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Abstract. A conflict clause represents a backtracking solver’s analysis of why a
conflict occurred. This analysis can be used to further prune the search space and
to direct the search heuristic. The use of such clauses has been very important in
improving the efficiency of satisfiability (SAT) solvers over the past few years,
especially on structured problems coming from applications. We describe how we
have adapted conflict clause techniques for use in the answer set solver Smodels.
We experimentally compare the resulting program to the original Smodels pro-
gram. We also compare to ASSAT and Cmodels, which take a different approach
to adding clauses to constrain an answer set search.

1 Introduction

Recent years have seen the development of several stable model/answer set solvers.
Smodels [Sim00,NSS00,Nie99] and DLV [EFLP00] are commonly used. (DLV im-
plements more, namely disjunctive logic programming. However, it also serves as an
effective stable model search engine.) These have demonstrated the feasibility of answer
set programming as a paradigm for applications.

These programs have built upon the earlier propositional CNF satisfiability (SAT)
solvers. But as the technology of the answer set programming systems has improved,
the SAT solvers have gone on to implement new techniques, noticeably conflict clause
usage (also known as “lemmas”), a variety of new search heuristics (which are fre-
quently based on conflict clauses), and new highly efficient data structures. Key to
many of these applications seems to be that some variables, and some combina-
tions of variables, are far more important than others. More recent SAT solvers such
as GRASP [MS99], SATO [Zheng97], rel sat [BS97], Chaff [MMZZM01], Berk-
Min [GN02], and SIMO [GMT03], through creating and processing conflict clauses,
often “learn” important information for the search.

The Cmodels–1 solver [Cmod] addresses this problem by piggy-backing an answer
set solver onto a SAT solver. It handles a class of logic programs called tight [Fages94,
BEL00], in which the stable models are just the models of Clark’s completion of the
program [Clark78] — and the completion is a classical logic problem. So Cmodels–
1, after some preprocessing, passes a completion to a SAT solver, such as Chaff. Our
concern in this paper is with solvers which are not limited to tight programs, so we do
not discuss Cmodels–1 further here.1

1 A different tool, by East and Truszczyński, takes a sort of middle ground between Cmodels–1
and ASSAT, but we shall not discuss it here either.
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ASSAT [LZ02,ASSAT] drops the restriction to tight programs by an iterative process
of calling a SAT solver, evaluating whether the model produced is stable, and, if not,
adding further specifications (“loop formulas”) to the problem to avoid this failure of
stability. Recently, Cmodels–2 [BM03] adapts the technique of ASSAT, but extends
its application to extended and disjunctive rules, and makes available alternative loop
formula definitions.

Here we present an answer set programming tool (for non-disjunctive answer set
programs), Smodelscc (Smodels with conflict clauses), that deals with the new technolo-
gies in SAT solvers in a different way. Instead of calling a fast SAT solver to perform
the search, it incorporates some of the techniques of modern SAT solvers into a variant
of Smodels. Like ASSAT, Smodelscc is intended to deal with non-tight, as well as tight,
logic programs. It turns out that it is often much faster than the ASSAT approach on
non-tight programs, since it incorporates the unfounded set calculation directly into the
search engine, thus allowing tighter pruning of the search tree.

2 Background

Propositional CNF-SAT solvers. A basic Davis-Putnam-Loveland-Logeman (DPLL)
SAT solver [DLL62], given a set C of clauses, performs a backtracking search to find
a model for C. We sketch it below as a recursive function, passed a set of literals
representing a partial truth assignment. Initially, the partial assignment is empty. A unit
clause is a not-yet-satisfied clause containing only one unassigned literal (which is thus
forced); searching regularly for unit clauses and immediately inferring those literals,
called unit-propagation, is almost universally done. In practice, literals forced by unit
propagation are put into an “inference queue” until the data structures (not shown here)
are updated; a contradiction is always revealed by inferring contradictory literals.

srch4ModlExtndng (partlAssgn)
while there exists a unit clause c

let unitLit be the remaining literal in c
partlAssgn := partlAssgn union {unitLit}
if any clause has been falsified, return (* backtrack *)

if partlAssgn is total (contains each variable or its negation)
output ‘‘SAT’’, output partlAssgn, and halt program

else
pick ltrl to guess next (i.e., branch on) - by a heuristic
srch4ModlExtndng(partlAssgn union {ltrl})
srch4ModlExtndng(partlAssgn union {not ltrl})

if partlAssgn is empty (* back at top level *) output ‘‘unSAT’’

