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Abstract: Many different relative clustering validity criteria exist that are very useful in practice as quantitative measures for
evaluating the quality of data partitions, and new criteria have still been proposed from time to time. These criteria are endowed
with particular features that may make each of them able to outperform others in specific classes of problems. In addition, they
may have completely different computational requirements. Then, it is a hard task for the user to choose a specific criterion when
he or she faces such a variety of possibilities. For this reason, a relevant issue within the field of clustering analysis consists
of comparing the performances of existing validity criteria and, eventually, that of a new criterion to be proposed. In spite of
this, the comparison paradigm traditionally adopted in the literature is subject to some conceptual limitations. The present paper
describes an alternative, possibly complementary methodology for comparing clustering validity criteria and uses it to make an
extensive comparison of the performances of 40 criteria over a collection of 962,928 partitions derived from five well-known
clustering algorithms and 1080 different data sets of a given class of interest. A detailed review of the relative criteria under
investigation is also provided that includes an original comparative asymptotic analysis of their computational complexities.
This work is intended to be a complement of the classic study reported in 1985 by Milligan and Cooper as well as a thorough
extension of a preliminary paper by the authors themselves.  2010 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 3:
209–235, 2010
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1. INTRODUCTION

Data clustering is a fundamental conceptual problem in
data mining, in which one aims at determining a finite set
of categories to describe a data set according to similari-
ties among its objects [1–3]. The solution to this problem
often constitutes the final goal of the mining procedure—
having broad applicability in areas that range from image
and market segmentation to document categorization and
bioinformatics (e.g. see refs [2,4,5])—but solving a clus-
tering problem may also help solving other related prob-
lems, such as pattern classification and rule extraction from
data [6].

Clustering techniques can be broadly divided into three
main types [7]: overlapping, partitional, and hierarchical.
The last two are related to each other in that a hierarchical
clustering is a nested sequence of hard partitional cluster-
ings, each of which represents a partition of the data set
into a different number of mutually disjoint subsets. A hard
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partition of a data set X = { x1, . . . , xN }, composed of
n-dimensional feature or attribute vectors xj , is a collec-
tion C = {C1, . . . , Ck} of k nonoverlapping data subsets
Ci (clusters) such that C1 ∪ C2 ∪ . . . ∪ Ck = X, Ci �= �,
and Ci ∩ Cl = � for i �= l. Overlapping techniques search
for soft or fuzzy partitions by somehow relaxing the mutual
disjointness constraints Ci ∩ Cl = �.

The literature on data clustering is extensive. Several
clustering algorithms with different characteristics and for
different purposes have been proposed and investigated
over the past four decades or so [4,5,8,9]. Despite the out-
standing evolution of this area and all the achievements
obtained during this period of time, a critical issue that is
still on the agenda regarding the estimation of the number
of clusters contained in data. Most of the clustering algo-
rithms, in particular the most traditional and popular ones,
require that the number of clusters be defined either a priori
or a posteriori by the user. Examples are the well-known
k-means [7,10], EM (expectation maximization) [11,12],
and hierarchical clustering algorithms [2,7]. This is quite
restrictive in practice since the number of clusters is gen-
erally unknown, especially for n-dimensional data, where
visual inspection is prohibitive for “large” n [2,7]. A widely
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known and simple approach to get around this drawback
consists of getting a set of data partitions with different
numbers of clusters and then selecting that particular par-
tition that provides the best result according to a specific
quality criterion [7]. Such a set of partitions may result
directly from a hierarchical clustering dendrogram or, alter-
natively, from multiple runs of a partitional algorithm (e.g.
k-means) starting from different numbers and initial posi-
tions of cluster prototypes.

Many different clustering validity measures exist that
are very useful in practice as quantitative criteria for
evaluating the quality of data partitions—e.g. see refs
[13,14] and references therein. Some of the most well-
known validity measures, also referred to as relative valid-
ity (or quality) criteria, are possibly the Davies–Bouldin
index [7,15], the variance ratio criterion—VRC (so-called
Calinski–Harabasz index) [2,16], Dunn’s index [17,18], and
the silhouette width criterion (SWC) [1,2,19], just to men-
tion a few. It is a hard task for the user, however, to choose
a specific measure when he or she faces such a variety of
possibilities. To make things even worse, new measures
have still been proposed from time to time. For this rea-
son, a problem that has been of interest over more than two
decades consists of comparing the performances of existing
clustering validity measures and, eventually, that of a new
measure to be proposed. Indeed, various researchers have
undertaken the task of comparing performances of cluster-
ing validity measures since the 1980s. A cornerstone in
this area is the work by Milligan and Cooper [14], who
compared 30 different measures through an extensive set
of experiments involving several labeled data sets. Twenty
four years later, that seminal, outstanding work is still used
and cited by many authors who deal with clustering valid-
ity criteria. In spite of this, the comparison methodology
adopted by Milligan and Cooper is subject to three con-
ceptual problems. First, it relies on the assumption that the
accuracy of a criterion can be quantified by the number of
times it indicates as the best partition (among a set of can-
didates), a partition with the right number of clusters for
a specific data set, over many different data sets for which
such a number is known in advance—e.g. by visual inspec-
tion of 2D/3D data or by labeling synthetically generated
data. This assumption has also been implicitly made by
other authors who worked on more recent papers involving
the comparison of clustering validity criteria (e.g. see refs
[13,20–22]). Note, however, that there may exist numerous
partitions of a data set into the right number of clusters, but
clusters that are very unnatural with respect to the spatial
distribution of the data. As an example, let us consider a
partition of the Ruspini data set [1,23] into four clusters,
as shown in Fig. 1. Even though visual inspection suggests
that four is an adequate estimate of the number of natu-
ral clusters for the Ruspini data, common sense says that
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Fig. 1 Unnatural partitioning of the Ruspini data set into four
clusters: circles, diamonds, triangles, and squares.
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Fig. 2 Partitioning of the Ruspini data into five clusters.

the clusters displayed in Fig. 1 are far away from those
expected natural clusters. On the other hand, there may exist
numerous partitions of a data set into the wrong number of
clusters, but clusters that exhibit a high degree of com-
patibility with the spatial distribution of the data—e.g. the
natural clusters except for some outliers separated apart as
independent small clusters or singletons. An example using
the Ruspini data is shown in Fig. 2, where five visually
acceptable clusters are displayed.

It is important to notice that Milligan and Cooper [14]
minimized or even avoided the above-mentioned problem
by generating the collection of candidate partitions for each
data set in such a way that the optimal (known) parti-
tion was very likely to be included into that collection
as the only partition with the right number of clusters.
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This was accomplished by applying a hierarchical clustering
algorithm to data sets with well-behaved cluster structures.
In spite of this, another potential problem with the method-
ology adopted in Ref. [14] is that it relies on the assumption
that a mistake made by a certain validity criterion when
assessing a collection of candidate partitions of a data set
can be quantified by the absolute difference between the
right (known) number of clusters in the data and the num-
ber of clusters contained in the partition elected as the best
one. For instance, if a certain criterion suggests that the best
partition of a data set with six clusters has eight clusters,
then this mistake counts two units for the amount of mis-
takes made by that specific criterion. However, a partition
of a data set with k clusters into k + �k clusters may be
better than another partition of the same data into k − �k

clusters and vice versa. As an example, let us consider a
partition of the Ruspini data set into three clusters, as shown
in Fig. 3. Such a partition is possibly less visually appealing
than that with five clusters shown in Fig. 2 for most people.
But more importantly, the partition in Fig. 3 can be deemed
worse than that in Fig. 2 from the conceptual viewpoint of
cluster analysis. Indeed, the partition in Fig. 3 loses infor-
mation on the intrinsic structure contained in the data by
merging two well-defined clusters, whereas that in Fig. 2
just suggests that some objects nearby a given well-defined
cluster would be better as a cluster on their own.

A third potential problem with the methodology adopted
in Ref. [14] is that the assessment of each validity crite-
rion relies solely on the correctness (with respect to the
number of clusters) of the partition elected as the best one
according to that criterion. The accuracy of the criterion
when evaluating all the other candidate partitions is just
ignored. Accordingly, its capability to properly distinguish
among a set of partitions that are not good in general is
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Fig. 3 Partitioning of the Ruspini data into three clusters.

not taken into account. This capability indicates a parti-
cular kind of robustness of the criterion that is important
in real-world application scenarios for which no cluster-
ing algorithm can provide precise solutions (i.e. compact
and separated clusters) due to noise contamination, clus-
ter overlapping, high dimensionality, and other possible
complicative factors. Such a robustness is also particularly
desirable, for instance, in algorithms for clustering, where
an initial random population of partitions evolves toward
selectively improving a given clustering validity measure—
e.g. see ref. [24] and references therein.

Before proceeding with an attempt at getting around the
drawbacks described above, it is important to remark that
some very particular criteria are only able to estimate the
number of clusters in data—by suggesting when a given
iterative (e.g. hierarchical) clustering procedure should stop
increasing this number. Such criteria are referred to as stop-
ping rules [14] and should not be seen as clustering validity
measures in a broad sense, since they are not able to quan-
titatively measure the quality of data partitions. In other
words, they are not optimization-like validity measures.
When comparing the efficacy of stopping rules, the tra-
ditional methodology adopted by Milligan and Cooper [14]
is possibly the only choice1. However, when dealing with
optimization-like measures, which are the kind of criterion
subsumed in the present paper and can be used as stopping
rules as well, a comparison methodology that is broader in
scope may also be desired.

The present paper describes an alternative, possibly com-
plementary methodology for comparing relative clustering
validity measures and uses it as a basis to perform an exten-
sive comparison study of 40 measures. Given a set of par-
titions of a particular data set and their respective validity
values according to different relative measures, the perfor-
mance of each measure on the assessment of the whole
set of partitions can be evaluated with respect to an exter-
nal (absolute rather than relative) criterion that supervisedly
quantifies the degree of compatibility between each parti-
tion and the right one, formed by known clusters. Among
the most well-known external criteria are the adjusted Rand
index (ARI) [7,25] and the Jaccard coefficient [1,7]. It is
expected that a good relative clustering validity measure
will rank the partitions according to an ordering that is simi-
lar to that established by an external criterion, since external
criteria rely on supervised information about the underly-
ing structure in the data (known referential clusters). The
agreement level between the dispositions of the partitions
according to their relative and external validity values can
be readily computed using a correlation index—e.g. Pear-
son coefficient [26]—as formerly envisioned by Milligan

1 For this reason, stopping rules have not been included into the
present study.
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in 1981 [27]. Clearly, the larger the correlation value the
higher the capability of a relative measure to (unsupervis-
edly) mirror the behavior of the external index and properly
distinguish between better and worse partitions. In particu-
lar, if the set of partitions is not good in general (e.g. due
to noise contamination), higher correlation values suggest
more robustness of the corresponding relative measures.

This work is a thorough extension of a preliminary con-
ference paper [28]. The extensions take place in the follow-
ing different aspects: (i) 16 additional relative validity mea-
sures have been included into the analyses, thus summing
up to a total of 40 ; (ii) a detailed review of these measures
have been provided that includes an original comparative
asymptotic analysis of their computational complexities;
(iii) five different clustering algorithms (four hierarchical
ones and k-means) have been used in the experiments,
instead of k-means only; (iv) a much more extensive collec-
tion of experiments, involving a number of additional data
sets (over three times more) and original evaluation scenar-
ios, has been carried out. For instance, the behaviors of the
validity criteria when assessing partitions of data sets with
different amounts of clusters and dimensions (attributes)
have been investigated; (v) part of the study has been
devoted to reproducing experiments performed by Milligan
and Cooper in their 1985 paper [14], with the inclusion of
several measures that were not covered in that reference;
and (vi) a discussion on how to transform difference-like
validity measures into optimization-like measures has been
included.

The remainder of this paper is organized as follows. In
Section 2, a collection of relative clustering validity mea-
sures are reviewed and their computational complexities
are analyzed. Next, in Section 3, a brief review of exter-
nal clustering validity criteria is presented. In Section 4,
an alternative methodology for comparing relative validity
measures is described. Such a methodology is then used in
Sections 5 and 6 to perform an extensive comparison study
involving those measures reviewed in Section 2. Finally,
the conclusions and some directions for future research are
addressed in Section 7.

