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Abstract

In this paper, we consider two tradeo� results regarding the economy of description in parsing.

One result is on the tradeo� between the size of a parser and its ability to detect an error early.

The other result is on the tradeo� between the size of an LR(k)-grammar and the length k of

the lookahead. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

When constructing or building a compiler, parser size is one of the most important

considerations. As is to be expected and as is well-known from practical experience,

parser size and parser performance are often con
icting features. For example, early

error recovery is an important and highly desired feature. However, very often early

error recovery has to blow up the size of the parser. The theoretical foundation for this

experimentally well-known fact was established by Geller et al. [2] by showing that

the price for early error recovery might be exponential compared to a parser which

can delay error recovery arbitrarily long.

Speci�cally, Geller et al. [2] compared the sizes of unrestricted parsers and correct

pre�x parsers. A correct pre�x parser is a parser which detects an error as soon as

the symbols read so far, together with the next symbol in the input bu�er, do not

form a pre�x of any string in the language. Intuitively, a correct pre�x parser always

detects an error at the earliest moment and will not attempt to read past the point

where the error �rst occurred. In contrast, an unrestricted parser which is not a correct

pre�x parser is allowed to detect an error at a position that is arbitrarily far away from
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the point where the error �rst occurred. It was shown that the size of correct pre�x

parsers could be exponentially larger than that of unrestricted parsers for parsing the

same languages. Another study in the sizes of syntax driven parsers with early error

detection capabilities is by Moura [3].

In this paper we try to lay the theoretical foundation for the intuitively expected

fact that, between immediate and arbitrarily delayed error recovery, there must be

a hierarchy of trade-o�s between parser size and delay in error recovery. In other

words, there must be examples where one has a choice between the two extremes of

immediate and arbitrarily delayed error recovery and thus between exponentially larger

or smaller parsers. This hierarchy lays the theoretical foundation that, as is often the

case in practice, there is a hierarchy of choices of slowly increasing the speed of error

recovery at the expense of slowly increasing parser size.

Given a parser for a certain language, we say that the parser detects an error with

position delay d if for each invalid string, the position where the parser detects an

error lies at most d positions behind the position where the error �rst occurred. Thus,

a correct pre�x parser is the same as a parser with delay 0.

In Section 2, we present a sequence of languages Ln such that there is an increasing

tradeo� in the size of the parsers as the delay in error detection position varies.

In particular, our result shows that when there is no delay requirement to satisfy, the

smallest parser for Ln can be constructed with size at most n
3, whereas the smallest

correct pre�x parser can be constructed with size at most nn+3 and to require at least

nn=2=(
√
2(n + 1)) size. In other words, this special case of our result is very close in

nature to the result obtained by Geller et al. [2]. Moreover, the method used in [2] is a

di�cult combinatorial analysis on the behavior of correct pre�x parsers. In comparison,

our method is a lot simpler technically.

Fuessel [1] studied other measures of delays in error detection on the basis of so-

called “rejecting” DPDAs.

The second part of this paper deals with LR(k)-grammars and LR(k)-parsing.

LR(k)-grammars are important and basic concepts for parsers. There are many ad-

vantages of LR(k)-parsers over other kinds of parsers [4]. They can parse in linear time.

LR(k)-parsers are correct pre�x parsers which detect an error at the earliest moment.

The class of LR(1)-grammars denotes the set of all deterministic context-free languages.

It is known that the use of a longer lookahead k cannot increase the expressive power

of LR(k)-grammars. They still denote the set of deterministic context-free languages.

We would like to ask whether the use of a longer lookahead could reduce the size of

the grammar for denoting the same language. This question will be answered a�rma-

tively in the sense that there do exist some languages for which such trade-o�s between

grammar size and lookahead are possible. Admittedly, the languages used here are of

somewhat theoretical nature. On the other hand, they look very much like palindrome

languages and thus carry a lot of resemblance to “real-life” context-free languages.