Recent solvers add conflict clause learning. When Chaff infers a contradiction, it
finds a relatively small{λ1, λ2, . . . , λm} ⊆ partlAssgn leading to that contradiction and,
functionally, adds to C the conflict clause (a.k.a., lemma) cc = (¬λ1∨¬λ2∨· · ·∨¬λm);
cc is always a resolvent of clauses in C. It then backtracks (backjumps) to whatever
level in the search tree unit propagation was executed after the second to the last of
λ1, λ2, . . . , λm was added and simply restarts its search from this point. Since cc has
been added to C, once all but one of the λi’s are ever inferred again, the final ¬λj will
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be inferred, before further search, by unit propagation — converting the DPLL search
tree to a DAG.2 Some solvers also use the conflict clauses in their heuristics to choose
literals to branch on (i.e., guess next). An oversimplification is that Chaff branches on
the unassigned literal occurring in the most conflict clauses.

Since so many conflict clauses are generated, systems must deal with storage over-
flow. Also, searching a huge store of conflict clauses for unit-clauses is very time-
consuming. Chaff and BerkMin periodically completely restart their searches, keeping
only those conflict clauses that, by some heuristic, seem likely to be useful. The cache
of conflict clauses is then garbage collected and recompacted (improving data locality).
Smodelscc also restarts, but it discards clauses continuously throughout the search and
does no recompaction. Currently, Smodelscc keeps the 5000 most recently generated
conflict clauses and all conflict clauses with no more than 50 literals.

Answer Set Solvers. In the absence of disjunctive rules (as with Smodels), the heart of
an answer set solver is a search for stable models for normal logic programs. Currently
the most frequently cited are Smodels and DLV. The code for Smodelscc is a modification
of the code for Smodels, which is open source software. Accordingly, Smodelscc is also
open source.3

Smodels replaces the simple unit propagation inference rule of DPLL SAT solvers
with a set of inference rules based upon an inflationary variant of the wellfounded seman-
tics; oversimplifying, we shall refer to this as closing under the wellfounded semantics.
After closing under the wellfounded semantics, Smodels computes a lookahead on each
unassigned variable x — called a unit lookahead: Assuming that x is true (resp., false),
it computes the wellfounded extension. If that gives a contradiction, Smodels infers that
x is false (resp., true). If it infers both, it backtracks; otherwise, it branches on (next
guesses) a literal λ maximizing the inferences obtained by looking ahead on λ and ¬λ.

Smodels does not use conflict clauses or restarts.
Reducing Answer Sets to CNF-SAT. As noted above, we restrict attention to answer
set solvers which can handle non-tight programs, even though solvers restricted to tight
programs may be highly useful. (Indeed many frequently cited “benchmarks,” such as
graph coloring, naturally translate to tight programs.)

ASSAT and Cmodels-2 are general purpose Answer Set solvers that call SAT solvers
to do most of their work. Given a program P , they pass the program completion P to
a SAT solver. If P has no model, P has no stable model, and ASSAT and Cmodels-2
report “no.”

A set U of atoms is unfounded over a partial truth assignment A if, for every rule
a ← b1, . . . , bk, not c1, . . . , not cm of P with a ∈ A, either (i) some ¬bi or cj ∈ A
or (ii) some bi ∈ U . If U is unfounded, the stable and well-founded semantics infer
{¬a : a ∈ U}, as a form of negation as failure. The program completion achieves only
part (i) above, inferring fewer negative literals.

2 Since the sets of conflict clauses may be huge, traversing all of C to do unit propagation is
prohibitively slow. The best current method to do this seems to be Chaff’s “optimized Boolean
Constraint Propagation” [MMZZM01]. We use that also in our program.

3 Smodelscc, and the benchmarks used in this paper, can be obtained at
http://www.ececs.uc.edu/˜ schlipf/.
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If the SAT solver returns a model, ASSAT and Cmodels-2 check whether all atoms
in all unfounded sets are assigned false. If so, they return the model. If not, they create
“loop formulas,” which exclude the model, and feed them back into the SAT solver —
repeating until a stable model is found or the search fails. The alternation between the
SAT-solver phase and the unfounded-set-check phase may be inefficient, since the SAT
solver may spend a great deal of time searching a branch which immediately could be
pruned away by detecting an unfounded set.

