;
- 4. generate a general rule R where $R\theta = (L \leftarrow \Gamma')$ for some *theta*.

Learning from a single positive example

Illustration

Given:

 $\mathcal{B} = \{ bird(X) \leftarrow penguin(X). \ bird(tweety). \ penguin(polly). \}$

 $E = \{ \oplus flies(tweety). \}$

Note: $B \models not flies(tweety)$.

Steps:

- 1. compute answer set M of B and expansion set M^+ :
 - stable model of B (same as that of B not E):
 M = { bird(tweety). bird(polly). penguin(polly). }
 - expansion of M:
 M⁺ = { bird(tweety). bird(polly). penguin(polly).
 not penguin(tweety). not flies(tweety). not flies(polly). }
- 2. construct the integrity constraint Γ from M^+ : \leftarrow bird(tweety), not penguin(tweety), not flies(tweety).
- 3. produce a rule $E \leftarrow \Gamma'$ by shifting not E in Γ : $r_0 = flies(tweety) \leftarrow bird(tweety), not penguin(tweety).$
- 4. generate a general rule : $H = flies(X) \leftarrow bird(X), not \ penguin(X).$ (simplified as $ab(x) \leftarrow penguin(x).$

Learning from a single positive example

Properties

- B: categorical program,
- E: positive example,
- R: learned rule by algorithm Learnsingle-pos

Properties:

- $B \not\models R$.
- pred(head(R)) = pred(E).
- if R is negative-cycle-free and its head predicate appears nowhere in B, then $B \cup \{R\}$ is also categorical.
- if R is negative-cycle-free and its head predicate appears nowhere in B, then $B \cup \{R\} \models E$.

Learning from a single negative example

algorithm: Learn-single-neg

Input:

a categorical program B, a ground atom E (negative example), a target predicate K(...) on which pred(E) strongly and negatively depends in B.

Output: a rule R

- 1. compute the answer set M of B and its expansion set M^+ ;
- 2. construct the integrity constraint $\leftarrow \Gamma$ from M^+ ;
- 3. produce the rule $K(\ldots) \leftarrow \Gamma'$ by shifting not $K(\ldots)$ in Γ ;
- 4. obtain Γ'' by dropping from Γ' every literal l whose predicate pred(l) strongly and netagively depends on K(...) in B.
- 5. generate a general rule R from $K(...) \leftarrow \Gamma''$ such that $R\theta = K(...) \leftarrow \Gamma''$ for some θ .

Learning from a single negative example Illustration

Given:

target predicate: ab

Note: $B \models flies(polly)$.

Steps:

- 1. compute answer set M of B and expansion set M^+ : ... omitted ...
- 2. construct the integrity constraint $\leftarrow \Gamma$ from M^+ : $\leftarrow bird(polly), penguin(polly), flies(polly), not ab(polly).$
- 3. produce the rule $K(...) \leftarrow \Gamma'$ by shifting not K(...) in Γ : $ab(polly) \leftarrow bird(polly), penguin(polly), flies(polly).$
- 4. dropping from Γ' every literal l whose predicate pred(l) strongly and netagively depends on predicate ab: $ab(polly) \leftarrow bird(polly), penguin(polly).$
- 5. generate a general rule H: $ab(x) \leftarrow bird(x), penguin(x).$ (simplified as $ab(x) \leftarrow penguin(x)$.

Note: Now since ab(polly) is *true*, not ab(penguin) is *false*. Therefore, the newly learned theory prevents the first rule in *B* from deriving *flies(polly)*.

Learning from a single negative example

Properties

- B: categorical program,
- E: negative example,
- *K*: target predicate,
- *R*: learned rule by algorithm Learnsingle-pos

Properties:

- $B \not\models R$.
- $pred(head(R)) \neq pred(E)$, instead, pred(head(R)) = K.
- if R is negative-cycle-free, then $B \cup \{R\}$ is not necessarily categorical.
- if $B \cup \{R\theta\} \models R$ and $B \cup \{R\}$ is consistent, then $B \cup \{R\} \not\models E$.

