Nonmonotonic Inductive Logic Programming (NMILP)

Chongbing Liu

October 24, 2005

Outlines

■ Why NMILP?

■ SLDNF Based Approaches

■ Moving from ILP to NMILP

■ Stable Models Based Approaches

Why NMILP?

Nonmonotonic Logic Programming (NMLP)

- normal logic programs (CAW by NAF) $A_{0} \leftarrow A_{1}, \ldots, A_{m}, \operatorname{not} A_{m+1}, \ldots, \operatorname{not} A_{n}$
- mainly, stable model semantics (beliefs)
- default reasoning on incomplete knowledge (defaults + observation \rightsquigarrow conclusion)
- rules acts as contraints or derivation rules (not as definitions)
- nonmonotonicity (addition of new info may contradict previous conclusions)
- No learning mechanisms are provided

Inductive Logic Programming (ILP)

- Given :
- Background Knowledge \mathcal{B} and
- Examples $E=E^{+} \cup E^{-}(\mathcal{B} \nmid E)$

Find a theory H such that

- $\mathcal{B} \cup H \models e$ for every $e \in E^{+}$
- $\mathcal{B} \cup H \not \vDash f$ for every $f \in E^{-}$
- Present ILP uses Horn clauses for \mathcal{B} and H
- less expressive language
- monotonic reasoning
- armed with various learning mechanisms
- incremental learning (non-monotonic learning)
- batch learning (monotonic learning)
- top-down search and bottom-up search
- inverse resolution
- inverse entailment

Nonmonotonic Inductive Logic Programming (NMILP)

NMLP: expressive language, human commonsense reasoning, but no learning mechanisms

ILP: language with limited expressiveness, armed with learning mechanisms, but does not simulate human commonsense reasoning

NMILP: hopefully takes advantages of both paradigms

$$
\text { NMILP }=\text { NMLP }+ \text { ILP }
$$

SLDNF Based Approaches

Representive Efforts

- Non-monotonic learning, M. Bain, S.Muggleton, 1992
- Learning Logic Programs with negation as failure, 1996
- Learning nonmonotonic logic program: learning exeptions, 1995
- Normal programs and multiple predicate learning, 1998
- Learning extended logic programs, 1997
- A three-valued framework for the induction of general programs, 1996

Incremental Learning

Initialize Σ to $\{\square\}$
repeat
read the next (positive or negative) example while Σ is not correct w.r.t. the examples read so far if $\exists e^{-}$s.t. $\Sigma \models e^{-}$ specialize Σ by identifying a false clause and delete it from Σ if $\exists e^{+}$s.t. $\Sigma \not \vDash e^{+}$ generalize Σ by constructing a clause $C \models e$ and add it to Σ
until no examples left to read.

An Example

$$
\begin{aligned}
& \mathcal{B}=\{\text { bird }(\text { swan }) . \text { bird(eagle }) . \text { bird(penguin }) . \text { bird }(\text { pigeon }) .\} \\
& E=\{\oplus \text { flies }(\text { swan }) . \quad \oplus \text { flies }(\text { eagle }) . \quad \ominus \text { flies }(\text { penguin }) .\}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{0}=\square \\
& \downarrow \oplus: f l i e s(\text { swan }) \\
& \Sigma_{1}=\{\text { flies }(X) \leftarrow \operatorname{bird}(X) .\} \\
& \mid \oplus: \text { flies(eagle) } \\
& \Sigma_{2}=\{\text { flies }(X) \leftarrow \operatorname{bird}(X) .\} \\
& \mid \ominus: \text { flies(penguin) } \\
& \Sigma_{3}=\{\text { flies(swan). flies(eagle). }\}
\end{aligned}
$$

An Example

$$
\left.\begin{array}{c}
\mathcal{B}=\{\text { bird }(\text { swan }) . \quad \text { bird(eagle }) . \quad \text { bird }(\text { penguin }) . \quad \text { bird }(\text { pigeon }) .\} \\
E=\{\oplus \text { flies(swan }) . \quad \oplus \text { flies }(\text { eagle }) . \quad \ominus \text { flies }(\text { penguin }) .\} \\
\Sigma_{0}=\square \\
\mid \oplus: \text { flies }(\text { swan })
\end{array}\right] \begin{gathered}
\mid \oplus: \text { flies(eagle }) \\
\Sigma_{1}=\{\text { flies }(X) \leftarrow \operatorname{bird}(X) .\} \\
\Sigma_{2}=\{\text { flies }(X) \leftarrow \operatorname{bird}(X) .\} \\
\mid \ominus: \text { flies }(\text { penguin }) \\
\Sigma_{3}=\{\text { flies }(\text { swan }) . \quad \text { flies }(\text { eagle }) .\}
\end{gathered}
$$

comments

1. monotonic reasoning (Horn clauses based)
2. non-monotonic learning (correct info not preserved, e.g., both Σ_{1} and Σ_{2} imply flies(pegion), but Σ_{3} does not.)
3. may result in poor learning quality
4. due to problem of "overly(drastic)-specialization"
5. we desire to preserve correct info
6. can not be achieved by any forms of "incrementalspecialization" within classical logic framework
7. SOLUTION: introducing negation !