2. RELATIVE CLUSTERING VALIDITY
CRITERIA

A collection of relative clustering validity criteria from
the literature is surveyed in this section, which has been
divided into two main subsections. Section 2.1 comprises
optimization-like criteria, which are those for which
higher (maximization) or lower (minimization) values nat-
urally indicate the best partitions. Section 2.2 addresses
difference-like criteria, which are those primarily designed
to assess the relative improvement between two consecutive

partitions produced by a hierarchical clustering algorithm.
Unlike simple stopping rules, which can only be used to
halt this sort of algorithm [14], difference-like criteria can
be modified so as to exhibit (maximum or minimum) peaks
at the partitions deemed the best ones, as will be discussed
in Section 2.2.

The description of each criterion in Sections 2.1 and 2.2
is followed by an asymptotic time complexity analysis.
Such analysis is based on the assumption that the crite-
rion receives as input a collection of N data objects, X =
{x1, . . . , xN }, partitioned into k disjoint clusters, C1, C2,

. . . , Ck , each of which is composed of Nl objects (Nl =
cardinality(Cl ) �= 0), in such a way that N1 + N2 +
. . . + Nk = N . It is also assumed that the distance d(xi , xj )

between two data objects can be computed in linear time
with respect to the number of dimensions (attributes) of
these objects, i.e. it is assumed that d(xi , xj )

is O(n).
Before proceeding with the review of relative clustering

validity criteria, it is important to remark that the definitions
of most of these criteria subsume the use of numerical data,
which means that they operate on data objects described by
numerical attributes only (xj = [xj1, . . . , xjn]T ∈ R

n). In
these cases, the concepts of cluster and/or data centroid may
take place. In order to standardize notation, the centroid of a
cluster Cl is hereafter referred to as xl , whereas the centroid
of the whole data set (grand mean) is referred to as x.
So, one has xl = [xl1 . . . xln]T = 1

Nl

∑
xi∈Cl

xi and x =
[x1 . . . xn]T = 1

N

∑N
i=1 xi . The cost of computing such

centroids is included into the complexity analyses of the
corresponding criteria.

2.1. Optimization-like Criteria

2.1.1. Calinski–Harabasz (VRC)

The variance ratio criterion [16] evaluates the quality of
a data partition as:

VRC = trace(B)

trace(W)
× N − k

k − 1
(1)

where W and B are the n × n within-group and between-
group dispersion matrices, respectively, defined as:

W =
k∑

l=1

Wl (2)

Wl =
∑

xi∈Cl

(xi − xl )(xi − xl)
T (3)

B =
k∑

l=1

Nl(xl − x)(xl − x)T (4)

Statistical Analysis and Data Mining DOI:10.1002/sam
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where Nl is the number of objects assigned to the lth
cluster, xl is the n-dimensional vector of sample means
within that cluster (cluster centroid), and x is the n-
dimensional vector of overall sample means (data centroid).
As such, the within-group and between-group dispersion
matrices sum up to the scatter matrix of the data set,
i.e. T = W + B, where T = ∑N

i=1(xi − x)(xi − x)T . The
trace of matrix W is the sum of the within-cluster vari-
ances (its diagonal elements). Analogously, the trace of
B is the sum of the between-cluster variances. As a con-
sequence, compact and separated clusters are expected to
have small values of trace(W) and large values of trace(B).
Hence, the better the data partition the greater the value of
the ratio between trace(B) and trace(W). The normaliza-
tion term (N − k)/(k − 1) prevents this ratio to increase
monotonically with the number of clusters, thus making
VRC an optimization (maximization) criterion with respect
to k.

It is worth remarking that it is not necessary to perform
the computationally intensive calculation of W and B in
order to get their traces. Actually, these traces can be readily
computed as:

trace(W) =
k∑

l=1

trace(Wl ) (5)

trace(Wl) =
n∑

p=1

∑
xi∈Cl

(xip − xlp)2 (6)

trace(B) = trace(T) − trace(W) (7)

trace(T) =
n∑

p=1

N∑
i=1

(xip − xp)2 (8)

where xip is the pth element (attribute) of the ith data
object, xlp is the pth element of the centroid of the lth
cluster, and xp is the pth element of the data centroid.

Complexity analysis: Computing the centroids takes O(nN)

time. Computing both trace(T) and trace(W) also takes
O(nN) time (the latter follows from the observation that
nN1 + . . . + nNk = nN ). Hence, it is straightforward to
conclude that the overall time complexity for computing the
Calinski–Harabasz index in Eq. (1) using Eqs. (5) through
(8) is O(nN).

2.1.2. Davies–Bouldin

The Davies–Bouldin index [15] is somewhat related
to VRC in that it is also based on a ratio involving
within-group and between-group distances. Specifically,
the index evaluates the quality of a given data partition

as follows:

DB = 1

k

k∑
l=1

Dl (9)

where Dl = maxl �=m{Dl,m}. Term Dl,m is the within-to-
between cluster spread for the lth and mth clusters, i.e.
Dl,m = (dl + dm)/dl,m, where dl and dm are the aver-
age within-group distances for the lth and mth clus-
ters, respectively, and dl,m is the inter-group distance
between these clusters. These distances are defined as dl =
(1/Nl)

∑
xi∈Cl

||xi − xl|| and dl,m = ||xl − xm||, where ‖·‖
is a norm (e.g. Euclidean).

Term Dl represents the worst case within-to-between
cluster spread involving the lth cluster. Minimizing Dl for
all clusters clearly minimizes the Davies–Bouldin index.
Hence, good partitions, composed of compact and separated
clusters, are distinguished by small values of DB in Eq. (9).

Complexity analysis: Computing the centroids takes O(nN)

time. Given the centroids, computing each term dl is
O(nNl) and, for l = 1, . . . , k, O(nN1 + . . . + nNk) →
O(nN) operations are required. Also, computing each term
dl,m is O(n) and, for l, m = 1, . . . , k, O(nk2) opera-
tions are required. Once all terms dl,m have been com-
puted, computing each term Dl is O(k) and, for l =
1, . . . , k, O(k2) operations are required. Hence, the com-
plexity of DB in Eq. (9) can be written as O(nN + nk2 +
k2) → O(n(N + k2)). If k2 << N , one gets O(nN). If
k ≈ N , however, one gets O(nN2).

2.1.3. Dunn

Dunn’s index [17] is another validity criterion that is also
based on geometrical measures of cluster compactness and
separation. It is defined as:

DN = min
p, q ∈ {1, . . . , k}

p �= q


 δp,q

max
l ∈ {1,. . .,k}

�l


 (10)

where �l is the diameter of the lth cluster and δp,q is
the set distance between clusters p and q. The set dis-
tance δp,q was originally defined as the minimum distance
between a pair of objects across clusters p and q, i.e.
minxi∈Cp {minxj ∈Cq ||xi − xj ||}, whereas the diameter �l of
a given cluster l was originally defined as the maximum
distance between a pair of objects within that cluster, i.e.
maxxi∈Cl

{maxxj ∈Cl
||xi − xj ||}. Note that the definitions of

�l and δp,q are directly related to the concepts of within-
group and between-group distances, respectively. Bearing
this in mind, it is straightforward to verify that partitions
composed of compact and separated clusters are distin-
guished by large values of DN in Eq. (10).

Statistical Analysis and Data Mining DOI:10.1002/sam



214 Statistical Analysis and Data Mining, Vol. 3 (2010)

Complexity analysis: All we need to compute DN is the
distance between every pair of objects in the data set. If
both objects belong to the same cluster, the corresponding
distance is used to compute �l , otherwise it is used to
compute δp,q . Given that there are N(N − 1)/2 pairs of
objects in a data set with N objects, computing all �l

and δp,q requires O(nN2) time. Equation (10) on its own
is O(k2). Then, it is straightforward to conclude that the
complexity of Dunn’s index in Eq. (10) is O(nN2 + k2)

and, provided that k ∈ {2, . . . , N}, this complexity reduces
to O(nN2).

2.1.4. Seventeen variants of Dunn’s index

The original definitions of set distance and diameter in
Eq. (10) were generalized in Ref. [21] giving rise to 17
variants of the original Dunn’s index. These variants can be
obtained by combining one out of six possible definitions of
δp,q (the original one plus five alternative definitions) with
one out of three possible definitions of �l (the original one
plus two alternative definitions). The alternative definitions
for the set distance between the pth and qth clusters are:

δp,q = max
xi∈Cp,xj ∈Cq

||xi − xj || (11)

δp,q = 1

NpNq

∑
xi∈Cp

∑
xj ∈Cq

||xi − xj || (12)

δp,q = ||xp − xq || (13)

δp,q = 1

Np + Nq


 ∑

xi∈Cp

||xi − xq || +
∑

xj ∈Cq

||xj − xp||


(14)

δp,q = max

{
max
xi∈Cp

min
xj ∈Cq

||xi − xj ||, max
xj ∈Cq

min
xi∈Cp

||xi − xj ||
}

(15)

Note that, in contrast to the primary definition of δp,q for
the original Dunn’s index, which is essentially the single
linkage definition of set distance, expressions (11) and
(12) are precisely its complete linkage and average linkage
counterparts. Definition (13), in its turn, is the same as that
for the inter-group distance in the Davies–Bouldin index,
Eq. (14) is a hybrid of Eqs. (12) and (13), and Eq. (15) is
the Hausdorff metric.

The alternative definitions for diameter are:

�l = 1

Nl(Nl − 1)

∑
(xi �=xj )∈Cl

||xi − xj || (16)

�l = 2

Nl

∑
xi∈Cl

||xi − xl|| (17)

where Eq. (16) is the average distance among all Nl(Nl −
1)/2 pairs of objects of the lth cluster and Eq. (17) is two
times the cluster radius, estimated as the average distance
among the objects of the lth cluster and its prototype.

Complexity analysis: The time complexities for the variants
of Dunn’s index can be estimated by combining the indi-
vidual complexities associated with the respective equations
for δp,q and �l . By combining these individual complexities
and recalling, Eq. (10) on its own is O(k2), it is possible
to show that the overall complexity for computing most
of the variants of Dunn’s index is the same as that for
computing the original index, that is, O(nN2). The only
two exceptions are the variants given by: (i) the combina-
tion of Eqs. (13) and (17), which takes O(nN + nk2) time;
and (ii) the combination of Eqs. (14) and (17), which takes
O(nNk) time.

2.1.5. Silhouette width criterion (SWC)

Another well-known index that is also based on geo-
metrical considerations about compactness and separation
of clusters is the SWC [1,19]. In order to define this cri-
terion, let us consider that the j th object of the data set,
xj , belongs to a given cluster p ∈ {1, . . . , k}. Then, let the
average distance of this object to all other objects in cluster
p be denoted by ap,j . Also, let the average distance of this
object to all objects in another cluster q, q �= p, be called
dq,j . Finally, let bp,j be the minimum dq,j computed over
q = 1, . . . , k, q �= p, which represents the average dissim-
ilarity of object xj to its closest neighboring cluster. Then,
the silhouette of the individual object xj is defined as:

sxj
= bp,j − ap,j

max{ap,j , bp,j } (18)

where the denominator is just a normalization term. The
higher sxj

, the better the assignment of xj to cluster p.
In case p is a singleton, i.e. if it is constituted uniquely
by xj , then it is assumed by convention that sxj

= 0 [1].
This prevents the SWC, defined as the average of sxj

over
j = 1, 2, . . . , N , i.e.

SWC = 1

N

N∑
j=1

sxj
(19)

to elect the trivial solution k = N (with each object of
the data set forming a cluster on its own) as the best
one. Clearly, the best partition is expected to be pointed
out when SWC is maximized, which implies minimizing
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the intra-group distance (ap,j ) while maximizing the inter-
group distance (bp,j ).

Complexity analysis: All we need to compute SWC is the
distance between every pair of objects in the data set. If
both objects belong to the same cluster, the corresponding
distance is used to compute ap,j , otherwise it is used to
compute dq,j . Given that there are N(N − 1)/2 pairs of
objects in a data set with N objects, computing all ap,j and
dq,j requires O(nN2) time. Once every dq,j is available,
computing bp,j for each object is O(k) and, accordingly,
O(Nk) operations are required to compute bp,j for all N

objects of the data set. Finally, computing Eq. (19) itself
is O(N). Then, the computation of the above-mentioned
terms altogether take O(nN2 + Nk + N) → O(nN2 +
Nk) time and, as k ∈ {2, . . . , N}, it follows that the overall
complexity of the SWC is O(nN2).