An important advantage of ASSAT and Cmodels-2 is a sort of modularity: they
are free to adapt to whatever SAT solver proves to be experimentally best for their
applications. Smodelscc merges the “classical inference” part with the unfounded set
check and thus sacrifices this modularity.

3 Conflict Clause Generation

Crucial to many modern SAT solvers is creating, storing, and looking up conflict clauses.
Zhang et al. [ZMMM01] studies several different strategies for generating conflict
clauses, implementing each of them in the zChaff variant of Chaff. We describe here
their most effective strategy (the 1UIP strategy) and how we adapted it for Smodelscc.

When a solver such as Chaff detects a contradiction, it does a “critical path anal-
ysis” to choose a conflict clause. Because Chaff’s inferences are derived through unit
propagation only, if x and ¬x are both inferred, they must have been inferred since the
latest choice made by the brancher. Suppose that λ0 was the last choice of the brancher.
Chaff reconstructs the sequence of inferences used to infer each truth assignment since
that last choice, representing it with a digraph, called the implication graph. The nodes
are literals. There is an edge from literal λ1 to λ2 if a clause {λ2,¬λ1, . . .} was used to
infer λ2. See Fig. 1.

So there is at least one directed path in the implication graph from λ0 to x, and at
least one from λ0 to ¬x. A node on all these directed paths is called a unique implication
point (UIP). Literal λ0 itself is a UIP. All UIPs must lie on a single path from λ0. Pick
the UIP λ′ farthest from λ0 (i.e., closest to the contradiction). The derivation of the
contradictory x and ¬x now can be broken into (i) a derivation of λ′ from λ0 plus (ii)
a derivation of the contradiction from λ′. By choice of λ′, clauses involved in part (ii)
contain only λ′ plus some literals κ1, . . . , κm that had been guessed or derived before
Chaff branched on λ0 — from a point higher up the search stack. The new conflict
clause is ¬κ1 ∨ ¬κ2 ∨ · · · ∨ ¬κm ∨ ¬λ′; for the example in Fig. 1, that lemma is
¬κ1 ∨ ¬κ2 ∨ ¬κ3 ∨ ¬κ4 ∨ ¬κ5 ∨ ¬κ10 ∨ ¬κ11 ∨ ¬κ12 ∨ ¬λ′.4

At this point, Chaff does not simply backtrack on the last choice assignment. Rather,
it “backjumps” to the level in the search tree where the last κi was guessed or inferred
and restarts the search there with the new conflict clause in the cache. It will infer ¬λ′

at that level before going on with the search; this will keep it from exactly retracing its
previous chain of guesses and inferences.

In a stable model solver, such as Smodels, contradictory literals need not be inferred
in the same level of the backtrack search: an atom x may be inferred by forward or

4 It is also possible to store multiple conflict clauses per contradiction. Following [ZMMM01],
we create only one conflict clause for each contradiction.
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Fig. 1. An implication graph for a contradiction

contrapositive reasoning at one level, while x may appear in an unfounded set earlier or
later. Thus in Smodelscc, the construction above is altered a little. The later of x,¬x to be
guessed or inferred is called the conflict literal, and, for the purposes of finding a UIP, an
extra edge is added into the digraph, from the earlier literal in the conflicting pair to the
conflict literal. Now a UIP is defined to be a literal, other than the conflict literal itself,
appearing on every path from the guessed literal λ0 to the conflict literal. Identifying the
UIPs in Smodelscc is complicated by the fact that the implication graph may have cycles
(in the case of inferences based upon unfounded sets). Nonetheless, identifying the UIPs
may be accomplished in O(|E|) time, where E is the set of edges incident to vertices
between the choice literal and the conflict literal. Otherwise, Smodelscc constructs its
conflict clauses from the implication graph as described above.

Smodelscc uses Smodels’ five different inference rules (below), four corresponding
to unit propagation on the completion of the program, and the fifth an unfounded set
rule. For each of these inference rules we describe below how we add corresponding
edges to the implication graph. Compared to construction of the implication graph in
a DPLL-based SAT solver, implication graph construction in Smodelscc is relatively
complex and costly.