In Section 3, we present a sequence of languages Ln such that there is a progressive

tradeo� in the size of the LR(k)-grammars for denoting the same language as the

length of the lookahead varies. A conclusion is given in Section 4.
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2. Parsers

Given a context-free grammar, we consider a parser for the grammar to be a de-

terministic pushdown transducer that outputs a parse trees on valid inputs, and returns

error messages otherwise.

Formally, the size of a parser is de�ned to be the length of the parser description,

that is, the number of symbols used to specify it [2].

In order to simplify the technical discussions in the following subsections, we identify

a parser with its corresponding deterministic pushdown automaton (DPDA). Further-

more, we assume that the stack can grow at most one symbol in one move. Note that

to convert any DPDA into a DPDA that grows at most one symbol in one move will

only increase the size by a linear factor.

Let m denote the product of the number of states in the �nite state control and the

cardinality of the stack alphabet. It has been shown [2] that the size of a parser that

can grow at most one symbol on the stack in one move is O(m2). Since we are dealing

with bigger than polynomial tradeo� results, for technical reasons, we rede�ne the size

of a parser to be m instead of measuring the size of a parser strictly by the number

of symbols used in the speci�cation.

Let �n= {a1; : : : ; an}. Let Ln be the language

{ai1 : : : ainajaijain : : : ai1 | 16i1; : : : ; in; j6n}⊆�2n+2n :

Remark. �2n+2n denotes the set of all strings over �n that are of length 2n+ 2.

Theorem 1. For d∈{0; 1; : : : ; n}; there exists a parser accepting Ln with position

delay d in error detection and size=O(nn−d+3).

Proof. Consider the context-free grammar Gn=(N; �n; P; S1); where

N = {Si | 16i6n}∪ {Si; j; k |16j¡i6n+ 1; 16k6n}

and the set of productions P are

(i) Si → akSi+1ak ; for 16i6n− 1 and 16k6n;
(ii) Si → akSi+1; i; kak ; for 16i6n and 16k6n;

(iii) Si; j; k → ahSi+1; j; kah; for 16j¡i6n and 16h; k6n;

(iv) Sn+1; j; k → ajak for 16j6n and 16k6n:

It can be easily veri�ed that Gn generates Ln. We are going to construct parsers for

Gn.

Let us �rst focus on the design of a parser with delay n. By the de�nition of Ln,

an error can occur at the earliest in the (n + 2)-th position. A delay n will allow the

parser to report an error after the whole input string of length 2n + 2 has been read.

That is, there is no special requirement with respect to the delay in the position of

error detection that the parser has to satisfy.

We can try to modify a “usual” design of a parser for accepting the language of a

palindrome {ai1 : : : ainain : : : ai1} to accept our language Ln. The modi�cations involve
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remembering the (n+2)-th symbol in the �nite state control and setting up a “counting

process” when the (n+1)-th symbol aj has been read. While the parser is performing

the job of verifying the palindrome structure of the input, the counting process will

locate the symbol aij as the stack is being popped. The (n+2)-th symbol remembered

will then be checked against the symbol aij found. The modi�cations presented can be

implemented in a parser with O(n2) states and n stack symbols. Hence, the size of the

parser is O(n3).

For parsers with delay d∈{0; 1; : : : ; n− 1}, we add more features into the previous
design with delay n for Ln. The new parser will have to remember the �rst n − d
symbols of the input in the �nite state control besides pushing them onto the stack.

Recall that the (n+ 1)-th symbol is denoted by aj. If j is not bigger than n− d, then
the parser will verify, as soon as the (n + 2)-th symbol has been read, whether the

(n+ 2)-th symbol is the same as symbol aij which has been remembered in the �nite

state control. However, if j is bigger than n− d then the parser will operate just as in
the previous design. The parser contructed is of delay d. The number of states in the

�nite state control will be blown up (n− d) times by a factor of n. Hence, the size is
O(nn−d+3).

