Nonmonotonic Inductive Logic Programming (NMILP)

Chongbing Liu

October 24, 2005

Outlines

- Why NMILP?
- SLDNF Based Approaches
- Moving from ILP to NMILP
- Stable Models Based Approaches

Why NMILP?

Nonmonotonic Logic Programming (NMLP)

- normal logic programs (CAW by NAF) $A_0 \leftarrow A_1, \ldots, A_m, notA_{m+1}, \ldots, notA_n$
- mainly, stable model semantics (beliefs)
- default reasoning on incomplete knowledge (defaults + observation → conclusion)
- rules acts as contraints or derivation rules (not as definitions)
- nonmonotonicity (addition of new info may contradict previous conclusions)
- No learning mechanisms are provided

Inductive Logic Programming (ILP)

- Given :
 - Background Knowledge $\ensuremath{\mathcal{B}}$ and
 - Examples $E = E^+ \cup E^-$ ($\mathcal{B} \not\models E$)

Find a theory H such that

- $\mathcal{B} \cup H \models e$ for every $e \in E^+$
- $\mathcal{B} \cup H \not\models f$ for every $f \in E^-$
- Present ILP uses Horn clauses for ${\cal B}$ and ${\cal H}$
 - less expressive language
 - monotonic reasoning
- armed with various learning mechanisms
 - incremental learning (non-monotonic learning)
 - batch learning (monotonic learning)
 - top-down search and bottom-up search
 - inverse resolution
 - inverse entailment

Nonmonotonic Inductive Logic Programming (NMILP)

- **NMLP:** expressive language, human commonsense reasoning, but no learning mechanisms
- **ILP:** language with limited expressiveness, armed with learning mechanisms, but does not simulate human commonsense reasoning
- NMILP: hopefully takes advantages of both paradigms

NMILP = NMLP + ILP

SLDNF Based Approaches

Representive Efforts

- Non-monotonic learning, M. Bain, S. Muggleton, 1992
- Learning Logic Programs with negation as failure, 1996
- Learning nonmonotonic logic program: learning exeptions, 1995
- Normal programs and multiple predicate learning, 1998
- Learning extended logic programs, 1997
- A three-valued framework for the induction of general programs, 1996

Incremental Learning

Initialize
$$\Sigma$$
 to $\{\Box\}$

repeat

read the next (positive or negative) example while Σ is not correct with the

while
$$\Sigma$$
 is not correct w.r.t. the examples read so far

if $\exists e^-$ s.t. $\Sigma \models e^-$

specialize Σ by identifying a false clause and delete it from Σ

if $\exists e^+$ s.t. $\Sigma \not\models e^+$

generalize Σ by constructing a clause $C \models e$ and add it to Σ

until no examples left to read.

An Example

 $\mathcal{B} = \{bird(swan), bird(eagle), bird(penguin), bird(pigeon).\}$ $E = \{ \oplus flies(swan). \oplus flies(eagle). \oplus flies(penguin). \}$

$$\Sigma_{0} = \Box$$

$$\downarrow \oplus: flies(swan)$$

$$\Sigma_{1} = \{flies(X) \leftarrow bird(X).\}$$

$$\downarrow \oplus: flies(eagle)$$

$$\Sigma_{2} = \{flies(X) \leftarrow bird(X).\}$$

$$\downarrow \oplus: flies(penguin)$$

$$\Sigma_{3} = \{flies(swan). \quad flies(eagle).\}$$

An Example

 $\mathcal{B} = \{bird(swan). \ bird(eagle). \ bird(penguin). \ bird(pigeon).\}$ $E = \{ \oplus flies(swan). \ \oplus flies(eagle). \ \oplus flies(penguin).\}$ $\Sigma_0 = \Box$ $\downarrow \oplus: flies(swan)$ $\Sigma_1 = \{flies(X) \leftarrow bird(X).\}$ $\downarrow \oplus: flies(eagle)$ $\Sigma_2 = \{flies(X) \leftarrow bird(X).\}$ $\downarrow \oplus: flies(penguin)$ $\Sigma_3 = \{flies(swan). \ flies(eagle).\}$