Forward inference. If all the subgoals in a rule

a← b1, . . . , bk, not c1, . . . , not cm

are true in the current assignment, infer a. Add edges from all bi’s and ¬cj’s to a in the
implication graph.

Kripke-Kleene negation (all rules canceled): If every rule with head a has at least
one subgoal negated in the current truth assignment, infer ¬a. For each rule a ←
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b1, . . . , bk, not c1, . . . , not cm with head a, determine the cancelling assignment, ¬bi

or cj , which was guessed or inferred first (at the earliest level of the backtracking search),
and add an edge from that assignment to ¬a in the implication graph.

Contraposition for true heads. If atom a is true in the current truth assignment, and if
every rule with head a except one has at least one subgoal that is false in the current truth
assignment, infer all the subgoals of that remaining rule to be true. For example, suppose
the only rules with a in their heads are a ← b, c, not d; a ← e, f ; and a ← not g, h;
and that the current truth assignment contains a, d,¬e. Then ¬g, h will be inferred. Add
edges from each of a, d,¬e to each of ¬g, h into the implication graph.

Contraposition for false heads. If an atom a is false in the current truth assignment and
some rule a← λ1, . . . , λk has every λi except one true in the current truth assignment,
infer that last λi to be false. For example, suppose the rule is a ← b, c, not d and that
¬a, b, c are in the truth assignment. Infer d, and add edges from each of ¬a, b, c to d.

Wellfounded negation (Smodels’ at most): Temporarily removing all satisfied and un-
defined negative subgoals in all rules of the program yields a Horn program. Compute
its least model M ; the set of atoms false in M is unfounded; set these atoms to false in
the current partial assignment. (This is the logic; Smodels has a more complicated but
faster calculation.)

For example, suppose that P contains the rules a ← b; b ← c; c ← a; and a ← d;
and that these are the only rules with a, b, or c in their heads. Suppose also that ¬d is in
the current partial truth assignment. Then infer ¬a, ¬b, and ¬c. Add edges from ¬d to
¬a, from ¬a to ¬c, from ¬c to ¬b, and from ¬b to ¬a. Note that here the implication
graph contains a cycle.

The algorithm for determining the edges for wellfounded negation is similar to the
one for Kripke-Kleene negation: If an atom a has been detected to be unfounded then it
will be the case that Smodels has found a reason to cancel every rule R with a at the head.
As in Kripke-Kleene negation, add an edge from the earliest reason for the cancellation
to the literal ¬a. In particular, if the earliest reason is that a set U of atoms mentioned
positively in the body of R have become simultaneously unfounded (unsupported) with
a, then the edge will have as its source node ¬x where x is the member of U which
was first permanently removed from Smodels’ set of supported atoms during the current
unfounded set check.

4 Search Heuristics

As noted earlier, Smodel’s search heuristic is based on its unit lookaheads. Chaff weights
its literals based upon how many of the conflict clauses they occur in5 and always
branches on an unassigned literal of maximum weight; thus Chaff can be thought of as
“learning key literals.”

The heuristic used in Smodelscc is modeled after the one in BerkMin. It works as
follows: Each variable x has an “activity count”, ac(x), which counts the number of

5 It also lets the weights from older clauses decay with time.
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times that either x or ¬x has been involved in producing a conflict (i.e., has appeared
in a conflict clause or has appeared in an implication graph along a path from a conflict
node to a variable in the corresponding conflict clause). We choose the branching literal
x0 or ¬x0 such that ac(x0) is maximized, with a restriction: If there are unsatisfied
conflict clauses in the cache, then x0 must be chosen from the most recently constructed
unsatisfied conflict clause. Branch on x0 or¬x0, whichever has appeared in more conflict
clauses.6