2.1.6. Alternative silhouette (ASWC)

A variant of the original silhouette criterion can be
obtained by replacing Eq. (18) with the following alter-
native definition of the silhouette of an individual object
[29]:

sxj
= bp,j

ap,j + ε
(20)

where ε is a small constant (e.g. 10−6 for normalized data)
used to avoid division by zero when ap,j = 0. Note that the
rationale behind Eq. (20) is the same as that of Eq. (18), in
the sense that both are intended to favoring larger values
of bp,j and lower values of ap,j . The difference lies in the
way they do that, linearly in Eq. (18) and nonlinearly in
Eq. (20).

Complexity analysis: The overall complexity of the alter-
native silhouette criterion is precisely the same as that for
the original silhouette, that is, O(nN2).

2.1.7. Simplified silhouette (SSWC)

The original silhouette in Eq. (18) depends on the com-
putation of all distances among all objects. Such a com-
putation can be replaced with a simplified one based on
distances among objects and cluster centroids. In this case,
ap,j in Eq. (18) is redefined as the dissimilarity of the j th
object to the centroid of its cluster, p. Similarly, dq,j is
computed as the dissimilarity of the j th object to the cen-
troid of cluster q, q �= p, and bp,j becomes the dissimilarity
of the j th object to the centroid of its closest neighbor-
ing cluster. The idea is to replace average distances with
distances to mean points.

Complexity analysis: Computing the centroids takes O(nN)

time. Given the centroids, computing ap,j for the j th object

demands only the distance of this object to the centroid
of its cluster (the pth cluster), which takes O(n) time.
Then, O(nN) operations are needed in order to compute
ap,j for all N objects of the data set. In addition, comput-
ing those k − 1 terms dq,j associated with the j th object
is O(nk), because only the distances of this object to the
centroids of clusters q �= p are required. So, in order to
compute these terms for all N objects of the data set
requires O(nkN) operations. Terms bp,j can be derived
simultaneously to these operations, at a constant additional
cost, and computing Eq. (19) itself is O(N). Then, the
overall complexity of the simplified silhouette is estimated
as O(nN + nkN + N) → O(nkN). When k << N , as is
usual in practical applications, one gets O(nN). Oppositely,
if k ≈ N , then one gets O(nN2).

2.1.8. Alternative simplified silhouette (ASSWC)

An additional variant of the SWC can be derived by
combining the alternative and the simplified silhouettes
described in Sections 2.1.6 and 2.1.7, respectively, thus
resulting in a hybrid of such versions of the original
silhouette. Clearly, the complexity remains the same as that
for the simplified version, that is, O(nkN).

2.1.9. PBM

The criterion known as PBM [30] is also based on the
within-group and between-group distances:

PBM =
(

1

k

E1

EK

DK

)2

(21)

where E1 denotes the sum of distances between the objects
and the grand mean of the data, i.e. E1 = ∑N

i=1 ||xi −
x||, EK = ∑k

l=1

∑
xi∈Cl

||xi − xl || represents the sum of
within-group distances, and DK = max

l,m=1,. . .,k
||xl − xm|| is

the maximum distance between group centroids. So, the
best partition should be indicated when PBM is maximized,
which implies maximizing DK while minimizing EK .

Complexity analysis: Computing the centroids and the
grand mean point, x, is O(nN). The computation of E1

and EK is also O(nN), whereas the calculation of DK

is O(nk2). Thus, the overall computational complexity of
PBM is O(n(N + k2)). If k2 << N , then this complexity
becomes O(nN). Otherwise, if k ≈ N , it becomes O(nN2).

2.1.10. C-index

The C-index criterion [31] is based on the within-group
distances, as well as on their maximum and minimum
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possible values:

CI = θ − min θ

max θ − min θ
(22)

θ =
N−1∑
i=1

N∑
j=i+1

qi,j ||xi − xj || (23)

where qi,j = 1 if the ith and j th objects are in the same
cluster and qi,j = 0 otherwise. The values for min θ and
max θ can be readily obtained from a sorting procedure.
In particular, if both the t = (N(N − 1)/2) values for
||xi − xj || and t values for qi,j are increasingly sorted,
then the summation over the products of their respective
elements results in max θ . As qi,j ∈ {0, 1}, this is equiv-
alent to the sum of the wd greatest values of ||xi − xj ||,
where wd = ∑k

l=1 Nl(Nl − 1)/2 is the number of whithin-
group distances (number of elements qi,j = 1). In essence,
max θ represents the worst case scenario in which any
within-group distance in the partition under evaluation
would be greater than or equal to any inter-group dis-
tance. Oppositely, if the t values for ||xi − xj || are decreas-
ingly sorted, whereas the t values for qi,j are increas-
ingly sorted, then the summation over the products of their
respective elements results in min θ (best case scenario).
Thus, good partitions are expected to have small C-index
values.

Complexity analysis: Computing the vector of distances
between every pair of objects is O(nN2), whereas the pro-
cedure for sorting it is O(N2log2N

2) → O(N2log2N).
Computing max θ (min θ ) as the summation over the wd =∑k

l=1 Nl(Nl − 1)/2 first (last) elements of such a vector
is O(

∑k
l=1 N2

l ), which is less computationally demand-
ing than the O(nN2) operations needed for computing
the vector itself. Similarly, computing θ in Eq. (23) is
O(n

∑k
l=1 N2

l ), which is also less computationally demand-
ing than O(nN2), needed for computing the vector of dis-
tances. To summarize, the overall time complexity of this
index is O(nN2 + N2log2N) → O(N2(n + log2N)).

2.1.11. Gamma

The criterion known as gamma [27,32] computes the
number of concordant pairs of objects (S+), which is the
number of times the distance between a pair of objects
from the same group is lower than the distance between
a pair of objects from different groups, and the number
of discordant pairs of objects (S−), which is the number
of times the distance between a pair of objects from the
same group is greater than the distance between a pair of
objects from different groups. By taking into account these

quantities, the criterion is defined as:

G = S+ − S−
S+ + S−

(24)

S+ = 1

2

k∑
l=1

∑
xi ,xj ∈Cl

xi �=xj

1

2

k∑
m=1

∑
xp∈Cm

xq /∈Cm

δ(||xi − xj || < ||xp − xq ||)

(25)

S− = 1

2

k∑
l=1

∑
xi ,xj ∈Cl

xi �=xj

1

2

k∑
m=1

∑
xp∈Cm

xq /∈Cm

δ(||xi − xj || > ||xp − xq ||)

(26)

where δ(·) = 1 if the corresponding inequality is satisfied
and δ(·) = 0 otherwise. Conceptually speaking, better par-
titions are expected to have higher values of S+, lower
values of S−, and, as a consequence, higher values of G in
Eq. (24).

Complexity analysis: Since every pair of objects is associ-
ated to either a within-group distance or a between-group
distance, this criterion needs to compute all pairwise dis-
tances between objects, which is O(nN2). In addition,
computing S+ and S− demands that all

∑k
l=1 Nl(Nl − 1)/2

within-group distances be compared to all
∑k

m=1 Nm(N −
Nm) between-group distances, resulting in an additional
complexity of O(

∑k
l=1 Nl(Nl − 1) · ∑k

m=1 Nm(N − Nm)).
Assuming that the number of objects in each group l is
directly proportional to the cardinality of the data set, N ,
and inversely proportional to the number of groups, k,
i.e. Nl ∝ N/k, this complexity becomes O(

∑k
l=1(

N
k
)2 ·∑k

m=1
N
k
(N − N

k
) ) → O( N2

k

∑k
m=1

N2(k−1)

k2 ) →
O(N2

k
N2) → O(N4

k
). Thus, the overall complexity for

computing gamma is estimated as O(nN2 + N4

k
).

2.1.12. G(+)

G(+) [27,33] is another criterion based on the relation-
ships between discordant pairs of objects (S−). Specifically,
it is defined as the proportion of discordant pairs with
respect to the maximum number of possible comparisons,
t (t − 1)/2, as follows:

G(+) = 2S−
t (t − 1)

(27)

Following the discussions in the previous section, it can
be seen that good partitions are expected to have small
values for S− and, as a consequence, small values for G(+)
in Eq. (27).

Complexity analysis: The time complexity analysis for
G(+) is similar to that performed for gamma in
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Section 2.1.11. As such, it also results in an order of mag-
nitude of O(nN2 + N4

k
).

2.1.13. Tau

Tau [27,33] is based on the τ correlation [34,35] between
the matrix that stores all the distances between pairs of
objects and a binary matrix in which each entry indicates
whether a given pair of objects belongs to the same cluster
(0) or not (1). It is another criterion that can be written in
terms of the numbers of concordant (S+) and discordant
(S−) pairs of objects, as follows:

τ = S+ − S−√
(t (t − 1)/2 − tie) (t (t − 1)/2)

(28)

where S+ and S− are defined in Eqs. (25) and (26), respec-
tively, t = N(N − 1)/2, and

tie =
(

wd

2

)
+

(
bd

2

)
= wd(wd − 1)

2
+ bd(bd − 1)

2
(29)

with wd = ∑k
l=1 Nl(Nl − 1)/2 and bd = ∑k

l=1 Nl(N − Nl)

/2. Following the discussions about gamma in Section
2.1.11, it can be noticed that better partitions are presumed
to be distinguished by higher values of τ in Eq. (28).

Complexity analysis: The time complexity analysis for tau
is similar to that performed for gamma in Section 2.1.11.
The final result remains the same, i.e. O(nN2 + N4

k
).

2.1.14. Point-biserial

Similarly to tau, point-biserial [14,27] is also based on a
correlation measure between a distance matrix and a binary
matrix that encodes the mutual memberships of pairs of
objects to clusters, as follows:

PB = (db − dw)
√

wd · bd/t2

sd

(30)

where dw is the average intra-group distance, db is the
average inter-group distance, t = N(N − 1)/2 is the total
number of distances between pairs of objects, sd is the stan-
dard deviation over all those distances, wd = ∑k

l=1 Nl(Nl −
1)/2 is the number of intra-group distances, and bd = ∑k

l=1
Nl(N − Nl)/2 is the number of inter-group distances.
Conceptually speaking, good partitions should exhibit large
inter-group and small intra-group distances. Hence, point-
biserial is a maximization criterion.

Complexity analysis: This criterion requires the computa-
tion of db, dw , wd , bd , t , and sd . Computing t is O(1). The
computation of dw and db, in turn, requires calculating all
the distances between pairs of objects. In fact, if a given pair

of objects belongs to the same cluster, then the respective
distance is used to compute dw; otherwise, it is employed
to calculate db. During this procedure, which takes O(nN2)

time, it is also possible to compute wd and bd . In summary,
computing dw , db, wd , and bd is O(nN2). In order to com-
pute sd , it is necessary to process wd + bd = t distance
values, which is also O(nN2). From these observations,
it is straightforward to verify that the time complexity of
point-biserial is O(nN2).

2.1.15. C/
√

k

The criterion known as C/
√

k [36,37] is based on the
individual contribution of each attribute to the between-
and within-cluster variances, as follows:

C/
√

k = 1√
k

1

n

n∑
q=1

√
SSBq

SSTq

(31)

SSBq = SSTq − SSWq (32)

SST q =
N∑

i=1

||xiq − xq ||2 (33)

SSW q =
k∑

l=1

∑
xi∈Cl

||xiq − xlq ||2 (34)

where xiq is the qth attribute of the ith object, xq the
qth attribute of the centroid of the whole data (grand
mean, x), and xlq is the qth attribute of the centroid of
the lth cluster, xl . Compact clusters tend to have low
within-group variances (SSW q , q = 1, . . . , n), thus leading
to high values of SSBq/SST q (close to one). So, higher
values of C/

√
k are expected to indicate better partitions.

Note that, due to the fact that increasing the number of
clusters in the partition under evaluation tends to increase
the ratio SSBq/SST q , the criterion is not only normalized
in relation to n, but also in relation to

√
k. This is an

attempt at counterbalancing the increase of
√

SSBq/SST q

as a function of k. However, increasing k in a persistent way
makes SSW q → 0, SSBq → SST q and, as a consequence,
C/

√
k → 1/

√
k, which means that this criterion tends to

be biased toward disfavoring partitions formed by many
clusters, irrespective of their qualities.
Complexity analysis: This criterion requires computing
cluster centroids, xl , and the centroid of the whole data,
x, with a cost of O(nN) operations. In addition, one has to
compute the values for SSW q and SST q , for q = 1, . . . , n.
After computing the centroids, it is possible to calculate
SST q and SSW q for each individual attribute in O(N)

time. Because such quantities must be computed for every
attribute, O(nN) operations are required. To summarize,
computing C/

√
k in Eq. (32) is O(nN).
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Fig. 4 Examples of criteria with monotonically decreasing (increasing) values as a function of k.

