
The 2006 Federated Logic Conference

The Seattle Sheraton Hotel and Towers

Seattle, Washington

August 10 - 22, 2006

 ��

ICLP’06 Workshop

CICLOPS 2006:
Colloquium on Implementation of Constraint

LOgic Programming Systems

August 21st, 2006

Proceedings

Editors:

H-F. Guo and E. Pontelli

Preface

The last years have witnessed continuous progress in the technology available
both for academic and commercial computing environments. Examples include
more processor performance, increased memory capacity and bandwidth, faster
networking technology, and operating system support for cluster computing.
These improvements, combined with recent advances in compilation and imple-
mentation technologies, are causing high-level languages to be regarded as good
candidates for programming complex, real world applications. Techniques aiming
at achieving flexibility in the language design make powerful extensions easier to
implement; on the other hand, implementations which reach good performance
in terms of speed and memory consumption make declarative languages and
systems amenable to develop non-trivial applications.

Logic Programming and Constraint Programming, in particular, seem to of-
fer one of the best options, as they couple a high level of abstraction and a
declarative nature with an extreme flexibility in the design of their implementa-
tions and extensions and of their execution model. This adaptability is key to, for
example, the implicit exploitation of alternative execution strategies tailored for
different applications (e.g., for domain-specific languages) without unnecessarily
jeopardizing efficiency.

This workshop continues a tradition of successful workshops on Implementa-
tions of Logic Programming Systems, previously held with in Budapest (1993)
and Ithaca (1994), the Compulog Net workshops on Parallelism and Implemen-
tation Technologies held in Madrid (1993 and 1994), Utrecht (1995) and Bonn
(1996), the Workshop on Parallelism and Implementation Technology for (Con-
straint) Logic Programming Languages (ParImp) held in Port Jefferson (1997),
Manchester (1998), Las Cruces (1999), and London (2000), and more recently the
Colloquium on Implementation of Constraint and LOgic Programming Systems
(CICLOPS) in Paphos (Cyprus, 2001), Copenhagen (2002), Mumbai (2003),
Saint-Malo (France, 2004), and Sitges (Spain, 2005), and the CoLogNet Work-
shops on Implementation Technology for Computational Logic Systems held in
Madrid (2002), Pisa (2003) and Saint-Malo (France, 2004).

The workshop aims at discussing and exchanging experience on the design,
implementation, and optimization of logic and constraint (logic) programming
systems, or systems intimately related to logic as a means to express computa-
tions.

August 2006 Hai-Feng Guo & Enrico Pontelli
Workshop Chairs

CICLOPS’06

Organization

CICLOPS’06 is organized by the Departments of Computer Science at the Uni-
versity of Nebraska at Omaha and New Mexico State University, in cooperation
with the 2006 Federated Logic Conference (FLoC) and the Association for Logic
Programming.

Organizing Committee

Conference Chairs: Hai-Feng Guo (University of Nebraska at Om-
aha, USA)
Enrico Pontelli (New Mexico State University,
USA)

Program Commitee

Manuel Carro Polytechnic University of Madrid (Spain)
Bart Demoen KUL Leuven (Belgium)
Michel Ferreira University of Porto (Portugal)
Gopal Gupta University of Texas at Dallas (USA)
Vitor Santos Costa Federal University of Rio de Janeiro (Brasil)
Tom Schrijvers KUL Leuven (Belgium)
Christian Schulte KTH Royal Institute of Technology (Sweden)
Neng-Fa Zhou City University of New York (USA)

Table of Contents

Invited Talk: AR (Action Rules): The Language, Implementation,
and Applications . 1

Neng-Fa Zhou

Efficient Support for Incomplete and Complete
Tables in the YapTab Tabling System . 2

Ricardo Rocha

When Tabling Does Not Work . 18
Remko Tronçon, Bart Demoen, Gerda Janssens

Embedding Solution Preferences via Transformation 32
Hai-Feng Guo and Miao Liu

Towards Region-based Memory Management for Mercury Programs 47
Quan Phan and Gerda Janssens

Delay and Events in the TOAM and the WAM . 63
Bart Demoen and Phuong-Lan Nguyen

On Applying Deductive Databases to Inductive Logic Programming 80
Tiago Soares, Michel Ferreira, Ricardo Rocha, Nuno Fonseca

DBTAB: a Relational Storage Model for the YapTab Tabling System 95
Pedro Costa, Ricardo Rocha, Michel Ferreira

Linear Logic: Foundations, Applications and Implementations 110
Lukas Chrpa

IV

AR (Action Rules): The Language,
Implementation, and Applications

(Invited Talk)

Neng-Fa Zhou1

CUNY Brooklyn College and Graduate Center,
zhou@sci.brooklyn.cuny.edu

Abstract. AR is a rule-based event-driven language designed for pro-
gramming interactions needed in such applications as propagation-based
constraint solvers and graphical user interfaces. AR is a result of evo-
lution from delay constructs in early logic programming systems and
it supports events on domain variables available in several constraint
programming systems for programming constraint propagators. AR is
compiled into a spaghetti-stack machine which facilitates fast switching
of subgoals between suspended and active states. This architecture has
been shown to be vital for the high performance of the finite-domain
constraint solver and the CHR (Constraint Handling Rules) compiler in
B-Prolog. This tutorial is based on the papers [1,2,3,4].

References

1. Neng-Fa Zhou. Programming Finite-Domain Constraint Propagators in Action
Rules. To appear in Theory and Practice of Logic Programming. 2006.

2. Neng-Fa Zhou, Mark.Wallace, and Peter J. Stuckey. The dom Event and its Use in
Implementing Constraint Propagators. Technical Report, CUNY Compuer Science,
2006.

3. Tom Schrijvers, Neng-Fa Zhou, and Bart Demoen. Translating Constraint Han-
dling Rules into Action Rules. CHR’06, 2006.

4. Neng-Fa Zhou. A Constraint-based Graphics Library for B-Prolog. Software -
Practice and Experience, Vol. 33, No.13, pp.1199-1216, 2003.

Efficient Support for Incomplete and Complete

Tables in the YapTab Tabling System

Ricardo Rocha

DCC-FC & LIACC
University of Porto, Portugal

ricroc@ncc.up.pt

Abstract. Most of the recent proposals in tabling technology were de-
signed as a means to improve some practical deficiencies of current
tabling execution models. The discussion we address in this paper was
also motivated by practical deficiencies we encountered, in particular,
when dealing with incomplete and complete tables. Incomplete tables
became a problem when, as a result of a pruning operation, the compu-
tational state of a tabled subgoal is removed from the execution stacks
before being completed. On the other hand, complete tables became a
problem when the system runs out of memory. To handle incomplete
tables, we propose an approach that avoids re-computation when the al-
ready stored answers are enough to evaluate a repeated call. To handle
complete tables, we propose a memory management strategy that au-
tomatically recovers space from the tables when the system runs out of
memory. To validate our proposals, we have implemented them in the
YapTab tabling system as an elegant extension of the original design.

1 Introduction

Resolution strategies based on tabling [1,2] are able to reduce the search space,
avoid looping, and have better termination properties than traditional Prolog
models based on SLD resolution [3]. As a result, in the past years several al-
ternative tabling models have been proposed [4,5,6,7,8,9] and implemented in
systems like XSB, Yap, B-Prolog, ALS-Prolog and Mercury.

The basic idea behind tabling is straightforward: programs are evaluated
by storing answers for current subgoals in an appropriate data space, called the
table space. Whenever a repeated call is found, the subgoal’s answers are recalled
from the table instead of being re-evaluated against the program clauses. The
added power of tabling has proved its viability in application areas such as
Knowledge Based Systems [10,11], Program Analysis [12], and Inductive Logic
Programming [13].

More recently, the increasing interest in tabling technology led to further
developments and proposals that improve some practical deficiencies of current
tabling execution models. In [14], Sagonas and Stuckey proposed a mechanism,
named just enough tabling, that offers the capability to arbitrarily suspend and
resume a tabled evaluation without requiring full re-computation. In [15], Saha

Support for Incomplete and Complete Tables 3

and Ramakrishnan proposed an incremental evaluation algorithm for maintain-
ing the freshness of tables that avoids recomputing the full set of answers when
the program changes upon addition or deletion of facts/rules. In [16], Rocha et
al. proposed the ability to support dynamic mixed-strategy evaluation of the
two most successful tabling scheduling strategies, batched and local scheduling.

All these recent proposals were designed as a means to improve the per-
formance of particular applications in key aspects of tabled evaluation like re-
computation and scheduling. The discussion we address in this work was also
motivated by our recent attempt [13] of applying tabling to Inductive Logic Pro-
gramming (ILP). ILP applications are very interesting for tabling because they
have huge search spaces and do a lot of re-computation. Moreover, we found
that they are an excellent case study to improve some practical deficiencies of
current tabling execution models. In particular, in this paper we focus on the
table space and how to efficiently handle incomplete and complete tables.

A table is said to be complete when its set of stored answers represent all the
conclusions that can be inferred from the set of facts and rules in the program for
the subgoal call associated with the table. Otherwise, it is said to be incomplete.
A table for a tabled subgoal is thus marked as complete when, during evaluation,
it is determined that all possible resolutions for the subgoal have been made and,
therefore, no more answers can be found.

Incomplete tables became a problem when, as a result of a pruning operation,
the computational state of a tabled subgoal is removed from the execution stacks
before being completed. We may have found several answers but not the complete
set. Thus, when a repeated call appears, we cannot simply load answers from
an incomplete table, because we may loose part of the computation. The usual
approach implemented in most tabling systems is to throw away the already
found answers and restart the evaluation from the beginning when a repeated call
appears. In this paper, we propose a more aggressive approach and, by default,
we keep incomplete tables for pruned subgoals. Then, later, when a repeated
call appears, we start by consuming the available answers from the incomplete
table, and only if we exhaust all such answers, we restart the evaluation from
the beginning. The idea is to avoid any re-computation when the already stored
answers are enough to evaluate a repeated call.

On the other hand, complete tables can also be a problem, but when the sys-
tem runs out of memory space. For such cases we need to compromise efficiency
and throw away some of the tables in order to recover space and let the com-
putation continue. Memory handling is a serious problem when we use tabling
for applications that store large answers and/or a huge number of answers. The
common control implemented in most tabling systems is to have a set of tabling
primitives that the programmer can use to dynamically abolish some of the ta-
bles. In this paper, we propose a more robust approach, a memory management
strategy, based on a least recently used algorithm, that automatically recovers
space from the tables when the system runs out of memory.

To validate our proposals, we have implemented them in the YapTab tabling
system as an elegant extension of the original design [5]. To the best of our knowl-

4 Ricardo Rocha

edge, YapTab is the first tabling system that implements support for incomplete
and complete tables as discussed above. Results using the April ILP system [17]
showed very substantial performance gains and a substantial increase of the size
of the problems that can be solved by combining ILP with tabling. Despite the
fact that we use ILP as the motivation for this work, the problems, proposals
and results that we discuss next are not restricted to ILP applications and can
be generalised and applied to any other application.

The remainder of the paper is organized as follows. First, we briefly intro-
duce some background concepts and discuss the motivation for our work. Next,
we present our proposals and describe the issues involved in providing engine
support for integrating them in the YapTab tabling system. We then present
some experimental results and outline some conclusions.

2 Background and Motivation

To discuss the motivation for our work, we start by introducing some basic
concepts about tabling and ILP and then we address the practical deficiencies
encountered when combining them.

2.1 Basic Tabling Definitions

Tabling is about storing answers for subgoals so that they can be reused when
a repeated call appears. The nodes in a tabled evaluation are classified as ei-
ther: generator nodes, corresponding to first calls to tabled subgoals; consumer
nodes, corresponding to repeated calls to tabled subgoals; or interior nodes, cor-
responding to non-tabled subgoals. Tabling based models have four main types
of operations for definite programs:

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if
the subgoal is in the table. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table,
and allocates a new generator node.

2. The new answer operation verifies whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

3. The answer resolution operation verifies whether extra answers are available
for a particular consumer node and, if so, consumes the next one. If no
unconsumed answers are available, it suspends the current computation and
schedules a backtracking node to continue the execution.

4. The completion operation determines whether a tabled subgoal is completely
evaluated. It executes when backtracking to a generator node and all of its
clauses have been tried. If the subgoal is completely evaluated, the operation
marks the corresponding table entry as complete and reclaims stack space.
Otherwise, control moves to a consumer with unconsumed answers.

We could delay completion until the very end of the execution. Unfortu-
nately, doing so would also mean that we could only recover space for consumers

Support for Incomplete and Complete Tables 5

(suspended subgoals) at the very end of the execution. Instead we shall try to
achieve incremental completion [18] to detect whether a generator node has been
fully exploited and, if so, to recover space for all its consumers. Moreover, if we
call a repeated subgoal that is already completed, then we can avoid consumer
node allocation and perform instead what is called a completed table optimiza-
tion [19]. This optimization allocates a node, similar to an interior node, that
will consume the set of found answers executing compiled code directly from the
table data structures associated with the completed subgoal.

2.2 Inductive Logic Programming

The fundamental goal of an ILP system is to find a consistent and complete the-
ory (logic program), from a set of examples and prior knowledge, the background
knowledge, that explains all given positive examples, while being consistent with
the given negative examples. Since it is not usually obvious which set of hypothe-
ses should be picked as the theory, an ILP system must traverse the hypotheses
space searching for a set of hypotheses (clauses) with the desired properties.