5 Experimental Results

We performed experiments to compare the performance of Smodels (version 2.26),
ASSAT (version 1.50), Cmodels-2 (version 1.04), and Smodelscc. Our experiments were
run on 1533 Mhz Athlon XP processors with 1 GB of main memory, using Linux.
With ASSAT, we used the -s 2 command line option, which seemed to give marginally
better results than the default or the -s 1 settings. For Cmodels, we used the default
settings, which produced the best results on tight problems. However, on Hamiltonian
cycle problems, we used Cmodels’ -si setting, which produced significant performance
improvements in that domain. The SAT solver used by ASSAT was Chaff2 (version
spelt3) [Chaff2], which is ASSAT’s default solver. Cmodels used the zChaff SAT solver
(version 2003.7.1) for tight problems and SIMO (version 3.0) [SIMO] for Hamiltonian
cycle problems, as dictated by the command line settings. Note thatASSAT and Cmodels
benefit from conflict clauses in our tests, because conflict clauses are heavily incorporated
into Chaff and SIMO. In each of the tables below (except for the DLX benchmarks), the
run times given represent the median and maximum number of user time seconds taken
to solve each of eleven (11) randomly generated problem instances. Each search process
was aborted (“timed out”) after 3600 seconds. Runtimes reported include the time to
execute Lparse, the default grounder for Smodels, ASSAT, Cmodels, and Smodelscc.

We concentrated on three problem domains:

Boolean satisfiability. Our tests in this domain include some randomly generated 3-
SAT problems and 16 of the “DLX” circuit verification benchmarks from Miroslav
Velev [VB99]. 7 In each case, the problem is provided as a CNF-SAT problem, which
we have converted to an answer set program. We do not expect to outperform ASSAT or

6 We also tested a version of Smodelscc which used lookaheads for the search heuristic (Smodels’
original default heuristic). This version frequently had somewhat smaller search trees than did
Smodelscc with the BerkMin-like heuristic (possibly because of the extra pruning afforded when
contradictions are found during lookaheads). It solved a substantial number of our experimental
test problems much faster than did the original Smodels, showing that much of the power of
conflict clauses comes from the backjumping and unit propagation-based pruning which they
afford (i.e., not only from how they affect the search heuristic). However, because the BerkMin-
like heuristic is so much less expensive to compute than the lookahead-based heuristic, we found
that it provided substantially better overall performance in our experiments. Thus, all of the
timings for Smodelscc in our Experimental Results section were obtained using the BerkMin-
like heuristic.

7 The benchmarks which we used were from the Superscalar Suite 1.0 (SSS.1.0), available
at http://www.ece.cmu.edu/˜ mvelev. The eight satisfiable instances which we tested were
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Cmodels on these examples since the logic programs are tight. Trying the “dlx” problems
was an attempt to show that conflict clauses can be particularly helpful on non-uniform,
“real world” data.

Median and maximum seconds on 11 random 3-SAT problems
Data set Smodels Smodelscc ASSAT Cmodels #Sat

vars clauses median max median max median max median max
250 1025 16.5 112.2 9.0 891.0 3.3 552.2 2.5 746.0 10
250 1050 86.1 207.2 1056.8 2136.4 334.3 2321.1 777.5 1761.2 6
250 1075 133.4 376.6 576.4 1 abort 801.1 2 abort 883.9 1 abort 3
250 1100 74.4 169.8 432.8 2110.8 329.9 1 abort 360.0 2216.0 1

Median and maximum seconds on 8 DLX benchmark problems
Data set Smodels Smodelscc ASSAT Cmodels #Sat

median max median max median max median max
8 satisfiable >3600 8 abort 11.6 17.9 2.6 4.4 2.9 10.8 8
8 unsatisfiable >3600 7 abort 15.9 41.4 6.8 18.2 8.6 14.4 0

Graph k-coloring problems. We study these because they are standard in the literature.
Since the program is tight, much of the sophistication of answer set programming is
not needed. Nevertheless, it is important that the solver be reasonably efficient on such
problems.

We first generated problems on uniform, random graphs with 400 to 500 vertices.
We also generated “clumpy” problems in this domain by making graphs of 100 clumps
with 100 nodes each (for a total of 10,000 nodes per graph). For the first set of clumpy
graphs we set our density parameter d = 150, which means that we randomly placed 150
edges in each clump and 150 edges between clumps. This gave us graphs with a total of
100 × 150 + 150 = 15,150 edges each. We then increased d to 170 and 190, obtaining
graphs with 17,170 and 19,190 edges, respectively.

As with Boolean satisfiability, we expected ASSAT and Cmodels to outperform
Smodelscc since the program is tight. We expected Smodels to be faster than Smodelscc

on fairly “uniform” graphs, and Smodelscc to be faster than Smodels on “non-uniform”
graphs.

Hamiltonian cycle problems. Among common current benchmarks, these may be the
“gold standard” for answer set solvers since the problem description is not tight. We
used directed graphs in these experiments.