2.2. Difference-like Criteria

Some criteria are used to assess relative improvements
on some relevant characteristic of the data (e.g. within-
group variances) over a set of successive data partitions
produced by a given iterative procedure—usually a hier-
archical clustering algorithm. Such criteria can be mono-
tonically increasing (decreasing) as the number of clusters
varies from k = 2 to k = N , as illustrated in Fig. 4. In these
cases, one usually tries to identify a prominent “knee” or
“elbow” that suggests the most appropriate number of clus-
ters existing in the data. Such criteria are hereafter called
difference-like criteria, for they require relative assessments
between values obtained in two consecutive data partitions
(formed by k and k + 1 clusters).

Before evaluating the results achieved by difference-like
criteria, it is necessary to transform them into optimization-
like criteria, for which an extreme value (peak) reveals
the partition elected as the best one among a set of can-
didates with different values of k. Milligan and Cooper
stated in Ref. [14] that they used the difference between
hierarchical levels to transform difference-like criteria into
optimization-like criteria. However, the authors did not
present any formal description for such a concept, for which
two possible realizations are:

Cnew(k) = abs
(
Corig(k − 1) − Corig(k)

)
(35)

or

Cnew(k) = abs
(

abs
(
Corig(k − 1) − Corig(k)

)
− abs

(
Corig(k) − Corig(k + 1)

))
(36)

where abs(.) stands for the absolute value of the argument,
Cnew(k) the value of the transformed criterion for the
partition formed by k clusters, and Corig(k − 1), Corig(k)

and Corig(k + 1) are the values of the original difference-
like criterion for partitions formed by k − 1, k, and k + 1

clusters, respectively. Notice, however, that a “knee” in
a chart is recognized by an abrupt relative (rather than
absolute) change in the variation of the value between con-
secutive partitions. From this observation, we here propose
to use the following transformation:

Cnew(k) = abs

(
Corig(k − 1) − Corig(k)

Corig(k) − Corig(k + 1)

)
(37)

Indeed, we will experimentally show in Section 5 that
such a transformation provides results significantly better
than those found using Eq. (35) or (36). For this reason,
the experimental results to be reported in this work are
based upon the assumption that difference-like criteria are
converted into optimization-like criteria by Eq. (37).

2.2.1. Trace(W)

Trace(W) is a simple and widely known difference-like
criterion, defined as [38]:

V1 = trace(W) (38)

where W is the within-group covariance matrix in Eq. (2).
Complexity analysis: From Eqs. (5) and (6) it can be read-
ily verified that trace(W) requires O(nN) operations.

2.2.2. Trace(CovW)

A variant of the trace(W) criterion involves using the
pooled covariance matrix instead of W [14], as follows:

V2 = trace(Wp) (39)

Wp = 1

N − k

k∑
l=1

Wl (40)

Wl =
∑

xi∈Cl

(xi − xl )(xi − xl )
T (41)
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Complexity analysis: It is straightforward to verify that
the asymptotic computational costs of trace(CovW) and
trace(W) are the same, namely, O(nN).

2.2.3. Trace(W−1B)

The criterion known as trace(W−1B) [38] is based both
on W in Eq. (2) and B in Eq. (4), as follows:

V3 = trace(W−1B) (42)

Complexity analysis: Differently from the criteria addressed
in Sections 2.2.1 and 2.2.2, this criterion indeed demands
the computation of the covariance matrices W and B,
whose time complexities are O(n2N) and O(n2k), respec-
tively. Provided that computing the inverse of W and its
multiplication by B can both be accomplished in O(n3)

time, and given that the computation of the trace of the
resulting matrix is O(n), it follows that the time com-
plexity of trace(W−1B) is O(n2N + n2k + n3). Since k ∈
{2, . . . , N}, computing trace(W−1B) is then O(n2N + n3).

2.2.4. |T|/|W|
|T|/|W| [38] is a criterion that uses information from

the determinants of the data covariance matrix and within-
group covariance matrix, as follows:

V4 = |T|
|W| (43)

where | · | stands for the determinant and matrices W
and T = W + B are the same as previously defined in
Section 2.1.1.

Complexity analysis: The computation of |T|/|W| requires
calculating the covariance matrices T and W, whose overall
complexity is O(n2N). Once computing the determinants
of these matrices requires O(n3) operations, the overall
complexity of the |T|/|W| criterion is O(n2N + n3).

2.2.5. N log(|T|/|W|)
A variant of the |T|/|W| criterion just described involves

using its logarithmic transformation. More precisely, the
Nlog(|T|/|W|) criterion [39,40] is given by:

V5 = N log10

( |T|
|W|

)
(44)

Complexity analysis: Following the analysis described in
Section 2.2.4, it can be shown that computing Nlog(|T|/|W|)
is O(n2N + n3).

2.2.6. k2|W |
The criterion known as k2|W | [41] is also based on

the determinant of the within-group covariance matrix, as
follows:

V6 = k2|W| (45)

Complexity analysis: Computing k2|W| requires calculating
the within-group covariance matrix, W, whose complexity
is O(n2N), and its determinant, which demands O(n3)

operations. Thus, the overall computational complexity of
k2|W| in Eq. (45) is O(n2N + n3).

2.2.7. log(SSB/SSW)

The log(SSB/SSW) criterion [8] makes use of the within-
and between-group distances, as follows:

V7 = log10

(
SSB

SSW

)
(46)

where SSW = ∑k
l=1

∑
xi∈Cl

||xi − xl ||2 and SSB = ∑k−1
l=1∑k

m=l+1
||xl−xm||2

(1/Nl)+(1/Nm)
.

Complexity analysis: Computing the centroids is O(nN).
SSW requires computing the distances between every
object and the centroid of the cluster it belongs to, which
is also O(nN), whereas for SSB it is necessary to calcu-
late every distance between pairs of centroids, leading to
a computational cost of O(nk2). Thus, the overall compu-
tational complexity of log(SSB/SSW) is O(n(k2 + N)). If
k2 << N , then it is O(nN). If k ≈ N , however, it becomes
O(nN2).

2.2.8. Ball and Hall

The Ball–Hall criterion [42] is just the well-known
within-group sum of distances:

V8 = 1

N

k∑
l=1

∑
xi∈Cl

||xi − xl || (47)

Complexity analysis: Computing centroids and N within-
group distances is O(nN). Thus, Ball–Hall is O(nN).

2.2.9. McClain and Rao

McClain–Rao [43,44] is another criterion based on
within- and between-group distances, as follows:

V9 =
B/

(
N2 − ∑k

l=1 N2
l

)
W/

(
[
∑k

l=1 N2
l ] − N

) (48)
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where B and W are given by:

B =
k−1∑
l=1

k∑
m=l+1

∑
xi∈Cl

∑
xj ∈Cm

||xi − xj || (49)

W = 1

2

k∑
l=1

∑
xi ,xj ∈Cl

||xi − xj || (50)

Milligan and Cooper [14] evaluated McClain–Rao as an
optimization-like criterion. However, we performed a col-
lection of preliminary experiments in which McClain–Rao
performed significantly better (eight times more accurately)
when considered as a difference-like criterion, transformed
into an optimization-like one. For this reason, McClain–Rao
is deemed a difference-like criterion in the experiments to
be reported in this work.

Complexity analysis: Computing centroids is O(nN). In
addition, it is necessary to calculate all the distances
between pairs of objects. In fact, if a given pair of objects
belongs to the same cluster, then the respective distance is
used to compute W ; otherwise, it is employed to calculate
B. This procedure demands O(nN2) operations. Hence,
the overall computational complexity of McClain–Rao is
O(nN2).

2.3. Summary of the Complexity Analyses

The computational complexity associated with each rel-
ative clustering validity criteria reviewed in the previous
sections is displayed in Table 12.

3. EXTERNAL CLUSTERING VALIDITY
CRITERIA

In this section, external validity criteria that will be used
further in this work—as part of the methodology adopted
for comparing relative criteria—are also reviewed.

3.1. Rand Index

The Rand index [45] can be seen as an absolute criterion
that allows the use of properly labeled data sets for perfor-
mance assessment of clustering results. This very simple
and intuitive index handles two hard partition matrices (R
and Q) of the same data set. The reference partition, R,
encodes the class labels, i.e. it partitions the data into k∗
known categories of objects. Partition Q, in turn, partitions

2 Please, refer to Section 2.1.4 for the complexities of the
variants of Dunn’s index.

Table 1. Computational complexities of several relative validity
criteria—difference-like criteria are signed with ∗.

− Criterion Complexity

Calinski–Harabasz (VRC) O(nN) [Eqs. (5)–(8)]
Davies–Bouldin (DB) O(n(k2 + N))

Dunn O(nN2)

Silhouette width criterion
(SWC)

O(nN2)

Alternative silhouette
(ASWC)

O(nN2)

Simplified silhouette
(SSWC)

O(nNk)

Alternative simplified
silhouette (ASSWC)

O(nNk)

PBM O(n(k2 + N))

C-index O(N2(n + log2N))

Gamma O(nN2 + N4/k])
G(+) O(nN2 + N4/k])
Tau O(nN2 + N4/k])
Point-biserial O(nN2)

C/
√

k O(nN)

* Trace(W) O(nN)

* Trace(CovW) O(nN)

* Trace(W−1B) O(n2N + n3)

* |T|/|W| O(n2N + n3)

* Nlog(|T|/|W|) O(n2N + n3)

* k2W O(n2N + n3)

* log(SSB/SSW) O(n(k2 + N))

* Ball–Hall O(nN)

* McClain–Rao O(nN2)

the data into k clusters, and is the one to be evaluated.
Given the above remarks, the Rand index is then defined
as [2,7,45]:

ω = a + d

a + b + c + d
(51)

where:

• a: Number of pairs of data objects belonging to the
same class in R and to the same cluster in Q.

• b: Number of pairs of data objects belonging to the
same class in R and to different clusters in Q.

• c: Number of pairs of data objects belonging to
different classes in R and to the same cluster in Q.

• d: Number of pairs of data objects belonging to
different classes in R and to different clusters in Q.

Terms a and d are measures of consistent classifica-
tions (agreements), whereas terms b and c are measures
of inconsistent classifications (disagreements). Note that:
(i) ω ∈ [0, 1]; (ii) ω = 0 iff Q is completely inconsistent,
i.e. a = d = 0; and (iii) ω = 1 iff the partition under evalu-
ation matches exactly the reference partition, i.e. b = c = 0
(Q ≡ R).
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Fig. 5 Data set with k∗ = 2 classes (class 1 in circles and class
2 in squares) partitioned into k = 3 clusters (clusters 1, 2, and 3
in black, white, and gray, respectively).

As an example, consider the data set in Fig. 5. It is
composed of two classes with four objects each. Class 1
(in circles) is composed of objects 1, 2, 3, and 4, while
class 2 (in squares) is composed of objects 5, 6, 7, and 8.
As shown in Fig. 5, the same data set has been partitioned
into three clusters—Cluster 1 in black (objects 4, 5, and 6),
Cluster 2 in white (objects 1, 2, and 3), and Cluster 3 in
gray (objects 7 and 8). The pairs of data objects belonging
to the same class and to the same cluster are therefore
(1,2), (1,3), (2,3), (5,6), and (7,8). Thus, the number of
pairs of objects in the same class and in the same cluster is
a = 5. Similarly, the other terms in Eq. (51) can easily be
computed as b = 7, c = 2, and d = 14, which results in a
Rand index of ω = 0.6786.

3.2. Adjusted Rand Index

One of the main criticisms against the original Rand
index is that it is not corrected for chance, that is, its
expected value is not zero when comparing random par-
titions. Correcting an index for chance means normalizing
it so that its (expected) value is 0 when the partitions are
selected by chance and 1 when a perfect match is achieved
[7]. Hubert and Arabie derived the following ARI [25]:

ωA = a − (a+c)(a+b)
M

(a+c)+(a+b)
2 − (a+c)(a+b)

M

(52)

where M = a + b + c + d. This index is corrected for
chance under the assumption that the number of groups
(classes/clusters) in both partitions R and Q to be compared
is the same.