We want to show that any parser (DPDA) detecting an error with position delay

d∈{0; 1; : : : ; n} and recognizing Ln requires 
(n
(n−d−2)=2) size.

Let us de�ne the term reduced con�guration. Given a con�guration of a parser which

is the ordered triple (current state, stack contents, unprocessed input), a corresponding

“reduced con�guration” is de�ned to be (current state, top stack symbol, length of

unprocessed input).

Consider a given string x= ai1 : : : ain−d
. We de�ne Tx = {y∈�2d+2n | x y xR ∈Ln}.

For each y∈Tx, consider the sequence of con�gurations that the parser enters for
processing the accepted string x y xR. We say that a con�guration in the sequence is

“working” on x if the corresponding unprocessed input consists of a su�x of x (which

may not have to be proper, and which could also be an empty string) followed by y xR;

and a con�guration in the sequence is “working” on y if the corresponding unprocessed

input consists of a proper su�x of y (which could be an empty string) followed by

xR. Note: the subsequence of con�gurations that are “working” on x is the same inde-

pendent of the choice of y. We de�ne Cx; y to be the con�guration with the minimum

stack height over all the con�gurations in the sequence which are “working” on y. If

there is more than one candidate for the minimum, then just pick an arbitrary one.

We de�ne Cx to be the con�guration with the minimum stack height over all Cx; y
for y∈Tx. Again, pick any one if there is more than one candidate. let Cx; y′ be the
winning con�guration, that is Cx =Cx; y′ . We also denote y

′ by yx. Let us focus our

attention on those con�gurations that are “working” on x during the processing of the

accepted string x yx x
R and which have a shorter or equal stack height as that of Cx;

we then de�ne Dx to be the last such con�guration according to the ordering de�ned

by the sequence of con�gurations.

Let Dx and Cx be the reduced con�gurations of Dx and Cx respectively.
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Lemma 1. For x1 6= x2 ∈�n−dn ; (Dx1 ;Cx1) 6=(Dx2 ;Cx2):

Proof. Assume the contrary. Suppose x1 6= x2 and (Dx1 ;Cx1)= (Dx2 ;Cx2). Let x1 be rep-

resented by ai1 : : : ain−d
and x2 be represented by aj1 : : : ajn−d

. Let the length of the unpro-

cessed input in Dx1 (and in Dx2) be 2n+2−p, where p=0; 1; : : : ; n−d, and the length
of the unprocessed input in Cx1 (and in Cx2) be n− d+ q, where q=0; 1; : : : ; 2d+ 1:
Case 1: ai1 : : : aip 6= aj1 : : : ajp .
Let x1 and x2 di�er in the hth index, that is aih 6= ajh , where 16h6p. Then given

ai1 : : : aip (ajp+1 : : : ajn−d
z ah ajh z

R)xR2 ;

where z ∈�dn , the parser, which is a DPDA, will not be able to report the error which
occurs at the (n + 2)-th symbol, ajh , after the �rst n + d + 2 input symbols have

been processed. This is because of the ways Dx’s are de�ned and the given condition

Dx1 =Dx2 that the processing of the substring (ajp+1 : : : ajn−d
z ah ajh z

R) in the above

given input by the parser would not di�er from the processing of the same substring

in the input x2 z ah ajh z
R xR2 which is in Ln. But the parser is supposed to have a delay

of at most d only; hence, a contradiction.

Case 2: ai1 : : : aip = aj1 : : : ajp and aip+1 : : : ain−d
6= ajp+1 : : : ajn−d

.