Here we considered three reductions to answer set programming. The first, a stan-
dard reduction frequently used in benchmarking, was taken from [Nie99].8 The second
reduction was a “tight on its models” reduction used with ASSAT in [LZ03]. The third
reduction is the modification below of the first:

dlx2 cc bug01.cnf, ..., dlx2 cc bug08.cnf The eight unsatisfiable instances were dlx1 c.cnf,
dlx2 aa.cnf, dlx2 ca.cnf, dlx2 cc.cnf, dlx2 cl.cnf, dlx2 cs.cnf, dlx2 la.cnf, and dlx2 sa.cnf.

8 Except that the extended rules were replaced with choice constructions since ASSAT and
Smodelscc do not currently support the extended rules. They will be added to Smodelscc soon.
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Median and max secs on 11 random 3-coloring problems, uniform distribution of edges
Data set Smodels Smodelscc ASSAT Cmodels #Sat

vertices edges median max median max median max median max
400 900 3.4 163.0 1.9 197.2 0.3 88.3 0.3 88.2 10
400 950 99.5 511.8 89.8 1704.4 58.3 837.7 24.6 837.6 2
400 1000 20.7 134.3 16.0 68.4 3.7 14.3 4.0 13.1 0
500 1100 0.8 4.2 1.4 6.4 0.2 2.4 0.3 2.2 11
500 1150 196.0 356.6 697.9 2 abort 44.4 2 abort 188.3 2 abort 10
500 1200 2753.9 5 abort >3600 8 abort >3600 8 abort >3600 8 abort 0-5

Median and max secs on 11 random 3-coloring problems, clumpy distribution of edges
Data set Smodels Smodelscc ASSAT Cmodels #Sat

vertices edges median max median max median max median max
10000 15150 256.1 1 abort 21.3 50.5 8.0 9.7 8.4 10.1 10
10000 17170 201.6 3 abort 19.2 21.7 8.5 11.4 10.1 11.8 7
10000 19190 >3600 8 abort 8.5 223.4 3.2 12.9 4.2 11.7 2

hc(X,Y) :- not not_hc(X,Y), edge(X,Y).
not_hc(X,Y) :- not hc(X,Y), edge(X,Y).
:- hc(X1,Y), hc(X2,Y), edge(X1,Y), edge(X2,Y), vtx(Y), X1 != X2.
:- hc(X,Y1), hc(X,Y2), edge(X,Y1), edge(X,Y2), vtx(X), Y1 != Y2.
:- vtx(X), not r(X).
r(Y) :- hc(X,Y), edge(X,Y), initialvtx(X).
r(Y) :- hc(X,Y), edge(X,Y), r(X), not initialvtx(X).
outgoing(V) :- edge(V,U), hc(V,U). % added in 3rd reduction
:- vtx(V), not outgoing(V). % added in 3rd reduction

The two lines which we added to obtain the third reduction state explicitly that, in
a Hamiltonian cycle, every node must have an outgoing edge. This fact is implicit in
the reduction from [Nie99]. However, stating it explicitly helps the solvers prune their
search spaces. We note that these two lines were included in the “tight on its models”
reduction from [LZ03].

In our experiments the third reduction was always faster than the first two, so we
used it in all experiments reported here.9 In all of these experiments we enforced the
restriction that every vertex in every graph must have an in-degree and an out-degree
≥ 1 to avoid trivial examples.

We nonetheless found it difficult to generate hard Hamiltonian cycle problems using
a random, uniform distribution of edges. For instance, our randomly generated problems
with 6000 nodes were in all cases too large to run under ASSAT, which was understand-
able because the ground instantiations produced by Lparse were around 12MB in size.

9 This performance improvement was very pronounced with Smodels and Smodelscc. Using
ASSAT the runtimes were only slightly better with the third reduction than with the second,
but on larger problems, under the second reduction, the groundings provided by Lparse were
too large for any of the solvers to handle. For example, on a randomly generated graph with
1000 nodes and 3500 edges, Lparse generated a ground instantiation of about 123MB under
the second reduction. By contrast, the ground instantiation produced for the third reduction was
1.09MB, and the problem was easily solved by all of the solvers.
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Yet these problems were not particularly difficult to solve, at least for Smodelscc. Un-
satisfiable instances taken from this distribution were generally solved by each of the
solvers with no backtracks.

