
Designing of

Nonmonotonic Inductive Logic

Programming Systems

Chongbing Liu

October 24, 2005

Outlines

� Basic Algorithms and Properties

� Sequential Learning Algorithm

� Parallelization

1

Basic Algorithms and Properties

Necessary conditions

Learn from a single positive example

Learn from a single negative example

Learn from a set of examples

General properties

2

Necessary Conditions

Given

B: a program, H: a rule, E: a ground literal.

Proposition

B ∪ {H} |= E and B |= H =⇒ B |= E (i)

From (i), we can prove

B 6|= E and B ∪ {H} |= E =⇒ B 6|= H (ii) (E: positive example)

B |= E and B ∪{H} 6|= E =⇒ B 6|= H (iii) (E: negative example)

Trivial hypothese

• let M+ = M ∪ {not l | l 6∈ M and l ∈ HB}, where M is the
stable model of B and HB is the Herbrand model of B.

• B 6|= H implies M+ 6|= H.

• let Γ = {K ∈M+ | K is relevant to E and isinvolved inB∪{E}}.

• since M+ |= Γ, we have M+ 6|= r0 where r0 =← Γ.

• integrity constraint r0 =← Γ is a trivial valid (ground) candi-
date of H.

3

Learning from a single positive example

algorithm: Learn-single-pos

Input: a categorical program B, a ground atom E (positive)

Output: a rule R

1. compute the answer set M of B and its expansion set M+;

2. construct the integrity constraint ← Γ from M+;

3. produce a rule E ← Γ′ by shifting not E in Γ;

4. generate a general rule R where Rθ = (L← Γ′) for some theta.

4

Learning from a single positive example

Illustration

Given:

B = {bird(X)← penguin(X). bird(tweety). penguin(polly).}

E = {⊕flies(tweety).}

Note: B |= not flies(tweety).

Steps:

1. compute answer set M of B and expansion set M+:

• stable model of B (same as that of B not E):
M = { bird(tweety). bird(polly). penguin(polly). }

• expansion of M :
M+ = { bird(tweety). bird(polly). penguin(polly).
not penguin(tweety). not flies(tweety). not flies(polly). }

2. construct the integrity constraint Γ from M+:
← bird(tweety), not penguin(tweety), not flies(tweety).

3. produce a rule E ← Γ′ by shifting not E in Γ:
r0 = flies(tweety)← bird(tweety), not penguin(tweety).

4. generate a general rule :
H = flies(X)← bird(X), not penguin(X).
(simplified as ab(x)← penguin(x).

5

Learning from a single positive example

Properties

B: categorical program,

E: positive example,

R: learned rule by algorithm Learnsingle-pos

Properties:

- B 6|= R.

- pred(head(R)) = pred(E).

- if R is negative-cycle-free and its head predicate appears nowhere
in B, then B ∪ {R} is also categorical.

- if R is negative-cycle-free and its head predicate appears nowhere
in B, then B ∪ {R} |= E.

6

Learning from a single negative example

algorithm: Learn-single-neg

Input:
a categorical program B, a ground atom E (negative example),
a target predicate K(. . .) on which pred(E) strongly and negatively
depends in B.

Output: a rule R

1. compute the answer set M of B and its expansion set M+;

2. construct the integrity constraint ← Γ from M+;

3. produce the rule K(. . .)← Γ′ by shifting not K(. . .) in Γ;

4. obtain Γ′′ by dropping from Γ′ every literal l whose predicate
pred(l) strongly and netagively depends on K(. . .) in B.

5. generate a general rule R from K(. . .)← Γ′′ such that
Rθ = K(. . .)← Γ′′ for some θ.

7

Learning from a single negative example

Illustration

Given:

B : flies(x)← bird(x), not ab(x),

bird(x)← penguin(x),

bird(tweety),

penguin(polly).

E : ⊖flies(polly).

target predicate: ab

Note: B |= flies(polly).

Steps:

1. compute answer set M of B and expansion set M+:
... omitted ...

2. construct the integrity constraint ← Γ from M+:
← bird(polly), penguin(polly), f lies(polly), not ab(polly).

3. produce the rule K(. . .)← Γ′ by shifting not K(. . .) in Γ:
ab(polly)← bird(polly), penguin(polly), f lies(polly).

4. dropping from Γ′ every literal l whose predicate pred(l) strongly
and netagively depends on predicate ab:
ab(polly)← bird(polly), penguin(polly).