Since the parser can grow at most one symbol on the stack in one move and p¡n−d
by the assumption of case 2, the stack height of Dx1 and the stack height of Cx1 must

be the same; similarly, the stack height of Dx2 is the same as that of Cx2 . Let yx1
and yx2 be denoted by a�1 : : : a�2d+2 and a�1 : : : a�2d+2 respectively. Then the parser will

accept the input

ai1 : : : aip (ajp+1 : : : ajn−d
a�1 : : : a�2d+2−q

)a�2d+3−q
: : : a�2d+2ain−d

: : : ai1

because it cannot distinguish this input from x1yx1x
R
1 ∈Ln by the facts that Dx1 =Dx2 ,

Cx1 =Cx2 , the stack height of Dx1 equal to the stack height of Dx2 and the stack height

of Cx1 equal to the stack height of Cx2 . However, this is a contradiction since the above

input should not be in the language Ln since ain−d
: : : ai1 6=(ai1 : : : aipajp+1 : : : ajn−d

)R.

Theorem 2. Any parser with position delay d∈{0; 1; : : : ; n} in error detection and
recognizing Ln requires 
(n

(n−d−2)=2) size.

Proof. Let us denote the size of a given parser by S. Given a reduced con�guration

Dx, the number of possible values for the length of the unprocessed input is n−d+1;
hence the number of di�erent possible Dx is (n−d+1)S, which is bounded by (n+1)S.
Correspondingly, the number of possible values for the length of the unprocessed input

in Cx is 2d+2; hence the number of di�erent possible Cx is (2d+2)S, which is bounded

by (2n + 2)S. From Lemma 1, the number of distinct (Dx ;Cx) must be greater than

or equal to the number of di�erent x’s in �n−dn . Therefore,

(n+ 1)S(2n+ 2)S¿nn−d:

Thus S¿nn−d=2=(
√
2(n+ 1)) and the theorem follows.
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The tradeo� results of Theorems 1 and 2 are summarized in the following corollary.

Corollary 1. Any parser for Ln with position delay n− k in error detection has size
n�(k).

Proof. Let d= n − k. Then, by Theorem 1, the parser size with position delay d

is O(nn−d+3)=O(nk+3)= nO(k). By Theorem 2, the parser has size 
(n(n−d−2)=2)=


(nk=2−1)= n
(k).

3. LR(k)-grammars

The size of a production in a grammar is de�ned to be the number of symbols on

the right-hand side of the production plus the number of symbols on the left-hand side.

In the case of a context-free production, the left-hand side has only one symbol.

The size of a grammar is de�ned to be the summation over the size of all productions.

Therefore, an upper bound on the size of a grammar can be obtained by computing

the product of the number of productions and the length of the longest production.

De�ne the language Ln⊆{0; 1}3n+1 to be L0n ∪L1n where

L0n= {a1 : : : anan : : : a10b1 : : : bn | a1; : : : ; an; b1; : : : ; bn ∈{0; 1}};

L1n= {a1 : : : anb1 : : : bn1an : : : a1 | a1; : : : ; an; b1; : : : ; bn ∈{0; 1}}:

To generate the language L1n, we can construct a grammar G
1
n with the start symbol S,

the set of nonterminal symbols {S; D1; : : : ; D2n+1} and the following productions:
(i) S → D1;

(ii) Di → aDi+1a, for 16i6n and a∈{0; 1};
(iii) Dn+i → bDn+i+1, for 16i6n and b∈{0; 1};
(iv) D2n+1 → 1:

The grammar is unambiguous. The corresponding right parser needs to produce its �rst

output only when the (2n + 1)-th symbol of the input is read. Also, it is easy to see

that the grammar is LR(0). The number of productions is 4n+ 2.

Theorem 3. There exists an LR(0)-grammar Gn;0 generating Ln with the number of

productions being 2n+6n+3 and the longest production having length 2n+1 on the

right hand side.

