ILP Systems: A Review

By Chongbing Liu g
Outlines

View of ILP as a search problem
search space
search strategies
search heuristics

View of ILP as the inverse of deduction
inverse entailment
PROGOL

Parallelize ILP

12/1/2004 The Foundations of Inductive Logic
Programming

ILP Systems: A Review

By Chongbing Liu g
Outlines

View of ILP as a search problem
search space

12/1/2004 The Foundations of Inductive Logic
Programming

ILP as a search problem

Search space

Hypothesis Space Clause space

12/1/2004 The Foundations of Inductive Logic
Programming

ILP as a search problem

Search space

e Definitions
e Structures

12/1/2004 The Foundations of Inductive Logic
Programming

ILP as a search problem

Search space (definitions)
Syntactic bias:
Definite clauses, non-recursive clause,

function-free clause, linked clauses,

variable-depth bounded clause, and so on

12/1/2004 The Foundations of Inductive Logic
Programming

ILP as a search problem

Search space (definitions)

Semantic bias:

clauses satisfying some mode declarations,

Clauses with given degree of determinacy w.r.t B
determinate clauses
ij-determinate clauses

12/1/2004 The Foundations of Inductive Logic
Programming

ILP as a search problem

Search space (structures)

Importance of structures (orders):
allows to dynamically generate only part of the space

support pruning the search space

12/1/2004 The Foundations of Inductive Logic 7
Programming

ILP as a search problem

Search space (structures)

Often discussed orders:

subsumption order C < D if Coc D for some 6
implication order C F D if Cimplies D
relative subsumption order C «<g D if B V(C6c D) for some 6
relative implication order C gD if (B U {C}) D
generalized subsumption order
C=g D if with B, C can be used to
prove at least as many results as D

12/1/2004 The Foundations of Inductive Logic 8
Programming

ILP as a search problem

Search spaces in ILP systems

system declarative bias cenerality order
MIS definite clauses subsumption
FOIL function-free normal clauses (allowing subsumption
negative literals in the body) with the
target predicate symbol as the head
GoLEM | definite clauses having the target pred- | relative subsumption

icate symbol as the head, also with ij-
determinacy and model constraints

PROGOL

definite clauses restricted by bounded
maximal variable depths, maximal res-
olution steps and mode declarations

subsumption

12/1/2004 The Foundations of Inductive Logic

Programming

ILP Systems: A Review

By Chongbing Liu

View of IL
searc
searc

Outlines
P as a search problem
N space

N strategies

12/1/2004

The Foundations of Inductive Logic
Programming

10

ILP as a search problem

Search strategies

e Incremental vs. batch learning

e Top-down vs. bottom-up search

12/1/2004 The Foundations of Inductive Logic
Programming

11

ILP as a search problem

Search strategies

e Incremental vs. batch learning

12/1/2004 The Foundations of Inductive Logic
Programming

12

ILP as a search problem

Outline of the Incremental Learning Strategy

Initialize ¥ to {O}

repeat while there are examples available Search
read the next (positive or negative) example Hypothesis
repeat Space
if ¥ is too strong
specialized X
if ¥ is too weak
oeneralize X
until X is correct w.r.t. the examples read so far
12/1/2004 The Foundations of Inductive Logic 13

Programming

ILP as a search problem

Outline of the Batch Learning Strategy

| Search
Initialize ¥ to J.I:I} Clause
Initialize E.,, to F Space

repeat
find a clause €' which covers the most positive example
and no negative examples in F.,,
update X by adding clause C
update £, by removing positive examples covered by C

until F., contains no positive examples

12/1/2004 The Foundations of Inductive Logic 14
Programming

ILP as a search problem

Search strategies

e Top-down vs. bottom-up search

12/1/2004 The Foundations of Inductive Logic
Programming

15

ILP as a search problem

Bottom-up

12/1/2004

The Foundations of Inductive Logic

Programming

16

ILP as a search problem

Hybrid search:

o

Bottom-up

12/1/2004

The Foundations of Inductive Logic
Programming

17

ILP as a search problem

Top-down
Hybrid search:

o

Bottom-up

12/1/2004 The Foundations of Inductive Logic
Programming

18

ILP as a search problem

Search strategies in ILP systems

system | learning mode search direction search method
MIS incremental mixtured brute-force search
FOIL batch top-down hill-climing search

GOLEM batch }mrh]lll—np I

PROGOL batch bottom-up/top-down | A*-like search
12/1/2004 The Foundations of Inductive Logic 19

Programming

ILP Systems: A Review

By Chongbing Liu g
Outlines

View of ILP as a search problem
search space
search strategies
search heuristics

12/1/2004 The Foundations of Inductive Logic
Programming

20

ILP as a search problem

Search heuristics

Any quantities used to guide the search or
terminate the search

Reflect the status of a reached state

Statistic heuristics

12/1/2004 The Foundations of Inductive Logic
Programming

21

ILP as a search problem

Search heuristics

P(E|h)P(h)
posteriori probability of A given E: P(E)
maximize P(h|E) -2 maximum a posteriori (MAP) hypothesis

P(h|E) =

hyap = Mazyey P(R|E)
P(E|h)P(h)
P(E)
= Maxycy P(E|h)P(h) (since P(E) is constant)

= .hr!’!.i"Jrl.E”

likelihood of E given h : P(E|h)
if P(h) is constant, then get maximum likelihood (ML) hypothesis

