Designing of
Nonmonotonic Inductive Logic Programming Systems

Chongbing Liu

October 24, 2005

Outlines

■ Basic Algorithms and Properties

■ Sequential Learning Algorithm

- Parallelization

Basic Algorithms and Properties

Necessary conditions

Learn from a single positive example

Learn from a single negative example

Learn from a set of examples

General properties

Necessary Conditions

Given

B : a program, H : a rule, E : a ground literal.

Proposition

$B \cup\{H\} \vDash E$ and $B \vDash H \Longrightarrow B \vDash E$
From (i), we can prove
$B \not \vDash E$ and $B \cup\{H\} \vDash E \Longrightarrow B \not \models H$ (ii) (E : positive example)
$B \vDash E$ and $B \cup\{H\} \not \vDash E \Longrightarrow B \not \vDash H$ (iii) (E : negative example)

Trivial hypothese

- let $M^{+}=M \cup\{$ not $l \mid l \notin M$ and $l \in \mathcal{H} \mathcal{B}\}$, where M is the stable model of B and $\mathcal{H B}$ is the Herbrand model of B.
- $B \not \vDash H$ implies $M^{+} \not \vDash H$.
- let $\Gamma=\left\{K \in M^{+} \mid K\right.$ is relevant to E and isinvolved $\left.\operatorname{in} B \cup\{E\}\right\}$.
- since $M^{+} \vDash \Gamma$, we have $M^{+} \not \vDash r_{0}$ where $r_{0}=\leftarrow \Gamma$.
- integrity constraint $r_{0}=\leftarrow \Gamma$ is a trivial valid (ground) candidate of H.

Learning from a single positive example

algorithm: Learn-single-pos

Input: a categorical program B, a ground atom E (positive)
Output: a rule R

1. compute the answer set M of B and its expansion set M^{+};
2. construct the integrity constraint $\leftarrow \Gamma$ from M^{+};
3. produce a rule $E \leftarrow \Gamma^{\prime}$ by shifting not E in Γ;
4. generate a general rule R where $R \theta=\left(L \leftarrow \Gamma^{\prime}\right)$ for some theta.

Learning from a single positive example

Illustration

Given:

$\mathcal{B}=\{\operatorname{bird}(X) \leftarrow \operatorname{penguin}(X) . \quad$ bird(tweety). penguin(polly). $\}$
$E=\{\oplus$ flies (tweety). $\}$
Note: $B \models$ not flies(tweety).

Steps:

1. compute answer set M of B and expansion set M^{+}:

- stable model of B (same as that of B not E): $M=\{\operatorname{bird}($ tweety $)$. bird(polly). penguin(polly). $\}$
- expansion of M :
$M^{+}=\{\operatorname{bird}(t w e e t y) . \operatorname{bird}($ polly $)$. penguin(polly). not penguin(tweety). not flies(tweety). not flies(polly). \}

2. construct the integrity constraint Γ from M^{+}:
\leftarrow bird(tweety), not penguin(tweety), not flies(tweety).
3. produce a rule $E \leftarrow \Gamma^{\prime}$ by shifting not E in Γ :
$r_{0}=$ flies (tweety $) \leftarrow \operatorname{bird}($ tweety $)$, not penguin(tweety).
4. generate a general rule :
$H=\operatorname{flies}(X) \leftarrow \operatorname{bird}(X)$, not penguin (X).
(simplified as $a b(x) \leftarrow$ penguin (x).

Learning from a single positive example

Properties

B : categorical program,
E: positive example,
R : learned rule by algorithm Learnsingle-pos

Properties:

- $B \not \vDash R$.
- $\operatorname{pred}(\operatorname{head}(R))=\operatorname{pred}(E)$.
- if R is negative-cycle-free and its head predicate appears nowhere in B, then $B \cup\{R\}$ is also categorical.
- if R is negative-cycle-free and its head predicate appears nowhere in B, then $B \cup\{R\} \vDash E$.

Learning from a single negative example

algorithm: Learn-single-neg

Input:

a categorical program B, a ground atom E (negative example), a target predicate $K(\ldots)$ on which $\operatorname{pred}(E)$ strongly and negatively depends in B.

Output: a rule R

1. compute the answer set M of B and its expansion set M^{+};
2. construct the integrity constraint $\leftarrow \Gamma$ from M^{+};
3. produce the rule $K(\ldots) \leftarrow \Gamma^{\prime}$ by shifting not $K(\ldots)$ in Γ;
4. obtain $\Gamma^{\prime \prime}$ by dropping from Γ^{\prime} every literal l whose predicate $\operatorname{pred}(l)$ strongly and netagively depends on $K(\ldots)$ in B.
5. generate a general rule R from $K(\ldots) \leftarrow \Gamma^{\prime \prime}$ such that $R \theta=K(\ldots) \leftarrow \Gamma^{\prime \prime}$ for some θ.

Learning from a single negative example

Illustration

Given:

$$
\begin{aligned}
B: \quad & \text { flies }(x) \leftarrow \operatorname{bird}(x), \text { not } a b(x), \\
& \operatorname{bird}(x) \leftarrow \operatorname{penguin}(x) \\
& \operatorname{bird}(\text { tweety }) \\
& \text { penguin }(\text { polly }) \\
E: & \ominus \text { flies }(\text { polly }) .
\end{aligned}
$$

target predicate: ab
Note: $B \models$ flies(polly).

