
Nonmonotonic Inductive Logic

Programming (NMILP)

Chongbing Liu

October 24, 2005

Outlines

� Why NMILP?

� SLDNF Based Approaches

� Moving from ILP to NMILP

� Stable Models Based Approaches

1

Why NMILP?

2

Nonmonotonic Logic Programming

(NMLP)

• normal logic programs (CAW by NAF)

A0← A1, . . . , Am, notAm+1, . . . , notAn

• mainly, stable model semantics (beliefs)

• default reasoning on incomplete knowledge

(defaults + observation conclusion)

• rules acts as contraints or derivation rules

(not as definitions)

• nonmonotonicity (addition of new info may

contradict previous conclusions)

• No learning mechanisms are provided

3

Inductive Logic Programming (ILP)

• Given :

- Background Knowledge B and

- Examples E = E+ ∪ E− (B 6|= E)

Find a theory H such that

- B ∪H |= e for every e ∈ E+

- B ∪H 6|= f for every f ∈ E−

• Present ILP uses Horn clauses for B and H

- less expressive language

- monotonic reasoning

• armed with various learning mechanisms

- incremental learning (non-monotonic learning)

- batch learning (monotonic learning)

- top-down search and bottom-up search

- inverse resolution

- inverse entailment

4

Nonmonotonic Inductive Logic

Programming (NMILP)

NMLP: expressive language, human commonsense rea-
soning, but no learning mechanisms

ILP: language with limited expressiveness, armed with
learning mechanisms, but does not simulate human
commonsense reasoning

NMILP: hopefully takes advantages of both paradigms

NMILP = NMLP + ILP

5

SLDNF Based Approaches

6

Representive Efforts

- Non-monotonic learning, M. Bain, S.Muggleton, 1992

- Learning Logic Programs with negation as failure,
1996

- Learning nonmonotonic logic program: learning ex-
eptions, 1995

- Normal programs and multiple predicate learning,
1998

- Learning extended logic programs, 1997

- A three-valued framework for the induction of gen-
eral programs, 1996

7

Incremental Learning

Initialize Σ to {�}

repeat

read the next (positive or negative) example

while Σ is not correct w.r.t. the examples read so far

if ∃e− s.t. Σ |= e−

specialize Σ by identifying a false clause

and delete it from Σ

if ∃e+ s.t. Σ 6|= e+

generalize Σ by constructing a clause C |= e

and add it to Σ

until no examples left to read.

=============================

An Example

B = {bird(swan). bird(eagle). bird(penguin). bird(pigeon).}

E = {⊕flies(swan). ⊕ flies(eagle). ⊖ flies(penguin).}

Σ0 = �

⊕:flies(swan)
��

Σ1 = {flies(X)← bird(X).}

⊕:flies(eagle)
��

Σ2 = {flies(X)← bird(X).}

⊖:flies(penguin)
��

Σ3 = {flies(swan). f lies(eagle).}

8

An Example
B = {bird(swan). bird(eagle). bird(penguin). bird(pigeon).}

E = {⊕flies(swan). ⊕ flies(eagle). ⊖ flies(penguin).}

Σ0 = �

⊕:flies(swan)
��

Σ1 = {flies(X)← bird(X).}

⊕:flies(eagle)
��

Σ2 = {flies(X)← bird(X).}

⊖:flies(penguin)
��

Σ3 = {flies(swan). f lies(eagle).}

=============================

comments

1. monotonic reasoning (Horn clauses based)

2. non-monotonic learning (correct info not preserved,
e.g., both Σ1 and Σ2 imply flies(pegion), but Σ3

does not.)

3. may result in poor learning quality

4. due to problem of “overly(drastic)-specialization”

5. we desire to preserve correct info

6. can not be achieved by any forms of “incremental-
specialization” within classical logic framework

7. SOLUTION: introducing negation !

9

Closed World Specialization
Input:

set of clauses T (possibly with negation) and ground
atom A s.t. T |= A and A is incorrect

Operations:

Generate proof of T |= A using SLDNF-resolution

Assume C ∈ T resolved with ← A

Let C = Hd : −Bd

Let θ be the substitution for variables in C

If literal notB ∈ Bd

Let T ′ = T ∪ {Bθ}

else

Let {V1, . . . , Vn} be the domain of θ

Let q be a predicate symbol not found in T

Let B = q(V1, . . . , Vn)

Let T ′ = T − {C} ∪ {Hd : −(Bd ∪ notB} ∪ {Bθ}

Output: T ′

Note: T ′ specializes T , but not in traditional sense, since T ′ has a

new predicate symbol.

=============================
In our example, the following theory will be learned

{flies(X)← bird(X), not flightless(X). flightless(penguin).}

Now since flightless(penguin) is true, not flightless(penguin)

is false. Therefore, the newly learned theory does not

derive flies(penguin) any more.

10

Moving from ILP to NMILP

11

Inverse Resolution is not directly applicable

in NMILP !