3.3. Jaccard Coefficient

Another common criticism against the original Rand
index is that it gives the same importance to both the agree-
ment terms a and d, thus making no difference between
pairs of objects that are joined or separated in both the refer-
ential and evaluated partitions [46]. This policy is arguable,
particularly if a partition is interpreted as a set of groups
of joined elements, the separations being just consequences
of the grouping procedure [47]. This interpretation suggests
that term d should be removed from the formulation of the
Rand index. Indeed, it is known that this term may dominate
the other three terms (a, b, and c), thus causing the Rand
index to become unable to properly distinguish between
good and bad partitions [48,49]. This situation gets partic-
ularly critical as the number of classes/clusters increases,
since the value of the index tends to increase too [2,50,51].
The ordinary removal of term d from the original Rand
index in Eq. (51) results in the so-called Jaccard coefficient,
defined as [1,7]:

ωJ = a

a + b + c
(53)

Clearly, the rationale behind the Jaccard coefficient in
Eq. (53) is essentially the same as that for the Rand index,
except for the absence of term d (which does not affect
normality, i.e. ωJ ∈ [0, 1]). An interesting interpretation of
the differences between these two indexes arises when d

is viewed as a “neutral” term—counting pairs of objects
that are not clearly indicative either of similarity or of
inconsistency—in contrast to the others, viewed as counts
of “good pairs” (term a) and “bad pairs” (terms b and c)
[51]. From this viewpoint, the Jaccard coefficient can be
seen as a proportion of good pairs with respect to the sum
of non-neutral (good plus bad) pairs, whereas the Rand
index is just the proportion of pairs not definitely bad with
respect to the total number of pairs.

4. COMPARING RELATIVE VALIDITY CRITERIA

As previously discussed in Section 1, the methodology
usually adopted in the literature to compare relative cluster-
ing validity criteria, based essentially on the ability of the
indexes to indicate the right number of clusters in a data set,
is subject to conceptual limitations. In this work, an alterna-
tive, possibly complementary methodology [28] is adopted.
Such a methodology can be better explained by means of a
pedagogical example. For the sake of simplicity and with-
out any loss of generality, let us assume in this example
that our comparison involves only the performances of two
validity criteria in the evaluation of a small set of parti-
tions of a single labeled data set. The hypothetical results
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Table 2. Example of relative and external evaluation results of
five partitions of a data set.

Relative Relative External
Partition criterion 1 criterion 2 criterion

1 0.75 0.92 0.82
2 0.55 0.22 0.49
3 0.20 0.56 0.31
4 0.95 0.63 0.89
5 0.60 0.25 0.67

are displayed in Table 2, which shows the values of the
relative criteria under investigation as well as the values of
a given external criterion (e.g. Jaccard or ARI described in
Section 3) for each of the five data partitions available.

Assuming that the evaluations performed by the external
criterion are trustable measures of the quality of the parti-
tions3, it is expected that the better the relative criterion the
greater its capability of evaluating the partitions according
to an ordering and magnitude proportions that are similar
to those established by the external criterion. Such a degree
of similarity can be straightforwardly computed using a
sequence correlation index, such as the well-known Pear-
son product-moment correlation coefficient [26]. Clearly,
the larger the correlation value the higher the capability of
a relative measure to unsupervisedly mirror the behavior of
the external index and properly distinguish between better
and worse partitions. In the example of Table 2, the Pearson
correlation between the first relative criterion and the exter-
nal criterion (columns 2 and 4, respectively) is 0.9627. This
high value reflects the fact that the first relative criterion
ranks the partitions in the same order that the external cri-
terion does. Unitary correlation is not reached only because
there are some differences in the relative importance
(proportions) given to the partitions. Contrariwise, the cor-
relation between the second relative criterion and the exter-
nal criterion scores is only 0.4453. This is clearly in accor-
dance with the strong differences that can be visually
observed between the evaluations in columns 3 and 4 of
Table 2.

In a practical comparison procedure, there should be
multiple partitions of varied qualities for a given data set.
Moreover, a practical comparison procedure should involve
a representative collection of different data sets that fall
within a given class of interest (e.g. mixtures of Gaussians).
This way, if there are ND labeled data sets available, then
there will be ND correlation values associated with each
relative validity criterion, each of which represents the
agreement level between the evaluations of the partitions
of one specific data set when performed by that relative

3 This is based on the fact that such a sort of criterion relies on
information about the known referential clusters.

criterion and by an external criterion. The mean of such
ND correlations is a measure of resemblance between
those particular (relative and external) validity criteria,
at least with respect to that specific collection of data
sets. Despite this, besides just comparing such means for
different relative criteria in order to rank them, one should
also apply to the results an appropriate statistical test to
check the hypothesis that there are (or aren’t) significant
differences among those means. In summary the procedure
is given below:

1. Take ND different data sets with known clusters.

2. For each data set, get a collection of Nπ data parti-
tions of varied qualities and numbers of clusters. For
instance, such partitions can be obtained from a sin-
gle run of a hierarchical algorithm or from multiple
runs of a partitional algorithm with different numbers
and initial positions of prototypes.

3. For each data set, compute the values of the relative
and external validity criteria for each of the Nπ

partitions available. Then, for each relative criterion,
compute the correlation between the corresponding
vector with Nπ relative validity values and the vector
with Nπ external validity values.

4. For each relative criterion, compute the mean4 of
its ND correlation values (one per data set). Then,
rank all the criteria according to their means and
apply an appropriate statistical test to the results to
check whether the differences between the means are
significant or not from a statistical perspective, i.e.
when taking variances into account.

Remark 1. Since the external validity criteria are typically
maximization criteria, minimization relative criteria, such
as Davies–Bouldin, G(+), and C-index, must be converted
into maximization ones. To do so, flip the values of such cri-
teria around their means before computing their correlation
with the external validity values.

Remark 2. The comparison methodology described above
is a generalization of the one proposed in a 1981 paper
by Milligan [27], in which the author stated that “Logi-
cally, if a given criterion is succeeding in indicating the
degree of correct cluster recovery, the index should exhibit
a close association with an external criterion which reflects
the actual degree of recovery of structure in the proposed
partition solution”. Milligan, however, conjectured that the
above statement would possibly not be justified for compar-
isons involving partitions with different numbers of clus-
ters, due to a kind of monotonic trend that some external

4 Or another statistic of interest.
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indexes may exhibit as a function of this quantity. For this
reason, the analyses in Ref. [27] were limited to partitions
with the right number (k∗) of clusters known to exist in the
data. This limitation itself causes two major impacts on the
reliability of the comparison procedure. First, the robustness
of the criteria under investigation in terms of their ability to
properly distinguish among partitions that are not good in
general is not taken into account. Second, if the partitions
are obtained from a hierarchical algorithm, taking only k∗
implies that there will be a single value of a given relative
criterion associated with each data set, which means that a
single correlation value will result from the pairs of values
of relative and external criteria computed over the whole
collection of available data sets. Obviously, a single value
does not allow statistical evaluations of the results.

The more general methodology adopted here rules out
those negative impacts resulting from Milligan’s conjecture
mentioned above. But what about the conjecture? Such a
conjecture is possibly one of the reasons that made Milligan
and Cooper not to adopt the same idea in their 1985 paper
[14], which was focused on procedures for determining
the number of clusters in data. In our opinion, such a
conjecture was not properly elaborated. In fact, while it
is true that some external indexes (e.g. the original Rand
index described in Section 3) do exhibit a monotonic trend
as a function of the number of clusters, such a trend is
observed when the number of clusters of both the referential
and evaluated partitions increase [50,51]—or in specific
situations in which there is no structure in the data and
in the corresponding referential partition [52]. Neither of
these is the case, however, when one takes a well-defined
referential partition of a structured data set with a fixed
number of clusters and compares it against partitions of
the same data produced by some clustering algorithm with
variable number of clusters, as verified later by Milligan
and Cooper themselves [52].

5. EXPERIMENTAL RESULTS—PART I

The collection of experiments to be described in this
work is divided into two parts. The first one (this section)
involves the comparison of those 40 relative validity criteria
reviewed in Section 2 using precisely the same clustering
algorithms and faithful reproductions of the synthetic data
sets adopted in the studies by Milligan and Cooper [14,27].

5.1. Data Sets

The data sets adopted here are reproductions of the arti-
ficial data sets used in Ref. [14,27]. The data generator
was developed following strictly the descriptions in those
references. In brief, the data sets consist of a total of

N = 50 objects each, embedded in either an n = 4, 6, or 8
dimensional Euclidean space. Each data set contains either
k∗ = 2, 3, 4, or 5 distinct clusters for which overlap of
cluster boundaries is permitted in all but the first dimen-
sion of the variables space. The actual distribution of the
objects within clusters follows a (mildly truncated) multi-
variate normal distribution, in such a way that the resulting
structure could be considered to consist of natural clusters
that exhibit the properties of external isolation and internal
cohesion. The details about the centers and widths of these
normal distributions are precisely as described in Ref. [27].

Following Milligan and Cooper’s procedure, the design
factors corresponding to the number of clusters and to the
number of dimensions were crossed with each other and
both were crossed with a third factor that determines the
number of objects within the clusters. Provided that the
number of objects in each data set is fixed, this third factor
directly affects not only the cluster densities, but the overall
data balance as well. This factor consists of three levels,
where one level corresponds to an equal number of objects
in each cluster (or as close to equality as possible), the
second level requires that one cluster must always contain
10% of the data objects, whereas the third level requires
that one cluster must contain 60% of the objects. The
remaining objects were distributed as evenly as possible
across the other clusters present in the data. Overall, there
were 36 cells in the design (4 numbers of clusters × 3
dimensions × 3 balances). Three sampling replications
were generated for each cell, thus producing a total of 108
data sets.

5.2. Experimental Methodology

With the data sets in hand, four versions of the stan-
dard agglomerative hierarchical clustering algorithm [1],
namely, single linkage, complete linkage, average link-
age, and Ward’s, were systematically applied to each data
set. For each data set, each algorithm produced a hierar-
chy of data partitions with the number of clusters rang-
ing from k = 2 through k = N = 50. Such partitions can
then be evaluated by the relative clustering validity criteria
under investigation. For illustration purposes, the evalu-
ation results produced by four optimization-like criteria
and two difference-like criteria (with the corresponding
optimization-like transformations) for partitions of a typ-
ical data set with k∗ = 5 are displayed in Figs. 6 and 7,
respectively.

All the criteria in Fig. 6 as well as those transformed
ones in Fig. 7 exhibit a primary (maximum or minimum)
peak at the expected number of clusters, k∗ = 5. However,
it can be observed in Fig. 6 that some criteria exhibit a
secondary peak when evaluating partitions with too many
clusters, particularly as k approaches the number of objects,
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Fig. 6 Values of four optimization-like relative clustering validity criteria: hierarchical partitions of a typical data set for k = 2, . . . , 50.
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Fig. 8 Values of the Jaccard coefficient and ARI: hierarchical partitions of a typical data set for k = 2, . . . , 50.

N = 50. Such a behavior is also observed in other relative
clustering validity criteria5 and must be carefully dealt with
when assessing their performances. The reason is that this
eventual secondary peak, which may be less or more intense
depending on the criterion and on the data set as well,
can clearly affect the correlation between the relative and
external validity values. In addition, the values of some
criteria may not be defined for partitions with too many
clusters. For instance, the criterion Nlog(|T|/|W|) is no
longer defined for values of k beyond 42 in Fig. 7 due to
the numerical singularity of matrix W when k approaches
N . Fortunately, this is not a serious situation inasmuch
as partitions with k approaching N are completely out of
scope in practical clustering analysis. In order to prevent
problems, it is recommended to perform the methodology
proposed in Section 4 over a set of partitions with the
number of clusters limited within an acceptable range. Such
an acceptable range depends on the application domain, but
there are some general rules that can be useful to guide
the less experienced user in practical situations. One rule
of thumb is to set the upper bound of this interval to
kmax = √

N or so (≈8 for N = 50). Another possibility,
which can be particularly useful if the number of objects
is small, is to set this upper bound to kmax = N/2. The
rationale behind such a more conservative number is that,
conceptually speaking, a cluster is expected to be composed
of at least two objects, otherwise being an outlier rather than
a group of objects. Both these intervals, i.e. k ∈ {2, . . . , 8}
and k ∈ {2, . . . , 25}, will be adopted in this part of the
study. This means that only a subset of the partitions

5 The value of PBM described in Section 2.1.9, for example,
goes to infinity as k → N , because Ek in Eq. (21) tends to zero.

produced by the hierarchical algorithms for each data set
will be used in the experiments, namely, 3024 partitions
for the first interval (4 algorithms × 108 data sets × 7
values for k) and 10, 368 partitions for the second interval
(4 × 108 × 24). Having such selected partitions in hand,
the relative and external validity criteria can be computed
for all of them and the comparison procedure described in
Section 4 can be accomplished.

