
Proving Program Correctness

Using the AG Semantics:

An Example with n-Queens

Amelia Harrison

May 22, 2018

Abstract

We show an example of how the proposal for the semantics of the
subset of the input language of gringo called AG can be used as the basis
for a proof of correctness of a program encoding the n-queens problem.

Gebser et al. (2015) proposed a semantics for a large subset of the input lan-
guage of the popular ASP grounder gringo. That subset is called AG, short for
Abstract Gringo, because it uses an abstract syntax. The semantics is based on
the definition of stable models for infinitary propositional formulas (Truszczyn-
ski, 2012), which are formulas with conjunctions and disjunctions over infinite
sets. It is defined in terms of a translation function τ that transforms ASP
programs into sets of infinitary propositional formulas.

One use of the semantics is as a tool for proving the correctness of programs
written in the gringo input language. To illustrate such a proof, let’s consider
the program in Table 1. Here we give a broad strokes overview of the proof
of correctness of that program presented by Gebser et al.(2015). This program
(which we will call program K) is an encoding for the n-queens problem: how
can n queens be placed on an n×n chess board such that no two queens threaten
each other?

To formally state what it means to be a solution to this problem, we can
represent squares by pairs of integers (i, j) where 1 ≤ i, j ≤ n. Two squares
(i1, j1) and (i2, j2) are said to be in the same row if i1 = i2, in the same column
if j1 = j2, and in the same diagonal if |i1 − i2| = |j1 − j2|. Then a set Q of n
squares is a solution to the n-queens problem if no two elements of Q are in the
same row, in the same column, or in the same diagonal.

We identify an atom of the form q(i, j) with the square (i, j). Now the claim
of the correctness of program K can be stated formally and succinctly:

A set of squares is a solution to the n-queens problem iff it is a stable
model of K.

1

% place queens on the chess board

{q(1..n, 1..n)} R1

% exactly 1 queen per row/column

← X = 1..n ∧ ınot count{Y : q(X,Y)} = 1 R2

← Y = 1..n ∧ ınot count{X : q(X,Y)} = 1 R3

% at most one queen per diagonal

← D = 1.. n×2−1 ∧ ınot count{X,Y :q(X,Y), D = X − Y + n} ≤ 1 R4

← D = 1.. n×2−1 ∧ ınot count{X,Y :q(X,Y), D = X + Y − 1} ≤ 1 R5

Table 1: Program K: An encoding of the n-queens problem.

To prove the claim using the AG semantics, the first step is to calculate the
translation of program K as a set of infinitary formulas. For example, the set ∧

1≤i,j≤n

(q(i, j) ∨ ¬q(i, j))


is the result of applying τ to rule R1 from Table 1. It is relatively easy to verify,
using the definition of stable models for infinitary formulas, that the stable
models of this formula alone correspond to arbitrary subsets of the squares in
an n by n board. On the other hand, the result of applying τ to rules R2–R5 is
a set of constraints, that is to say, infinitary formulas of the form ¬F . Then the
set τK can be partitioned into two parts: one which contains only constraints,
and the other whose stable models we’ve already described.

The following proposition, then will help to prove the claim. It is a straight-
forward generalization of Proposition 4 from Ferraris and Lifschitz (2005). Its
proof is a straightforward generalization of that proof.

Proposition 1 Let H1 be an infinitary formula H2 be a set of constraints. A
set I of atoms is a stable model of H1 ∪ H2 iff I is a stable model of H1 and
satisfies all formulas in H2.

To prove the claim based on the proposition, we treat τR1 as H1 and we
treat the result of applying τ to all other rules in K as H2. We know that stable
models of τR1 correspond to arbitrary sets of squares on an n×n board. Then
it suffices to show that an interpretation I satisfies τR2 iff no two squares in I
are in the same row, satisfies τR3 iff no two squares in I are in the same column,
and satisfies τR4 ∪ τR5 iff no two squares in I are in the same diagonal. Each

2

of these facts is relatively easy to establish based on the form of each of these
sets of constraints.

References

Ferraris, P. and Lifschitz, V. (2005). Mathematical foundations of answer set
programming. In We Will Show Them! Essays in Honour of Dov Gabbay,
pages 615–664. King’s College Publications.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., and Schaub, T. (2015).
Abstract Gringo. Theory and Practice of Logic Programming, 15:449–463.

Truszczynski, M. (2012). Connecting first-order ASP and the logic FO(ID)
through reducts. In Erdem, E., Lee, J., Lierler, Y., and Pearce, D., editors,
Correct Reasoning: Essays on Logic-Based AI in Honor of Vladimir Lifschitz,
pages 543–559. Springer.

3