Computing the coverage of a hypothesis requires, in general, running posi-
tives and negatives examples against the clause. For instance, to evaluate if the
hypothesis ‘theory(X):- a1(X),a2(X,Y).’ covers the example theory(p1),
the system executes the goal once(a1(p1),a2(p1,Y)). The once/1 predicate is
a primitive that prunes over the search space preventing the unnecessary search
for further answers. It is defined in Prolog as ‘once(Goal):- call(Goal),!.’.
Note that the ILP system is only interested in evaluating the coverage of the
hypothesis, and not in finding answers for the goal.

Now assume that the previous hypothesis obtains a good coverage, that is,
the number of positive examples covered by it is high and the number of negative
example is low. Then, it is quite possible that the system will use it to generate
more specific hypotheses such as ‘theory(X):- a1(X),a2(X,Y),a3(Y).’. If the
same example, theory(p1), is then evaluated against this new hypothesis, goal
once(a1(p1),a2(p1,Y),a3(Y)), part of the computation will be repeated. For
data-sets with a large number of examples, we can arbitrarily do a lot of re-
computation. Tabling technology is thus an excellent candidate to significantly
reduce the execution time for these kind of problems.

2.3 Tabling and Inductive Logic Programming

Consider now that we declare predicate a2/2 as tabled. Coverage computation
with tabled evaluation works fine when examples are not covered by hypotheses.
In such cases, all the tabled subgoals in a clause are completed. For instance,
when evaluating the goal once(a1(p1),a2(p1,Y),a3(Y)), if the subgoal a3(Y)
never succeeds then, by backtracking, a2(p1,Y) will be completely evaluated.
On the other hand, tabled evaluation can be a problem when examples are suc-
cessfully covered by hypotheses. For example, if once(a1(p1),a2(p1,Y),a3(Y))
eventually succeeds, then the once/1 primitive will reclaim space by pruning the
goal at hand. However, as a2(p1,Y) may still succeed with other answers for

6 Ricardo Rocha

Y, its table entry cannot be marked as complete. Thus, when a repeated call to
a2(p1,Y) appears, we cannot simply load answers from its incomplete table, be-
cause we may loose part of the computation. A question then arises: how can we
make tabling worthwhile in an environment that potentially generates so many
incomplete tables?

In previous work [13], we first studied this problem by taking advantage of
YapTab’s functionality that allows it to combine different scheduling strategies
within the same evaluation [16]. Our results showed that best performance can
be achieved when we evaluate some subgoals using batched scheduling and oth-
ers using local scheduling. Batched scheduling is the default strategy, it schedules
the program clauses in a depth-first manner as does the WAM. This strategy
favors forward execution, when new answers are found the evaluation automat-
ically propagates the answer to solve the goal at hand. Local scheduling is an
alternative strategy that tries to force completion before returning answers. The
key idea is that whenever new answers are found, they are added to the table
space, as usual, but execution fails. Answers are only returned when all program
clauses for the subgoal at hand were resolved.

At first, local scheduling seems more attractive because it avoids the pruning
problem mentioned above. When the once/1 primitive prunes the search space,
the tables are already completed. On the other hand, if the cost of fully gener-
ating the complete set of answers is very expensive, then the ILP system may
not always benefit from it. It can happen that, after completing a subgoal, the
subgoal is not called again or when called it succeeds just by using the initial
answers, thus, making it useless to compute beforehand the full set of answers.
Another major problem with mixed-strategy evaluation, is that, from the pro-
grammer’s point of view, it is very difficult to define beforehand the subgoals to
table using one or another strategy. The approach we propose in this work can
be seen as a compromise between the efficiency of batched scheduling and the
effectiveness of local scheduling. We want to favor forward execution in order to
quickly succeed with the coverage evaluation of the hypotheses, but we also want
to be able to reuse the already found answers in order to avoid re-computation.

When applying tabling to ILP, we can also explore the fact that an impor-
tant characteristic of ILP systems is that they generate candidate hypotheses
which have many similarities among them. Usually, these similarities tend to
correspond to common prefixes (conjunction of subgoals) among the candidate
hypotheses. Thus, if we are able to table these conjunction of subgoals, we only
need to compute them once. This strategy can be recursively applied as the sys-
tem generates more specific hypotheses. This idea is similar to the query packs
technique proposed by Blockeel et al. [20].

However, to recursively table conjunction of subgoals, we need to store a
large number of tables, and thus, we may increase the table memory usage ar-
bitrarily and quickly run out of memory [13]. Therefore, at some point, we need
to compromise efficiency and throw away some of the tables in order to recover
space and let the computation continue. A first approach is to let the program-
mer dynamically control the deletion of the tables. However, this can be hard

Support for Incomplete and Complete Tables 7

to implement and difficult to decide what are the potentially useless tables that
should be deleted. In order to allow useful deletion without compromising effi-
ciency, in this work, we propose a more robust approach, a memory management
strategy based on a least recently used replacement algorithm that automatically
recovers space from the tables when the system runs out of memory.

We next describe how we extended the YapTab tabling system to provide
engine support for handling incomplete and complete tables as discussed above.

3 Handling Incomplete Tables

This section describes our proposal to handle incomplete tables. The main goal
of our proposal is to avoid re-computation when the answers in an incomplete
table are enough to evaluate a repeated call. To support that, we thus keep
incomplete tables for pruned subgoals. Then, when a repeated call to a pruned
subgoal appears, we start by consuming the available answers from its incomplete
table, and only if we exhaust all such answers, we restart the evaluation from
the beginning. Later, if the subgoal is pruned again, then the same process is
repeated until eventually the subgoal is completely evaluated. We next describe
how we extended the YapTab tabling system to support incomplete tables.

3.1 Implementation Details

In YapTab, tables are implemented using tries as proposed in [19]. An impor-
tant data structure in the table space is the subgoal frame. For each different
tabled subgoal call, a different subgoal frame is used to store information about
the subgoal. In particular, part of that information includes a pointer to where
answers are stored, the SgFr answers field, and a flag indicating the state of the
subgoal, the SgFr state field (see Fig. 1 for details).

Choice Point Stack Table Space

generator
choice point

CP_SgFr SgFr_state

answer
trie

structure

subgoal frame

SgFr_answers

SgFr_try_answer

ready
evaluating
complete
incomplete

Fig. 1. Generator choice points and subgoal frames in YapTab

During evaluation, a subgoal frame can be in one of the following states:
ready, i.e., without a corresponding generator in the choice point stack; evaluat-
ing, i.e., with a generator being evaluated; or complete, i.e., with the generator

8 Ricardo Rocha

no longer present but with the subgoal fully evaluated. At the engine level, gen-
erator nodes are implemented as WAM choice points extended with two extra
fields. One of these fields, the CP SgFr field, points to the associated subgoal
frame in the table space.

To support incomplete tables, we have introduced two minor changes to the
subgoal frame data structure. First, a new incomplete state, marks the subgoals
whose corresponding generators were pruned from the execution stacks. Second,
when we are consuming answers from an incomplete table as a result of a re-
peated call to a previously pruned subgoal, a new SgFr try answer field marks
the currently loaded answer (similarly to what consumer nodes have). As an
optimization, if a subgoal has no answers when its generator is pruned, then we
can avoid marking its table as incomplete. Instead, we can mark it as ready and,
when a repeated call appears, proceed as if it was the first call.

Handling incomplete tables also required minor changes to the tabled subgoal
call operation. Figure 2 shows how we extended the tabled subgoal call()

instruction to deal with incomplete tables.

tabled_subgoal_call(subgoal SG) {

sg_fr = search_table_space(SG) // sg_fr is the subgoal frame for SG

if (SgFr_state(sg_fr) == ready) {

gen_cp = store_generator_node(sg_fr)

SgFr_state(sg_fr) = evaluating

CP_AP(gen_cp) = failure_continuation_instruction() // second clause

goto next_instruction()

} else if (SgFr_state(sg_fr) == evaluating) {

cons_cp = store_consumer_node(sg_fr)

goto answer_resolution(cons_cp) // start consuming answers

} else if (SgFr_state(sg_fr) == complete) {

goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == incomplete) { // new block of code

gen_cp = store_generator_node(sg_fr)

SgFr_state(sg_fr) = evaluating

first = get_first_answer(sg_fr)

load_answer_from_trie(first)

SgFr_try_answer(sg_fr) = first // mark the current loaded answer

CP_AP(gen_cp) = table_try_answer // new instruction

goto continuation_instruction()

}

}
Fig. 2. Pseudo-code for tabled subgoal call()

The new block of code that deals with incomplete tables is similar to the block
that deals with first calls to tabled subgoals (ready state flag). It also stores a
generator node, but instead of using the program clauses to evaluate the subgoal
call, as usual, it starts by loading the first available answer from the incomplete
table. The subgoal’s SgFr try answer field is made to point to this first answer.

Support for Incomplete and Complete Tables 9

A second difference is that the failure continuation pointer of the generator choice
point, the CP AP field, is now updated to a special table try answer instruction.

The table try answer instruction implements a variant of the answer reso-
lution operation (see section 2.1). Figure 3 shows the pseudo-code for it. Initially,
the table try answer instruction checks if there are more answers to be con-
sumed, and if so, it loads the next one and updates the SgFr try answer field.
When this is not the case, all available answers have been already consumed.
Thus, we need to restart the computation from the beginning. The program
counter is made to point to the first clause corresponding to the subgoal call
at hand and the failure continuation pointer of the generator is updated to the
second clause. At this point, the evaluation is in the same computational state as
if we had executed a first call to the tabled subgoal call operation. The difference
is that the table space for our subgoal already stores some answers.

table_try_answer(generator GEN) {

sg_fr = CP_SgFr(GEN)

last = SgFr_try_answer(sg_fr) // get the last loaded answer

next = get_next_answer(last)

if (next) { // answers still available

load_answer_from_trie(next)

SgFr_try_answer(sg_fr) = next // update the current loaded answer

goto continuation_instruction()

} else { // restart the evaluation from the first clause

PREG = get_compiled_code(sg_fr) // PREG is the program counter

CP_AP(GEN) = failure_continuation_instruction() // second clause

goto next_instruction()

}

}
Fig. 3. Pseudo-code for table try answer()

We should remark that the use of generator nodes to implement the calls to
incomplete tables is strictly necessary to maintain unalterable all the remaining
data structures and algorithms of the tabling engine. Note that, at the engine
level, these calls are again the first representation of the subgoal in the execution
stacks because the previous representation has been pruned.

3.2 Discussion

Let us consider again the previous ILP example and the evaluation of the goal
once(a1(p1),a2(p1,Y),a3(Y)) with predicate a2/2 declared as tabled. Con-
sider also that, after a long computation for a2(p1,Y), we found three answers:
Y=y1, Y=y2, and Y=y3, and that a3(Y) only succeeds for Y=y3. Primitive once/1
then prunes the goal at hand and a2(p1,Y) is marked as incomplete. Now as-
sume that, later, the ILP system calls again a2(p1,Y)when evaluating a different
goal, for example, once(a2(p1,Y),a4(Y)). If a4(Y) succeeds with one of the
previously found answers: Y=y1, Y=y2, or Y=y3, then no evaluation will be re-
quired for subgoal a2(p1,Y). This is the typical case where we can profit from

10 Ricardo Rocha

having incomplete tables. The gain in the execution time is proportional to the
cost of evaluating the subgoal from the beginning until generating the proper
answer.

On the other hand, if a4(Y) does not succeed with any of the previously found
answers, then a2(p1,Y) will be reevaluated as a first call. Therefore, for such a
case, we do not take any advantage of having maintained the incomplete table.
This means that all the answers stored in the table, Y=y1, Y=y2 and Y=y3, will be
generated again. However, as these answers are repeated, a4(Y) will not be called
again for them. The evaluation will fail until a non-repeated answer is eventually
found. Thus, the computation time required to evaluate once(a2(p1,Y),a4(Y))
for these answers, either with or without the incomplete table, is then equivalent.
Therefore, we may not benefit from having maintained the incomplete table, but
we do not pay any cost either.

Our proposal is closer to the spirit of the just enough tabling (JET) proposal
of Sagonas and Stuckey [14]. In a nutshell, the JET proposal offers the capabil-
ity to arbitrarily suspend and resume a tabled evaluation without requiring any
re-computation. The basic idea is that JET copies the execution stacks corre-
sponding to pruned subgoals to an auxiliary area in order to be able to resume
them later when a repeated call appears. The authors argue that the cost of JET
is linear in the number of choice points which are pruned. However, to the best
of our knowledge, no practical implementation of JET was yet been done.

Compared to JET, our approach does not require an auxiliary data space,
does not require any complex dependencies to maintain information about pruned
subgoals, and does not introduce any overhead in the pruning process. We thus
believe that the simplicity of our approach can produce comparable results to
JET when applied to real applications like ILP applications.

4 Handling Complete Tables

This section describes our proposal to handle complete tables when the system
runs out of memory. We propose a memory management strategy that automat-
ically recovers space from the least recently used tables. Note that this proposal
is completely orthogonal to the previous one, that is, we can support both in-
dependently but we can also support both simultaneously. In what follows, we
will consider the case where YapTab also includes support for incomplete tables
as described in the previous section. Therefore and despite the fact that here
we are focusing the case of complete tables, we will include in the spirit of our
proposal the case of incomplete tables too.