Remark 3. In order to compute difference-like criteria for
partitions with k = 2 and k = kmax using the optimization-
like transformation in Eq. (37), it is actually necessary to
compute the original indexes for k = 1 and k = kmax + 1.
Two of the difference-like criteria reviewed in Section 2.2,
however, are not defined for k = 1, namely, log(SSB/SSW)
and McClain–Rao. As a consequence, the transformed ver-
sions of these criteria cannot be assessed for partitions with
k = 2.

For better confidence of the analysis, the results corre-
sponding to two distinct external validity criteria described
in Section 3 are reported here; namely, the ARI and the
Jaccard coefficient. The values of these criteria for the set
of partitions produced by a hierarchical algorithm applied to
a typical data set with k∗ = 5 are illustrated in Fig. 8. This
figure shows that the behaviors of ARI and Jaccard are in
conformity with each other and, accordingly, these external
indexes can indeed be used together for better confidence
of the analysis. Similarly, two distinct correlation indexes
are also used to measure the agreement level between the
relative and external criteria (please, refer to step 3 of the
comparison procedure in Section 4). One of the indexes is
the classic Pearson coefficient. Although Pearson is recog-
nizably powerful, it is also well-known to be somewhat

Statistical Analysis and Data Mining DOI:10.1002/sam



226 Statistical Analysis and Data Mining, Vol. 3 (2010)

sensitive to dominant peaks in the sequences of values
under evaluation. In order to prevent the results from being
biased by the subset of best relative and external validity
values, probably associated with partitions around k∗, an
additional correlation index is also adopted here that can be
more sensitive to those nonpeak values of the sequences. It
is a weighted version of the Goodman-Kruskal index [7,53],
named Weighted-Goodman-Kruskal (WGK), which may be
particularly appropriate to clustering analysis for it is fully
sensitive to both the ranks and the magnitude proportions
of the sequences under evaluation [35].

Histograms of the results strongly suggest that the
observed sample distributions hardly satisfy the normality
assumption. For this reason, outcomes of parametric
statistical tests will not be reported here. Instead, the
well-known Wilcoxon/Mann-Whitney (W/M-W) test will
be adopted. The efficiency of the W/M-W test is 0.95 with
respect to parametric tests like the t-test or the z-test even if
the data are normal. Thus, even when the normality assump-
tion is satisfied, the W/M-W test might be preferred [54].
This test will be used in this work to compare the results
of every pair of relative validity criteria as two sampled
populations. In addition, another test will also be applied
that subdivides these sampled populations into blocks. In
this case, each block is treated as an independent subsam-
ple composed of those instances that are related to data sets
generated from a particular configuration of the data gener-
ator. A particular configuration of the data generator corre-
sponds precisely to one of those 36 design cells composed
of data sets with the same numbers of clusters, dimensions,
and the same balance. This is called two-way randomized
block design, one way referring to samples coming from dif-
ferent relative criteria and another way referring to samples
coming from different configurations of the data generator.
A nonparametric test of this class is named Friedman test6,
which will be adopted here to reinforce the results of the
W/M-W test in a conservative (duplicated) manner.

Finally, for the sake of comparison, the traditional
methodology adopted by Milligan and Cooper [14] will
also be carried out here for all those 40 relative validity
criteria reviewed in Section 2. Let us recall that, in the
traditional methodology, each criterion evaluates the set
of partitions produced by a given hierarchical algorithm
(single linkage, complete linkage, average linkage, and
Ward’s, for k = 2, . . . , kmax)7 and, then, the number of
clusters in the partition elected as the best one by the cri-
terion is compared against the rigth number of clusters
known to exist in that particular data set. The number of hits
achieved over the whole collection of data sets and different

6 A relative of the two-way analysis of variance (ANOVA) test.
7 kmax will be set to 25, which is precisely the same upper bound

adopted for the alternative comparison methodology.

hierarchical algorithms is taken as the final performance of
that criterion. The maximum number of hits is 432 (108
data sets × 4 hierarchical algorithms).

5.3. Results and Discussions

The final results obtained by the traditional methodol-
ogy are illustrated in Fig. 9. Before proceeding with the
discussions, note that, following the terminology adopted
in Ref. [21], the variants of Dunn’s index have been
named DunnXY. More specifically, X = 1 refers to the orig-
inal definition of set distance (see Section 2.1.3), whereas
X ∈ {2, . . . , 6} refers to the alternative definitions given by
Eqs. (11), (12), (13), (14), and (15), respectively. Similarly,
Y = 1 refers to the original definition of diameter, whereas
Y ∈ {2, 3} refers to Eqs. (16) and (17), respectively. Note
that, following this terminology, the original index is named
Dunn11.

The results achieved by the optimization-like criteria
that had already been considered in the original study
by Milligan and Cooper [14] were, as expected, similar to
those reported in that reference. Accordingly, the corre-
sponding findings and conclusions still remain valid. Con-
sidering those optimization-like criteria not covered by
Milligan and Cooper [14], it is worth highlighting the
excellent performance provided by PBM, which correctly
elected the best partition in 92.59% of the assessed scenar-
ios (400 out of 432). It is also worth mentioning that the
variants of Dunn provided good relative performances when
compared to the original criterion (whose number of hits is
355, i.e. 82.18%). On the other hand, the alternative vari-
ants of the silhouette (ASWC and ASSWC) showed slightly
worse performances when compared to both the original
criterion (SWC) and its simplified version (SSWC). This
suggests that such alternative variants may have a slightly
inferior capacity of indicating as the best partition one with
the expected number of clusters (at least with respect to
data sets similar to those considered in the present study).

By comparing the results shown in Fig. 9 with those
reported in Ref. [14], one can observe that all difference-
like criteria have performed better when Eq. (37) (proposed
here) is used to transform them into optimization-like crite-
ria. In this context, we would like to highlight the superior
performances of trace(W) and Ball–Hall, which got 90.74
and 89.81% of hits, respectively (in Ref. [14], the corre-
sponding results are 27.78 and 29.63%, respectively). These
criteria are among the simplest ones (both conceptually
and computationally), because they only need information
on the distances between objects and centroids of their
clusters. The criteria Nlog(|T|/|W|) and trace(CovW) have
shown competitive performances as well, namely, 84.95
and 84.72% of hits, respectively (against 34.49 and 28.01%
reported in Ref. [14]). The remaining difference-like criteria
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Fig. 9 Number of hits for each criterion considering a collection of 108 data sets and partitions found by four hierarchical algorithms
(432 combinations/scenarios)—Difference-like criteria are marked with an asterisk (*).

have also shown better results when compared with those
reported by Milligan and Cooper, but not when compared
with other relative validity criteria included into the present
analysis. In particular, note that |T|/|W| and trace(W−1B)
have achieved only 32.41 and 24.54% of hits, respectively
(against 0.00 and 19.44% in Ref. [14]).

Using the alternative methodology discussed in Section 4
(when the Pearson coefficient, the Jaccard criterion, and
kmax = 25 are employed), we found the results reported in
Fig. 10. Before proceeding with the discussions, note that,
for the sake of compactness and clarity, Fig. 10 displays
only 3 out of the 17 variants of the original Dunn’s index
(Dunn11) that were reviewed in Section 2.1.4, namely,
Dunn12, Dunn13, and Dunn62. These variants are those
that have shown the best overall performances in this first
part of the experiments.

The mean of the correlation values between each relative
criterion and the external criterion (Jaccard)—computed
over the whole collection of ND = 108 available values
(one per data set)—is displayed at the bottom bar of
Fig. 10. In this figure, the relative validity criteria have
been placed in the rows and columns of the top table
according to the ordering established by their correlation
means (decreasing order from top to bottom and from left
to right). The value displayed in each cell of the top table
corresponds to the difference between the correlation means
of the corresponding pair of relative criteria. A shaded cell
indicates that the corresponding difference is statistically

significant at the α = 5% level (one-sided test). Darker
shaded cells indicate that significance has been observed
with respect to both W/M-W and Friedman tests, whereas
lighter shaded cells denote significance with respect to one
of these tests only.

The analyses exemplified in Fig. 10 have also been car-
ried out for every possible scenario under evaluation, that
is to say, for all combinations of: two correlation mea-
sures (WGK and Pearson), two external criteria (Jaccard
and ARI), and two upper bounds for the number of clusters
(kmax = 8 and kmax = 25), thus resulting in eight different
tables similar to the one depicted in Fig. 10. From such
a complete set of tables8 (omitted here for the sake of
compactness) one can derive some interesting conclusions,
summarized below:

(1) In general, optimization-like criteria exhibited results
that are better than those provided by difference-like
criteria. In several evaluation scenarios, this is valid
with strong statistical significance.

(2) The optimization-like criteria that exhibited the
best performances were point-biserial, tau, ASWC,
ASSWC, PBM, SWC, SSWC, and VRC. These crite-
ria provided results that are better than those obtained

8 Available at http://www.icmc.usp.br/∼campello/Sub Pages/
Selected Publications.htm.
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Fig. 10 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 25.

by all difference-like criteria and by the original
Dunn’s index as well, with statistical significance.

(3) The different versions of the silhouette criterion pre-
sented comparable results. Then, once the simplified
versions (SSWC and ASSWC) have lower computa-
tional requirements, they may be preferred, especially
when dealing with large data sets.

(4) In general, Dunn12 and Dunn13 outperformed the
original criterion (Dunn11), particularly in those sce-
narios for which kmax = 25.

(5) The point-biserial criterion provided superior results
(with statistical significance) when compared with
all criteria, except gamma in the specific scenario
involving Pearson correlation and kmax = 8.

It is important to remark that differences were observed
between the performances of some criteria when switching
from kmax = 8 to kmax = 25. In particular, expressive drops
in performance were noticed when kmax = 25. This suggests
that the corresponding criteria are not robust to keep work-
ing accurately in the presence of bad quality partitions—in
this case formed by numbers of clusters quite different
from9 k∗. As such, these criteria may not be recommended
for real-world applications involving complicating factors
such as noisy data, overlapping clusters, high dimensional-
ity, among others. This is the case of G(+), gamma, and C-
index, whose performance losses took place with respect to
all correlation measures (Pearson/WGK) and external crite-
ria (Jaccard/ARI) when kmax = 25 (for illustration purposes,

9 It is worth noticing that k∗ = 2, 3, 4, or 5 in the experiments
reported in this section.
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Fig. 11 Scatter plot of normalized values of G(+) versus Jaccard
for partitions of a typical data set: kmax = 8.

scatter plots of G(+) versus Jaccard for a typical data set
are depicted in Figs. 11 and 12 for kmax = 8 and kmax = 25,
respectively). Curiously, C/

√
k behaved in the opposite

way, giving better results when kmax = 25. A detailed and
careful analysis of such a behavior does not favor the cri-
terion. As observed in Section 2.1.15, C/

√
k may be domi-

nated by the number of clusters, when this quantity is large
enough. More precisely, C/

√
k → 1/

√
k for large val-

ues of k. Such a decreasingly monotonic behavior of this
criterion as a function of k is analogous to the one exhib-
ited by some external criteria when the data set in hand
has a few clusters (small k∗), which is precisely the case
here addressed. This explains the misleading performance
of C/

√
k for kmax = 25 and reinforces the need for a careful
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Fig. 12 Scatter plot of normalized values of G(+) versus Jaccard
for partitions of a typical data set: kmax = 25.

design of the experiments and an attentive evaluation of the
results. Discussions on experiments especially designed to
detect biases with respect to the number of clusters, such
as the one just described, are covered in the second part of
the empirical evaluation (Section 6).