comments

- 1. monotonic reasoning (Horn clauses based)
- 2. non-monotonic learning (correct info not preserved, e.g., both Σ_1 and Σ_2 imply flies(pegion), but Σ_3 does not.)
- 3. may result in poor learning quality
- 4. due to problem of "overly(drastic)-specialization"
- 5. we desire to preserve correct info
- 6. can not be achieved by any forms of "incrementalspecialization" within classical logic framework
- 7. SOLUTION: introducing negation !

Closed World Specialization

Input:

```
set of clauses T (possibly with negation) and ground atom A s.t. T \models A and A is incorrect
```

Operations:

```
Generate proof of T \models A using SLDNF-resolution

Assume C \in T resolved with \leftarrow A

Let C = Hd : -Bd

Let \theta be the substitution for variables in C

If literal notB \in Bd

Let T' = T \cup \{B\theta\}

else

Let \{V_1, \dots, V_n\} be the domain of \theta

Let q be a predicate symbol not found in T

Let B = q(V_1, \dots, V_n)

Let T' = T - \{C\} \cup \{Hd : -(Bd \cup notB\} \cup \{B\theta\}
```

Output: T'

derive *flies*(*penguin*) any more.

Note: T' specializes T, but not in traditional sense, since T' has a new predicate symbol.

In our example, the following theory will be learned $\{flies(X) \leftarrow bird(X), not flightless(X). flightless(penguin).\}$ Now since flightless(penguin) is true, not flightless(penguin)is false. Therefore, the newly learned theory does not

Moving from ILP to NMILP

Inverse Resolution is not directly applicable in NMILP !

Inverse resolution: (absorption)

- Σ_1 generalizes Σ_2 if $\Sigma_2 \models a$ implies $\Sigma_1 \models a$
- Denote $\Sigma = \{C_1, C_3\}, A(\Sigma) = \{C_1, C_2\}.$
- $A(\Sigma)$ generalizes Σ in Horn clausal logic

In NMLP, however

- $A(\Sigma)$ does not necessarily generalizes Σ $\Sigma = \{p \leftarrow \neg q, q \leftarrow r, s \leftarrow r, s \leftarrow \}$ (V:3,2,2) $A(\Sigma) = \{p \leftarrow \neg q, q \leftarrow s, s \leftarrow r, s \leftarrow \}$ Then, $\Sigma \models p$ but $A(\Sigma) \not\models p$.
- It may be the case that Σ is consistent, but A(Σ) is not.
 Σ = {p ← q, ¬p, q ← r, s ← r, s ←} (V:3,2,2)) A(Σ) = {p ← q, ¬q, q ← s, s ← r, s ←} Then, Σ is consistent, but A(Σ) is not.
- . . .

Inverse Entailment is not directly applicable to NMILP !

Deduction Theorem (Horn clausal logic)

For any formula A, we have

 $P \cup \{R\} \models A \Longleftrightarrow P \models R \to A$

Inverse entailment:

Given Horn program B and an example E, deduction theorem gives:

$$B \cup \{H\} \models E \iff B \models (H \to E) \tag{1}$$

$$\iff B \models (\neg E \to \neg H) \tag{2}$$

$$\iff B \cup \{\neg E\} \models \neg H \tag{3}$$

 $B \wedge \neg E \models \neg H$ serves as a necessary condition for constructing H. In NMLP, however

- Deduction theorem in Eq. (1) and (3) does not hold in general
- Contrapositive implication in Eq. (2) is undefined

Stable Model Based Approaches

Main Results (by Chiaka Sakama)

Deduction Theorem (Horn clausal logic)

For any formula A, we have

 $P \cup \{R\} \models A \Longleftrightarrow P \models R \to A$

Entailment Theorem (NMLP)