4.1 Implementation Details

In YapTab, each subgoal call is represented by a different subgoal frame in the
table space. Besides this representation, a subgoal can also be represented in
the execution stacks. First calls to tabled subgoals or calls to pruned subgoals

Support for Incomplete and Complete Tables 11

are represented by generator nodes; repeated calls to tabled subgoals are repre-
sented by consumer nodes; and calls to completed subgoals are represented by
interior nodes that execute compiled code directly from the answer trie struc-
ture associated with the completed subgoal. A subgoal is said to be active if it is
represented in the execution stacks. Otherwise, it is said to be inactive. Inactive
subgoals are thus only represented in the table space.

A subgoal can also be in one of the following states: ready, evaluating, com-
plete or incomplete. The ready and incomplete states correspond to situations
where the subgoal is inactive, while the evaluating state corresponds to a situa-
tion where the subgoal is active. The complete state is a special case because it
can correspond to both active and inactive situations. In order to be able to dis-
tinguish these two situations, we introduced a new state named complete-active.
We use the complete-active state to mark the completed subgoals that are also
active in the execution stacks, while the previous complete state is used to mark
the completed subgoals that are only represented in the table space. With this
simple extension, we can now use the SgFr state field of the subgoal frames to
decide if a subgoal is currently active or inactive.

Knowing what subgoals are active or inactive is important when the system
runs out of memory. Obviously, active subgoals cannot be removed from the
table space because otherwise we may loose part of the computation or produce
errors. Therefore, when the system runs out of memory, we should try to recover
space from the inactive subgoals. Figure 4 shows how we extended the YapTab
system to handle inactive subgoals.

answer
trie

structure

answer
trie

structure

inactive_sg_fr Table Space

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

space that can be potentially recovered

Inact_recover

Inact_least

Inact_most

ready complete incomplete complete

dummy node yes/no answer

Fig. 4. Handling inactive subgoals in YapTab

Subgoal frames corresponding to inactive subgoals are stored in a double
linked list that is accessible by a new data structure named inactive sg fr.
The Inact least and Inact most fields point respectively to the least and most
recently inactive subgoal frames. A third field, Inact recover, points to the

12 Ricardo Rocha

next inactive subgoal frame from where space can be potentially recovered. Two
subgoal frame fields, SgFr next and SgFr previous, link the list. Space from
inactive subgoals is recovered as presented next in Fig. 5.

recover_space(structure data type STR_TYPE) {

// STR_TYPE is the data type that we failed to allocate space for

sg_fr = Inact_recover(inactive_sg_fr)

do {

if (sg_fr == NULL) // end of list

return

if (get_first_answer(sg_fr)) { // subgoal frame with answers

free_answer_trie_structure(sg_fr) // recover space

SgFr_state(sg_fr) = ready // reset the frame state

}

sg_fr = SgFr_next(sg_fr)

} while (no_space_available_for(STR_TYPE))

Inact_recover(inactive_sg_fr) = sg_fr // update recover field

}
Fig. 5. Pseudo-code for recover space()

The recover space() procedure is called when the system fails to allocate
memory space for a specific data type, the STR TYPE argument. It starts from the
subgoal frame pointed by the Inact recover field and then it uses the SgFr next

field to navigate in the list of inactive subgoals until at least a page of memory be
recovered for the given data type. YapTab uses a page-based memory allocation
scheme where each page only stores data structures of the same type, and thus,
to start using a memory page to allocate a different data structure we first need
to completely deallocate all the previous data structures from the page.

When recovering space, we only consider the subgoals that store at least
one answer (completed subgoals with a yes/no answer are kept unalterable)
and for these we only recover space from their answer trie structures. Through
experimentation we found that, for a large number of applications, the space
required by all the other table data structures is insignificant when compared
with the space required by the answer trie structures (usually more than 99% of
the total space). Therefore, only sporadically, we are able to recover space from
the non-answer related data structures. We thus argue that the potential benefit
of recovering space from these structures does not compensate its cost.

During evaluation, an inactive subgoal can be made active again. This occurs
when we execute a repeated call to an inactive subgoal. For such cases, we thus
need to remove the corresponding subgoal frame from the inactive sg fr list.
On the other hand, when a subgoal turns inactive, its subgoal frame is inserted
in the inactive sg fr list as the most recently inactive frame. A subgoal turns
inactive when it executes completion, it is pruned or it fails from an interior
node that was executing compiled code from the answer trie structure.

Support for Incomplete and Complete Tables 13

This latter case can be complicated because we can have several interior nodes
executing compiled code from the same answer trie. Only when the computation
fails from the last (older) interior node should the corresponding subgoal be
made inactive. To correctly implement that we use the trail stack. The call
that first executes code for a completed subgoal changes the subgoal’s state
to complete-active and stores in the trail stack the reference to the subgoal
frame. Further calls for the same subgoal (cases where the subgoal’s state is now
complete-active) are handled as before. Figure 6 shows how we extended the
tabled subgoal call() instruction to support this.

tabled_subgoal_call(subgoal SG) {

sg_fr = search_table_space(SG) // sg_fr is the subgoal frame for SG

if (SgFr_state(sg_fr) == ready) {

remove_from_inactive_list(sg_fr) // new

...

} else if (SgFr_state(sg_fr) == evaluating) {

...

} else if (SgFr_state(sg_fr) == complete) {

remove_from_inactive_list(sg_fr) // new

SgFr_state(sg_fr) = complete-active // new

trail(sg_fr) // new

goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == complete-active) { // new state

goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == incomplete) {

remove_from_inactive_list(sg_fr) // new

...

}

}
Fig. 6. Extended pseudo-code for tabled subgoal call()

When later backtracking occurs, we use the reference in the trail stack to
correctly insert the subgoal in the inactive sg fr list. This use of the trail
stack does not introduce any overhead because the YapTab engine already uses
the trail to store information beyond the normal variable trailing (to control
dynamic predicates, multi-assignment variables and frozen segments).

4.2 Discussion

A common control implemented in most tabling systems, YapTab included, is
to have a set of tabling primitives that the programmer can use to dynamically
abolish some of the tables. With our approach, the programmer can still force
the deletion of particular tables, but can also rely on the effectiveness of the
memory management algorithm to completely avoid the problem of deciding
what potentially useless tables should be deleted.

14 Ricardo Rocha

However, we can still increase the table memory space arbitrarily. This can
happen if the space required by the set of active subgoals exceeds the available
memory space and we are not able to recover any space from the set of inactive
subgoals. A possible solution for this problem is to store data externally using, for
example, a relational database system. We are already studying how this can be
done, that is, how we can partially move tables to database storage and efficiently
load them back to the tabling engine. This idea can also be applied to inactive
subgoals and, in particular, we can eventually use our memory management
algorithm, not to decide what tables to delete but, to decide what tables to
move to the database.

5 Experimental Results

To evaluate the impact of our proposals, we ran the April ILP system [17] with
YapTab. The environment for our experiments was a Pentium M 1600MHz pro-
cessor with 1 GByte of main memory and running the Linux kernel 2.6.11.

We first experimented our support to handle incomplete tables and, for that,
we used a well-known ILP data-set, the Mutagenesis data-set, with two differ-
ent configurations that we named Mutagen1 and Mutagen2. The main difference
between the configurations is that the hypotheses space is searched differently.
Table 1 shows the running times, in seconds, for Mutagen1 and Mutagen2 using
four different approaches to evaluate the predicates in the background knowl-
edge: (i) without tabling; (ii) using local scheduling; (iii) using batched schedul-
ing; and (iv) using batched scheduling with support for incomplete tables. The
running times include the time to run the whole ILP system. During evalua-
tion, Mutagen1 and Mutagen2 call respectively 1479 and 1461 different tabled
subgoals and, for batched scheduling, both end with 76 incomplete tables.

Tabling Mode Mutagen1 Mutagen2

Without tabling > 1 day > 1 day
Local scheduling 153.9 143.3
Batched scheduling 278.2 137.9
Batched scheduling with incomplete tables 122.9 117.6

Table 1. Running times with and without support for incomplete tables

Our results show that, by combining batched scheduling with incomplete
tables, we can further speedup the execution for these kind of problems. Batched
scheduling allows us to favor forward execution and incomplete tables allows us
to avoid re-computation. However, for some subgoals, local scheduling can be
better than batched scheduling with incomplete tables. We can benefit from
local scheduling when the cost of fully generating the complete set of answers is
less than the cost of evaluating the subgoal several times as a result of several
pruning operations. Better results are thus still possible if we use YapTab’s
flexibility that allows to intermix batched with local scheduling within the same
evaluation. However, from the programmer point of view, it is very difficult to
define the subgoals to table using one or another strategy. We thus argue that

Support for Incomplete and Complete Tables 15

our combination of batched scheduling with incomplete tables is an excellent
(and perhaps the best) compromise between simplicity and good performance.

We next show how we used another well-known ILP data-set, the Carcino-
genesis data-set, to experiment with our second proposal. From our previous
work on tabling conjunctions of subgoals, we selected one of the hypotheses that
allocates more memory when computing its coverage against the set of examples
in the Carcinogenesis data-set. That hypothesis is defined by a prefix that repre-
sents the conjunction of 5 tabled subgoals with a total of 20 arguments. Table 2
shows the running times in seconds (or m.o. for memory overflow) for computing
its coverage with four different table limit sizes: 576, 384, 192 and 128 MBytes
(the table limit size is defined statically when the system starts). In parentheses,
it shows the number of executions of the recover space() procedure.

Tabling Mode 576MB 384MB 192MB 128MB

Local scheduling 15.2 15.9(95) 16.9(902) m.o.(893)
Batched scheduling 11.4 12.6(62) 14.1(523) m.o.(557)
Batched scheduling with incomplete tables 11.1 12.3(91) 13.9(833) m.o.(833)

Table 2. Running times with different table limit sizes

Through experimentation, we found that this computation requires a total
table space of 576 MBytes if not recovering any space, and a minimum of 160
MBytes if using our recovering mechanism (for Pentium-based architectures,
YapTab allocates memory in segments of 32 MBytes). The results obtained with
this particular example show that batched scheduling with incomplete tables is
again the best approach. The results also suggest that our recovering mechanism
is quite effective in performing its task (for a memory reduction of 66% in table
space it introduces an average overhead between 10% and 20% in the execution
time). The impact of our proposal in the execution time depends, in general,
on the size of the table space and on the specificity of the application being
evaluated, i.e., on the number of times it may call subgoals whose tables were
previously deleted by the recovering procedure.

6 Conclusions

In this paper, we have discussed some practical deficiencies of current tabling
systems when dealing with incomplete and complete tables. Incomplete tables
became a problem when, as a result of a pruning operation, the computational
state of a tabled subgoal is removed from the execution stacks before being
completed. On the other hand, complete tables became a problem when the
system runs out of memory space.

To handle incomplete tables, we proposed the ability to avoid re-computation
by keeping incomplete tables for pruned subgoals. The typical case where we can
profit from having incomplete tables is, thus, when the already stored answers are
enough to evaluate repeated calls. When this is not the case, we cannot benefit
from it but, on the other hand, we do not pay any cost too. To handle complete
tables, we proposed a memory management strategy that automatically recovers

16 Ricardo Rocha

space from inactive tables when the system runs out of memory. Both proposals
have been implemented in the YapTab tabling system with minor changes to
the original design. Preliminaries results using the April ILP system showed
very substantial performance gains and a substantial increase of the size of the
problems that can be solved by combining ILP with tabling.

Acknowledgments

We are very thankful to Nuno Fonseca for his support with the April ILP System.
This work has been partially supported by Myddas (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia and Programa POSC.

References

1. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-
ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98

2. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43 (1996) 20–74

3. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
4. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order

Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20 (1998) 586–634

5. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

6. Demoen, B., Sagonas, K.: CHAT: The Copy-Hybrid Approach to Tabling. Future
Generation Computer Systems 16 (2000) 809–830

7. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181–196

8. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. Journal of Functional and Logic Programming 2001 (2001)

9. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In:
International Symposium on Practical Aspects of Declarative Languages. Number
3819 in LNCS, Springer-Verlag (2006) 150–167

10. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database
Engine. In: ACM SIGMOD International Conference on the Management of Data,
ACM Press (1994) 442–453

11. Yang, G., Kifer, M.: Flora: Implementing an Efficient Dood System using a Tabling
Logic Engine. In: Computational Logic. Number 1861 in LNCS, Springer-Verlag
(2000) 1078–1093

12. Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S., Dong, Y., Du, X., Roychoud-
hury, A., Venkatakrishnan, V.: XMC: A Logic-Programming-Based Verification
Toolset. In: International Conference on Computer Aided Verification. Number
1855 in LNCS, Springer-Verlag (2000) 576–580

Support for Incomplete and Complete Tables 17

13. Rocha, R., Fonseca, N., Costa, V.S.: On Applying Tabling to Inductive Logic
Programming. In: European Conference on Machine Learning. Number 3720 in
LNAI, Springer-Verlag (2005) 707–714

14. Sagonas, K., Stuckey, P.: Just Enough Tabling. In: ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, ACM (2004)
78–89

15. Saha, D., Ramakrishnan, C.R.: Incremental Evaluation of Tabled Logic Pro-
grams. In: International Conference on Logic Programming. Number 3668 in
LNCS, Springer-Verlag (2005) 235–249

16. Rocha, R., Silva, F., Costa, V.S.: Dynamic Mixed-Strategy Evaluation of Tabled
Logic Programs. In: International Conference on Logic Programming. Number
3668 in LNCS, Springer-Verlag (2005) 250–264

17. Fonseca, N., Camacho, R., Silva, F., Santos Costa, V.: Induction with April: A
Preliminary Report. Technical Report DCC-2003-02, Department of Computer
Science, University of Porto (2003)

18. Chen, W., Swift, T., Warren, D.S.: Efficient Top-Down Computation of Queries
under the Well-Founded Semantics. Journal of Logic Programming 24 (1995)
161–199

19. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

20. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Artificial Intelligence Research 16 (2002) 135–166

When Tabling Does Not Work

Remko Tronçon⋆, Bart Demoen, and Gerda Janssens

Katholieke Universiteit Leuven, Dept. of Computer Science,
Celestijnenlaan 200A, B-3001 Leuven, Belgium

{remko,bmd,gerda}@cs.kuleuven.be

Abstract. Tabled execution has been successfully applied in various
domains such as program analysis, model checking, parsing, . . . A recent
target of tabling is the optimization of Inductive Logic Programming.
Due to the iterative nature of ILP algorithms, queries evaluated by these
algorithms typically show a lot of similarity. To avoid repeated execution
of identical parts of queries, answers to the queries can be tabled and
reused in later steps of the algorithm, thus avoiding redundancy. In this
paper, we make a qualitative evaluation of this application of tabling,
and compare it with query packs, a special execution mechanism for
sets of similar queries. We show that the memory overhead introduced
by tabling not only scales poorly in this context, but that query pack
execution also avoids more predicate calls for more complex problems.

