+

Smodels? — A system for Computing Answer
Sets of Logic Programs with Aggregates

Islam Elkabani, Enrico Pontelli, Son Cao Tran

Outline

+

Motivation

Introduction

New Semantics

Examples

SmodelsA System
Evaluation

Conclusion and Future work

Motivation

Many proposals introduced to handle aggregates in Logic
Programming in the late 80’s and early 90's.

Most of these proposals focused on providing a sensible
semantics for programs with recursive aggregates.

Recently a number of proposals based on the spirit of the
answer set semantics are provided.

Most of the implementations build on these proposals did not
handle programs with recursive aggregates (e.g., DLVA).

Motivation

m Example (Company Control)

control_shares(X,Y,N) :- owns(X,Y,N).

control_shares(X,Y,N) :- company(X), control(X,Z),
owns(Z,Y,N).

control(X,Y) :- company(X), company(Y),
sum({{A, control_shares(X,Y,A)}})>50.

0.60 e

0.20
0.40 /).16

Introduction

+

= ASP-CLP(Agg) was capable of computing answer sets of arbitrary
programs with aggregates without any syntactical restrictions
iImposed on the inputs, i.e., aggregates stratification.

However, the ASP-CLP(Agg) system is based on a semantics that
does not guarantee minimality of answer sets.

— Example:

p(1). P(2). dOR
q - sum{{X, p(X)}}) > 10.
p(®) :- q.

M, = {p(1), p(2), p(3)} and M, = {p(1), p(2). p(3), p(5). a}.

Furthermore, our experiments with ASP-CLP(Agg) indicate that the
cost of communication between the constraint solver and the
answer set solvers is significant for large instances.

New Semantics

= In this work, we explore an alternative to ASP-CLP, called
Smodels#, that follows a new semantics.

Aggregate Solution:

A solution of an aggregate cis a pair <S;, S,> of disjoint sets
of ground atoms such that for every interpretation M, if S, < M and
S,NM= then cis satisfied by M.

Let SOLN(c¢) denotes the set of all solutions of c.

m Example:
Let ¢ be sum({{X, p(X)}}) < 5 and let B, = {p(1), p(2), p(3)}
SOLN(¢) ={

<{p(D)}, {p(2}>, <{p(1)}, {p(3)}>, <{p(D)}. {P(2), p(3)}>,
<{p(1),p(2)}, {P()}>, <{p(1),p(3)}, {P(2)}>, <{p(2)}, {P(3)}>,
<{p(2)}, {P(3).p(1)}>, <{p(3)}, {P(2)}>, <{pP(3)}. {P(2)}>,
<{p®3)}, {P(2).p(1)}>, <, {P(2)}>, <D, {p(2),p(1)}>, <T, {p(3)}>,
<@, {p(3).p(1)}>, <I, {p(3),p(2)}>, <<, {P(3).p(2).p(1)}>

}

New Semantics

Set of minimal solutions of cis S, = {<&, {p(2)}>, <, {P(3)}>}.

Unfolding of an Aggregate:
The unfolding of an aggregate ¢ w.r.t. its solution
S = <§,, S,>, denoted by ¢(S), is the conjunction S, A not S.,.

Unfolding of a Rule:
The unfolding of a rule rof the form:
a:-Cy ..., G, ay, ..., &, NOt b, ..., not b,
consists of rules of the form:
a:-¢y, .., C,a;,..,a,notb, .., notb,
where each ¢; is an unfolding of ¢, w.r.t. some solution c;.

Examples

m Let 7, be the program

p(1). p(2). p@3). pO):-aq.

g:- sum{{X, p(X)}}) > 10.
The only solution of sum{{X, p(X)}}) > 10 is {p(1), p(2), p(3), p(5)},)
and unfolding(#~,) contains:

p(1). p(2). p@3). pO) :-a. a:- p(1), p(2), p(3), p(5).
which has M, = {p(1), p(2), p(3)} as its only answer set.

m Let 7, be the program

p(2). p(1):- min({X, p(X)}) = 2.
The only solution of min({X, p(X)}) > 2 is {p(2)}, {p(L)}
and unfolding(”,) = {p(2). p(1) :- p(2), not p(1).}.
unfolding(#,) does not have answer sets.

Smodels4 System

= The implementation of the Smodels? is straightforward and
follows the semantics described earlier by:

— Computing the minimal solution set of aggregate literals.

— Computing the wnfolding of the program based on the
notion of the minimal solution sets. The unfolding of a
program with aggregates is a normal logic program.

— Computing the answer sets of the resulting unfolded
program using off-the-shelf systems.

System is available at http://www.cs.nmsu.edu/~ielkaban/asp-aggr.html

Overall System Structure

A ground unfoldad
smodal 2
models progran ground zimplified
Program with ground normal
W
1

normal legic Teaia o
aggregates program 9 P gra
i i

Preprocessor| Transformer

The overall structure of the system consists of five stages.

The Preprocessor Module, in the 15t stage, is mainly used for rewriting the
aggregate literals in a format acceptable by LPARSE.

In the 2" and 4% stages, LPARSE is used. In the last stage, Smodels is
used to compute the answer sets for the unfolded program.

In the 3" stage, the Transformer Modules, which is the major component
in our system, is used for computing the unfolding of the input programs.

Transformer Module

Ground Smodels-ag
Program

—~,

Rules
Table

AN

Dependencies Rules
Analyzer Expander

Ground Smodels

Program

Program Instance | Smodels Cmodels | Transformer

Time Time

Company Control 2 0080
Company Control
Company Control 0,00
Company Control) e D030 12100
Shortest Path 220 .05 0,740
Shortest Path = .TO(1 2.640
Shortest Path & i .5 13.400
Shortest Path (All Pairs) 2 35.400
Party Invitations Xt 0.010
Party Invitations
Party Invitations
Seating
Employee Raise
Employee Raise
Employee Raise
Employee Raise
NMI

NMI1

NM2 . (L80
NM2 S0 px 28

Conclusions and Future Work

m This system differs from our previous system in two ways:

*= It implements a different intuitive semantics which leads only to
minimal models.

= |t does not modify LPARSE and Smodels

The result of our initial experiments shows that this direction is
promising.

Our focus in the near future is to optimize the performance of the
system by:

= Improving the rule expander to reduce the size of the unfolding
program.
Improving the aggregate solver to allow more than one grouping
variable.

