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Resolution Based Proof Procedures

Proof Procedures

3 Very often we need to prove that X FE
d But this is in general undecidable

O When X FE is true, we could have some
procedures to generate proofs

[0 Ideal properties: complete, sound,

work mechanically, efficient and applicable to all £
andE
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Resolution Based Proof Procedures

Resolution

resolution rule

D
C=f,x D= —f,y / j /
\ / R, U, V,C, D, E F, G, H
R=xvy //
Resolvent

C, D from X or all the Incomplete
intermediate resolvents Inefficient
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Resolution Based Proof Procedures

Resolution
resolution rule Incompletness Example
C=f D £ z resolution
= IX = ]y :
Y = h(x).
h(x)f(x),9(x). —{Z Fhex)
f(x).
R=x vy g(x).
Resolvent
5 | h(a).
C, D from X or all the Incomplete
intermediate resolvents Inefficient
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Resolution Based Proof Procedures

Ded UCtlon C subsume D if exists
0s.t.Coc D
resolution rule
resolution
C=f,X D= —lf,y z: > 5 |= h(X)
\ / h(x)«f(x),g(x). '
f(x). :
( ) subsumption
R=X vy g(x). 6 = {x/a}
Resolvent
 F h(a).
C, D from X or all the E t' Complete
intermediate resolvents SHOSHAPHOH Inefficient
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Resolution Based Proof Procedures

resolution rule

C=f,x D= —f,y

N4

Linear Resolution ¢ p E r G H

RN

.

R=X vy W
Resolvent
- Complete
tchlasltagi g(tasglvgr}troo; all subsumption- Inefficient
C, D from X or all the E i Complgte
intermediate resolvents subsumption Inefficient
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Resolution Based Proof Procedures

resolution rule

C=f,X = —lf,y

N4

R=X vy
Resolvent

Input Resolution c D, E F G,H

2

- Incomplet
C is the resolvent of .
the last step, D from 3, subsumpt|on Efficient
- Complete
C is the resolvent of . -
the last step, D from all subsumptlon- Inefficient

C, D from X or all the
intermediate resolvents

_ Complete
subsumption Inefficient
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Resolution Based Proof Procedures

resolution rule

C=f,X = —lf,y

N4

R=X vy
Resolvent

SLD Resolution

y
y

. : Complete
> consists of SLD subsumption Deduction Efficient

Horn clauses

Incomplet

C is the resolvent of Efficient

the last step, D from X, subsumption

Complete

C is the resolvent of Inefficient

subsumption
the last step, D from all HsUmpt)

Complete

C, D from X or all the -
Inefficient

. , subsumption
intermediate resolvents P
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Resolution Based Proof Procedures

resolution rule

C=f,x D= —f,y

SLDNF Resolution

N4

> -
Allow negative literals SLDNF subsumption |Deduction
in the clause body;
Use Negation as Failure A
> -
> consists of SLD subsumption |Deduction
Horn clauses

subsumption

subsumption

subsumption

R=X v y C is the resolvent of
Resolvent the last step, D from X
C is the resolvent of
the last step, D from all
C, D from X or all the
intermediate resolvents
10/19/2004

The Foundations of Inductive Logic
Programming

Incomplet
Efficient

Complete
Efficient

Incomplet
Efficient

Complete
Inefficient

Complete
Inefficient
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ILP Problem Specification

Given:

A finite set of clauses B (background knowledge),

and sets of clauses E+ and E~

Find:
A theory 2. , such that 2. U B is correct with
respect to E+ and E~
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ILP Problem Specification

Correct theory

>, U B is correct with respect to E* and E~ if

1.> UB FE+ (completeness)
and
2. >, U B U—1E" is satisfiable (consistency).

ILP Search all the clauses for correct >
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ILP Problem Specification

Correct theory

>, U B is correct with respect to E* and E~ if

1.> UB FE+ (completeness)
and
2. >, U B U—1E" is satisfiable (consistency).

?

(> U B) impliesnoe e E-

(easier, proof procedures)
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ILP Problem Specification

Consistency Condition

>, U B is correct with respect to E* and E~ if

1.> UB FE+ (completeness)
and
2. >, U B U—1E" is satisfiable (consistency).
Example: (let B=Q)
ﬂ %/\/\/\HZ={P(8)VP(|3)}
E- = { P(a), P(b) }

(> U B) impliesnoe e E-

(easier, proof procedures)
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ILP Problem Specification

Admissibility

>, U B is correct with respect to E* and E~ if

1.> UB FE+
and

(completeness)

2. >, U B U—1E" is satisfiable (consistency).