Steps:

1. compute answer set M of B and expansion set M^{+}:
... omitted ...
2. construct the integrity constraint $\leftarrow \Gamma$ from M^{+}:
$\leftarrow \operatorname{bird}($ polly $)$, penguin(polly), flies(polly), not ab(polly).
3. produce the rule $K(\ldots) \leftarrow \Gamma^{\prime}$ by shifting not $K(\ldots)$ in Γ :
$a b($ polly $) \leftarrow \operatorname{bird}($ polly $)$, penguin(polly), flies(polly).
4. dropping from Γ^{\prime} every literal l whose predicate $\operatorname{pred}(l)$ strongly and netagively depends on predicate $a b$:
$a b($ polly $) \leftarrow \operatorname{bird}($ polly $)$, penguin $($ polly $)$.
5. generate a general rule H :
$a b(x) \leftarrow \operatorname{bird}(x)$, penguin (x).
(simplified as $a b(x) \leftarrow \operatorname{penguin}(x)$.

Note: Now since $a b$ (polly) is true, not ab(penguin) is false. Therefore, the newly learned theory prevents the first rule in B from deriving flies(polly).

Learning from a single negative example

Properties

B : categorical program,
E : negative example,
K: target predicate,
R : learned rule by algorithm Learnsingle-pos

Properties:

- $B \not \vDash R$.
- $\operatorname{pred}(\operatorname{head}(R)) \neq \operatorname{pred}(E)$, instead, $\operatorname{pred}(\operatorname{head}(R))=K$.
- if R is negative-cycle-free, then $B \cup\{R\}$ is not necessarily categorical.
- if $B \cup\{R \theta\} \models R$ and $B \cup\{R\}$ is consistent, then $B \cup\{R\} \not \models E$.

Learning from a set of examples

all positive examples

1. Let B be a categorical program, and R_{i} is a rule learned from B and a positive example $E_{i}, 1 \leq i \leq n$.
If each R_{i} is negativ-cycle-free and $\operatorname{pred}\left(E_{i}\right)$ appears nowhere in B, then $B \cup\left\{R_{1}, \ldots, R_{n}\right\} \models E_{i}$.
2. Let B be a categorical program, E_{1} and E_{2} be positive examples such that $\operatorname{pred}\left(E_{1}\right)$ and $\operatorname{pred}\left(E_{2}\right)$ appear nowhere in B.

Suppose rule R_{1} learned from B and E_{1} is negative-cycle-free, and rule R_{2} learned from $B \cup\left\{R_{1}\right\}$ and E_{2} is negative-cyclefree.

Then $B \cup\left\{R_{1}, R_{2}\right\} \models E_{i}(i=1,2)$. (monotonicity)

Learning from a set of examples

all negative examples
... ... omitted

Learning from a set of examples

mixed set of positive and negative examples

1. may not necessarily produce a solution which satisfies both positive and negative examples.
2. in incremental learning mode, the order in which the examples are taken, does matter. (obvious in multiple-predicate learning, less obvious in single-predicate learning)

General Properties

- Both positive and negative examples may lead to new rules learned.
- Based on answer set semantics, so have both abductive and inductive nature.
- Example-driven learning, therefore bottom-up search in general.
- (Induction in noncategorical programs) Suppose program B has anser sets S_{1}, \ldots, S_{n}, and rule R_{i} is obtained by algorithm Learn-single-pos using B and a same positiv example E. If each R_{i} is negative-cycle-free and $\operatorname{pred}(E)$ appears nowhere in B, then $B \cup\left\{R_{1}, \ldots, R_{n}\right\} \models E$.
- No modifications to the rules as background knowledge. But the result of induction often has the same effect as modifying rules in a program, given appropriate program transformation techniques. For instance, let $B=\{p \leftarrow q, r . \quad q$.$\} and E=p$. Then algorithm Learn-single-pos will learn a rule
$p \leftarrow q$, not r.
However, this rule and the first rule in B can be merged as $p \leftarrow q$, which is equivalent to the rule obtained by dropping r from the first rule in B.
- Since the learned theory may contain a lot of redundencies, it seems that we really need some robust program transformation procedures.
- This feature allows the batch learning systems to incorporate some prior knowledge, which was not allowed in traditional batch learning.
- batch learning is preferred to incremental learning, since it leads to less redundant theories.

Sequential Learning Algorithms

Incremental Learning

```
Initialize \Sigma to {\square} or some prior knowledge
repeat
    read the next (positive or negative) example
    while \Sigma is not correct w.r.t. the examples read so far
        if \exists\mp@subsup{e}{}{-}\mathrm{ s.t. }\Sigma\models\mp@subsup{e}{}{-}
            learn a rule from \Sigma and e- using Learn-single-neg
                add the learned rule to \Sigma
        if }\exists\mp@subsup{e}{}{+}\mathrm{ s.t. }\Sigma\not\vDash\mp@subsup{e}{}{+
        learn a rule from \Sigma and e+
        add the learned rule to \Sigma
    simplify \Sigma
until no examples left to read.
```


Sequential Learning Algorithms

Batch Learning

Initialize Σ to $\{\square\}$ or some prior knowledge while there are positive examples uncovered by Σ learn a rule R from Σ and a randomly selected e^{+} find a best consistent rule R^{\prime} between \square and R using algorithm Learn-single-pos remove positive examples covered by R^{\prime} add the rule R^{\prime} to Σ simplify Σ while there are negative examples learn a rule R from Σ and a randomly selected e^{-} using algorithm Learn-single-neg
remove e^{-}
add the rule R to Σ
simplify Σ

Parallel Learning Algorithms

master processor :
Initialize Σ to $\{\square\}$ or some prior knowledge partition the positive examples to p processors replicate all negative examples to all processors broadcast Σ to all the worker processors collect learned Σ_{i} from processor i
merge Σ_{i} 's and simplify them into a new Σ worker processor i :
receive its partition of positive examples and all the negative examples
learn a theory Σ_{i} sequentially
send Σ_{i} to the master

