The Foundations of Inductive Logic Programming

By Chongbing Liu

Outlines

- Resolution Based Proof Procedures
- □ ILP Problem Specification
- □ Generality Orders on Clauses
- Refinement Operators
- Conclusions

Proof Procedures

- $lue{}$ Very often we need to prove that $\Sigma \models E$
- But this is in general undecidable
- □ When $\Sigma \models E$ is true, we could have some procedures to generate proofs
- □ Ideal properties: complete, sound, work mechanically, efficient and applicable to all Σ and E

Resolution

resolution rule

C=f,x D=
$$\neg$$
f,y
$$R=x \lor y$$

Resolvent

C, D from Σ or all the intermediate resolvents

Unconstrainted

Incomplete Inefficient

Resolution

resolution rule

C=f,x D=
$$\neg$$
f,y
$$R=x \lor y$$

Resolvent

Incompletness Example

C, D from Σ or all the intermediate resolvents

Unconstrainted

Incomplete Inefficient

Given:

A finite set of <u>clauses</u> $\stackrel{\bullet}{B}$ (background knowledge), and sets of <u>clauses</u> $\stackrel{\bullet}{E^+}$ and $\stackrel{\bullet}{E^-}$

Find:

A theory \sum , such that $\sum \cup \ B$ is correct with respect to E^+ and E^-

Correct theory

- $\sum \cup B$ is correct with respect to E^+ and E^- if
 - 1. $\sum \cup B \models E^+$ (completeness) and
 - 2. $\sum \cup B \cup \neg E^{-}$ is satisfiable (consistency).

ILP Search all the clauses for correct Σ

Correct theory

- $\Sigma \cup B$ is correct with respect to E^+ and E^- if
 - 1. $\sum \cup B \models E^+$ (completeness) and
 - 2. $\sum \cup B \cup \neg E^{-}$ is satisfiable (consistency).

 $(\Sigma \cup B)$ implies no $e \in E^{-}$

(easier, proof procedures)

Consistency Condition

- $\sum \cup B$ is correct with respect to E^+ and E^- if
 - 1. $\sum \cup \mathbf{B} \models \mathbf{E}^+$ (completeness) and
 - 2. $\Sigma \cup B \cup \neg E$ is satisfiable (consistency).

Admissibility

- $\Sigma \cup B$ is correct with respect to E^+ and E^- if
 - 1. $\sum \cup B \models E^+$ (completeness) and
 - 2. $\Sigma \cup B \cup \neg E$ is satisfiable (consistency).

Correct theory

 $\Sigma \cup B$ is correct with respect to E^+ and E^- if

1.
$$\sum \cup \mathbf{B} \models \mathbf{E}^+$$
 and

(completeness)

If $\langle \mathbf{E}, \mathbf{\Sigma} \rangle$ are admissible:

(ground atoms, Horn clauses)

(ground literals, clauses)

2. $(\sum \cup B)$ implies no $e \in E^-$

(consistency). (easier, proof procedures)

Correct theory

 $\sum \cup B$ is correct with respect to E^+ and E^- if

1.
$$\sum \cup \mathbf{B} \models \mathbf{E}^+$$

(completeness)

Reduced Search Space! (bias)

ILP as a search problem (search space)

ILP as a search problem (generality orders)

Ordered Clause space

ILP as a search problem (generality orders)

ILP as a search problem (A General Scheme)

Start with <u>some initial theory</u> Repeat

If \sum is too strong, specialize it

If \sum is too weak, generalize it

until $\sum \cup B$ is correct with respect to E^+ and E^-

Operations

Start with <u>some initial theory</u> Repeat

If \sum is too strong, specialize it

If \sum is too weak, generalize it

Refinement operators

until $\sum \cup B$ is correct with respect to E^+ and E^-

Basic Concepts

- Quasi-order ≥ on set S: Reflexive and transitive
- Least generalization(S): Least Upper Bound (lub)
- Greatest specialization(S): Greatest Lower Bound (glb)
- Lattice: Exist lub and glb for any S
- Downward Cover(C): $\{D \mid C \ge D, \text{ and no } E \text{ s.t. } C > E > D\}$
- Upward Cover(C): $\{D \mid D \ge C, \text{ and no } E \text{ s.t. } D > E > C\}$