Proof (sketch). Let Gn;0 be G
0
n;0 ∪G1n where G0n;0 is the grammar with the start sym-

bol S, the set of nonterminal symbols {S; C; A1; : : : ; An} and the following productions:
(i) S→CA1;

(ii) C→ a1 : : : anan : : : a10, for a1; : : : ; an ∈{0; 1}
(iii) Ai→ bAi+1, for 16i6n− 1 and b∈{0; 1};
(iv) An→ b, for b∈{0; 1}.
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Theorem 4. For 16k6n; there exists an LR(k)-grammar Gn; k generating Ln with

the number of productions being 2n−k+1 + 6n + 2k + 1 and the longest production

having length max(2(n− k + 1); 3) on the right hand side.

Proof (sketch). Let Gn; k be G
0
n; k ∪G1n where G0n; k is the grammar with the start symbol

S; the set of nonterminal symbols {S; C1; : : : ; Ck ; A1; : : : ; An} and the following produc-
tions:

(i) S→C10A1;

(ii) Ci→ aCi+1a, for 16i6k − 1 and a∈{0; 1};
(Note: when k =1, this group of productions is empty.)

(iii) Ck → ak : : : anan : : : ak , for ak ; : : : ; an ∈{0; 1};
(iv) Ai→ bAi+1, for 16i6n− 1 and b∈{0; 1},
(v) An→ b, for b∈{0; 1}.

Theorem 5. Let f(n; k) be (1=n2)2
1
4
(n−k). For any LR(k)-grammar with k =0;

1; : : : ; n − 1 generating Ln; where n¿3; the number of nonterminal symbols must

be at least f(n; k) or there exists a nonterminal symbol A such that the number of

di�erent productions with A on the left hand side must be at least f(n; k).

Proof. Assume the contrary that the number of nonterminal symbols is less than f(n; k)

and, for all nonterminals A, the number of di�erent productions with A on the left hand

side is also less than f(n; k).

Let us introduce some terminology. Given a nonempty string x, we write x[i] to

denote the ith symbol of x. For i6j, we write x[i : j] to denote the substring x[i]x[i+

1] : : : x[j] of x. If i¿j, we write x[i : j] to denote the string x[i]x[i − 1] : : : x[j]. Thus
xR is the same as x[|x| : 1].
Given a parse tree of a string generated by an LR(k)-grammar and an internal node

n of the tree, we can talk about “the subtree n” as the subtree consisting of n and the

edges connecting to all its descendents. Moreover, when we say a subtree of the parse

tree, we mean the complete subtree that can be identi�ed by some node n; otherwise,

we would call it a “partial subtree” instead.

For each string w∈{0; 1}n, we consider the parse tree constructed by the LR(k)-
parser for the string s(w)=wwR00n=w[1 : n]w[n : 1]00n ∈Ln.
We are going to de�ne two subtrees (see Fig. 1) in this parse tree of s(w). The �rst

one is the biggest subtree such that its leaves cover terminal symbols of s(w) beginning

from some symbol (nonempty) of the �rst n symbols of s(w), that is from w[1 : n], to

some symbol (nonempty) from the substring w[n : k + 1] of the second n symbols of

s(w), that is from w[n : 1]; but the leaves do not cover any other symbols from the rest

of s(w), that is from w[k : 1]00n. Note that such a subtree may not exist. If it exists,

then it is unique and we identify this subtree by T1(w) which can be interpreted as the

root node of the subtree. We denote the nonterminal symbol at T1(w) by N1(w). We

denote the number of symbols that T1(w) covers on w, the �rst n symbols of s(w),
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Fig. 1. Parse tree for string s(w)=w[1 : n]w[n : 1]00n.

by �(w) where �(w)6n. In case T1(w) is not de�ned, for technical reason, we would

still want to de�ne �(w) to be of the value 0.