Comparative analyses of the results obtained using the
different (traditional and alternative) methodologies adopted
in this first part of the experiments were carried out with
the aim of detecting persisting and conflicting patterns
in the performance of the criteria under investigation.
From this standpoint, the main conclusions that can be
derived are:

(1) In absolute terms, trace(W), trace(CovW), Nlog
(|T|/|W|), Ball–Hall, and Dunn11 provided reason-
able results when the traditional methodology is
employed. However, their performances are poor
from the perspective of the alternative methodology.
This suggests that these criteria can estimate the num-
ber of clusters satisfactorily, but they are not accurate
when evaluating the quality of a collection of parti-
tions in relative terms (with respect to the information
provided by external criteria). Opposite behavior was
observed from point-biserial and tau.

(2) The criteria for which performances were superior
for both methodologies (being among the top ten in
both cases) are: SWC, SSWC, VRC, and PBM.

It is worth stressing that the results discussed in this
section were obtained using data partitions found by hier-
archical algorithms applied to data sets formed by a
small number of objects (N = 50), a few clusters (k∗ ∈
{2, 3, 4, 5}), and a small number of attributes (n ∈ {4, 6, 8}).

Aimed at investigating the behavior of the relative validity
criteria in a broader context, the following section presents
a complementary experimental study.

6. EXPERIMENTAL RESULTS—PART II

In this second part of our empirical evaluation, we report
the results of more comprehensive experiments, using larger
data sets formed by more diversified numbers of clusters
and attributes.

6.1. Data Sets

Milligan and Cooper used data sets formed by 50 objects,
possibly due to past computational limitations. As pre-
viously addressed, they used data sets formed by three
different numbers of dimensions (n ∈ {4, 6, 8}) and four
different numbers of clusters (k∗ ∈ {2, 3, 4, 5}). These were
also used here in this paper, in the first part of the exper-
iments (Section 5). In this second part of the experiments,
data sets formed by a number of objects ten times more
representative (N = 500) have been adopted. The num-
ber of dimensions and clusters have also been expanded
in order to obtain higher diversity in relation to these
characteristics, as well as to allow the study on how
these factors can affect the performance of relative valid-
ity criteria. Considering the number of dimensions, we
generated two subcategories of data sets: one of them
formed by fewer dimensions (n ∈ {2, 3, 4}) and the other
one formed by more dimensions (n ∈ {22, 23, 24}). Analo-
gously, two subcategories were conceived for the number
of clusters (k∗ ∈ {2, 4, 6} and k∗ ∈ {12, 14, 16}). To do so,
the same data set generator described in Section 5.1 was
employed.

Following the procedure adopted in Section 5.1, the
experimental design factors corresponding to the number
of clusters and dimensions were combined and crossed
with a third factor that determines the quantity of objects
in each cluster. This third factor consists of three levels.
The first level originates approximately balanced clusters.
In the second level, one of the clusters has 10% of the
objects, whereas the remaining objects are approximately
balanced among the other clusters. In the third level, one
of the clusters has 60% of the objects, and the remaining
objects are again approximately balanced among the other
clusters. However, this level may cause difficulties for data
sets formed by many clusters, for that it implies in forming
many clusters with just a few objects, thus making it harder
for a clustering algorithm to find a subset of good quality
partitions. For this reason, the third level has been changed
for data sets formed by k∗ ∈ {12, 14, 16} clusters, in such a
way that one of the clusters contains 20% (instead of 60%)
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of the objects. In brief, the three experimental design factors
described above have been combined, thus producing a set
of 108 (6 number of clusters × 6 dimensions × 3 balances)
experimental design cells to generate data sets. For better
statistical confidence, nine independent replications were
used for each cell, thus resulting in a collection of 972 data
sets.

Remark 4. Noisy data sets were not considered in the
experiments because the presence of noise could introduce
a confounding effect into the analyses of the behavior of the
validity criteria under investigation, namely, the behavior of
the clustering algorithms used to generate the data partitions
when they face noisy or noiseless data. However, notice
that, even in the absence of noise, the performances of the
validity criteria were evaluated when assessing partitions
of varied qualities. Indeed, a large amount of partitions
for each data set was generated that includes not only
good (possibly optimal) partitions, but bad partitions as
well, namely: (i) partitions with the number of clusters
very different from the number of natural clusters known to
exist in each the data set (k∗); and (ii) partitions that may
represent local optima of the clustering algorithm adopted
in this part of the experiments (see the next section).

6.2. Experimental Methodology

Following Milligan and Cooper’s methodology [14,27],
in the first part of this study (Section 5) we have adopted
hierarchical clustering algorithms to perform all the exper-
iments. In this part of the experiments, the classic k-means
algorithm [10] is adopted in lieu of hierarchical algorithms,
for the following main reasons: (i) k-means has been elected
and listed among the top ten most influential data mining
algorithms [55], possibly because it is both very simple and
quite scalable. Indeed, in contrast to the squared asymptotic
running time of hierarchical algorithms with respect to the
number of objects (N ), k-means has linear time complexity
with respect to any aspect of the problem size [55]; (ii) The
hierarchy produced by a hierarchical algorithm provides
only a single partition of the data set for every value of
k. For better confidence of the results, it is preferred here
to produce a number of partitions for every k by running
the k-means algorithm from different initializations of pro-
totypes (as randomly selected data objects). The use of a
number of partitions for every k allows increasing diver-
sity of the collection of partitions. The evaluation of such
a more diverse collection of partitions results in a more
reliable set of Nπ clustering validity values associated with
a given data set—refer to steps 2 and 3 of the comparison
procedure described in Section 4. In particular, 20 parti-
tions are obtained for every k ranging from k = 2 through

k = kmax, which represents an amount of (kmax − 1) × 20
partitions for each data set.

As in Section 5, two distinct evaluation scenarios with
respect to different values of kmax are considered here.
One of them is kmax = √

N (≈ 23 for N = 500). As this
value is close to the number of clusters in some of the
data sets adopted in this part of the experiments, k∗, we
also here assess partitions formed by kmax = 50. This value
allows evaluating partitions with a number of clusters, k,
significantly different from k∗.

In brief, k-means is repeatedly applied to each data set
with k varying from 2 to kmax, where kmax = 23 or kmax =
50. For each k, k-means runs 20 times, with different initial
prototypes. Thus, the algorithm produces Nπ = (50 − 1) ×
20 = 980 partitions for each data set, among which only
Nπ = (23 − 1) × 20 = 440 partitions are actually used in
the evaluation scenario with kmax = 23. Since there are 972
available data sets, a collection of 972 × 980 = 952, 560
partitions has been obtained. For each partition, the rel-
ative and external validity criteria can be computed and
the procedure described in Section 4 can be performed. To
do so, the 972 data sets are subdivided into four subcate-
gories, each of which formed by 243 data sets and charac-
terized by fewer or more dimensions (either n ∈ {2, 3, 4}
or n ∈ {22, 23, 24}) and clusters (either k∗ ∈ {2, 4, 6} or
k∗ ∈ {12, 14, 16}). The comparison procedure described in
Section 4 is then performed individually for each of these
subcategories in order to allow evaluating the influence of
the factors n and k∗ on the behavior of the relative validity
criteria.

Owing to the very high computational complexity of the
relative criteria known as gamma (Section 2.1.11), G(+)
(Section 2.1.12), and tau (Section 2.1.13), they could hardly
be used in real-world applications, especially those involv-
ing data sets with “large” N . For this reason, they have
not been assessed in the current experiments. Moreover,
difference-like criteria (Section 2.2) have not been included
into the current analyses as well, for they require a (hierar-
chical) relation of succession between partitions with con-
secutive values of k. This does not happen from multiple,
independent runs of k-means.

6.3. Results and Discussions

The final results obtained by means of the methodol-
ogy described in Section 4 using the Pearson correlation
coefficient, the Jaccard external criterion, and kmax = 50,
are presented in Figs. 13–17. The presentation scheme
and layout of these figures is precisely the same as that
adopted in Fig. 10. Figures 13–16 correspond to the results
achieved separately from each of the four subcategories
(formed by 243 data sets) involving combinations of more
(or fewer) dimensions and clusters. Figure 17 reports the
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Fig. 13 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 50, k∗ ∈ {2, 4, 6}, n ∈ {2, 3, 4}.

Fig. 14 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 50, k∗ ∈ {2, 4, 6}, n ∈ {22, 23, 24}.

results obtained from the overall collection of 972 data sets.
Note that, for compactness, Figs. 13–17 present only 3 (the
best ones in this part of the experiments) out of those 17
variants of Dunn’s index reviewed in Section 2.1.4, namely,
Dunn22, Dunn23, and Dunn62.

Analyses analogous to those reported in Figs. 13–17
were performed for all possible evaluation scenarios, i.e.
by varying the correlation measure (WGK or Pearson), the
external criterion (Jaccard or ARI), and the maximum num-
ber of clusters (kmax = 23 or kmax = 50), thus resulting in
40 different tables (2 correlation measures × 2 external cri-
teria × 2 values for kmax × 5 collections of data sets). Such
tables are omitted here for compactness reasons and are
available at http://www.icmc.usp.br/∼campello/Sub Pages/
Selected Publications.htm.

The main conclusions that can be derived from the 32
tables that correspond to the four subcategories of data sets
with different values of n and k∗ are the following10:

(1) For data sets formed by fewer dimensions, point-
biserial generally presented better results in the pres-
ence of fewer clusters.

(2) VRC generally presented better results in the pres-
ence of fewer clusters for data sets formed by more
dimensions. In addition, when data sets with fewer
clusters are considered, VRC generally presented

10 These conclusions refer to the individual performance of
each criterion whose behavior varied clearly across the different
subcategories of data.
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Fig. 15 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 50, k∗ ∈ {12, 14, 16}, n ∈ {2, 3, 4}.

Fig. 16 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 50, k∗ ∈ {12, 14, 16}, n ∈ {22, 23, 24}.

superior performance in the presence of more dimen-
sions. Then, it can be asserted that VRC exhibited
better results for data sets formed by more dimen-
sions and fewer clusters.

(3) In general, C-index showed better results for data
sets that contain more clusters, independently of
the number of dimensions. Opposite behavior was
observed from PBM, the variants of Dunn, and C/

√
k.

In what concerns C/
√

k, this is an expected result.
Indeed, it is an outcome of a confounding effect that
is inherent to the nature of this criterion, as previously
discussed in Section 5.3.

(4) The DB criterion showed a tendency to provide better
results for data sets with fewer dimensions. Such a

tendency was more prominent for data sets with fewer
clusters.

In relative terms, the main conclusions that can be
derived from the eight tables corresponding to the assess-
ments involving the complete collection of 972 data sets
are the following:

(1) (ASWC, ASSWC, SWC, SSWC, point-biserial,
PBM)>VRC>(C-index, DB, Dunn22, Dunn23,
Dunn62, Dunn11)

(2) (C-index, DB, Dunn22, Dunn23, Dunn62)>Dunn11

(3) ASWC>SSWC

(4) (SWC, ASWC)>PBM

(5) (DB, Dunn22)>Dunn62
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Fig. 17 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 50, k∗ ∈ {2, 4, 6, 12, 14, 16}, n ∈ {2, 3, 4, 22, 23, 24}.

where “>” means that a significant difference has been
observed between the respective criteria with respect to at
least one of the statistical tests adopted (W/M-W and/or
Friedman). A more conservative reading of the results, in
which better performance is asserted if and only if there
are significant differences with respect to both tests, allows
concluding that:

(1) (SWC, SSWC, ASWC, ASSWC, point-biserial, PBM)
>(VRC, C-index, DB, Dunn22, Dunn23, Dunn62,
Dunn11)

(2) VRC>(Dunn22, Dunn23, Dunn62, Dunn11)

(3) (C-index, DB)>Dunn11

(4) (SWC, ASWC)>PBM

(5) DB>Dunn62

To summarize, one can conclude from this second part
of the experiments that the silhouettes and point-biserial
presented the best results in relative terms, followed by
PBM and VRC. Among these criteria, only the silhouettes
showed to be almost insensitive (more robust) throughout
all the assessed scenarios.

7. CONCLUSIONS AND PERSPECTIVES

This paper has presented an overview of 40 relative clus-
tering validity criteria that includes an original comparative
asymptotic analysis of their computational complexities.
This overview has been divided into two parts, one of them
dedicated to optimization-like criteria and the other one
devoted to difference-like criteria. An effective formulation

to convert difference-like criteria into optimization-like
counterparts has been discussed.