1 Introduction

By remembering and reusing answers to goals, tabled execution (or tabling) can
speed up execution of logic programs, and make predicates terminate where they
previously did not. Many applications benefit from tabled execution, including
program analysis, model checking, parsing, . . . Recently, there has been research
into the applicability of tabling for Inductive Logic Programming data mining.
ILP algorithms try to discover interesting patterns in large sets of data by it-
eratively generating queries and evaluating them on the data (represented as
sets of logic programs). Because queries are generated by extending queries from
previous iterations of the algorithm, the queries evaluated are typically very
similar. By applying tabling to the query evaluation process, repeated execu-
tion of identical parts of queries can be reduced to retrieving their solution from
memory [7]. On the other hand, query packs [3] have been designed to overcome
the redundancy in execution of similar queries as well. By grouping queries in a
special type of disjunction, execution of identical goals is shared over different
queries, thus only executing them once.

In this paper, we analyze the application of tabling in the context of Induc-
tive Logic Programming. We evaluate three approaches that employ tabling to
optimize ILP execution, and compare them with query packs. Because no system
we know of provides both support for query packs and tabling, our comparison

⋆ Supported by the Institute for the Promotion of Innovation by Science and Technol-
ogy in Flanders (I.W.T.)

When Tabling Does Not Work 19

is purely qualitative, based on the number of goal calls occurring.

The organization of the paper is as follows: In Section 2, we give a brief
introduction to ILP, the specific context in which this work takes place. Sec-
tion 3 presents a motivating example illustrating some of the advantages and
disadvantages of different query execution alternatives, tabled and untabled. In
Section 4, we describe a slightly adapted version of the prefix and query tabling
approaches described in [7]. Section 5 introduces once-tabling, a lighter version
of query tabling that limits the total memory overhead. In Section 6, we make a
comparison between the various tabling approaches and query pack execution.
Finally, we conclude in Section 7.

2 Background: ILP Query Execution

We start by sketching the context in which this work is situated, namely the
execution of queries in Inductive Logic Programming (ILP). The goal of ILP
is to find a theory that best explains a large set of data (or examples). In the
ILP setting at hand, each example is a logic program, and the theory is repre-
sented as a set of logical queries. The ILP algorithm finds good queries by using
generate-and-test: generated queries are run on sets of examples; based on the
failure or success of these queries, only the ones with the ‘best’ results are kept
and are extended (refined) by adding literals. The number of literals that are
added is dictated by the lookahead setting. For example, an ILP system without
lookahead set could extend a query

?- a, b.

into the queries

?- a, b, c.

?- a, b, f.

where only one literal is added to the original query. With a lookahead setting
of 1, the query can be extended with 2 literals:

?- a, b, c, d.

?- a, b, c, e.

?- a, b, f, g.

The criterium to select which of the generated queries are best depends on the
ILP algorithm: for example, in the case of classification, the information gain
can be used as a criterion, whereas in the case of regression, the reduction of
variance is often used. The extended queries are in turn tested on a set of ex-
amples, and this process continues until a satisfactory query (or set of queries)
describing the examples has been found.

Queries executed by ILP algorithms generally consist of a prefix and a refine-
ment part. The prefix is a query from a previous iteration that was selected by

20 R. Tronçon, B. Demoen, G. Janssens

the algorithm for further extension, and the refinement itself is a new conjunc-
tion. The set of evaluated queries is therefore partitioned into sets of queries with
an identical prefix. This means that during the execution of these queries over
an example, the same answers for the prefix are computed over and over again.
To avoid this recomputation, it makes sense to remember the computed answers
to prefixes, and reuse them when subsequent queries with the same prefix are
executed. We call this approach prefix tabling. Because the answers stored by
prefix tabling are only used within the same iteration of the ILP algorithm, they
can be removed from memory in the next iteration.

Another consequence of the incremental nature described above is that, since
the prefix of a query is itself a query from the previous iterations, each prefix
has been executed before (and either yielded an answer or failed). Remember-
ing the results of queries can therefore avoid execution of prefixes in the next
iterations. We call this approach query tabling. Because the answers to queries
depend on answers from previous iterations of the ILP algorithm, all answers
from the previous iterations need to be stored in memory as long as there are
queries depending on them. Therefore, contrary to prefix tabling, the extra mem-
ory used for remembering the answers cannot be freed after every iteration. Both
approaches are presented in [7].

A different approach to avoiding redundancy in the execution of similar
queries are query packs [3]. Instead of separately executing a set of similar queries
on the data set, the set of queries is transformed into a special kind of disjunction,
called a query pack. For example, the set of queries

?- a, b, c, d.

?- a, b, c, e.

?- a, b, f, g.

is transformed into the query

?- a, b, ((c,(d;e)) ; f,g).

by applying left factoring on the initial set of queries. This new query shares the
execution of the common prefix a,b over all queries, and additionally shares the
execution of c in the first two queries. However, because in ILP only the success
of a query on an example is important (not the actual solution), the normal
Prolog disjunction might still cause too much backtracking. So, for efficiency
reasons the ’;’/2 is given a different procedural behavior in query packs: it cuts
away branches from the disjunction as soon as they succeed, thus avoiding it is
executed again after success. We denote this alternative version of the disjunction
as ;p. Since each query pack is run on a large set of examples, a query pack is
in practice first compiled, and the compiled code is executed on the examples.
This compiled code makes use of special WAM instructions for the query pack
execution mechanism. More details can be found in [3]. Notice that, contrary to
query tabling and prefix tabling, query packs do not introduce memory overhead.

When Tabling Does Not Work 21

Iteration 1
1 a(X), b(X,Y)
2 m(X), n(X,X)

Iteration 2
3 (a(X),b(X,Y)), c(Y,Z),d(Z)
4 (a(X),b(X,Y)), c(Y,Z),e(Z)

Iteration 3
5 (a(X),b(X,Y),c(Y,Z),d(Z)), f(Z)
6 (a(X),b(X,Y),c(Y,Z),e(Z)), g(Z)

Example 1
a(1). c(1,1). e(2).
a(2). c(1,2). f(2).
b(2,1). d(2). g(2).

Example 2
a(1). c(1,1). d(3). f(15).
b(1,1). c(1,2). d(15). g(15).

... e(3).
c(1,15). e(15).

Fig. 1. Example query trace.

Example Experiment Query
1 2 1+2 3 4 3+4 5 6 5+6

1 No Optimization 4 1 5 8 8 16 9 9 18
Prefix Tabling 4 1 5 8 4 12 9 9 18
Query Tabling 4 1 5 4 4 8 1 1 2
Query Packs 5 10 12

2 No Optimization 2 1 3 8 8 16 34 34 68
Prefix Tabling 2 1 3 8 6 14 34 34 68
Query Tabling 2 1 3 6 6 12 26 26 52
Query Packs 3 11 51

Table 1. Number of calls (including backtracking) for different execution mech-
anisms.

3 Motivating Example

We illustrate the advantages of prefix tabling, query tabling, and query packs
using the example from Figure 1. This example shows the queries executed in 3
iterations of an ILP algorithm, and two data set examples on which the queries
are executed. Table 1 shows for every query how many goals were called or back-
tracked to.

First, let us consider the execution of the queries on the first example. Exe-
cuting the prefix of the first query of the second iteration, which is a refinement
of a query from the first iteration, results in a call and a redo for a, and 2 calls
to b before reaching the solution {X=2,Y=1}. The remainder of the query exe-
cution consists of a call and a redo for c and 2 calls for d, resulting in a final
total of 6 calls and 2 redos for the first query. However, in the second query, the

22 R. Tronçon, B. Demoen, G. Janssens

same prefix is executed. By remembering the solution to the prefix, execution of
the calls to a and b can be replaced by fetching the solution for the prefix from
memory, and the only calls remaining are the call and redo to c and both calls
to e, resulting in a total of 3 calls and one redo for the second query (instead of
6 calls and 2 redos without reusing the answers from the prefix). Additionally,
remembering the answers to the queries in the first iteration avoids execution of
the prefixes in the second iteration altogether, resulting in a total of 6 calls and
2 redos for the second iteration (instead of 9 calls and 3 redos when only the
answers for the prefix are remembered).

The third iteration from Figure 1 consists of refinements of both queries from
the previous iteration. Consequently, the prefixes of the queries are not identical,
and prefix tabling will therefore not be able to reuse previously computed solu-
tions. Remembering the answers to the full queries from the previous iteration
remedies this, and saves execution of every prefixes.

Transforming the queries from the second iteration of Figure 1 in a query
pack results in the following pack:

?- a(X),b(X,Y),c(Y,Z),
(d(Z)
;p e(Z)).

When executing this pack on the first example, the prefix of the queries is ex-
ecuted only once over the whole iteration, as is the case with prefix tabling. In
the third iteration, the following query pack is executed:

?- a(X),b(X,Y),c(Y,Z),
(d(Z),f(Z)
;p e(Z),g(Z)).

In this case, query pack execution outperforms prefix tabling: because both pre-
fixes are not identical, prefix tabling is unable to reuse any computed answer,
and both prefixes are executed separately for every query; however, the execu-
tion of a, b and c is shared in the query pack, leading to fewer calls for the third
iteration.

Although query tabling outperforms query packs on the first example, this is
not always the case. This is illustrated by the results of running the queries on the
second example from Figure 1. In the second iteration, query pack execution has
the advantage that the execution of c in the refinement is shared between both
queries, whereas it is executed separately with the query tabling approach. The
same goes for the prefix of the queries in the third iteration, where the execution
of a, b, and c is shared by query pack execution, whereas with query tabling
only the answers to (a(X),b(X,Y)) are reused during the execution of both queries.

One can easily see that query pack execution always performs at least as well
as prefix tabling if it comes to the total number of calls to goals: both approaches

When Tabling Does Not Work 23

execute identical prefixes only once, but query packs can additionally exploit
the similarity of non-identical prefixes. For query tabling and query packs, none
of the approaches always outperforms the other. Remembering the answers of
queries across iterations can avoid executing prefixes, whereas query packs always
need to execute the prefix at least once. However, by exploiting similarity in
refinements and prefixes, query packs can also provide an advantage over query
tabling in the case where queries are refined with more than one literal at a time
(i.e. with lookahead enabled).

4 Prefix and Query Tabling

In this section, we describe the approach taken to perform both prefix tabling
and query tabling. This approach conforms to the approach taken in [7], only
without tabling the calls to separate goals themselves. The tabling of separate
goals is left out because it is independent of the actual execution mechanism of
queries (i.e. query tabling or query packs).

Queries which are to be evaluated are of the following form:

?− Prefix (x),Refinement(y) (1)

where Prefix and Refinement are both conjunctions, and x and y are the sets
of variables occurring in them respectively. In the first iteration of the ILP al-
gorithm, Prefix is always empty (true); in the next iterations, Prefix is a query
from the previous iteration, and Refinement is either a goal or a conjunction of
goals, added to the query in the current iteration.

For every query of the form (1) to be evaluated, do the following:

1. If no such predicate has been created yet, create a predicate

Pi(x) : − Prefix (x). (2)

(where i is a unique identifier for Prefix), and table the answers for Pi(x).
2. Transform the query into

?− Pi(x),Refinement(y) (3)

3. Evaluate the transformed query.

For example, suppose the query

?− a(X, Y), b(Y, Z)

is refined into the following set of queries:

?− (a(X, Y), b(Y, Z)), c(Z, U).

?− (a(X, Y), b(Y, Z)), d(Z, U), e(U).

24 R. Tronçon, B. Demoen, G. Janssens

(the prefix is put between brackets for notational purposes). The tabling mech-
anism transforms these queries into

?− Pa b(X, Y, Z), c(Z, U) (4)

?− Pa b(X, Y, Z), d(Z, U), e(U) (5)

and creates a new tabled predicate

Pa b(X, Y, Z) : − a(X, Y), b(Y, Z).

Executing the transformed version of these queries re-uses previously computed
answers of the prefix, thus avoiding redundancy in execution. After having eval-
uated the queries, the newly created predicates and their tables can be cleared,
thus keeping the extra memory usage local to the iteration. We call this approach
prefix tabling.