For any ground literal A, we have

$$P \cup \{R\} \models_S A \Longrightarrow P \models_S R \to A \tag{i}$$

$$P \cup \{R\} \models_S A \Longleftarrow P \models_S R \to A \text{ and } P \models_S R$$
(ii)

Contrapositive rule in NMLP

$$R : A_0 \leftarrow A_1, \dots, A_m, not \ A_{m+1}, \dots, not \ A_n$$

$$R^c : not \ A_1; \dots, not \ A_m; not \ not A_{m+1}, \dots, not \ not \ A_n \leftarrow not \ A_0$$

$$R^c : \leftarrow A_1, \dots, A_m, not \ A_{m+1}, \dots, not \ A_n, not \ A_0$$
We can prove that $P \models_S R \iff P \models_S R_C$ (iii)

Inverse Entailment in NMLP

Given normal program B and a positive example E such that

$$B \models_S not E$$
 (iv)

Then

$$B \cup \{H\} \models_{S} E \iff \stackrel{by (i)}{\iff} B \models_{S} (H \to E)$$

$$\Leftrightarrow \stackrel{by (ii)}{\iff} B \models_{S} (not \ E \to not \ H)$$

$$consider \ H = p(x_{1}, \dots, x_{k}) \qquad where \qquad p \ is \ a \ new \ atom$$

$$\implies \stackrel{by (ii) \ and \ (iv)}{\implies} B \cup \{not \ E\} \models_{S} not \ H$$

So $B \cup \{not \ E\} \models_S not \ H$ serves as a necessary condition for H. This necessary condition can be simplified as $B \models_S not \ H$.

Learning from a single positive example Classical Inverse Entailment(IE):

- necessary condition for $H: B \land \neg E \models \neg H$ (*)
- let Bot be the conjunction of ground literals which are true in every model of $B \land \neg E$.
- we consider $Bot \models \neg H$ (but note: this IE is not complete since condition (*) does not imply $Bot \models \neg H$).
- $H_0 = \neg Bot$ is a trivial valid (ground) candidate of H.
- organize H_0 s.t. target predicate atom A is left to " \leftarrow ".
- generalizing H_0 by replacing constants with variables, we get a most specific hypothesis with variables.

NMLP Inverse Entailment(NMLP_IE):

- necessary condition for H: $B \models_S not H$ (**) (same as $B \cup \{not \ E\} \models_S not H$)
- let $M^+ = M \cup \{not \ l \mid l \notin M \text{ and } l \in \mathcal{HB}\}$, where M is the stable model of B and \mathcal{HB} is the Herbrand model of B.
- condition (**) implies $M^+ \models not H$.
- let $\Gamma = \{K \in M^+ \mid K \text{ is relevant to } L \text{ and is involved } inB \cup \{E\}\}.$
- since $M^+ \models \Gamma$, we have $M^+ \models not r_0$ where $r_0 \models \leftarrow \Gamma$.
- integrity constraint r₀ =← Γ is a trivial valid (ground) candidate of H.
- shift the target predicate atom to the left of " \leftarrow " in r_0 .
- generalizing r_0 by replacing constants with variables, we get a most specific hypothesis with variables.

Illustration

Given:

 $\mathcal{B} = \{ bird(X) \leftarrow penguin(X). \ bird(tweety). \ penguin(polly). \}$

 $E = \{ \oplus flies(tweety). \}$

Note: $B \models not flies(tweety)$.

Steps:

stable model of B (same as that of B not E): $M = \{ bird(tweety), bird(polly), penguin(polly), \}$

expansion of M: $M^+ = \{ bird(tweety). bird(polly). penguin(polly).$ not penguin(tweety). not flies(tweety). not flies(polly). $\}$

integrity constraint: $r_0 = \leftarrow bird(tweety), not penguin(tweety), not flies(tweety).$

shift the atom with target predicate to the left side: $r_0 = flies(tweety) \leftarrow bird(tweety), not penguin(tweety).$

```
generalize r_0 by replacing constant with variables:

H = flies(X) \leftarrow bird(X), not penguin(X).
```