Smodels⁴ — A system for Computing Answer Sets of Logic Programs with Aggregates

Islam Elkabani, Enrico Pontelli, Son Cao Tran

Motivation	
Introduction	
New Semantics	
Examples	
■ Smodels ^A System	
 Evaluation 	
Conclusion and Future work	

Motivation

- Many proposals introduced to handle aggregates in Logic Programming in the late 80's and early 90's.
- Most of these proposals focused on providing a sensible semantics for programs with recursive aggregates.
- Recently a number of proposals based on the spirit of the answer set semantics are provided.
- Most of the implementations build on these proposals did not handle programs with recursive aggregates (e.g., DLV⁴).

Introduction

- ASP-CLP(Agg) was capable of computing answer sets of arbitrary programs with aggregates without any syntactical restrictions imposed on the inputs, i.e., aggregates stratification.
- However, the ASP-CLP(Agg) system is based on a semantics that does not guarantee minimality of answer sets.
 - Example:

 $\begin{array}{ll} p(1). & p(2). & p(3). \\ q :- sum(\{\{X, p(X)\}\}) > 10. \\ p(5) :- q. \end{array}$

 $M_1 = \{p(1), p(2), p(3)\}$ and $M_2 = \{p(1), p(2), p(3), p(5), q\}.$

 Furthermore, our experiments with ASP-CLP(Agg) indicate that the cost of communication between the constraint solver and the answer set solvers is significant for large instances.

New Semantics
In this work, we explore an alternative to ASP-CLP, called Smodels ⁴ , that follows a new semantics.
• Aggregate Solution: A solution of an aggregate <i>c</i> is a pair $\langle S_1, S_2 \rangle$ of disjoint sets of ground atoms such that for every interpretation M, if $S_1 \subseteq M$ and $S_2 \cap M = \emptyset$ then <i>c</i> is satisfied by M. Let SOLN(<i>c</i>) denotes the set of all solutions of <i>c</i> .
• Example: Let <i>c</i> be sum({{X, $p(X)$ }}) < 5 and let B _p = {p(1), p(2), p(3)} SOLN(<i>c</i>) = { <{p(1), {p(2)}, <{p(1)}, {p(3)}, <{p(1)}, {p(2)}, {p(3)}, <{p(2)}, {p(3), {p(3)}, <{p(1), {p(3)}, {p(2)}, <{p(2)}, {p(3)}, <{p(2)}, {p(3), {p(1)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2), {p(1)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2), {p(1)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2), {p(1)}, <{p(3)}, {p(2)}, <{p(3)}, {p(2)}, <{p(3)}, {p(3)}, <{p(3), {p(1)}, <{p(3), {p(2)}, <{p(3), {p(2)}, <{p(3), {p(2)}, <{p(3)}, {p(3)}, {p(3)}, }, <{p(3), {p(1)}, <{p(3), {p(2)}, <{p(3), {p(2)}, <{p(3), {p(2)}, {p(1)}, <{p(3)}, {p(3), {p(2)}, {p(3), {p(2)}, {p(1)}, <{p(3)}, {p(3), {p(2)}, {p(3), {p(2)}, {p(3)}, {p(2)}, {p(3), {p(2)}, {p(3)}, {p(3), {p(2)}, {p(3)}, {p(3), {p(2)}, {p(3)}, {p(2)}, {p(3), {p(2)}, {p(3)}, {p(3), {p(2)}, {p(3)}, {p(3), {p(3)},

- Set of minimal solutions of c is $S_c = \{\langle \emptyset, \{p(2)\}\rangle, \langle \emptyset, \{p(3)\}\rangle\}$.
- Unfolding of an Aggregate:
 The unfolding of an aggregate *c w.r.t.* its solution
 Solution for a solution of the conjunction for a solution
 - $S = \langle S_1, S_2 \rangle$, denoted by *c(S)*, is the conjunction $S_1 \land not S_2$.
- Unfolding of a Rule:
 - The unfolding of a rule *r* of the form:

a :- c₁, ..., c_k, a₁, ..., a_n, not b₁, ..., not b_m

consists of rules of the form:

 $a:=c'_1,\,...,\,c'_k,\,a_1,\,...,\,a_n,\,not\,\,b_1,\,...,\,not\,\,b_m$ where each c_i' is an unfolding of c_i w.r.t. some solution $c_i.$

Smodels^A System

- The implementation of the *Smodels*⁴ is straightforward and follows the semantics described earlier by:
 - Computing the minimal solution set of aggregate literals.
 - Computing the *unfolding* of the program based on the notion of the minimal solution sets. The unfolding of a program with aggregates is a normal logic program.
 - Computing the answer sets of the resulting unfolded program using off-the-shelf systems.

System is available at http://www.cs.nmsu.edu/~ielkaban/asp-aggr.html

EVã	aluation					
	Program	Instance	Smodels	Cmodels	Transformer	$DLV^{\mathcal{A}}$
			Time	Time	Time	Time
	Company Control	20	0.010	0.00	0.080	N/A
	Company Control	40	0.020	0.00	0.340	N/A
	Company Control	80	0.030	0.00	2.850	N/A
	Company Control	120	0.040	0.030	12.100	N/A
	Shortest Path	20	0.220	0.05	0.740	N/A
	Shortest Path	30	0.790	0.13	2.640	N/A
	Shortest Path	50	3.510	0.51	13.400	N/A
	Shortest Path (All Pairs)	20	6.020	1.15	35.400	N/A
	Party Invitations	40	0.010	0.00	0.010	N/A
	Party Invitations	80	0.020	0.01	0.030	N/A
	Party Invitations	160	0.050	0.02	0.050	N/A
	Seating	16/4/4	11.40	3.72	0.330	4.337
	Employee Raise	15/5	0.57	0.87	0.140	2.750
	Employee Raise	21/15	2.88	1.75	1.770	6.235
	Employee Raise	24/20	3.13	25.03	2.420	26.50
	Employee Raise	25/20	3.42	8.38	5.20	3.95
	NMI	125	1.10	0.07	1.00	N/A
	NM1	150	1.60	0.18	1.30	N/A
	NM2	125	1.44	0.23	0.80	N/A
	NM2	150	2.08	0.34	1.28	N/A

Conclusions and Future Work

- This system differs from our previous system in two ways: It implements a different intuitive semantics which leads only to minimal models.
 - It does not modify LPARSE and Smodels
- The result of our initial experiments shows that this direction is promising.
- Our focus in the near future is to optimize the performance of the system by:
 - Improving the rule expander to reduce the size of the unfolding program.
 - Improving the aggregate solver to allow more than one grouping variable.