Learning from a set of examples

all positive examples

1. Let *B* be a categorical program, and R_i is a rule learned from *B* and a positive example E_i , $1 \le i \le n$.

If each R_i is negativ-cycle-free and $pred(E_i)$ appears nowhere in B, then $B \cup \{R_1, \ldots, R_n\} \models E_i$.

2. Let B be a categorical program, E_1 and E_2 be positive examples such that $pred(E_1)$ and $pred(E_2)$ appear nowhere in B.

Suppose rule R_1 learned from B and E_1 is negative-cycle-free, and rule R_2 learned from $B \cup \{R_1\}$ and E_2 is negative-cycle-free.

Then $B \cup \{R_1, R_2\} \models E_i (i = 1, 2)$. (monotonicity)

Learning from a set of examples

all negative examples

... ... omitted

Learning from a set of examples

mixed set of positive and negative examples

- 1. may not necessarily produce a solution which satisfies both positive and negative examples.
- 2. in incremental learning mode, the order in which the examples are taken, does matter. (obvious in multiple-predicate learning, less obvious in single-predicate learning)

General Properties

- Both positive and negative examples may lead to new rules learned.
- Based on answer set semantics, so have both abductive and inductive nature.
- Example-driven learning, therefore bottom-up search in general.
- (Induction in noncategorical programs) Suppose program B has anser sets S_1, \ldots, S_n , and rule R_i is obtained by algorithm Learn-single-pos using B and a same positiv example E. If each R_i is negative-cycle-free and pred(E) appears nowhere in B, then $B \cup \{R_1, \ldots, R_n\} \models E$.
- No modifications to the rules as background knowledge. But the result of induction often has the same effect as modifying rules in a program, given appropriate program transformation techniques. For instance, let $B = \{p \leftarrow q, r. q.\}$ and E = p. Then algorithm Learn-single-pos will learn a rule

 $p \leftarrow q, not r.$

However, this rule and the first rule in B can be merged as $p \leftarrow q$, which is equivalent to the rule obtained by dropping r from the first rule in B.

- Since the learned theory may contain a lot of redundencies, it seems that we really need some robust program transformation procedures.
- This feature allows the batch learning systems to incorporate some prior knowledge, which was not allowed in traditional batch learning.
- batch learning is preferred to incremental learning, since it leads to less redundant theories.

Sequential Learning Algorithms

Incremental Learning

Initialize Σ to $\{\Box\}$ or some prior knowledge repeat read the next (positive or negative) example while Σ is not correct w.r.t. the examples read so far if $\exists e^-$ s.t. $\Sigma \models e^$ learn a rule from Σ and e^- using Learn-single-neg add the learned rule to Σ if $\exists e^+$ s.t. $\Sigma \not\models e^+$ learn a rule from Σ and e^+ using Learn-single-pos add the learned rule to Σ simplify Σ until no examples left to read.

Sequential Learning Algorithms

Batch Learning

Initialize Σ to { \Box } or some prior knowledge while there are positive examples uncovered by Σ learn a rule R from Σ and a randomly selected e^+ find a best consistent rule R' between \Box and Rusing algorithm Learn-single-pos remove positive examples covered by R'add the rule R' to Σ simplify Σ while there are negative examples learn a rule R from Σ and a randomly selected $e^$ using algorithm Learn-single-neg remove $e^$ add the rule R to Σ simplify Σ

Parallel Learning Algorithms

master processor :

Initialize Σ to $\{\Box\}$ or some prior knowledge partition the positive examples to p processors replicate all negative examples to all processors broadcast Σ to all the worker processors collect learned Σ_i from processor i merge Σ_i 's and simplify them into a new Σ worker processor i : receive its partition of positive examples

and all the negative examples

learn a theory Σ_i sequentially

send Σ_i to the master