
1

Answer Set Programming with Clause
Learning

Jeffrey Ward and John S. Schlipt

۩ Fall 2005 @ KLAB.CS.NMSU.EDU

Outlines

Background.
Conflict Clause Generation.
Search Heuristics.
The Experiments

2

Propositional CNF-SAT solvers

Davis –Putnam- Loveland- Logeman (DPLL)

srch4ModlExtndng (partlAssgn)
while there exists a unit clause c

let unitLit be the remaining literal in c
partlAssgn := partlAssgn union {unitLit}
if any clause has been falsified, return (* backtrack *)

if partlAssgn is total (contains each variable or its negation)
output ‘SAT’, output partlAssgn, and halt program

else
pick ltrl to guess next (i.e., branch on) - by a heuristic
srch4ModlExtndng(partlAssgn union {ltrl})
srch4ModlExtndng(partlAssgn union {not ltrl})

if partlAssgn is empty (* back at top level *) output ‘unSAT’

Conflict Clause Generation

Since in SAT solver, inferences are derived through unit propagation,
if x and ~ x are derived, it have been inferred since the latest choice
made by another brancher.

When the solver encounters a contradiction:
it does a critical path analysis to choose a conflict clause.

If λ0 is the last choice of the brancher, reconstruct the sequence of
inferences used to infer each truth assignments since the last choice

Implication graph:
The nodes are literals
There is an edge from λ1 literal to λ2 if a clause {λ2,~ λ1,…} was
used to infer λ2

3

Conflict Clause Generation (Cont..)

- There exist at least one directed path in the implication
graph from λ0 to ~x and at least one directed path in the
implication graph from λ0 to x.
- A node on all directed paths is called a unique implication
point (UIP).
- Pick UIP λ’ farthest from λ0

- The clause contains λ’ plus some literals that have been
derived or guessed before the branching on λ0 .

Conflict Clause Generation

Examples

4

Inference Rules

1) Forward inference.
If all the subgoals in a rule

a:- b1 , . . . , bk , not c1 , . . . , not cm

are true in the current assignment, infer a. Add edges from all bi 's and ~cj 's
to a in the implication graph.

2) Kripke-Kleene negation (all rules canceled):
If every rule with head a has at least one subgoal negated in the current
truth assignment, infer ~a. For each rule

a:- b1 , . . . , bk , not c1 , . . . , not cm

with head a, determine the canceling assignment, ~bi or cj , which was
guessed or inferred first (at the earliest level of the backtracking search),
and add an edge from that assignment to #a in the implication graph.

Inference Rules

3) Contraposition for true heads.
If atom a is true in the current truth assignment, and if every rule with head
a except one has at least one sub-goal that is false in the current truth
assignment, infer all the sub-goals of that remaining rule to be true.

Example
Only rules with a in their heads are:
a:- b, c, not d;
a:- e, f ;
a:- not g, h;
and that the current truth assignment contains a, d, ~e. Then ~g, h will be
inferred. Add edges from each of a, d, ~e to each of ~g, h into the
implication graph.

5

Inference Rules

4) Contraposition for false heads.
If an atom a is false in the current truth assignment and some rule

a:- b1 , . . . , bk

has every bi except one true in the current truth assignment, infer that last bi
to be false.

Example:
The rule is a:- b, c, not d
and if ~a, b, c are in the truth assignment.
Infer d, and add edges from each of ~a, b, c to d.

Inference Rules

5) Well-founded negation (Smodels' AtMost):
Temporarily removing all satisfied and un-defined negative sub-goals in all
rules of the program yields a Horn program. Compute its least model M ; the
set of atoms false in M is unfounded; set these atoms to false in the current
partial assignment.

Example
P contains the rules
a:- b; b:- c; c:- a; a:- d;
are the only rules with a, b, or c in their heads.
~d is in the current partial truth assignment.
Infer ~a, ~b, and ~c.
Add edges from ~d to ~a, from ~a to ~c, from ~c to ~b, and from ~b to
~a.
Note the implication graph contains a cycle.

6

Search Heuristics

- Each variable x has an “activity” count that counts the number of
time that either x or ~x has been involved in producing a conflict.

- Choose the branching literal such that its activity count is
maximized.

Experiment Results

7

Complication introduced by Unfounded Set
Inference Rule

As smodels utilize the Unfounded Set inference,
it is possible that:
1) The implication graph have a circle.
2) Exist a conflict pair of node x and ~x where x was inferred

prior to the current search level
3) There to be multiple pairs of conflicting literals appearing

simultaneously.

Compute clause in smodels

Implication graph G, choice node C, specified conflict node X
1) Compute path G that is an arbitrary acyclic path from C to X
2) Adjust conflict node selection
3) Create an additional edge to the adjusted conflict node
4) Compute Unique Implication Point
5) Traverse backward from the conflict node to find the clause

8

Compute clause in smodels

Compute clause in smodels

9

Compute clause in smodels

Using Conflict Clause

1) Backjumping
2) Serving as Additional Constraint
3) Search Heuristic
4) Restart from the root node periodically

10

Backjumping

Would you like to have any
question?

11