Jr!_”].: = _h“n'.i!'_,rl.E” :”'lr|h|

12/1/2004 The Foundations of Inductive Logic 22
Programming

ILP as a search problem

Search heuristics

e Transform H,p, we get :
hafap = _Ua".i'.?,r;E” — ft’}lr;g:"){:f?“fjl — fﬂlf;g!'){:h |

Huap turns to be minimal description length hypothesis (MDL)

!!.‘.HJL = _th:HJrI. I{J('H{:fi' | - !‘{'Eh{: r“ﬂ Trade_off !

e Description length of E given h : -log,P(E|h)

if P(h) is constant, then get minimal data description length
hypothesis

Hyrprn = Ming, L('Eh{FUI]

12/1/2004 The Foundations of Inductive Logic 23
Programming

ILP as a search problem

Search heuristics

Probability approximation:

P(E|h) = A(h) = P(® | h)

12/1/2004 The Foundations of Inductive Logic
Programming

24

ILP as a search problem

Search heuristics in ILP systems

svstem | henristics stopping criterion 1 | stopping criterion 2
MIS N/A P(E|h)=1 P(E |h)=1

FOIL [(C)-1{C") Lg,(h) 2 Ley, (B) no e or no more bits available
GOLEM MAY COVET S0Mme | 7

PROGOL | f=p-(n+c+h) f 1s minimal all & covered

12/1/2004 The Foundations of Inductive Logic 25

Programming

ILP Systems: A Review

By Chongbing Liu g
Outlines

View of ILP as a search problem
search space
search strategies
search heuristics

View of ILP as the inverse of deduction
inverse entailment

12/1/2004 The Foundations of Inductive Logic 26
Programming

ILP as the Inverse of Deduction

Inverse entailment

Inverse resolution is not complete. For example,

D = £(I,J)¢« d(I,K),d(,L),£f(L,M),m(K,MN),m(I,N,J)
C = £(K,N)« d(K,L), £(L,M),m(K,M, N)

C implies D, but C not subsumes D. That is, we can
not obtain C from D by inverse resolution.

So we need to try inverting implication. This is called
inverse entailment. While doing this, we make
use of sub-saturants of D.

12/1/2004 The Foundations of Inductive Logic 27
Programming

ILP as the Inverse of Deduction

Inverse entailment
Sub-saturants: (simplified)

S(D) includes D itself and clauses obtained by replacing the
variables in the head with all other variables in the clause.

For function-free clauses, |S(D)| is at most nk where k is the
arity of the head and n is the number of variables in the
clause. If not function-free, we need to flatten clause D.

Theorem:
If C = D, then exists A in sub-saturants(D)
such that C subsumes A.

12/1/2004 The Foundations of Inductive Logic 28
Programming

ILP as the Inverse of Deduction

Inverse entailment
To compute C from D s.t. C D, (D is function-free):
1. compute sub-saturants of D, getting S(D)
2.C={}
3. for each se S(D)
add all the clauses which subsumes s into C

4. Remove f e C for which f F D is not true
Note: a) step 3 and 4 are decidable since D is function-free.

b) C is complete in tat it contains all C which imply D.
c) C supersets C'={g|g subsumes D}

12/1/2004 The Foundations of Inductive Logic 29
Programming

ILP as the Inverse of Deduction

PROGOL

1. First, for each single positive example e, PROGOL constructs
a most specific clause which together with the background

knowledge implies e.

BAH Fe
= B~e FH
Let 1 be the conjunction of ground literals which are true in all
models of BME, i.e.,

5% kI _
then Bre F1 FH
and thus _ H FL (Listhe most specific clause)

(L is obtained from L by replacing terms by unique variable)

12/1/2004 The Foundations of Inductive Logic 30
Programming

ILP as the Inverse of Deduction

PROGOL

2. Second, PROGOL searches for a most general and consistent
clause H, which covers the most of other positive examples
and no negative examples. Ideally we should search through
all the complete set of candidates C (computed using inverse
entailment technique). But for the sake of simplicity and
efficiency, PROGOL only searches C’ where each element
subsumes L. The search is performed top-down.

12/1/2004 The Foundations of Inductive Logic 31
Programming

ILP Systems: A Review

By Chongbing Liu g
Outlines

View of ILP as a search problem
search space
search strategies
search heuristics

View of ILP as the inverse of deduction
inverse entailment
PROGOL

Parallelize ILP

12/1/2004 The Foundations of Inductive Logic 32
Programming

Parallelize ILP

There already exists an implementation of parallel ILP. But

» it is for the non-monotonic problem setting, i.e., for data mining,
» and it is based on Bulk Synchronous Parallelism(BSP) model.

12/1/2004 The Foundations of Inductive Logic 33
Programming

Parallelize ILP

Data Partition

For the non-monotonic setting, there 1s usually very little background
knowledge and negative example. So it makes sense to simply
duplicate them to all the processors and only partition the huge set of
examples, as that implementation does. In normal problem setting,
however, the dominating part of the data is usually the background
knowledge (ground literals) instead of examples. Therefore partition
should be done on background knowledge as well other than
examples, 1n order to achieve better parallelization. Also ideally a
processor should receive background knowledge which 1s right about

the examples it receives. The question 1s: how to partition
backeround knowledge and examples in coordination?

12/1/2004 The Foundations of Inductive Logic 34
Programming

Thank you.

12/1/2004

The Foundations of Inductive Logic
Programming

35