(no background knowledge)

- Subsumption order on atoms
- Subsumption order on clauses
- Implication order on clauses

(no background knowledge)

Subsumption order (∝) on the set of atoms

- \square Definition : $A \propto B$ if $A\theta \subseteq B$ for some θ
- □ Existence Of Least Generalization : Yes
- Existence Of Greatest Specialization: Yes
- Upward covers : finite
- Downward cover: finite

(no background knowledge)

Subsumption order (∝) on the set of clauses

- \square Definition : $A \propto B$ if $A\theta \subseteq B$ for some θ
- Existence Of Least Generalization : Yes
- Existence Of Greatest Specialization: Yes
- On Horn clauses : Lattice
- □ Upward covers : not always exist or finite
- Downward cover: not always exist or finite

(no background knowledge)

Implication order (-	 on the set of clauses 	
Definition :	logical consequence	
■ Existence Of Least (Generalization : ←	
Existence Of Greate	est Specialization: Yes	
On Horn clauses :	NO	
☐ Upward covers :	not always exist or finite	
Downward cover :	not always exist or finite	

Only when S contains at least One function-free clause

(with background knowledge)

- Relative Subsumption order
- Relative Implication order
- Generalized Subsumption order

(with background knowledge)

Relative Subsumption order (∝_B)

- \square Definition: $C \propto_B D$ if $B \vdash \forall (C\theta \subseteq D)$ for some θ
- □ Existence Of Least Gneralization: Yes, when B is
 - a set of ground literals
- On Horn clauses: Yes, when B is ground atoms
- □ Deduction : Exist a deduction of D from {C}∪B
 where C occurs at most once

(with background knowledge)

- \square Definition: $C \vdash_{B} D$ if $(B \cup \{C\}) \vdash D$
- Existence Of Least Generalization: Yes, when
 - **B** is a set of function-free ground literals and S contains at least on function-free clause
- ☐ On Horn clauses: NO
- □ Deduction : Exist a deduction of D from {C}∪B

(with background knowledge)

Generalized Subsumption order (≥_B)

- \square Definition: $C \ge_B D$ if with B_r , C can be used to
 - prove at least as many results as D
- Existence Of Least Generalization: Yes, but if
 - S is a set of atoms, or S and B are all function-free
 - or **B** is ground
- ☐ On Horn clauses: Yes, e.g., if **B** is ground definite program
 - and S is a set of definite program clause with same heads
- Deduction : Exist a SLD-deduction of D, where C is the top
 - clause and members in B are input clauses

(with background knowledge)

- C ≥_B D if there exists a SLD-deduction of D, with C as top clause and members of B as input clauses.
- C ∞_B D if there exists a deduction of D from {C} ∪ B where C occurs at most once as a leaf.
- C ⊢ D if there exists a deduction of D from {C} ∪ B.

summary

Refinement Operators

functions from a single clause to a set of clauses:

 $\rho(C)$: downward refinement operators

 $\delta(C)$: upward refinement operators

Ideal (downward) operators:

Locally finite : $\rho(C)$ is finite

Complete : \forall C > D, \exists E ∈ ρ *(c) s.t. D≈E

Proper : $\rho(C) \subseteq \{ D \mid C > D \}$

Refinement Operators

- Ideal p(C) exists ⇔
 every C has a finite set of downward cover set
- Ideal $\delta(C)$ exists \Leftrightarrow every C has a finite set of upward cover set
- Only subsumption order on set of atoms has finite downward and upward cover sets. Others don't.
- So ideal operators do not exist for clauses structured by most practical orders.

Refinement Operators

- In practice we drop the properness, and use
- locally finite and complete operators.
- Such operators exist for clauses structured by
- subsumption order.

Conclusions

- Resolution based proof procedures are useful in ILP.
- ILP is a search problem.
- Different orders may be defined on the search space.
- The search could be achieve by applying refinement operators.

Thank you.