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Why NMILP?



Nonmonotonic Logic Programming
(NMLP)

normal logic programs (CAW by NAF)
Ag — Aq,..., Am, notAm_|_1, ..., notAny

mainly, stable model semantics (beliefs)

default reasoning on incomplete knowledge
(defaults + observation ~» conclusion)

rules acts as contraints or derivation rules
(not as definitions)

nonmonotonicity (addition of new info may
contradict previous conclusions)

No learning mechanisms are provided



Inductive Logic Programming (ILP)

e Given :
- Background Knowledge B and
- Examples E=ETUE~ (BE E)

Find a theory H such that
- BUH |=¢ for every ec ET
- BUH [~ f for every f € E~

e Present ILP uses Horn clauses for B and H
- less expressive language

- monotonic reasoning

e armed with various learning mechanisms

incremental learning (non-monotonic learning)

batch learning (monotonic learning)

top-down search and bottom-up search

inverse resolution

inverse entailment



Nonmonotonic Inductive Logic
Programming (NMILP)

NMLP: expressive language, human commonsense rea-
soning, but no learning mechanisms

ILP: language with limited expressiveness, armed with
learning mechanisms, but does not simulate human
commonsense reasoning

NMILP: hopefully takes advantages of both paradigms

NMILP = NMLP + ILP



SLDNF Based Approaches



Representive Efforts
Non-monotonic learning, M. Bain, S.Muggleton, 1992

Learning Logic Programs with negation as failure,
1996

Learning nonmonotonic logic program: learning ex-
eptions, 1995

Normal programs and multiple predicate learning,
1998

Learning extended logic programs, 1997

A three-valued framework for the induction of gen-
eral programs, 1996



Incremental Learning

Initialize X to {[J}
repeat
read the next (positive or negative) example
while X is not correct w.r.t. the examples read so far
if dJe~ s.t. T =e”
specialize > by identifying a false clause
and delete it from X
if JeT s.t. X et
generalize X by constructing a clause C =€
and add it to >

until no examples left to read.

An Example
B = {bird(swan). bird(eagle). bird(penguin). bird(pigeon).}

E = {®flies(swan). & flies(eagle). © flies(penguin).}
>o=20

@: flies(swan)

> = {flies(X) « bird(X).}

@: flies(eagle)

> = {flies(X) « bird(X).}

O: flies(penguin)

>3 = {flies(swan). flies(eagle).}




An Example
B = {bird(swan). bird(eagle). bird(penguin). bird(pigeon).}
E = {®flies(swan). & flies(eagle). © flies(penguin).}
So=0
@: flies(swan)
> = {flies(X) « bird(X).}
@: flies(eagle)
>, = {flies(X) « bird(X).}
O: flies(penguin)
>3 = {flies(swan). flies(eagle).}

comments
1. monotonic reasoning (Horn clauses based)
2. non-monotonic learning (correct info not preserved,
e.g., both 37 and X, imply flies(pegion), but X3
does not.)

may result in poor learning quality

W

due to problem of “overly(drastic)-specialization”

g

we desire to preserve correct info

o

can not be achieved by any forms of “incremental-
specialization” within classical logic framework

7. SOLUTION: introducing negation !



Closed World Specialization
Input:

set of clauses T (possibly with negation) and ground
atom A s.t. T = A and A is incorrect

Operations:

Generate proof of T' = A using SLDNF-resolution
Assume C' € T resolved with «— A
Let C = Hd : —Bd
Let 6 be the substitution for variables in C
If literal notB € Bd
Let T/ =T U{B6}
else

Let {V1,...,V,} be the domain of 6

Let ¢ be a predicate symbol not found in T
Let B=q(V1,...,V,)

Let 7"=T - {C}U{Hd: —(BdUnotB} U {B0}

Output: 7

Note: T’ specializes T, but not in traditional sense, since 7" has a

new predicate symbol.

In our example, the following theory will be learned
{flies(X) < bird(X), not flightless(X). flightless(penguin).}
Now since flightless(penguin) is true, not flightless(penguin)

is false. Therefore, the newly learned theory does not
derive flies(penguin) any more.
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Moving from ILP to NMILP
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Inverse Resolution is not directly applicable
in NMILP !