As the second subtree we de�ne the smallest subtree such that its leaves cover

terminal symbols beginning from some symbol (nonempty) of the �rst n symbols

of s(w), that is from w[1 : n], and cover all the terminal symbols from the substring

w[n : k+1] of the second n symbols of s(w); the leaves may or may not cover terminal

symbols from the rest of s(w), that is, from w[k : 1]00n. Unlike T1(w), such a subtree

always exists. It is also unique. We identify the subtree by T2(w) with the corresponding

nonterminal symbol being N2(w). T1(w), if it exists, is indeed a subtree of T2(w). It

is possible that T1(w) and T2(w) are the same. We denote the number of symbols that

T2(w) covers on w, the �rst n symbols of s(w), by �(w) where �(w)6�(w)6n; that

is, the symbols in the substring w[n− �(w) + 1 : n] of the �rst n symbols of s(w) are
covered.

Therefore, each w∈{0; 1}n corresponds to an ordered pair (�(w); �(w)). By simple
counting, taking into account that �(w) could be 0, the total number of di�erent possible

ordered pairs is n + n(n + 1)=2, which is less than or equal to n2 for n¿3. With the

cardinality of {0; 1}n being 2n, there must exist an ordered pair which corresponds to
at least 2n=n2 strings in {0; 1}n. We denote the value 2n=n2 by g(n). We denote the
ordered pair corresponding to at least g(n) strings in {0; 1}n by (�0; �0). We de�ne S0
to be the set {w∈{0; 1}n | (�(w); �(w))= (�0; �0)}. Thus, |S0|¿g(n).
Case 1: �0¿(n− k)=4.
Note that �0¿0. De�ne S2= {w2 ∈{0; 1}�0 |w=w1w2 ∈ S0}. Then |S2|¿g(n)=2n−�0 .

Since �0¿(n − k)=4, we have |S2|¿f(n; k). However, the number of nonterminal
symbols is assumed to be less than f(n; k). Therefore, there must exist two di�erent

strings w′; w′′ ∈ S0 such that N1(w′)=N1(w
′′) and w′[n−�0+1 : n] 6=w′′[n−�0+1 : n].

Let us focus on the actions of the LR(k) parser on the strings s(w′)=w′w′[n : 1]00n

and w′w′[n : 1]1w′[n : 1]. Both strings are in the language Ln. Hence, there exist valid

parse trees for the two strings. Since the strings match up to the �rst 2n symbols, the

parser actions on both strings should be the same until the (2n+1)-th symbol is “seen”
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by the k-lookahead. We know that the subtree T1(w
′) has already been constructed after

the shifting of the �rst 2n− k symbols of s(w′). Yet the (2n+ 1)-th symbol of s(w′)

could only be “seen” after the (2n − k + 1)-th symbol has been shifted. Thus, with
respect to the string w′w′[n : 1]1w′[n : 1], the same subtree T1(w

′) would have also been

constructed after the �rst 2n−k symbols are shifted. Therefore, by replacing the subtree
T1(w

′) in the parse tree of the string w′w′[n : 1]1w′[n : 1] by the subtree T1(w
′′) from

the parse tree of s(w′′), which is possible since N1(w
′)=N1(w

′′), we obtain a parse

tree. Consider the string obtained from the leaves of the parse tree. We claim that this

string is not in the language and hence a contradiction. First, the string may not have

3n+ 1 symbols. If the string is of length 3n+ 1, then note that the replacement only

a�ects the �rst (2n− k) symbols of the string and the (2n + 1)-th symbol is still the
symbol 1. However, the last n symbols of the string are not a reversal of the �rst n

symbols by the condition w′[n− �0 + 1 : n] 6=w′′[n− �0 + 1 : n].
Case 2: �0¡3(n− k)=4.
De�ne S4= {w4 ∈{0; 1}n−k−�0 |w=w3w4w5 ∈ S0; w5 ∈{0; 1}�0}. Note that n − k −

�0¿0. Then |S4|¿g(n)=2k+�0 . Since �0¡3(n− k)=4, we have |S4|¿f(n; k). However,
the number of nonterminal symbols is assumed to be less than f(n; k). Therefore, there

must exist two di�erent strings w′; w′′ ∈ S0 such that N2(w′)=N2(w
′′) and w′[k+1 : n−

