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Why NMILP?
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Nonmonotonic Logic Programming

(NMLP)

• normal logic programs (CAW by NAF)

A0← A1, . . . , Am, notAm+1, . . . , notAn

• mainly, stable model semantics (beliefs)

• default reasoning on incomplete knowledge

(defaults + observation  conclusion)

• rules acts as contraints or derivation rules

(not as definitions)

• nonmonotonicity (addition of new info may

contradict previous conclusions)

• No learning mechanisms are provided
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Inductive Logic Programming (ILP)

• Given :

- Background Knowledge B and

- Examples E = E+ ∪ E− (B 6|= E)

Find a theory H such that

- B ∪H |= e for every e ∈ E+

- B ∪H 6|= f for every f ∈ E−

• Present ILP uses Horn clauses for B and H

- less expressive language

- monotonic reasoning

• armed with various learning mechanisms

- incremental learning (non-monotonic learning)

- batch learning (monotonic learning)

- top-down search and bottom-up search

- inverse resolution

- inverse entailment
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Nonmonotonic Inductive Logic

Programming (NMILP)

NMLP: expressive language, human commonsense rea-
soning, but no learning mechanisms

ILP: language with limited expressiveness, armed with
learning mechanisms, but does not simulate human
commonsense reasoning

NMILP: hopefully takes advantages of both paradigms

NMILP = NMLP + ILP
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SLDNF Based Approaches
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Representive Efforts

- Non-monotonic learning, M. Bain, S.Muggleton, 1992

- Learning Logic Programs with negation as failure,
1996

- Learning nonmonotonic logic program: learning ex-
eptions, 1995

- Normal programs and multiple predicate learning,
1998

- Learning extended logic programs, 1997

- A three-valued framework for the induction of gen-
eral programs, 1996
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Incremental Learning

Initialize Σ to {�}

repeat

read the next (positive or negative) example

while Σ is not correct w.r.t. the examples read so far

if ∃e− s.t. Σ |= e−

specialize Σ by identifying a false clause

and delete it from Σ

if ∃e+ s.t. Σ 6|= e+

generalize Σ by constructing a clause C |= e

and add it to Σ

until no examples left to read.

=============================

An Example

B = {bird(swan). bird(eagle). bird(penguin). bird(pigeon).}

E = {⊕flies(swan). ⊕ flies(eagle). ⊖ flies(penguin).}

Σ0 = �

⊕:flies(swan)
��

Σ1 = {flies(X)← bird(X).}

⊕:flies(eagle)
��

Σ2 = {flies(X)← bird(X).}

⊖:flies(penguin)
��

Σ3 = {flies(swan). f lies(eagle).}
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An Example
B = {bird(swan). bird(eagle). bird(penguin). bird(pigeon).}

E = {⊕flies(swan). ⊕ flies(eagle). ⊖ flies(penguin).}

Σ0 = �

⊕:flies(swan)
��

Σ1 = {flies(X)← bird(X).}

⊕:flies(eagle)
��

Σ2 = {flies(X)← bird(X).}

⊖:flies(penguin)
��

Σ3 = {flies(swan). f lies(eagle).}

=============================

comments

1. monotonic reasoning (Horn clauses based)

2. non-monotonic learning (correct info not preserved,
e.g., both Σ1 and Σ2 imply flies(pegion), but Σ3

does not.)

3. may result in poor learning quality

4. due to problem of “overly(drastic)-specialization”

5. we desire to preserve correct info

6. can not be achieved by any forms of “incremental-
specialization” within classical logic framework

7. SOLUTION: introducing negation !
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Closed World Specialization
Input:

set of clauses T (possibly with negation) and ground
atom A s.t. T |= A and A is incorrect

Operations:

Generate proof of T |= A using SLDNF-resolution

Assume C ∈ T resolved with ← A

Let C = Hd : −Bd

Let θ be the substitution for variables in C

If literal notB ∈ Bd

Let T ′ = T ∪ {Bθ}

else

Let {V1, . . . , Vn} be the domain of θ

Let q be a predicate symbol not found in T

Let B = q(V1, . . . , Vn)

Let T ′ = T − {C} ∪ {Hd : −(Bd ∪ notB} ∪ {Bθ}

Output: T ′

Note: T ′ specializes T , but not in traditional sense, since T ′ has a

new predicate symbol.

=============================
In our example, the following theory will be learned

{flies(X)← bird(X), not flightless(X). flightless(penguin).}

Now since flightless(penguin) is true, not flightless(penguin)

is false. Therefore, the newly learned theory does not

derive flies(penguin) any more.
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Moving from ILP to NMILP
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Inverse Resolution is not directly applicable

in NMILP !

Inverse resolution:(absorption)

C1 : q ← A

))TTTTTTTTTTTTTTT

C2 : p← q, B

C3 : p← A, B

44jjjjjjjjjjjjjjjj

• Σ1 generalizes Σ2 if Σ2 |= a implies Σ1 |= a

• Denote Σ = {C1, C3}, A(Σ) = {C1, C2}.