Closed World Specialization

Input:

set of clauses T (possibly with negation) and ground atom A s.t. $T \models A$ and A is incorrect

Operations:

Generate proof of $T \models A$ using SLDNF-resolution Assume $C \in T$ resolved with $\leftarrow A$

Let $C=H d:-B d$
Let θ be the substitution for variables in C
If literal $n o t B \in B d$
Let $T^{\prime}=T \cup\{B \theta\}$
else
Let $\left\{V_{1}, \ldots, V_{n}\right\}$ be the domain of θ
Let q be a predicate symbol not found in T
Let $B=q\left(V_{1}, \ldots, V_{n}\right)$
Let $T^{\prime}=T-\{C\} \cup\{H d:-(B d \cup n o t B\} \cup\{B \theta\}$
Output: T^{\prime}
Note: T^{\prime} specializes T, but not in traditional sense, since T^{\prime} has a new predicate symbol.

In our example, the following theory will be learned $\{$ flies $(X) \leftarrow \operatorname{bird}(X)$, not flightless (X). flightless(penguin).\} Now since flightless(penguin) is true, not flightless(penguin) is false. Therefore, the newly learned theory does not derive flies(penguin) any more.

Moving from ILP to NMILP

Inverse Resolution is not directly applicable in NMILP !

Inverse resolution:(absorption)

$$
C_{1}: q \leftarrow \underbrace{A}_{C_{3}}: p \leftarrow A, B
$$

- Σ_{1} generalizes Σ_{2} if $\Sigma_{2} \models a$ implies $\Sigma_{1} \models a$
- Denote $\Sigma=\left\{C_{1}, C_{3}\right\}, A(\Sigma)=\left\{C_{1}, C_{2}\right\}$.
- $A(\Sigma)$ generalizes Σ in Horn clausal logic In NMLP, however
- $A(\Sigma)$ does not necessarily generalizes Σ $\Sigma=\{p \leftarrow \neg q, q \leftarrow r, s \leftarrow r, s \leftarrow\}(\mathrm{V}: 3,2,2)$ $A(\Sigma)=\{p \leftarrow \neg q, q \leftarrow s, s \leftarrow r, s \leftarrow\}$
Then, $\Sigma \vDash p$ but $A(\Sigma) \not \vDash p$.
- It may be the case that Σ is consistent, but $A(\Sigma)$ is not.
$\Sigma=\{p \leftarrow q, \neg p, q \leftarrow r, s \leftarrow r, s \leftarrow\}(\mathrm{V}: 3,2,2))$
$A(\Sigma)=\{p \leftarrow q, \neg q, q \leftarrow s, s \leftarrow r, s \leftarrow\}$
Then, Σ is consistent,but $A(\Sigma)$ is not.
- ...

Inverse Entailment is not directly applicable to NMILP !

Deduction Theorem (Horn clausal logic)
For any formula A, we have

$$
P \cup\{R\} \models A \Longleftrightarrow P \models R \rightarrow A
$$

Inverse entailment:

Given Horn program B and an example E, deduction theorem gives:

$$
\begin{array}{rlr}
B \cup\{H\} \vDash E & \Longleftrightarrow & B \models(H \rightarrow E) \\
& \Longleftrightarrow & B \models(\neg E \rightarrow \neg H) \\
& \Longleftrightarrow & B \cup\{\neg E\} \models \neg H \tag{3}
\end{array}
$$

$B \wedge \neg E \models \neg H$ serves as a necessary condition for constructing H. In NMLP, however

- Deduction theorem in Eq. (1) and (3) does not hold in general
- Contrapositive implication in Eq. (2) is undefined

Stable Model Based Approaches

Main Results (by Chiaka Sakama)

Deduction Theorem (Horn clausal logic)
For any formula A, we have

$$
P \cup\{R\} \models A \Longleftrightarrow P \models R \rightarrow A
$$

Entailment Theorem (NMLP)