5. generate a general rule H:
ab(x)← bird(x), penguin(x).
(simplified as ab(x)← penguin(x).

Note: Now since ab(polly) is true, not ab(penguin) is false. There-
fore, the newly learned theory prevents the first rule in B from
deriving flies(polly).

8

Learning from a single negative example

Properties

B: categorical program,

E: negative example,

K: target predicate,

R: learned rule by algorithm Learnsingle-pos

Properties:

- B 6|= R.

- pred(head(R)) 6=pred(E), instead, pred(head(R)) = K.

- if R is negative-cycle-free, then B ∪ {R} is not necessarily
categorical.

- if B ∪ {Rθ} |= R and B ∪ {R} is consistent, then B ∪ {R} 6|= E.

9

Learning from a set of examples

all positive examples

1. Let B be a categorical program, and Ri is a rule learned from
B and a positive example Ei, 1 ≤ i ≤ n.

If each Ri is negativ-cycle-free and pred(Ei) appears nowhere
in B, then B ∪ {R1, . . . , Rn} |= Ei.

2. Let B be a categorical program, E1 and E2 be positive ex-
amples such that pred(E1) and pred(E2) appear nowhere in
B.

Suppose rule R1 learned from B and E1 is negative-cycle-free,
and rule R2 learned from B ∪ {R1} and E2 is negative-cycle-
free.

Then B ∪ {R1, R2} |= Ei(i = 1,2). (monotonicity)

10

Learning from a set of examples

all negative examples

... ... omitted

11

Learning from a set of examples

mixed set of positive and negative examples

1. may not necessarily produce a solution which satisfies both
positive and negative examples.

2. in incremental learning mode, the order in which the exam-
ples are taken, does matter. (obvious in multiple-predicate
learning, less obvious in single-predicate learning)

12

General Properties

• Both positive and negative examples may lead to new rules
learned.

• Based on answer set semantics, so have both abductive and
inductive nature.

• Example-driven learning, therefore bottom-up search in gen-
eral.

• (Induction in noncategorical programs) Suppose program
B has anser sets S1, . . . , Sn, and rule Ri is obtained by algorithm
Learn-single-pos using B and a same positiv example E. If
each Ri is negative-cycle-free and pred(E) appears nowhere in
B, then B ∪ {R1, . . . , Rn} |= E.

• No modifications to the rules as background knowledge. But
the result of induction often has the same effect as modifying
rules in a program, given appropriate program transformation
techniques. For instance, let B = {p ← q, r. q.} and E = p.
Then algorithm Learn-single-pos will learn a rule

p← q, not r.

However, this rule and the first rule in B can be merged as
p← q, which is equivalent to the rule obtained by dropping r
from the first rule in B.

• Since the learned theory may contain a lot of redundencies, it
seems that we really need some robust program transforma-
tion procedures.

• This feature allows the batch learning systems to incorporate
some prior knowledge, which was not allowed in traditional
batch learning.

• batch learning is preferred to incremental learning, since it
leads to less redundant theories.

13

Sequential Learning Algorithms

Incremental Learning

Initialize Σ to {�} or some prior knowledge

repeat

read the next (positive or negative) example

while Σ is not correct w.r.t. the examples read so far

if ∃e− s.t. Σ |= e−

learn a rule from Σ and e− using Learn-single-neg

add the learned rule to Σ

if ∃e+ s.t. Σ 6|= e+

learn a rule from Σ and e+ using Learn-single-pos

add the learned rule to Σ

simplify Σ

until no examples left to read.

14

Sequential Learning Algorithms

Batch Learning

Initialize Σ to {�} or some prior knowledge

while there are positive examples uncovered by Σ

learn a rule R from Σ and a randomly selected e+

find a best consistent rule R′ between � and R

using algorithm Learn-single-pos

remove positive examples covered by R′

add the rule R′ to Σ

simplify Σ

while there are negative examples

learn a rule R from Σ and a randomly selected e−

using algorithm Learn-single-neg

remove e−

add the rule R to Σ

simplify Σ

15

Parallel Learning Algorithms

master processor :

Initialize Σ to {�} or some prior knowledge

partition the positive examples to p processors

replicate all negative examples to all processors

broadcast Σ to all the worker processors

collect learned Σi from processor i

merge Σi’s and simplify them into a new Σ

worker processor i :

receive its partition of positive examples

and all the negative examples

learn a theory Σi sequentially

send Σi to the master

16