Inverse resolution:(absorption)

C1 : q ← A

))TTTTTTTTTTTTTTT

C2 : p← q, B

C3 : p← A, B

44jjjjjjjjjjjjjjjj

• Σ1 generalizes Σ2 if Σ2 |= a implies Σ1 |= a

• Denote Σ = {C1, C3}, A(Σ) = {C1, C2}.

• A(Σ) generalizes Σ in Horn clausal logic

In NMLP, however

• A(Σ) does not necessarily generalizes Σ
Σ = {p← ¬q, q ← r, s← r, s←} (V:3,2,2)
A(Σ) = {p← ¬q, q ← s, s← r, s←}
Then, Σ |= p but A(Σ) 6|= p.

• It may be the case that Σ is consistent, but A(Σ)
is not.
Σ = {p← q,¬p, q ← r, s← r, s←} (V:3,2,2))
A(Σ) = {p← q,¬q, q ← s, s← r, s←}
Then, Σ is consistent,but A(Σ) is not.

• . . .

12

Inverse Entailment is not directly applica-

ble to NMILP !

Deduction Theorem (Horn clausal logic)

For any formula A, we have

P ∪ {R} |= A⇐⇒ P |= R→ A

Inverse entailment:

Given Horn program B and an example E, deduction theorem gives:

B ∪ {H} |= E ⇐⇒ B |= (H → E) (1)

⇐⇒ B |= (¬E → ¬H) (2)

⇐⇒ B ∪ {¬E} |= ¬H (3)

B ∧ ¬E |= ¬H serves as a necessary condition for constructing H.

In NMLP, however

• Deduction theorem in Eq. (1) and (3) does not hold in general

• Contrapositive implication in Eq. (2) is undefined

13

Stable Model Based Approaches

14

Main Results (by Chiaka Sakama)

Deduction Theorem (Horn clausal logic)

For any formula A, we have

P ∪ {R} |= A⇐⇒ P |= R→ A

Entailment Theorem (NMLP)

For any ground literal A, we have

P ∪ {R} |=S A =⇒ P |=S R→ A (i)

P ∪ {R} |=S A⇐= P |=S R→ A and P |=S R (ii)

Contrapositive rule in NMLP

R : A0 ← A1, . . . , Am, not Am+1, . . . , not An

Rc : not A1; . . . , not Am;not notAm+1, . . . , not not An ← not A0

Rc :← A1, . . . , Am, not Am+1, . . . , not An, not A0

We can prove that P |=S R⇐⇒ P |=S RC (iii)

Inverse Entailment in NMLP

Given normal program B and a positive example E such that

B |=S not E (iv)

Then

B ∪ {H} |=S E ⇐⇒ by (i) B |=S (H → E)

⇐⇒ by (iii) B |=S (not E → not H)

consider H = p(x1, . . . , xk) where p is a new atom

=⇒by (ii) and (iv) B ∪ {not E} |=S not H

So B ∪ {not E} |=S not H serves as a necessary condition for H.

This necessary condition can be simplified as B |=S not H.

15

Learning from a single positive example
Classical Inverse Entailment(IE):

• necessary condition for H: B ∧ ¬E |= ¬H (*)

• let Bot be the conjunction of ground literals which are true in
every model of B ∧ ¬E.

• we consider Bot |= ¬H (but note: this IE is not complete
since condition (*) does not imply Bot |= ¬H).

• H0 = ¬Bot is a trivial valid (ground) candidate of H.

• organize H0 s.t. target predicate atom A is left to “←”.

• generalizing H0 by replacing constants with variables, we get
a most specific hypothesis with variables.

NMLP Inverse Entailment(NMLP IE):

• necessary condition for H: B |=S not H (**)
(same as B ∪ {not E} |=S not H)

• let M+ = M ∪ {not l | l 6∈ M and l ∈ HB}, where M is the
stable model of B and HB is the Herbrand model of B.

• condition (**) implies M+ |= not H.

• let Γ = {K ∈M+ | K is relevant to L and isinvolved inB∪{E}}.

• since M+ |= Γ, we have M+ |= not r0 where r0 =← Γ.

• integrity constraint r0 =← Γ is a trivial valid (ground) candi-
date of H.

• shift the target predicate atom to the left of “←” in r0.

• generalizing r0 by replacing constants with variables, we get
a most specific hypothesis with variables.

16

Illustration

Given:

B = {bird(X)← penguin(X). bird(tweety). penguin(polly).}

E = {⊕flies(tweety).}

Note: B |= not flies(tweety).

Steps:

stable model of B (same as that of B not E):
M = { bird(tweety). bird(polly). penguin(polly). }

expansion of M :
M+ = { bird(tweety). bird(polly). penguin(polly).
not penguin(tweety). not flies(tweety). not flies(polly). }

integrity constraint:
r0 = ← bird(tweety), not penguin(tweety), not flies(tweety).

shift the atom with target predicate to the left side:
r0 = flies(tweety)← bird(tweety), not penguin(tweety).

generalize r0 by replacing constant with variables:
H = flies(X)← bird(X), not penguin(X).

17