• A(Σ) generalizes Σ in Horn clausal logic

In NMLP, however

• A(Σ) does not necessarily generalizes Σ
Σ = {p← ¬q, q ← r, s← r, s←} (V:3,2,2)
A(Σ) = {p← ¬q, q ← s, s← r, s←}
Then, Σ |= p but A(Σ) 6|= p.

• It may be the case that Σ is consistent, but A(Σ)
is not.
Σ = {p← q,¬p, q ← r, s← r, s←} (V:3,2,2))
A(Σ) = {p← q,¬q, q ← s, s← r, s←}
Then, Σ is consistent,but A(Σ) is not.

• . . .
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Inverse Entailment is not directly applica-

ble to NMILP !

Deduction Theorem (Horn clausal logic)

For any formula A, we have

P ∪ {R} |= A⇐⇒ P |= R→ A

Inverse entailment:

Given Horn program B and an example E, deduction theorem gives:

B ∪ {H} |= E ⇐⇒ B |= (H → E) (1)

⇐⇒ B |= (¬E → ¬H) (2)

⇐⇒ B ∪ {¬E} |= ¬H (3)

B ∧ ¬E |= ¬H serves as a necessary condition for constructing H.

In NMLP, however

• Deduction theorem in Eq. (1) and (3) does not hold in general

• Contrapositive implication in Eq. (2) is undefined
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Stable Model Based Approaches
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Main Results (by Chiaka Sakama)

Deduction Theorem (Horn clausal logic)

For any formula A, we have

P ∪ {R} |= A⇐⇒ P |= R→ A

Entailment Theorem (NMLP)

For any ground literal A, we have

P ∪ {R} |=S A =⇒ P |=S R→ A (i)

P ∪ {R} |=S A⇐= P |=S R→ A and P |=S R (ii)

Contrapositive rule in NMLP

R : A0 ← A1, . . . , Am, not Am+1, . . . , not An

Rc : not A1; . . . , not Am;not notAm+1, . . . , not not An ← not A0

Rc :← A1, . . . , Am, not Am+1, . . . , not An, not A0

We can prove that P |=S R⇐⇒ P |=S RC (iii)

Inverse Entailment in NMLP

Given normal program B and a positive example E such that

B |=S not E (iv)

Then

B ∪ {H} |=S E ⇐⇒ by (i) B |=S (H → E)

⇐⇒ by (iii) B |=S (not E → not H)

consider H = p(x1, . . . , xk) where p is a new atom

=⇒by (ii) and (iv) B ∪ {not E} |=S not H

So B ∪ {not E} |=S not H serves as a necessary condition for H.

This necessary condition can be simplified as B |=S not H.
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Learning from a single positive example
Classical Inverse Entailment(IE):

• necessary condition for H: B ∧ ¬E |= ¬H (*)

• let Bot be the conjunction of ground literals which are true in
every model of B ∧ ¬E.

• we consider Bot |= ¬H (but note: this IE is not complete
since condition (*) does not imply Bot |= ¬H).

• H0 = ¬Bot is a trivial valid (ground) candidate of H.

• organize H0 s.t. target predicate atom A is left to “←”.

• generalizing H0 by replacing constants with variables, we get
a most specific hypothesis with variables.

NMLP Inverse Entailment(NMLP IE):

• necessary condition for H: B |=S not H (**)
(same as B ∪ {not E} |=S not H )

• let M+ = M ∪ {not l | l 6∈ M and l ∈ HB}, where M is the
stable model of B and HB is the Herbrand model of B.

• condition (**) implies M+ |= not H.

• let Γ = {K ∈M+ | K is relevant to L and isinvolved inB∪{E}}.

• since M+ |= Γ, we have M+ |= not r0 where r0 =← Γ.

• integrity constraint r0 =← Γ is a trivial valid (ground) candi-
date of H.

• shift the target predicate atom to the left of “←” in r0.

• generalizing r0 by replacing constants with variables, we get
a most specific hypothesis with variables.
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Illustration

Given:

B = {bird(X)← penguin(X). bird(tweety). penguin(polly).}

E = {⊕flies(tweety).}

Note: B |= not flies(tweety).

Steps:

stable model of B (same as that of B not E):
M = { bird(tweety). bird(polly). penguin(polly). }

expansion of M :
M+ = { bird(tweety). bird(polly). penguin(polly).
not penguin(tweety). not flies(tweety). not flies(polly). }

integrity constraint:
r0 = ← bird(tweety), not penguin(tweety), not flies(tweety).

shift the atom with target predicate to the left side:
r0 = flies(tweety)← bird(tweety), not penguin(tweety).

generalize r0 by replacing constant with variables:
H = flies(X)← bird(X), not penguin(X).
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