For any ground literal A, we have

$$
\begin{align*}
& P \cup\{R\} \models_{S} A \Longrightarrow P \models_{S} R \rightarrow A \tag{i}\\
& P \cup\{R\} \models_{S} A \Longleftarrow P \models_{S} R \rightarrow A \text { and } P \models_{S} R \tag{ii}
\end{align*}
$$

Contrapositive rule in NMLP

$R: A_{0} \leftarrow A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots, not A_{n}
$R^{c}:$ not $A_{1} ; \ldots$, not A_{m}; not not A_{m+1}, \ldots, not not $A_{n} \leftarrow$ not A_{0}
$R^{c}: \leftarrow A_{1}, \ldots, A_{m}$, not A_{m+1}, \ldots, not A_{n}, not A_{0}
We can prove that $P \models_{S} R \Longleftrightarrow P \models_{S} R_{C}$
Inverse Entailment in NMLP
Given normal program B and a positive example E such that

$$
\begin{equation*}
B \models_{S} \text { not } E \tag{iv}
\end{equation*}
$$

Then

$$
\begin{array}{ccc}
B \cup\{H\} \models_{S} E & \Longleftrightarrow \text { by (i) } & B \models_{S}(H \rightarrow E) \\
=p\left(x_{1}, \ldots, x_{k}\right) & \Longleftrightarrow \text { where } & B \models_{S}(\text { not } E \rightarrow \text { not } H) \\
& \varliminf^{\text {by (ii) and (iv) }} & B \text { is a new atom } \\
& B \cup\{\text { not } E\} \models_{S} \text { not } H
\end{array}
$$

So $B \cup\{$ not $E\} \not \models_{S}$ not H serves as a necessary condition for H.
This necessary condition can be simplified as $B \models_{S}$ not H.

Learning from a single positive example Classical Inverse Entailment(IE):

- necessary condition for $H: B \wedge \neg E \models \neg H$
- let Bot be the conjunction of ground literals which are true in every model of $B \wedge \neg E$.
- we consider Bot $\models \neg H$ (but note: this IE is not complete since condition (*) does not imply Bot $\vDash \neg H$).
- $H_{0}=\neg B o t$ is a trivial valid (ground) candidate of H.
- organize H_{0} s.t. target predicate atom A is left to " \leftarrow ".
- generalizing H_{0} by replacing constants with variables, we get a most specific hypothesis with variables.

NMLP Inverse Entailment(NMLP_IE):

- necessary condition for $H: B \models_{S}$ not $H \quad(* *)$ (same as $B \cup\{$ not $E\} \neq_{S}$ not H)
- let $M^{+}=M \cup\{$ not $l \mid l \notin M$ and $l \in \mathcal{H B}\}$, where M is the stable model of B and $\mathcal{H B}$ is the Herbrand model of B.
- condition ($* *$) implies $M^{+} \models$ not H.
- let $\Gamma=\left\{K \in M^{+} \mid K\right.$ is relevant to L and isinvolved in $\left.B \cup\{E\}\right\}$.
- since $M^{+} \models \Gamma$, we have $M^{+} \models$ not r_{0} where $r_{0}=\leftarrow \Gamma$.
- integrity constraint $r_{0}=\leftarrow \Gamma$ is a trivial valid (ground) candidate of H.
- shift the target predicate atom to the left of " \leftarrow " in r_{0}.
- generalizing r_{0} by replacing constants with variables, we get a most specific hypothesis with variables.

Illustration

Given:

$\mathcal{B}=\{\operatorname{bird}(X) \leftarrow \operatorname{penguin}(X) . \quad \operatorname{bird}($ tweety $) . \quad$ penguin $($ polly $)$.
$E=\{\oplus$ flies(tweety). $\}$
Note: $B \models$ not flies(tweety).

Steps:

stable model of B (same as that of B not E):
$M=\{\operatorname{bird}($ tweety). bird(polly). penguin(polly). $\}$
expansion of M :
$M^{+}=\{\operatorname{bird}($ tweety $) . \operatorname{bird}($ polly $)$. penguin(polly).
not penguin(tweety). not flies(tweety). not flies(polly). \}
integrity constraint:
$r_{0}=\leftarrow$ bird(tweety), not penguin(tweety), not flies(tweety).
shift the atom with target predicate to the left side:
$r_{0}=$ flies $($ tweety $) \leftarrow \operatorname{bird}($ tweety $)$, not penguin(tweety $)$.
generalize r_{0} by replacing constant with variables:
$H=f \operatorname{lies}(X) \leftarrow \operatorname{bird}(X)$, not penguin (X).