We sought to produce some hard Hamiltonian cycle problems that were of reasonable
size and had a less uniform (more “clumpy”) distribution of edges. (It is commonly
believed that less uniform distributions are in fact common in actual applications.) For
these experiments we randomly generated “clumpy” graphs which would be forced to
have some, but relatively few, Hamiltonian cycles each.

For this purpose we generate a random mn-node “clumpy” graph G as follows: Let
n be the number of clumps in the graph and let m be the number of nodes in each clump.
First generate an n-node graph A as the “master graph,” specifying how the clumps are
to be connected; each vertex of A will correspond to a clump in the final graph. Add
random edges to A until A has a Hamiltonian cycle.

Now generate the clump C corresponding to a vertex v of A. Let x = indegree(v)
and y = outdegree(v). C has m nodes; select x nodes to be “in-nodes” and y different
nodes to be “out-nodes”; increase C to x + y nodes if x + y > m. Add random edges
to clump C until there are Hamiltonian paths from each in-node of C to each out-node
of C. (Thus C will have at least xy Hamiltonian paths.)

Finally, for every edge (vi, vj) in the master graph A, insert an edge from an out-node
of Ci to an in-node of Cj . Every in-node in every clump is to have exactly one incoming
edge from another clump. Likewise, every out-node in every clump is to have exactly
one outgoing edge to another clump. G will have at least one Hamiltonian cycle.

Median and max secs on 11 Hamiltonian cycle problems, uniform distribution of edges
Data set Smodels Smodelscc ASSAT Cmodels #Sat

vertices edges median max median max median max median max
1000 4000 1.0 1.1 0.9 1.1 0.9 1.1 1.0 1.1 0
1000 4500 1.2 132.0 1.2 3.6 1.1 971.3 1.3 308.0 4
1000 5000 172.7 201.0 3.6 4.8 52.6 1064.1 6.8 438.4 6
1000 5500 244.6 269.5 4.5 6.9 275.5 1440.6 141.1 175.7 10
6000 30000 8.4 3 abort 8.7 64.9 . . . . . . 8.3 2 abort 3
6000 33000 >3600 9 abort 57.9 77.7 . . . . . . >3600 9 abort 9
6000 36000 >3600 7 abort 64.3 81.2 . . . . . . 1963.4 3 abort 7
6000 39000 >3600 10 abort 78.4 109.9 . . . . . . >3600 7 abort 10

Median and max secs on 11 Hamiltonian cycle problems, clumpy distribution of edges
Data set Smodels Smodelscc ASSAT Cmodels #Sat

# of vertices /
clumps clump median max median max median max median max

10 10 0.4 1 abort 0.2 0.5 0.8 1.4 0.5 0.9 11
12 12 620.9 4 abort 0.7 1.1 2.6 10.8 2.6 4.5 11
14 14 >3600 10 abort 1.3 3.9 108.8 194.1 11.4 83.4 11
16 16 >3600 9 abort 6.5 40.5 263.0 608.8 24.8 100.6 11
18 18 >3600 11 abort 42.7 353.4 >3600 6 abort 133.7 2063.5 11
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6 Conclusions

We believe that this study has confirmed the following two points:
Adding conflict clauses to answer set search will significantly increase speed on non-

uniform problems. Experience has shown that conflict clause learning has immensely
speeded up SAT solvers on “real world” data. We adapted conflict clause analysis to
the answer set programming domain, notably by finding a reasonable way to represent
inference by wellfounded negation. We tested this on some “real world” tight problems
plus some randomly generated non-uniform problems. Smodelscc was consistently faster
than Smodels, confirming our prediction. Interestingly, for uniform Hamiltonian Cycle
problems, Smodelscc was also much faster than Smodels.

For non-tight programs, separating the classical analysis of the completion from the
unfounded set check, as in ASSAT and Cmodels, is less efficient than merging the two
processes into a single search. The obvious explanation seems to be that, with ASSAT
or Cmodels, the SAT solver spends a great deal of time on parts of the search tree that
an unfounded set check could eliminate early.

A significant advantage of ASSAT and Cmodels is that they can incorporate the
latest, highly optimized SAT solvers with relatively little additional programming effort.

For future work, a useful middle ground between their approach and that of Smodelscc

might be to run a state-of-the-art SAT solver on the program completion, but modify the
SAT solver so that it includes an unfounded set check during the search.
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