Prefix tabling can be extended further to yield full query tabling. This is
achieved by transforming the query (3) further into

?− Pj(x ∪ y)

where Pj(x ∪ y) is a new tabled predicate, defined as follows:

Pj(x ∪ y) : − Pi(x),Refinement(y) (6)

Due to the prefix transformation in the next iteration, one of the tabled full
queries is re-used when executing the prefix of the refined queries. For example,
the transformed queries (4) and (5) are transformed further into

?− Pa b c(X, Y, Z, U)

?− Pa b d e(X, Y, Z, U)

with the new tabled predicates

Pa b c(X, Y, Z, U) : − Pa b(X, Y, Z), c(Z, U).

Pa b d e(X, Y, Z, U) : − Pa b(X, Y, Z), d(Z, U), e(U).

Suppose the first query is refined in the next iteration into

?− (Pa b(X, Y, Z), c(Z, U)), d(U, V)

The prefix transformation transforms this query into

?− Pa b c(X, Y, Z, U), d(U, V)

which is exactly the tabled predicate created for the full query in the previous
iteration.

When Tabling Does Not Work 25

Iteration 1
1 a(X), b(X,Y)

Iteration 2
2 (a(X),b(X,Y)), c(Y).

Example 1
a(1). b(2,1). c(1).
a(2). b(2,2). c(2).

Example 2
a(1). b(2,2). c(3).
a(2). b(2,3).

Fig. 2. Example query trace.

5 Once Tabling

We observed that during the execution of queries, many times only the first so-
lution for a query is used when executing the refinement of the query in a later
iteration. It is therefore worth investigating the performance of a weaker alterna-
tive to the query tabling approach from Section 4, where the weaker version only
stores one answer for every succeeded query. We call this approach once-tabling.

We start by illustrating the intuition behind once-tabling using the example
from Figure 2. After the first iteration of Figure 2 finished, the query succeeded
with answers {X=2,Y=1} and {X=2,Y=2} for the two examples respectively. In-
stead of executing the query from the second iteration on the first example, we
first transform the query to

?− (X = 2, Y = 1 ; a(X, Y), b(X, Y)), c(Y).

This transformed query reuses the previously computed answer to its prefix
by immediately binding the variables to their solution, and using the original
prefix if this solution makes the refinement fail. Executing this transformed query
on the second example indeed avoids the execution of the prefix, as the query
succeeds immediately when calling d after binding Y to 1. For the second example,
the corresponding transformed query is:

?− (X = 2, Y = 2 ; a(X, Y), b(X, Y)), c(Y).

In this case, however, the previously computed solution {X=2,Y=2} of the prefix
does not lead to a solution of the refinement. The prefix therefore has to be
executed as normal.

Once-tabling can be implemented as a simple query transformation. Suppose
again that a query is of the form (1):

?− Prefix(x),Refinement(y).

We transform this query into

?− (load solution(i, x) ;Prefix(x)), Refinement(y), save solution(j, x ∪ y).

26 R. Tronçon, B. Demoen, G. Janssens

where i is a unique identifier for Prefix, j a unique identifier for the whole query.
The predicates load solution and save solution store for a given key the
variable bindings of their second argument. The solutions to queries are stored
separately for each example. Executing this transformed query first retrieves the
previously computed solution for the prefix, and then executes the refinement.
If this solution fails to satisfy the refinement, the original prefix is executed.

A first advantage of the once-tabling approach is that the extra memory re-
quired for storing answers to queries is limited to at most one solution per query.
The second advantage is that it is relatively easy to implement this approach in
any system, without necessarily having to resort to tabled execution. The disad-
vantage of this approach is that the prefix sometimes needs to be re-executed,
although this extra overhead is compensated for if the majority of the queries
succeed using the first solution of their prefix.

To be able to make a fair comparison between once tabling and the query
tabling approach from Section 4, we implemented once tabling similarly to the
implementation of query tabling, i.e. by using tabled execution. For every query
of the form (1), we create the following predicate:

Pj(x ∪ y) : − once(((Pi(x);Prefix (x)),Refinement(y)))

where i and j are unique identifiers for Prefix and (Prefix,Refinement) respec-
tively. Similar to the predicate (6) created for query tabling, this predicate is
also tabled. The query itself is then transformed into

?− Pj(x ∪ y).

With this transformation, only the first answer to every query will be stored in
memory.

For example, a query from the first iteration (without prefix)

?− a(X, Y), b(Y, Z)

is transformed into
?− Pa b(X, Y, Z).

with predicate Pa b tabled, and defined as

Pa b(X, Y, Z) : − once((a(X, Y), b(Y, Z))).

A refinement of this query

?− (a(X, Y), b(Y, Z)), c(Z, U)

is transformed into
?− Pa b c(X, Y, Z, U)

with predicate Pa b c also tabled, and defined as

Pa b c(X, Y, Z, U) : − once(((Pa b(X, Y, Z); a(X, Y), b(Y, Z)), c(Z, U))).

When Tabling Does Not Work 27

6 Evaluation

The main goal of our evaluation is to see whether the tabling approaches de-
scribed in Sections 4 and 5 provide an advantage over the query packs approach
(at the cost of extra memory for storing the answers). Query packs have previ-
ously been implemented in the core of hipP [6], the engine underlying the ACE
data mining system [1]. However, the query and prefix tabling approaches re-
quire support for tabled execution, which hipP does not provide. We therefore
built a prototype for the tabling approaches, based on the implementation of [7]
in YAP [4]. On the other hand, YAP does not support query pack execution,
making it impossible to compare the query pack and the tabling approaches
based on timing results. We therefore estimate the potential benefit of these
techniques by measuring the total number of goals that are actually called, and
comparing these to each other. We do this by running an ILP algorithm from
the ACE system once, recording all the queries executed by ACE in a file (which
we call a trace). Using these traces, we can simulate the execution step of the
ILP algorithm without needing the algorithm itself: by running a trace through
a simple program (which we call a trace simulators) that executes every query
on the corresponding examples, the same queries can be executed than the ones
that are run by executing the algorithm, independent of the system used (hipP
or YAP). Notice that the number of calls is not a strict measure of the time
needed to execute a query: the time to execute a call can vary widely, and the
time needed to look up tabled results is also not taken into account in an eval-
uation based purely on the number of calls. It does, however, provide a rough
indication of the performance that can be expected.

In our experiments, we used two ILP algorithms: Tilde [2], a decision tree
learner, and Warmr [5], a frequent pattern discovery algorithm. Traces from
both algorithms were recorded for different lookahead settings on both the Mu-
tagenesis [9] and Carcinogenesis [8] data sets. These traces were adorned with
calls to predicates recording the number of calls, and the resulting traces were
fed to three different trace simulators: one that executes the queries from a trace
in their original form, one that first applies the tabling transformations on the
queries before executing the queries, and one that executes query packs. YAP
provides two different modes for tabling predicates: local tabling computes the
complete table of a called predicate before continuing execution, while in batched
tabling the table is constructed by need. Batched tabling therefore in theory per-
forms less calls to predicates than local tabling. However, due to the way YAP
handles the combination of tabling with the cut at the end of each query, an-
swers of a query sometimes need to be recomputed when the table needs to be
completed further.

The total number of goal calls for the different Tilde runs are shown in
Tables 2 and 4. As expected, query packs outperform prefix tabling in all ex-
periments, and query tabling performs better than query packs in the settings
without lookahead. However, with lookahead enabled, query packs start com-
pensating the prefix recomputation cost by taking advantage of similarity in
the prefix and refinements, and as such outperform query tabling with a higher

28 R. Tronçon, B. Demoen, G. Janssens

Experiment Lookahead
0 1 2

No Optimization 390715 1347047 169003392
Prefix Tabling (Local) 296134 937022 9287876
Prefix Tabling (Batched) 296283 937120 9288178
Query Tabling (Local) 105560 542372 4013514
Query Tabling (Batched) 52115 443086 3667033
Once Tabling 103237 777236 69336452
Query Packs 184267 444453 2407452

Table 2. Total number of goal calls for running Tilde on Mutagenesis.

Experiment Lookahead
0 1 2

Prefix Tabling (Local) 37 kB 37 kB 36 kB
Prefix Tabling (Batched) 37 kB 37 kB 36 kB
Query Tabling (Local) 10 MB 15 MB 92 MB
Query Tabling (Batched) 3 MB 6 MB 73 MB
Once Tabling 3 MB 6 MB 73 MB

Table 3. Maximum table size for running Tilde on Mutagenesis.

Experiment Lookahead
0 1

No Optimization 62094851 629636203
Prefix Tabling (Local) 17826104 122158703
Prefix Tabling (Batched) 17826104 122157269
Query Tabling (Local) 12878382 52005387
Query Tabling (Batched) 10436092 50486078
Once Tabling 33541719 287747657
Query Packs 17659174 30388904

Table 4. Total number of goal calls for running Tilde on Carcinogenesis.

Experiment Lookahead
0 1

Prefix Tabling (Local) 1.5 MB 241 kB
Prefix Tabling (Batched) 1.5 MB 241 kB
Query Tabling (Local) 283 MB 365 MB
Query Tabling (Batched) 25 MB 257 MB
Once Tabling 20 MB 255 MB

Table 5. Maximum table size for running Tilde on Carcinogenesis.

When Tabling Does Not Work 29

Experiment Lookahead
0 1 2

No Optimization 5007638 149930892 2625159941
Prefix Tabling (Local) 1699134 72049883 1180152456
Prefix Tabling (Batched) 1642281 72249388 1181515793
Query Tabling (Local) 6410317 - -
Query Tabling (Batched) 1284685 70777264 -
Query Packs 1367278 36991076 418259748

Table 6. Total number of goal calls for running Warmr on Mutagenesis.

Experiment Lookahead
0 1 2

Prefix Tabling (Local) 2 MB 2 MB 57 MB
Prefix Tabling (Batched) 2 MB 2 MB 57 MB
Query Tabling (Local) 776 MB - -
Query Tabling (Batched) 130 MB 882 MB -

Table 7. Maximum table size for running Warmr on Mutagenesis.

lookahead setting. The once tabling approach always performs at least twice
as good as the non-transformed queries. However, in most cases, it is still out-
performed by the other optimizations. Because the tables are cleared in every
iteration, the prefix tabling approach has very limited memory overhead, as can
be seen in Tables 3 and 5. The total size of the tables used during once tabling
does not differ much from the table sizes of query tabling. This confirms that
execution seldom computes more than one solution for the tabled prefixes.

The results are even more pronounced when using Warmr, as can be seen in
Table 6. Unfortunately, the machine on which the experiments were conducted
(a Pentium 4 with 2 Gb RAM) ran out of memory for some experiments due to
the size of the tables of the queries. This illustrates that the tabling approach
can become a problem in practice. Table 6 does not include results of the once
table experiments, because these could not be performed because of a bug in the
YAP system at the time of running these experiments.

7 Conclusions

In this paper, we evaluated the application of tabled execution in the context
of Inductive Logic Programming. Besides a description of the prefix and query
tabling approaches presented in [7], we introduced once tabling as a tradeoff be-
tween storing all solutions and executing parts of queries multiple times. Instead
of storing arbitrary many solutions of queries, the once tabling approach only

30 R. Tronçon, B. Demoen, G. Janssens

saves the first solution, at the price of potential recomputation if this solution
does not suffice.

Although prefix tabling theoretically has similar effects than query pack exe-
cution, query packs always save at least as much calls as prefix tabling, without
introducing the extra memory overhead. Query tabling, on the other hand, can
potentially save more calls than query packs. Experiments pointed out that this
is indeed the case for simple experiments, but that query packs exploit similarity
of queries even further for larger experiments, and as such save more calls than
query tabling. The once tabling approach requires only marginally less memory
than the full query tabling approach. Although this approach yields less goal
calls than unoptimized query execution, it performs worse than prefix tabling
on most experiments. While the extra memory cost induced by the tabling ap-
proaches is still low enough for small data sets and simple queries, the size of the
query tables grows to an unmanageable amount for more complex experiments.

From the conducted experiments, we conclude that tabling approaches do
not apply well in the ILP setting. Not only does tabling fail to scale with larger
problems because of the memory overhead, it is outperformed by more refined
execution mechanisms such as query packs, which do not introduce an increasing
memory overhead with increasing amounts of data.

Acknowledgements

We are indebted to the authors of [7] for providing us the implementation of
their prefix and query tabling approaches.

References

1. ACE. The ACE data mining system, 2006. http://www.cs.kuleuven.be/˜dtai/ACE/.
2. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision

trees. Artificial Intelligence, 101(1-2):285–297, June 1998.
3. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vande-

casteele. Improving the efficiency of Inductive Logic Programming through the
use of query packs. Journal of Artificial Intelligence Research, 16:135–166, 2002.
http://www.cs.kuleuven.be/cgi-bin-dtai/publ info.pl?id=36467.

4. L. Damas and V. S. Costa. YAP user’s manual, 2003. http://yap.sourceforge.net.
5. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining

and Knowledge Discovery, 3(1):7–36, 1999.
6. hipP. hipP: A high performance Prolog system, 2006.

http://www.cs.kuleuven.be/˜dtai/hipp/.
7. R. Rocha, N. A. Fonseca, and V. S. Costa. On Applying Tabling to ILP. In Pro-

ceedings of the 16th European Conference on Machine Learning, ECML-05, Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2005.

8. A. Srinivasan, R. King, and D. Bristol. An assessment of ILP-assisted models for
toxicology and the PTE-3 experiment. In Proceedings of the Ninth International
Workshop on Inductive Logic Programming, volume 1634 of Lecture Notes in Arti-
ficial Intelligence, pages 291–302. Springer-Verlag, 1999.