An alternative, possibly complementary methodology for
comparing relative clustering validity criteria has been
described. Such a methodology has been especially
designed to get around conceptual limitations that may take
place when using the comparison paradigm traditionally
adopted in the literature. In particular: (i) it does not rely on
the assumption that the accuracy of a validity criterion can
be precisely quantified by the relative frequency with which
it indicates as the best partition a partition with the right
number of clusters; (ii) it does not rely on the assumption
that a mistake made by a certain validity criterion when
assessing a set of candidate partitions of a given data set
can be quantified by the absolute difference between the
right (known) number of clusters in those data and the
number of clusters contained in the partition elected as the
best one; and (iii) it does not rely solely on the correctness
of the single partition elected as the best one according to
that criterion. Getting rid of such over-simplified assump-
tions may make the alternative comparison methodology
more suitable to assess the performances of validity criteria
when trying to distinguish between better and worse par-
titions embedded in difficult application scenarios. In spite
of this, the alternative methodology should be seen as com-
plementary to the traditional one, especially because: (i) it
is applicable to the comparison of optimization-like crite-
ria only. When comparing simple stopping rules, which are
only able to estimate the number of clusters in data, the
traditional methodology is possibly the only choice; and
(ii) the traditional methodology focuses on a specific aspect
of the problem (the number of clusters). Insightful results—
such as those highlighted in the end of Section 5.3—can
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be revealed based on the simultaneous application of both
methodologies.

An extensive experimental comparison of the perfor-
mances of those 40 relative clustering validity criteria
surveyed in the manuscript has been accomplished. The
experiments have involved a collection of 962,928 parti-
tions derived by running five different clustering algorithms
(four hierarchical ones and k-means) over 1080 different
data sets of a given class of interest. Stringent analyses
of the results—based on two different external validity
indexes, two different correlation measures, two different
intervals for the maximum acceptable number of clusters,
and two different statistical tests—yielded a number of
interesting conclusions about the behavior of the criteria
under investigation. The behavior of the criteria when
assessing partitions of data sets with different amounts of
clusters and dimensions (attributes) has been explored. In
addition, experiments performed by Milligan and Cooper
in their 1985 paper [14] have been faithfully reproduced
with the inclusion of several validity criteria that were not
covered in that classic study.

Aside from a number of detailed observations related
to particular evaluation scenarios that have been discussed
along the manuscript, there are some elucidative overall
conclusions that have been derived from all the experi-
ments and the corresponding results. In general, the best
performances have been associated with the silhouettes,
PBM, VRC, and point-biserial. Among them, the silhou-
ettes have apparently shown the most robust performances
with respect to the different evaluation scenarios. The others
have exhibited some sort of sensitivity to at least one aspect
of the analysis (e.g. the number of attributes and/or clusters
in the data sets), mainly point-biserial and VRC. Inasmuch
as the simplified silhouettes have exhibited global perfor-
mances that are comparable to that of the original criterion,
they might be preferred when dealing with very large data
sets (due to their lighter computational requirements).

As a word of caution, it is worth remarking that the above
results and conclusions hold for a particular collection of
data sets. Since such a collection is reasonably represen-
tative of a particular class, namely, data with volumetric
clusters following normal distributions, it seems legitimate
to believe that similar results are likely to be observed for
other data sets of this class. However, nothing can be pre-
sumed about data sets that do not fall within this class, at
least not before new experiments involving such data are
performed.

Finally, it is also worth remarking that all the discus-
sions related to the experimental portion of this work make
sense under the assumption that the adopted reference par-
titions with known clusters following normal distributions
satisfy the user’s expectations of right partition. This seems

to be particularly meaningful for unsupervised clustering
practitioners looking for volumetric, well-behaved clusters.

Studies involving different classes of data sets and the
comparison of clustering validity criteria of a different
nature (e.g. for evaluation of fuzzy partitions) are interesting
subjects that deserve further research.

ACKNOWLEDGMENTS

This work was supported by the Brazilian National
Research Council (CNPq) and the Research Foundation of
the State of São Paulo (Fapesp).

REFERENCES

[1] L. Kaufman and P. Rousseeuw, Finding Groups in Data,
New York, NY, USA, Wiley, 1990.

[2] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis,
(4th ed.), London, UK, Edward Arnold, 2001.

[3] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory,
Algorithms, and Applications, Philadelphia, PA, USA, ASA-
SIAM, 2007.

[4] A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a
review, ACM Comput Surv 31 (1999), 264–323.

[5] R. Xu and D. C. Wunsch II. Survey of clustering algorithms,
IEEE Trans Neural Netw 16 (2005), 645–678.

[6] L. Wang and X. Fu, Data Mining with Computational
Intelligence, Secaucus, NJ, USA, Springer, 2005.

[7] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Upper Saddle River, NJ, USA, Prentice Hall, 1988.

[8] J. A. Hartigan, Clustering Algorithms, New York, Wiley,
1975.

[9] R. Xu and D. C. Wunsch II. Clustering, New York, NY,
USA, Wiley/IEEE Press, 2009.

[10] J. B. McQueen. Some methods of classification and analysis
of multivariate observations, In Proceedings 5th Berkeley
Symposium on Mathematical Statistics and Probability,
Berkeley, California, USA, 1967, 281–297.

[11] A. Dempster, N. Laird, and D. Rubin, Maximum likelihood
from incomplete data via the em algorithm, J R Stat Soc
39(1) (1977), 1–38.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Sparks, NV, USA, Springer, 2001.

[13] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, On clustering
validation techniques, J Intell Inf Syst 17 (2001), 107–145.

[14] G. W. Milligan and M. C. Cooper, An examination of
procedures for determining the number of clusters in a data
set, Psychometrika 50(2) (1985), 159–179.

[15] D. L. Davies and D. W. Bouldin, A cluster separation
measure, IEEE Trans Pattern Anal Mach Intell 1 (1979),
224–227.

[16] R. B. Calinski and J. Harabasz, A dentrite method for cluster
analysis, Commun Stat 3 (1974), 1–27.

[17] J. C. Dunn, Well separated clusters and optimal fuzzy
partitions, J Cybern 4 (1974), 95–104.

[18] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, Clustering
validity checking methods: Part II, SIGMOD Rec 31 (2002),
19–27.

[19] P. J. Rousseeuw, Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis, J Comput
Appl Math 20 (1987), 53–65.

Statistical Analysis and Data Mining DOI:10.1002/sam



Vendramin, Campello, and Hruschka: Relative Clustering Validity Criteria 235

[20] R. C. Dubes, How many clusters are best? An experiment,
Pattern Recognit 20 (1987), 645–663.

[21] J. C. Bezdek and N. R. Pal, Some new indexes of cluster
validity, IEEE Trans Syst Man Cybern B 28(3) (1998),
301–315.

[22] U. Maulik and S. Bandyopadhyay, Performance evaluation
of some clustering algorithms and validity indices, IEEE
Trans Pattern Anal Mach Intell 24(12) (2002), 1650–1654.

[23] E. H. Ruspini, Numerical methods for fuzzy clustering, Inf
Sci 2 (1970), 319–350.

[24] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and
A. C. P. L. F. de Carvalho, A survey of evolutionary
algorithms for clustering, IEEE Trans Syst Man Cybern C
39 (2009), 133–155.

[25] L. Hubert and P. Arabie, Comparing partitions, J Classif 2
(1985), 193–218.

[26] G. Casella and R. L. Berger, Statistical Inference (2th ed.),
California, USA, Duxbury Press, 2001.

[27] G. W. Milligan, A monte carlo study of thirty internal
criterion measures for cluster analysis, Psychometrika 46(2)
(1981), 187–199.

[28] L. Vendramin, R. J. G. B. Campello, and E. R. Hruschka,
On the comparison of relative clustering validity criteria,
In SIAM International Conference on Data Mining, Sparks,
NV, USA, 2009, 733–744.

[29] E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro,
Evolving clusters in gene-expression data, Inf Sci 176
(2006), 1898–1927.

[30] M. K. Pakhira, S. Bandyopadhyay, and U. Maulik, Validity
index for crisp and fuzzy clusters, Pattern Recognit Soc 37
(2004), 487–501.

[31] L. J. Hubert and J. R. Levin, A general statistical framework
for assessing categorical clustering in free recall, Psychol
Bull 10 (1976), 1072–1080.

[32] F. B. Baker and L. J. Hubert, Measuring the power of
hierarchical clustering analysis, J Am Stat Assoc 70(349)
(1975), 31–38.

[33] F. J. Rohlf, Methods of comparing classifications, Ann Rev
Ecol Syst 5 (1974), 101–113.

[34] M. G. Kendall and J. D. Gibbons, Rank Correlation
Methods, London, UK, Edward Arnold, 1990.

[35] R. J. G. B. Campello and E. R. Hruschka, On comparing
two sequences of numbers and its applications to clustering
analysis, Inf Sci 179 (2009), 1025–1039.

[36] D. A. Ratkowsky and G. N. Lance, A criterion for
determining the number of groups in a classification, Aust
Comput J 10 (1978), 115–117.

[37] R. S. Hill, A stopping rule for partitioning dendrograms, Bot
Gaz 141 (1980), 321–324.

[38] H. P. Friedman and J. Rubin, On some invariant criteria for
grouping data, J Am Stat Assoc 62 (1967), 1159–1178.

[39] A. J. Scott and M. J. Symons, Clustering methods bases on
likelihood ratio criteria, Biometrics 27 (1971), 387–397.

[40] S. J. Arnold, A test for clusters, J Mark Res 19 (1979),
545–551.

[41] F. H. C. Marriot, Practical problems in a method of cluster
analysis, Biometrics 27 (1971), 501–514.

[42] G. H. Ball and D. J. Hall, Isodata, A Novel Method of Data
Analysis and Pattern Classification. Menlo Park, Stanford
Research Institute, NTIS No. AD 699616, 1965.

[43] J. O. McClain and V. R. Rao, CLUSTISZ: a program to test
for the quality of clustering of a set of objects, J Mark Res
12 (1975), 456–460.

[44] I. J. Good, An index of separateness of clusters and a
permutation test for its statistical significance, J Stat Comput
Simul 15 (1982), 81–84.

[45] W. M. Rand, Objective criteria for the evaluation of
clustering methods, J Am Stat Assoc 66 (1971), 846–850.

[46] G. Saporta and G. Youness. Comparing two partitions: some
proposals and experiments, In Proceedings in Computational
Statistics, W. Hardle, ed., Berlin, Germany, Physica-Verlag,
2002.

[47] L. Denoeud, H. Garreta, and A. Guenoche. Comparison
of distance indices between partitions, In Proceedings 11th
Conference of the Applied Stochastic Models and Data
Analysis (ASMDA), Brest, France, 2005.

[48] R. Sharan and R. Shamir, Click: a clustering algorithm
with applications to gene expression analysis, In Proceedings
8th International Conference on Intelligent Systems for
Molecular Biology, Vienna, Austria, 2000, 307–316.

[49] D. Jiang, C. Tang, and A. Zhang, Cluster analysis for gene-
expression data: a survey, IEEE Trans Knowl Data Eng 16
(2004), 1370–1386.

[50] E. B. Fowlkes and C. L. Mallows, A method for comparing
two hierarchical clustering, J Am Stat Assoc 46 (1983),
553–569.

[51] D. L. Wallace, Comment on “a method for comparing
two hierarchical clustering”, J Am Stat Assoc 78 (1983),
569–576.

[52] G. W. Milligan and M. C. Cooper, A study of the
comparability of external criteria for hierarchical cluster
analysis, Multivariate Behav Res 21 (1986), 441–458.

[53] L. A. Goodman and W. H. Kruskal, Measures of association
for cross-classifications, J Am Stat Assoc 49 (1954),
732–764.

[54] M. F. Triola, Elementary Statistics, Don Mills, Ontario,
Canada, Addison Wesley, 1999.

[55] X. Wu, V. Kumar, J. R. Wuinlan, J. Ghosh, K. Yang,
H. Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu,
Z. H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg,
Top 10 algorithms in data mining, Knowl Inf Syst 14 (2008),
1–37.

Statistical Analysis and Data Mining DOI:10.1002/sam