Pt
(> U B) impliesnoe e E-

1If (E, 2. ) are admissible:
(ground atoms, Horn clauses)

(ground literals, clauses)

(easier, proof procedures)
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ILP Problem Specification

Correct theory

>, U B is correct with respect to E* and E~ if

1.> UB FE+ (completeness)
and

1If (E, 2. ) are admissible:

""" (ground atoms, Horn clauses)

(ground literals, clauses)

2. (> U B)impliesnoe e E Lconsistency). .\ es)
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ILP Problem Specification

Correct theory

>, U B is correct with respect to E* and E~ if

1.> UB FE+ (completeness)

and
Reduced Search Space ! (bias)

S~

1f (E, 2. ) are admissible:

/\/\/\/_” (grodnd atoms, Horn clauses)

(ground literals, clauses)

2. (> U B)impliesnoe e E Lconsistency). .\ es)
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ILP Problem Specification

ILP as a search problem (search space)

Clause space

Theory Space :
(Language bias)
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ILP Problem Specification

ILP as a search problem (generality orders)

Ordered Clause space
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ILP Problem Specification

ILP as a search problem (generality orders)

Ordered Theory Space Ordered Clause space
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ILP Problem Specification

ILP as a search problem (A General Scheme)

Start with some initial theory
Repeat

If D is too strong, specialize it
If 0 is too weak, generalize it

until >, U B is correct with respect to ET and E-
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ILP Problem Specification

Operations

Start with some initial theory
Repeat

Refinement
operators

If D is too strong, specialize it }
If 0 is too weak, generalize it

until >, U B is correct with respect to ET and E-

10/19/2004 The Foundations of Inductive Logic 21
Programming



Generality Orders on Clauses

Basic Concepts

Quasi-order = on set S: Reflexive and transitive

Least generalization(S): Least Upper Bound (lub)
Greatest specialization(S): Greatest Lower Bound (glb)
Lattice: Exist lub and glb for any S
Downward Cover(C): {DIC=D,andnoEst.C>E>D}
Upward Cover(C): {DID=C,andnoEs.t.D>E>C}
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Generality Orders on Clauses

(no background knowledge)

e Subsumption order on atoms
e Subsumption order on clauses
e Implication order on clauses
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Generality Orders on Clauses

(no background knowledge)

Subsumption order (o<) on the set of atoms

0 Definition : A «< B if Abc B for some 6
Existence Of Least Generalization : Yes
Existence Of Greatest Specialization: Yes
Upward covers finite

Downward cover: finite
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Generality Orders on Clauses

(no background knowledge)

Subsumption order (o<) on the set of clauses

[0 Definition : A « B if Abc B for some 0
Existence Of Least Generalization : Yes
Existence Of Greatest Specialization: Yes

On Horn clauses : Lattice

Upward covers not always exist or finite
Downward cover : not always exist or finite
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Generality Orders on Clauses

(no background knowledge)

Implication order ( ) on the set of clauses

O Definition : logical consequence
Existence Of Least Generalization : <«—
Existence Of Greatest Specialization: Yes \
On Horn clauses : NO
Upward covers not always exist or finite
Downward cover : not always exist or finite

Only when S contains at least
One function-free clause
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Generality Orders on Clauses

(with background knowledge)

o Relative Subsumption order
o Relative Implication order
e Generalized Subsumption order
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Generality Orders on Clauses

(with background knowledge)

Relative Subsumption order (o<s)

O Definition: C o<g D if B - V(C6c D) for some 6
[0 Existence Of Least Gneralization: Yes, when B is
a set of ground literals
[0 On Horn clauses : Yes, when B is ground atoms
[0 Deduction : Exist a deduction of D from {C}UB
where C occurs at most once
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Generality Orders on Clauses

(with background knowledge)

Relative Implication order ( =)

O Definition: C FeDiIf(BU{C}) D
[0 Existence Of Least Generalization: Yes, when

B is a set of function-free ground literals and S
contains at least on function-free clause

[0 On Horn clauses : NO
[0 Deduction : Exist a deduction of D from {C}UB
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Generality Orders on Clauses

(with background knowledge)

Generalized Subsumption order (=:)

0 Definition: C=g D if with B, C can be used to
prove at least as many results as D

[0 Existence Of Least Generalization: Yes, but if

S is a set of atoms, or S and B are all function-free

or B is ground

[0 On Horn clauses : Yes, e.qg., if B is ground definite program

and S is a set of definite program clause with same heads
[0 Deduction : Exist a SLD-deduction of D, where C is the top

clause and members in B are input clauses
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Generality Orders on Clauses

(with background knowledge)

e C =; D if there exists a SLD-deduction of
D, with C as top clause and members of B
as input clauses.

e C «<: D if there exists a deduction of D
from {C} u B where C occurs at most
once as a leaf.

e C s D if there exists a deduction of D
from {C} u B.
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Generality Orders on Clauses

summary

Generalized Weaker than | pa|ative Weaker than | Relative

subsumption > subsumption >l implication

A A
Weaker than Weaker than

Weaker than

Subsumption > Implication
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Refinement Operators

[0 functions from a single clause to a set of clauses:
p(C) : downward refinement operators

O(C) : upward refinement operators

d Ideal (downward) operators:
Locally finite : p(C) is finite
Complete :V C>D,dE € p*(c) s.t. D=E
Proper :p(C)c{D|C>D}

10/19/2004 The Foundations of Inductive Logic
Programming

33



Refinement Operators

Ideal p(C) exists &
every C has a finite set of downward cover set

Ideal 6(C) exists &

every C has a finite set of upward cover set
Only subsumption order on set of atoms has finite
downward and upward cover sets. Others don't.
So ideal operators do not exist for clauses
structured by most practical orders.
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Refinement Operators

e In practice we drop the properness, and use
e |ocally finite and complete operators.

e Such operators exist for clauses structured by
e subsumption order.
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Conclusions

Resolution based proof procedures are useful in ILP.
ILP is a search problem.
Different orders may be defined on the search space.

The search could be achieve by applying refinement
operators.
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Thank you.
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