When Tabling Does Not Work 31

9. A. Srinivasan, S. Muggleton, M. Sternberg, and R. King. Theories for muta-
genicity: A study in first-order and feature-based induction. Artificial Intelligence,
85(1,2):277–299, 1996.

Embedding Solution Preferences via

Transformation

Hai-Feng Guo and Miao Liu

Department of Computer Science
University of Nebraska, Omaha, NE 68182-0500
{haifengguo, miaoliu}@mail.unomaha.edu

Abstract. Preference logic programming (PLP) is an extension of con-
straint logic programming for declaratively specifying problems requiring
optimization or comparison and selection among alternative solutions to
a query. PLP essentially separates the programming of a problem itself
from the criteria specification of its optimal solution. The main challenge
to implement a PLP system is that how the defined solution preferences
take effects automatically on pruning suboptimal solutions and their de-
pendents during the computation. The solution preferences are specified
at the Prolog programming level, whereas the answer collection is imple-
mented at the system level. In this paper, we present a novel strategy
to bridge the programming gap by introducing a new built-in predicate,
which serves as the interface between the specification and the actual ap-
plication of solution criteria. With this interface predicate, we can easily
transform a preference logic program into an executable program, where
solution preferences can be propagated into recursion so that selecting
an optimal solution to a problem only depends on the optimal solutions
to its subproblems. The strategy has been successfully implemented on
a tabled Prolog system; and experimental results are also presented.

1 Introduction

Traditional constraint logic programming (CLP) specifies an optimization prob-
lem by using a set of constraints and minimizing (or maximizing) an objective
function. Unfortunately, general optimization problems may involve compound
objectives whose optima are difficult to be represented by a simple minimization
(or maximization). Even worse, for many applications, especially those defined
over structural domains, it is difficult to specify any objective function. For this
reason, an extension of constraint logic programming called preference logic pro-
gramming (PLP [8,9]) has been introduced for declaratively specifying problems
requiring optimization or comparison and selection among alternative solutions
to a query. The PLP paradigm essentially separates the constraints of a prob-
lem itself from its optimization or selection criteria, and makes optimization or
selection a meta-level operation. Preference logic programming has been shown
useful for many practical applications such as in artificial intelligence [2], data
mining [4], document processing and databases.

Embedding Solution Preferences via Transformation 33

We proposed a method in [13] for specifying preference logic programs using
tabled Prolog programs. The method follows the PLP paradigm to separate the
constraints of a problem itself from its optimization or selection criteria. Each
preference logic program is defined using two disjoint sets of definite clauses,
where one contains the specification of the constraints of the problem and the
other defines the optimization or selection criteria. Connection between these two
sets is established by a mode declaration scheme [11]. For instance, a preference
logic program for finding the shortest path may be defined as Example 1, where
the optimization predicate path/5 contains a general definition, clauses (1-3),
and two solution preferences, clauses (5-6). The informal meaning of clause (5)
is that path(X,Y,C2,D2,) is preferred than path(X,Y,C1,D1,) if C2 is less
than C1, which tells that a lower-cost path is preferred. Clause (6) tells that
if two paths have the same costs, then a shorter path is preferred. Clause (4)
serves as the connector between the general definition and the solution prefer-
ences, designating path/5 as an optimization predicate subject to the selection
criteria defined in the ‘<<<’-clauses, where ‘<<<’ is an infix binary predicate used
specifically for defining the preferences.

Example 1. Consider the following preference logic program searching for a lowest-
cost path; if two paths have the same cost, then the one with a shorter distance
is preferred. Predicate path(X,Y,C,D,L) denotes a path from X to Y with the
cost C, the distance D and the path route L.

path(X, X, 0, 0, []). (1)

path(X, Y, C, D, [(X, Y)]) :- edge(X, Y, C, D). (2)

path(X, Y, C, D, [(X, Z) | P]) :-

edge(X, Z, C1, D1), path(Z, Y, C2, D2, P),

C is C1 + C2, D is D1 + D2. (3)

:- table path(+, +, <<<, <<<, -). (4)

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :- C2 < C1. (5)

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

C1 = C2, D2 < D1. (6)

We use a tabled Prolog system [12] to implement preference logic programs,
because a tabled Prolog can be thought of as an engine for efficiently computing
fixed points, which is critical for finding the model-theoretic semantics of a pref-
erence logic program. Additionally, a new mode-declaration scheme for tabled
Prolog systems has been proposed in [11] that provides an attractive platform
for specifying dynamic programming problems in a simpler manner: there is no
need to define the value of an optimal solution recursively; instead, defining the
value of a general solution is enough. The optimal value as well as its associated
solution will be computed implicitly and automatically in a tabled Prolog system
that uses the appropriate mode declaration. This mode-declaration scheme can
be further extended for specifying and executing preference logic programs, since
the mode-declaration scheme is indeed the intent of PLP, that is, tabled Prolog

34 Hai-Feng Guo, Miao Liu

systems can selectively choose “better” answers for a given tabled predicate call
guided by the declared mode, while PLP selectively chooses “better” solutions
based on preferences.

The main challenge to implement a PLP system is how the defined solution
preferences take effects automatically on pruning suboptimal solutions and their
dependents during computation. The solution preferences are specified at the
Prolog programming level, whereas the answer collection is implemented at the
system level.

In our previous work [13], the computation of a preference Prolog program is
achieved in two steps. First, a mode-directed automatic transformation is applied
to embed the preferences into the problem specification. Second, the transformed
program is then evaluated using tabled resolution, while the mode declaration
provides a selection mechanism among the alternative solutions. However, this
computation strategy has a strict assumption that the defined preference relation
‘<<<’ is a total order relation. That is, every two atoms of an optimization
predicate are comparable, and the problem has only a single optimal solution.

In this paper, we present a novel strategy to bridge the programming gap by
introducing a new built-in predicate, which serves as the interface between the
specification and the actual application of solution criteria. With this interface
predicate, we can easily transform a preference logic program into an executable
program, where solution preferences can be propagated into recursion so that
selecting an optimal solution to a problem only depends on the optimal solutions
to its subproblems. Furthermore, the new strategy gets rid of the assumption of a
total-order preference relation. Instead, it can support preference logic programs
with any relational preferences and multiple optimal solutions.

The rest of the paper is organized as follows: Section 2 gives a brief intro-
duction on a tabled Prolog system and the mode declaration scheme for tabled
predicates; section 3 introduces the syntax of a preference logic program; sec-
tion 4 presents our previous strategy to transforming a preference logic program
to an executable tabled Prolog program; section 5 shows our new simplified
transformation strategy with a new builtin predicate; section 6 addresses some
efficiency issues related to implementation; and section 7 gives our conclusions.

1.1 Other related work

The concept of preference often occurs in the soft constraint programming paradigm.
Soft constraints [1,7,15,16,6,17] were proposed to mainly handle the over-constrained
problems, where no solution exists due to conflict among constraints, or a sat-
isfiable problem where many solutions are equally proposed by the system. Us-
ing soft constraint techniques, such as fuzzy constraint satisfaction, partial con-
straint satisfaction, or hierarchical constraint satisfaction, solutions are always
found and ranked according to the optimization criteria. Such soft constraints
usually take preferences over constraints. Hierarchical constraint logic program-
ming [17] proposed preferences on constraints indicating the preference strength
of each constraint, which gives great flexibility for specifying those constraint
problems with non-strict requirements. Rossi and Sperduti [14] made it possible

Embedding Solution Preferences via Transformation 35

to support both constraint and solution preferences, where preferences are spec-
ified via setting preference ranks (low, medium, high and needed) over variable
values and constraints, and then soft solution constraints are interactively gen-
erated through a machine learning procedure. Another approach for describing
preferred criteria in CLP is given in the problems of relational optimization [5],
where a preference relation indicates when a solution is better than another so-
lution. However, this preference relation is limited to a total order relation, i.e.,
every two solutions in a problem domain have to be comparable.

In this paper, we focused on Prolog programming with solution preferences,
where the defined preference relation has no special order restriction.

2 Tabled Prolog with Mode Declaration

2.1 Tabled Prolog

Traditional Prolog systems use SLD resolution [10] with the following compu-
tation strategy: subgoals of a resolvent are solved from left to right and clauses
that match a subgoal are applied in the textual order they appear in the pro-
gram. It is well known that SLD resolution may lead to non-termination for
certain programs, even though an answer may exist via the declarative seman-
tics. That is, given any static computation strategy, one can always produce a
program in which no answers can be found due to non-termination even though
some answers may logically follow from the program. In case of Prolog, programs
containing certain types of left-recursive clauses are examples of such programs.

Tabled Prolog [3,19,12,18] eliminates such infinite loops by extending logic
programming with tabled resolution. The main idea is to memoize the answers
to some calls and use the memoized answers to resolve subsequent variant calls.
Tabled resolution adopts a dynamic computation strategy while resolving sub-
goals in the current resolvent against matched program clauses or tabled answers.
It keeps track of the nature and type of the subgoals; if the subgoal in the current
resolvent is a variant of a former tabled call, tabled answers are used to resolve
the subgoal; otherwise, program clauses are used following SLD resolution. Thus,
a tabled Prolog system can be thought of as an engine for efficiently computing
fixed points.

In a tabled Prolog system, only tabled predicates are resolved using tabled
resolution. Tabled predicates are explicitly declared as

:- table p/n.

where p is a predicate name and n is its arity. A global data structure table is
introduced to memorize the answers of any subgoals to tabled predicates, and
to avoid re-computation. Consider Example 2 checking the reachability relation.
This program does not work properly in a traditional Prolog system. With the
declaration of a tabled predicate reach/2 in a tabled Prolog system, it can
successfully find a set of complete solutions X=b, X=c and X=a, due to the fixed-
point computation strategy, albeit the predicate is defined left-recursively.

Example 2. Consider the following tabled Prolog program checking the reacha-
bility relation:

36 Hai-Feng Guo, Miao Liu

:- table reach/2.

reach(X,Y) :- reach(X,Z), arc(Z,Y). (1)

reach(X,Y) :- arc(X,Y). (2)

arc(a,b). arc(a,c). arc(b,a).

:- reach(a,X).

2.2 Mode Declarations

However, the fixed point of a computing model may contain infinite number of
solutions, which certainly affects the completion of the computation. Consider
Example 3 searching the paths for reachable nodes. An extra argument is added
for the predicate reach/3 to record the found path. However, this extra argument
results in the fixed point of the computation to be infinite, since there is an
infinite number of paths from a to any node due to the cycle between a and b.
Therefore, a meta-level operation is useful to filter the infinite-size solution set
to a finite one so that the computation can be completed.

Example 3. A tabled logic program defining a reachability relation predicate
with path information as an extra argument:

:- table reach/3.

reach(X,Y,E) :- reach(X,Z,E1), arc(Z,Y,E2), append(E1,E2,E).

reach(X,Y,E) :- arc(X,Y,E).

arc(a,b,[(a,b)]). arc(a,c,[(a,c)]). arc(b,a,[(b,a)]).

:- reach(a,X,E).

This meta-level operation can be achieved by a mode declaration for a tabled
predicate, which is described in the form of

:- table q(m1, ..., mn).
where q/n is a tabled predicate name, n ≥ 0, and each mi has one of the forms
as defined in Table 1.

Modes Informal Semantics
+ an indexed argument
− a non-indexed argument

last a non-indexed argument for the last answer
<<< a user-defined preference mode
Table 1. Built-in Modes for Tabled Predicates

The mode declaration [11] was initially used to classify arguments as indexed
(+) or non-indexed (-) for each tabled predicate. Only indexed arguments are
used for variant checking during collecting new generated answers into the table.
For a tabled call, any answer generated later for the same value of the indexed
arguments is discarded because it is a variant (w.r.t. the indexed arguments) of

Embedding Solution Preferences via Transformation 37

a previously tabled answer. This step is crucial in ensuring that a fixed-point is
reached. Consider again the program in Example 3. Suppose we declare the mode
as “:- table reach(+,+,-)”; this means that only the first two arguments of
the predicate reach/3 are used for variant checking. As a result, the computation
can be completed properly with three answers, that is, each reachable node from
a has a simple path as an explanation.

The mode directive table makes it very easy and efficient to extract expla-
nation for tabled predicates. In fact, our strategy of ignoring the explanation
argument (mode ‘-’) during variant checking results in only the first explana-
tion for each tabled answer being recorded. Subsequent explanations are filtered
by our modified variant checking scheme. This feature also ensures that those
generated explanations are concise and that cyclic explanations are guaranteed
to be absent. More importantly, the meta-level mode declaration is especially
useful to reduce an infinite computation model to a finite one for some practical
uses, or a big computation model to an optimized smaller one.

The mode directive table can be further extended to associate a non-indexed
argument of a tabled predicate with some optimum constraint. With the mode
‘-’, a non-indexed argument for each tabled answer only records the very first
instance. This “very first” property can actually be generalized to support any
other preferences, e.g., the minimum/maximum value with mode min/max, etc.
Contrary to the mode ‘-’, the mode ‘last’ is useful for recording the last answer
from a solution set. This mode can be realized as follows: for a tabled call,
whenever a new answer is generated, it will replace the old tabled one, if any, so
that the tabled answer is always the ‘last’ answer generated so far. The mode
<<< is used to support user-defined preferences as described later.

3 Programming with Solution Preferences

In optimization problems, we are often interested in comparing alternative solu-
tions to a set of constraints and choosing the “best” one. In general, there are two
components of an optimization problem: (i) specification of the constraints to
the problem; and, (ii) specification of which predicates to be optimized and how
the optimal solutions are selected. The intent of preference logic programing is to
separate these two components and declaratively specify such applications [13].
We give the definition of a preference logic program in the paradigm of tabled
Prolog programming.