�0] 6=w′′[k+1 : n−�0]. Therefore, by replacing the subtree T2(w′) in the parse tree of

the string s(w′) by the subtree T2(w
′′) from the parse tree of s(w′′), which is possible

since N2(w
′)=N2(w

′′), we obtain a parse tree. As in case 1, we claim that this string

is not in the language and hence a contradiction. Again the string may not have 3n+1

symbols. If the string is of length 3n+1, then note that the (2n+1)-th symbol is still

the symbol 0. However, the last n− k symbols of the �rst n symbols of the string are
not a reversal of the �rst n − k symbols of the second n symbols of the string after
the replacement.

Case 3: �0¡(n− k)=4 and �0¿3(n− k)=4.
De�ne S7= {w7 ∈{0; 1}�0−�0 |w=w6w7w8 ∈ S0; w8 ∈{0; 1}�0}. Note that if �0 is 0,

then w8 is the empty string. Then |S7|¿g(n)=2n−(�0−�0). Since �0 − �0¿(n− k)=2, we
have |S7|¿2(n−k)=4f(n; k). However, the number of nonterminal symbols is assumed
to be less than f(n; k). Therefore, there must exist a nonterminal symbol A such

that the number of elements in the set S7; A= {w7 ∈ S7 |w=w6w7w8 ∈ S0; w8 ∈{0; 1}�0 ;
N2(w)=A} is greater than 2(n−k)=4, hence greater than f(n; k). By assumption, the
number of productions with A as the left hand side is less than f(n; k). Thus, there exist

two di�erent strings w′; w′′ ∈ S0 such that w′[n−�0+1 : n−�0] 6=w′′[n−�0+1 : n−�0]
and the same production appears at the roots of the subtrees T2(w

′) and T2(w
′′).

Let the production at the root of the subtrees T2(w
′) and T2(w

′′) be denoted by

A→A1 : : : Am, where m¿2 and for 16p6m, Ap could either be a nonterminal or

terminal symbol; note that m cannot be 1, otherwise T2(w
′) and T2(w

′′) could not be

the smallest trees that satisfy their de�nitions. We use the term “the subtree Ap” of

T2(w
′) to denote the subtree identi�ed by the node with label Ap, which is the p-th

immediate descendant of T2(w
′). Similarly, we can de�ne the subtree Ap of T2(w

′′).

Case 3.1: T1(w
′) and T1(w

′′) exist.
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T1(w
′) is a subtree of T2(w

′). Moreover, by the assumption of case 3, T1(w
′) is

then a proper subtree of T2(w
′). Consider the path p1 from the root of the subtree

T2(w
′) to the (n − �0)-th terminal symbol of s(w

′), and the path p2 from the root

of the subtree T2(w
′) to the (n − �0 + 1)-th terminal symbol of s(w′). Note that the

(n−�0+1)-th symbol of s(w′) belongs to both the subtrees T1(w
′) and T2(w

′), whereas

the (n− �0)-th symbol of s(w′) only belongs to T2(w
′) but not T1(w

′).

We claim that the paths p1 and p2 intersect only at the root node. If the paths

p1 and p2 intersect at a node which also belongs to the subtree T1(w
′), then T1(w

′)

should cover the (n− �0)-th terminal symbol of s(w′), which is a contradiction. If the

paths p1 and p2 intersect at a node which does not belong to the subtree T1(w
′) and

which is also not the root node of T2(w
′), then either T1(w

′) is not the biggest subtree

or T2(w
′) is not the smallest subtree satisfying their de�nitions.