Inverse resolution:(absorption)

Ci.:qg+— A Co:p+—gq,B

\ /

Cs.p— A,B
e > ; generalizes >, if X2 =a implies X1 =a
e Denote X = {C1,C3}, A(X) = {C1,C>}.
e A(X) generalizes X in Horn clausal logic
In NMLP, however

e A(X) does not necessarily generalizes 3>
>={pe——q q—r, s s} (V:322)
A(Z):{p<—_'q, q« 8, ST, 5}
Then, ¥ |=p but A(X) & p.

e It may be the case that X is consistent, but A(X)
is not.
>={pe—q,p g1, s, s} (V:322))
AX)={p<—aq,~q g s, s, s}
Then, X is consistent,but A(X) is not.
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Inverse Entailment is not directly applica-
ble to NMILP !

Deduction Theorem (Horn clausal logic)

For any formula A, we have
PU{R}mA<~—PE=R— A

Inverse entailment:

Given Horn program B and an example E, deduction theorem gives:

BU{H}=E <+ B} (H—E) (1)
<~ BRE(E—-H) (2)
<— BU{-E}E=-H (3)

B AN —FE = —H serves as a necessary condition for constructing H.

In NMLP, however
e Deduction theoremin Eq. (1) and (3) does not hold in general

e Contrapositive implication in Eq. (2) is undefined
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Stable Model Based Approaches
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Main Results (by Chiaka Sakama)
Deduction Theorem (Horn clausal logic)

For any formula A, we have
PU{R} A<~ PEFER— A

Entailment Theorem (NMLP)

For any ground literal A, we have
PU{R}EmsA=—=PlE=sR— A (i)
PU{R}Es A<= PRFsR— Aand P=gs R (i)

Contrapositive rule in NMLP

R: Ao — A1,...,An,not Ap41,...,n0t Ay

R¢:not Az;...,not Ay, not notA,+1,...,n0t not A, <— not Ao

R :— Aq,...,Ap,not Ap41,...,not Ap,not Ag

We can prove that P |=¢ R<= P =5 Rc (iii)

Inverse Entailment in NMLP

Given normal program B and a positive example E such that

B =g not E (iv)
Then
BU{H} =5 E — b @) BEs (H— E)
= by () B =g (not E — not H)
consider H = p(x1,...,xy) where p 1s a new atom

— by (i) and (W) By {not E} =5 not H

So BU{not E} =5 not H serves as a necessary condition for H.

This necessary condition can be simplified as B =g not H.
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Learning from a single positive example
Classical Inverse Entailment(IE):

necessary condition for H: BA—-FE |=-H (*)

let Bot be the conjunction of ground literals which are true in
every model of B A —E.

we consider Bot = —-H (but note: this IE is not complete
since condition (*) does not imply Bot = —H).

Ho = —Bot is a trivial valid (ground) candidate of H.
organize Hg s.t. target predicate atom A is left to “«".

generalizing Hg by replacing constants with variables, we get
a most specific hypothesis with variables.

NMLP Inverse Entailment(NMLP_IE):

necessary condition for H: B =g not H (**)
(same as BU {not E} =g not H )

let Mt = MU {not I |1l & M and | € HB}, where M is the
stable model of B and HB is the Herbrand model of B.

condition (**) implies M T |= not H.
let T = {K € M1 | K is relevant to L and isinvolved inBU{E}}.
since MT =T, we have M |= not 1o where ro =« .

integrity constraint ro =« I' is a trivial valid (ground) candi-
date of H.

shift the target predicate atom to the left of “«~" in rg.

generalizing ro by replacing constants with variables, we get
a most specific hypothesis with variables.
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Illustration
Given:
B = {bird(X) < penguin(X). bird(tweety). penguin(polly).}
E = {®flies(tweety).}
Note: B |= not flies(tweety).
Steps:

stable model of B (same as that of B not E):
M = { bird(tweety). bird(polly). penguin(polly). }

expansion of M:
M = { bird(tweety). bird(polly). penguin(polly).
not penguin(tweety). not flies(tweety). not flies(polly). }

integrity constraint:

ro = «— bird(tweety), not penguin(tweety), not flies(tweety).

shift the atom with target predicate to the left side:
ro = flies(tweety) «— bird(tweety), not penguin(tweety).

generalize rg by replacing constant with variables:
H = flies(X) «— bird(X),not penguin(X).
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