Definition 1 (Preference Logic Programs). A (definite) preference logic
program P can be defined as a pair <Pcore, Ppref>, where Pcore and Ppref are
two syntactically disjoint sets of clauses defined as follows: Pcore specifies the
constraints of the problem using a set of definite clauses; Ppref defines the opti-
mization criteria using a set of preference clauses (or preferences) in the form
of:

p(T̃1) <<< p(T̃2) :- A1, A2, · · ·, An. (n ≥ 0)
where p can be any user-defined predicate in Pcore, p(T̃1) and p(T̃2) have the

38 Hai-Feng Guo, Miao Liu

same arity, and we call such a predicate p an optimization predicate; each Ai

(1 ≤ i ≤ n), independent from any defined optimization predicate, is an atom
defined in P ; and <<< is simply an infix binary predicate especially used in a
preference clause.

The informal semantics of p(T̃1) <<< p(T̃2) :- A1, A2, · · ·, An is that the atom
p(T̃1) is less preferred than p(T̃2) if A1, A2, · · · , An are all true. Note that the
two atoms being compared have the same predicate name and arity; and we use
T̃ to represent a tuple of terms. We say that Ai is independent from any defined
optimization predicate, which means the truth value of Ai does not depend on
any subgoal of defined optimization predicates. The reason of this restriction is
consistent the essential idea of PLP, separating the criteria for selecting better
answers from their definition.

Consider the Example 1 again. This optimization problem with compound
objectives is relatively difficult to solve using traditional constraint program-
ming. A two-step selection procedure is usually involved, where firstly only the
cost criterion is used to find all the lowest-cost paths, and secondly the optimal
path is selected by comparing distances among the lowest-cost paths. However,
the preference logic program, as shown in Example 1, is intended to specify
and solve this problem directly in a declarative method. It separates the con-
straints of a problem itself from the criteria for selecting the optimal solutions,
so that compound optimization criteria can be easily added in an incremental
way. Clauses (1) to (3) make up the core program Pcore defining the path rela-
tion and a directed graph with a set of edges; clauses (4) to (6), the preference
part Ppref , specify the predicate path/5 to be optimized and give the criteria for
optimizing the path/5 predicate. The responsibility of how to find the optimal
solution is shifted to the underlying logic programming system, in keeping with
the spirit of logic programming as a declarative paradigm.

4 Embedding Preferences via A Naive Transformation

We start with a transformed example, and then present the formal transforma-
tion rules.

Example 4. Consider the following tabled program transformed from the pro-
gram in Example 1.

pathNew(X, X, 0, 0, []). (1)

pathNew(X, Y, C, D, [e(X, Y)]) :-

edge(X, Y, C, D). (2)

pathNew(X, Y, C, D, [e(X, Z) | P]) :-

edge(X, Z, C1, D1), path(Z, Y, C2, D2, P),

C is C1 + C2, D is D1 + D2. (3)

:- table path(+, +, last, -, -). (4)

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

Embedding Solution Preferences via Transformation 39

C2 < C1. (5)

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

C1 = C2, D2 < D1. (6)

path(X, Y, C, D, P) :-

pathNew(X, Y, C, D, P),

(path(X, Y, C1, D1, P1)

-> path(X,Y,C1,D1,P1) <<< path(X,Y,C,D,P)

; true). (7)

Three major changes have been made in this transformation by taking advan-
tage of the unique global table in the system: (i) The original predicate path/5

in Example 1 is replaced by a new predicate pathNew/5 to emphasize that this
predicate generates a new preferred path candidate from X to Y. (ii) The predicate
path/5, given a new definition in clause (7), represents the way for identifying a
preferred answer. The meaning of clause (7) is the following: given a path candi-
date A by pathNew(X,Y,C,D,P), we need to check whether there already exists
a tabled answer, if so, they are compared with each other to keep the preferred
one in the table; otherwise, the candidate is recorded as a first tabled answer.
By this way, the optimal solution must be the last one left in the table after
all the computation and comparisons are done. Notice that in a tabled Prolog
system, the answer will be automatically recorded into the table once the sub-
goal path(X,Y,C,D,P) succeeds. (iii) The first preference mode ‘<<<’ for path/5
is hence replaced by ‘last’ to catch the last and optimal tabled answer, while
the rest of preference modes are replaced by ‘-’, since all those arguments are
bundled together in their preference rules. The formal transformation rules are
given in Definition 2.

Definition 2 (ρ-transformation). Let P be a preference program. The trans-
formation to a new tabled program P ′ = ρ(P) can be formalized as follows:

– for any optimization predicate q/n in P , we have
• for each clause defining q/n in P , the predicate q/n in its head (the part

to the left of :-) is renamed to a new predicate q′/n;
• a new clause definition for q/n is introduced in the form of:

q(a1, · · · , an) :-

q′(a1, · · · , an),
(q(b1, · · · , bn)

-> q(b1, · · · , bn) <<< q(a1, · · · , an)
; true).

where a1, · · · , an and b1, · · · , bn are all variables; for 1 ≤ i, j ≤ n, ai

and bi use an identical variable if ith argument of q/n is an indexed one
with the mode ‘+’; ai and aj (or bi and bj) use two different variables if
i 6= j;
• in the mode declaration of q/n, the first preference mode ‘<<<’ is changed

into ‘last’, and the rest preference modes (if any) are changed into the
standard non-indexed mode ‘-’;

40 Hai-Feng Guo, Miao Liu

– for the other clauses not defining optimization predicates in P , make a same
copy into P ′.

We call this transformation ρ-transformation.

The main advantage of the ρ-transformation is that the transformed program
is executable in a tabled Prolog environment. However, it has the following limi-
tations on preference logic programming. It is required that preferences are well
defined such that the preference relation <<< is a total order relation. That is,
(1) every two atoms (e.g., α and β) of an optimization predicate are comparable
(α <<< β or β <<< α) in terms of the preference relation. (2) Contradictory pref-
erences (e.g., p(a) <<< p(b) and p(b) <<< p(a)) are not allowed in the programs.
(3) It is assumed that there is only a single optimal answer. All those limitations
prevent preference logic programming from broad practical applications.

5 Embedding Preferences via An Interface Predicate

The main challenge for preference logic programming is how we can use prefer-
ences to automatically prune suboptimal solutions and its dependents. A pref-
erence logic program cannot be easily supported on any existing tabled Prolog
system. The main reason is that the mode-controlled table manipulation is im-
plemented at the system level, whereas preferences are defined at the Prolog
programming level. Therefore, we introduce the idea of an interface predicate
to connect the system level table manipulation and the Prolog-level preferences
so that the preferences can be used as the filter criteria automatically for the
answer collection at the system implementation level.

5.1 The Interface Predicate

A new builtin Prolog predicate, named updateTable(Ans), is introduced to
serve the purpose of an interface between the table manipulation and prefer-
ences, where Ans is a new potential answer to a subgoal of an optimization
predicate. Whenever a new answer Ans is generated to a subgoal of optimiza-
tion predicate, an instance subgoal of updateTable/1 is invoked. It determines
whether the obtained new answer Ans is a preferred atom or not. The subgoal of
updateTable/1 succeeds if Ans is a preferred atom in the table. Otherwise, the
updateTable/2 subgoal will fail and Ans will be discarded. Another important
purpose of updateTable/1 is that it removes any existing tabled answers which
are less preferred than Ans. Therefore, the interface predicate updateTable/1

maintains the property at runtime that every tabled answer is a preferred atom.
As shown in Figure 1, the updateTable/1 procedure starts with a subgoal

allTabledAnswers(TabAnsList), which retrieves all of the tabled answers of
the corresponding subgoal into the variable TabAnsList, and then calls a subgoal
updateTabledAnswers(TabAnsList, Ans), which updates the tabled answers
properly based on comparing the current answer Ans with the existing ones

Embedding Solution Preferences via Transformation 41

updateTable(Ans) :- (1)

allTabledAnswers(TabAns), (2)

updateTabledAnswers(TabAns, Ans). (3)

updateTabledAnswers(TabAns, Ans) :- (4)

compareToTabled(TabAns, Ans, Flist, AnsFlag), (5)

removeTabledAnswers(Flist), (6)

AnsFlag == 0. (7)

compareToTabled([], _, [], Flag) :- (8)

(var(Flag) -> Flag = 0 ; true). (9)

compareToTabled([T|Ttail], Ans, [F|Ftail], Flag) :- (10)

(T <<< Ans -> F = 1 ; F = 0), (11)

(Ans <<< T -> Flag = 1 ; true), (12)

compareToTabled(Ttail, Ans, Ftail, Flag). (13)

Fig. 1. Definition of updateTable/1

in TabAnsList. The subgoal compareToTabled/4, as shown in lines 8 to 13,
compares the new generated Ans against each of the tabled solution based on
the optimization criteria <<<. The variable Flist, consisting of a list of boolean
values, represents the comparison results and tells whether each tabled answer
is a preferred atom among the current tabled answers. The boolean value 1

means that the corresponding tabled answer is a suboptimal one, and therefore
the answer will be removed in the subgoal removeTabledSolutions(Flist).
Similarly, the boolean variable Flag tells whether the current answer Ans is a
preferred atom among the current tabled answers. Line 7 guarantees that the
subgoal of updateTable/1 succeeds only if the obtained answer Ans is a preferred
atom at this computation point. The answer Ans will be automatically inserted
into the table after updateTable(Ans) succeeds.

The predicates allTabledAnswers/1 and removeTabledAnswers/1 are re-
cently implemented at the system level (C programming) for manipulating tabled
answers.

5.2 Transformation

Example 5 shows the new transformed program with a new interface predicate
updateTable/1. The transformation is significantly simplified compared to the
the previous one in Example 4. The main change in the new transformation is
the addition of the subgoals (updateTable/1) to each definition of optimization
predicate path/5. These updateTable/1 subgoals are invoked every time a de-
fined clause of path/5 is completely executed and a potential answer is obtained.
Therefore, it is the right point for updateTable/1 to compare the new poten-
tial answer with the tabled answers based on the solution preferences, and then
update the table properly.

42 Hai-Feng Guo, Miao Liu

Example 5. Consider the following tabled program transformed from the pro-
gram in Example 1 using the interface predicate updateTable/1.

path(X, X, 0, 0, []) :-

updateTable(path(X,X,0,0,[])). (1)

path(X, Y, C, D, [e(X, Y)]) :-

edge(X, Y, C, D),

updateTable(path(X,Y,C,D,[e(X,Y)])). (2)

path(X, Y, C, D, [e(X, Z) | P]) :-

edge(X, Z, C1, D1), path(Z, Y, C2, D2, P),

C is C1 + C2, D is D1 + D2,

updateTable(path(X,Y,C,D,[e(X,Z)])). (3)

:- table path(+, +, <<<, <<<, -). (4)

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

C2 < C1. (5)

path(X,Y,C1,D1,_) <<< path(X,Y,C2,D2,_) :-

C1 = C2, D2 < D1. (6)

The new transformation is formally given in Definition 3. The main task is
simply to append a subgoal updateTable/1 to the end of each clausal definition
of the optimization predicate. Furthermore, the transformed preference program
does not require the preference relation ‘<<<’ to satisfy the total order relation.

Definition 3 (η-transformation). Let P be a preference program. The trans-
formation to a new tabled program P ′ = η(P) can be formalized as follows:

– for each clausal definition “H :- B1, · · · , Bn.” (where n ≥ 0) of an opti-
mization predicate in P , we have a new definition in p′ as follows:

H :- B1, · · · , Bn, updateTable(H).
– for the other clauses not defining optimization predicates in P , make a same

copy into P ′.

We call this transformation η-transformation.

5.3 Flexibility

Preference logic programming with η-transformation can specify optimization
problems with more generalized preferences. A total order relation is not a nec-
essary condition for the preference relation <<<. If two atoms of an optimization
predicate are not comparable in terms of the preference relation, then both of
them can be preferred atoms kept in the table. Thus, multiple optimal answers
are supported during the computation. On the other hand, if contradictory pref-
erences (e.g., p(a) <<< p(b) and p(b) <<< p(a)) occur, then both of them should
be removed from the table, which is consistent to its intended preference model.

Embedding Solution Preferences via Transformation 43

The mode-directed preferences provides flexible and declarative meta-level
controls for logic programmer to extend the general specification of a problem
to an optimization specification. Such an extension can often reduce a general
problem with a big solution set to a refined problem with a small preferred so-
lution set. Consider again the lowest-cost path problem in Example 1. Clauses
(1) to (3) define a general path with cost, distance and evidence information;
clauses (5) and (6) gives user-defined preferences. The mode declaration

:- table path(+, +, <<<, <<<, -)

basically maps the general path definition to a preferred path definition, where
if multiple preferred paths with the same cost and distance exist, then only the
first computed one will be recorded in the table due to the mode ‘-’. However, if
all possible preferred paths are needed, the user can specify the mode declaration
as follows:

:- table path(+, +, <<<, <<<, <<<),

which requires the support of collecting multiple optimal answers from a prefer-
ence logic programming system.

In addition, Example 1 actually shows a dynamic programming approach
for the shortest path problem. Once the predicate path/5 is declared as an
optimization predicate with preferences, the answers to any predicate call of
path/5 represent optimal solutions. More importantly, those preferences are not
only applied on the top query of the optimization predicate, but also propagated
into its recursive subgoals. As a result, an optimal solution is defined recursively
based on the optimal solutions to its subproblems. This scheme is different from
the one in the naive shortest path algorithm which enumerates all possible paths
from X and Y and then compares them to find the optimal one.