Therefore, there exists a 16q′¡m such that the partial subtree which consists of

the root T2(w
′) and the subtrees A1; : : : ; Aq′ of T2(w

′) as the immediate descendents,

would cover exactly the terminal symbols beginning from the (n−�0+1)-th symbol to
the (n− �0)-th symbol of s(w′) as the leaves. Similarly, there exists a 16q′′¡m such

that the partial subtree which consists of the root T2(w
′′) and the subtrees A1; : : : ; Aq′′

of T2(w
′′) as the immediate descendants, would cover exactly the terminal symbols

beginning from the (n− �0 + 1)-th symbol to the (n− �0)-th symbol of s(w′′) as the

leaves.

Consider the parse tree for s(w′). With respect to the subtree T2(w
′) within the

parse tree for s(w′), we are going to replace the subtrees A1; : : : ; Aq′′ of T2(w
′) by

the corresponding subtrees A1; : : : ; Aq′′ from T2(w
′′). We then obtain a new parse tree.

However, the string generated is not in the language Ln. This could be due to two

possible reasons. If q′ 6= q′′, it is possible that the generated string is not of length
3n+1, hence not in Ln. Another possibility is that the �rst n symbols are not a reversal

of the second n symbols. This is because we have replaced the substring from the

(n−�0+1)-th symbol to the (n−�0)-th symbol of s(w′) by the corresponding portion

in s(w′′), and it has already been established that w′[n− �0+1 : n− �0] 6=w′′[n− �0+
1 : n− �0].
Case 3.2: T1(w

′) and T1(w
′′) do not exist.

The arguments are analogous to that in case 3.1 except that we omit the discussion

of T1(w
′) and T1(w

′′). For example, we now consider the path p1 from the root of

the subtree T2(w
′) to the n-th terminal symbol of s(w′), and the path p2 from the root

of the subtree T2(w
′) to the (n+1)-th terminal symbol of s(w′). Again, we can argue

that the paths p1 and p2 intersect only at the root node of subtree T2(w
′); if not, we

can show that either T1(w
′) exists or T2(w

′) is not the smallest subtree satisfying its

de�nition.

Note that in the proof above, we do not rely on any sophisticated properties of

LR(k) parsing. We only need to recall the fact that LR(k) parsing is deterministic and

outputs a right parse in reverse order.

The tradeo� results of Theorems 3, 4 and 5 are summarized in Corollary 2.
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Corollary 2. Let n¿2 and 06k6n − 9 lg n. Any LR(k)-grammar for Ln has size

2�(m) where m= n− k.

Proof. Combining Theorems 3 and 4, there exists an LR(k)-grammar generating Ln
with the number of productions at most 2n−k+1 + 6n + 2k + 3 and each production

having length at most 2(n−k)+3. Given that k6n−9 lg n, we have m= n−k¿9 lg n
and thus k6n=2lg n=O(2m). The grammar size is bounded above by (2(n − k) +

3)(2n−k+1+6n+2k+3)= (2(n−k)+3)(2·2(n−k)+6n+2k+3)=O(m)(O(2m)+O(2m)+
O(2m))=O(m)O(2m)= 2O(m). By Theorem 5, the size of an LR(k)-grammar generating

Ln has size at least f(n; k)= 2
(n−k)=4−2 lg n=2((n−k)−8 lg n)=4=2((n−k)=9+8(n−k)=9−8 lg n)=4¿

2((n−k)=9)=4=2m=36=2
(m) since n− k¿9 lg n.

4. Conclusion

In this paper, we have presented tradeo� results in economy of description for parsers

when the ability for early error detection varies and for LR(k)-grammars when the

length of the lookahead varies. One main contribution of this paper are the new proof

techniques developed.

Note that Ln (Section 2) and Ln (Section 3) are �nite languages for all positive

integers n. Tradeo� results are obtained for these �nite languages. Let us consider two

families of in�nite languages, L∗

n and L
∗

n . It can be easily seen that the tradeo� results

presented in Section 2 still hold for L∗

n , and tradeo� results presented in Section 3

still hold for L∗n .

As further study, we would recommend a similar study as in Section 3 for LL(k)-

grammars.
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