6 Experimental Results

Our experimental benchmarks for preference logic programming include five typ-
ical optimization examples. matrix is the matrix-chain multiplication problem;
lcs is longest common subsequence problem; obst finds an optimal binary search
tree; apsp finds the shortest paths for all pairs of nodes; and knap is the knapsack
problem. All tests were performed on an Intel Pentium 4 CPU 2.4GHz machine
with 512M RAM running RedHat Linux 9.0.

The experimental results show that preferences provide a declarative ap-
proach without sacrificing efficiency of dynamic programming. Table 2 compares
the running time performance between the programs with and without prefer-
ences. For the preference programs, the tabled system collects optimal answers
implicitly by applying the predefined preferences; the programs without prefer-
ences adopt a traditional method – e.g., use the builtin predicate findall/3 –
to collect all the possible answers explicitly and then locate the optimal one at
every recursive stage. The experimental data indicates, based on the running
timings and their ratios in Table 2, that the programs with preference decla-
ration are better than or comparable to those corresponding programs without
preference declaration.

44 Hai-Feng Guo, Miao Liu

matrix lcs obst apsp knap

without 1.47 0.80 1.50 3.14 99.69
preferences (1.0) (1.0) (1.0) (1.0) (1.0)

Preferences with 0.37 0.53 0.38 3.11 77.45
A Naive Transformation (0.25) (0.66) (0.25) (0.99) (0.78)

Preferences with 1.06 0.70 1.11 2.63 58.96
An Interface Predicate (0.72) (0.88) (0.74) (0.84) (0.59)

Table 2. Running time performance comparison: Seconds/(Ratio)

The efficiency for preference programming are mainly credited to the follow-
ing two points. First, tabled Prolog systems with mode declaration provides a
concise yet easy-to-use interface for preference logic programming. The transfor-
mation procedure to incorporate the problem specification and preferences does
not introduce any major overhead; mode declarations are flexible and powerful
for supporting user-defined preferences, and the mode functionality is imple-
mented at the system level instead of the Prolog programming level. Second,
those preferences are not only applied on the top query of the optimization
predicate, but also propagated into its recursive subgoals automatically.

A disadvantageous efficiency issue is the frequent retrieval or replacement of
tabled answers. That is because the optimized answer is dynamically selected by
comparing with old tabled answers according to the preferences. The retrieval
of a tabled answer for comparison incurs time overhead due to having to locate
each argument of the answer in the table. For replacing a tabled answer in the
current TALS system, if a tabled subgoal only involves numerals as arguments,
then the tabled answer will be completely replaced if necessary. If the arguments
involve structures, however, then the answer will be updated by a link to the
new answer. Space taken up by the old answer has to be recovered by garbage
collection.

For preference logic programs, the running timings in the new strategy (with
an interface predicate) and the old strategy (with a naive transformation) are
comparable. However, the reason to their efficiency differences is not clear to us.
The important point is that preferences with the interface predicate can support
more generalized optimization problems than the previous one with the naive
transformation.

7 Conclusion

In this paper, we presented a new declarative strategy to embed solution pref-
erences into a program definition, so that the given preferences can take effects
automatically on pruning suboptimal solutions and their dependents during the
computation. The strategy has been implemented successfully in a tabled Prolog

Embedding Solution Preferences via Transformation 45

system for supporting solutions preferences. The main difficulty of supporting
preferences lies on how to bridge the gap between their specification at the Prolog
programming level and their actual functionality at the system implementation
level. Our new strategy introduces a new built-in predicate, which changes the
traditional way of collecting tabled answers blindly into a selective way by ap-
plying preference criteria. With this interface predicate, we can easily transform
a preference logic program into an executable program, where solution prefer-
ences can be propagated into recursion so that selecting an optimal solution to a
problem only depends on the optimal solutions to its subproblems. In addition,
the new strategy relaxes the total order relation on the preference predicate to
allow that the preference relation may be contradictorily defined, or that not
every two solutions are comparable. Therefore, preference logic programming
with the new transformation strategy provides more flexibility in specifying and
solving more optimization problems.

References

1. S. Bistarelli, U. Montanari, and F. Rossi: Semiring-based Constraint Solving and
Optimization. Journal of the ACM, 44(2):201–236, March 1997.

2. A. Brown, S. Mantha, and T. Wakayama: Preference Logics: Towards a Unified
Approach to Non-Monotonicity in Deductive Reasoning. Annals of Mathematics
and Artificial Intelligence, 10:233–280, 1994.

3. Weidong Chen and David S. Warren: Tabled Evaluation with Delaying for General
Logic Programs. Journal of the ACM, 43(1), pp. 20–74, 1996.

4. Baoqiu Cui and Terrance Swift: Preference Logic Grammars: Fixed Point Se-
mantics and Application to Data Standardization. Artificial Intelligence, 138(1-2):
117–147, 2002.

5. F. Fages: On the Semantics of Optimization Predicates in CLP Languages. In
Proc. 13th FST-TCS, 1993.

6. H. Fargier and J. Lang: Uncertainty in constraint satisfaction problems: a proba-
bilistic approach. European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, pp. 97–104, 1993.

7. Eugene C. Freuder and Richard J. Wallace: Partial Constraint Satisfaction. 11th
International Joint Conference on Artificial Intelligence, pages 278–283, 1989.

8. K. Govindarajan, B. Jayaraman, and S. Mantha: Preference Logic Programming.
International Conference on Logic Programming (ICLP), pages 731–745, 1995.

9. K. Govindarajan, B. Jayaraman, and S. Mantha: Optimization and Relaxation in
Constraint Logic Languages. POPL 1996: 91–103.

10. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
11. Hai-Feng Guo and Gopal Gupta: Simplifying Dynamic Programming via Tabling.

Practical Aspects of Declarative Languages (PADL), pages 163–177, 2004.
12. Hai-Feng Guo and Gopal Gupta: A Simple Scheme for Implementing Tabled Logic

Programming Systems Based on Dynamic Reordering of Alternatives. In Proceed-
ings of International Conference on Logic Programming (ICLP), pages 181–196,
2001.

13. H-F. Guo, B. Jayaraman, G. Gupta, and M. Liu: Optimization with mode-directed
preferences. International Conference on Principles and Practice of Declarative
Programming, pages 242-251, 2005.

46 Hai-Feng Guo, Miao Liu

14. F. Rossi and A. Sperduti: Acquiring both constraint and solution preferences in
interactive constraint systems. Constraints, 9(4):311–332, 2004.

15. Zs. Ruttkay: Fuzzy Constraint Satisfaction. Proc. 3rd IEEE International Confer-
ence on Fuzzy Systems, 1994.

16. T. Schiex: Arc consistency for soft constraints. International Conference on Prin-
ciples and Practice of Constraint Programming, 2000.

17. M. Wilson and A. Borning: Hierarchical Constraint Logic Programming. Journal
of Logic Programming, 16:277–318, 1993.

18. R. Rocha, F. Silva, and V. S. Costa: On a Tabling Engine That Can Exploit Or-
Parallelism. In ICLP Proceedings, pages 43–58, 2001.

19. Neng-Fa Zhou, Y. Shen, L. Yuan, and J. You: Implementation of a Linear Tabling
Mechanism. Journal of Functional and Logic Programming, 2001(10), 2001.

Towards Region-based Memory Management for

Mercury Programs ⋆

Quan Phan and Gerda Janssens

Department of Computer Science, K.U.Leuven
Celestijnenlaan, 200A, B-3001 Heverlee, Belgium,
{quan.phan,gerda.janssens}@cs.kuleuven.be

Abstract. Region-based memory management is a form of compile-
time memory management, well-known from the functional programming
world. This paper describes region-based memory management for the
Mercury language using some points-to graphs that model the partition
of the memory used by a program into separate regions and distribute the
values of the program’s variables over the regions. First, a region analysis
determines the different regions in the program. Second, the liveness of
the regions is computed. Finally, a program transformation adds region
annotations to the program for region support. Our approach obtains
good results for a restricted set of deterministic Mercury programs and
is a valid starting point to make region-based memory management work
with general Mercury programs.

1 Introduction and Motivation

Logic programming (LP) languages aim to free programmers from procedural
details such as memory management tasks. One classical, automatic memory
management technique in logic programming is to use a heap memory for struc-
tured terms and rely on backtracking and runtime garbage collection to reclaim
memory. While efficient implementations of garbage collectors for LP languages
can reuse more than 90% of the heap space of a program, they incur execution
overhead because collectors often need to temporarily stop the main program.

To remedy this shortcoming compile-time techniques automatically enhance
programs with instructions to reuse memory. This static method generally fol-
lows two approaches: region-based memory management (RBMM) and compile-
time garbage collection (CTGC). The basic idea of RBMM is to divide the heap
memory used by a program into different regions. The dynamically created terms
and their subterms have to be distributed over the regions in such a way that
at a certain point in the execution of the program all terms in a region are dead
and the region can be removed. RBMM is a topic of intensive research for func-
tional programming languages [13,1,4,12] and more recently also for imperative
languages [3,2]. For LP languages, there has been only one attempt to make
RBMM work for Prolog [7,6,5]. CTGC detects for a program when allocated

⋆ This work is supported by the project GOA/2003/08 and by FWO Vlaanderen.

48 Quan Phan and Gerda Janssens

memory cells are no longer used and instructs the program to reuse those cells
for constructing new terms, reducing the memory footprint and in some cases
achieving faster code. This idea has been used to reuse memory cells locally in
the procedures of Mercury programs [9,10,8].

Our ultimate research goal is to investigate the possibility and practicality of
a hybrid memory management technique, which combines RBMM and CTGC
to capitalize on their advantages. As CTGC was developed for Mercury, relying
much on Mercury-specific information such as determinism, modes, and types,
which are not readily available in other LP systems it is a logical choice to
develop RBMM in the same context. Moreover, this information can also be
exploited in our model of the heap when it is divided into regions and in the
region analyses.

The contribution of this paper is to develop an automated system based
on program analysis that adds region annotations to Mercury programs. While
program analyses based on points-to graphs are popular for languages with de-
structive update, in LP our work is the first to use the points-to graph to model
the heap and to develop the program analyses that derive the model and make
use of it for memory management.

In Section 2 we explain how memory management for Mercury can be based
on the use of regions. The whole algorithm is composed of three phases, which are
described in Sections 3, 4, and 5, respectively. Section 3 introduces the concept
of the region points-to graph and the points-to analysis. Section 4 defines the
live region analysis which uses the region points-to graph of each procedure to
precisely detect the lifetime of the regions. We do the transformation by adding
RBMM annotations in Section 5. Section 6 discusses the results of our prototype
analysis system. Finally, Section 7 concludes.

2 Regions and Mercury

2.1 Mercury programs

We assume that the input of our program analysis is a Mercury program that is
transformed by the MMC into superhomogeneous form, with the goals reordered
and each unification specialized into a construction (<=), a deconstruction (=>),
an assignment (:=), or a test (==) based on the modes [11]. The qsort program
then consists of the following procedures (Fig. 1)1:

2.2 Usage of Regions: An Example

We illustrate the usefulness of distributing terms over regions using the qsort
example. In the implementation of LP languages, a list consists of the list skeleton
and the elements. Observing the memory behaviour of the qsort procedure, we

1 The bold text can be ignored as it is the region annotations added automatically
by the transformation. The italic comments are the corresponding transformation
rules, which are described later in Sect. 5.

Towards Region-based Memory Management for Mercury Programs 49

main(!IO) :-

create R1,

create R2,

(1) R1.L<=[R2.2,R2.1,R2.3],

create R3,

(2) R3.A<=[],

(3) qsort(L,A,S){R1,R2,R3},

(4) L is no longer used . . .

(5) . . .

qsort(L,A,S){R1,R2,R3} :-

(

(1) R1.L=>[],

remove R1, % due to T4

(2) S:=A

;

(3) R1.L=>[Le|Ls],

(4) split(Le,Ls,L1,L2){R2,R1,R2,R4,R5},

(5) qsort(L2,A,S2){R5,R2,R3},

(6) R3.A1<=[Le|S2],

(7) qsort(L1,A1,S){R4,R2,R3}

).

split(X,L,L1,L2){R5,R1,R2,R3,R4} :-

(

(1) R1.L=>[],

remove R1, % due to T4

create R3, % due to T2

(2) R3.L1<=[],

create R4, % due to T2

(3) R4.L2<=[]

;

(4) R1.L=>[Le|Ls],

(

(5) R5.X>=R2.Le

− >

(6) split(X,Ls,L11,L2){R5,R1,R2,R3,R4},

(7) R3.L1<=[Le|L11]

;

(8) split(X,Ls,L1,L21){R5,R1,R2,R3,R4},

(9) R4.L2<=[Le|L21]

)

).

Fig. 1. qsort program.

see that the output list has a new skeleton built up in the accumulator while its
elements are those of the input list. In the main predicate, the input list L is no
longer used after the call to qsort. This means that if the skeleton of the input
list, the elements, and the skeleton of the output list (and the accumulator) are
stored in three different regions we can safely free the memory occupied by the
input list’s skeleton by removing its region after the call. Take a closer look inside
the qsort procedure at (4). The call to split creates two new lists with two new
skeletons while the elements are also those of the input list. Therefore, if the two
new skeletons are stored in regions different from the region of the input list’s
skeleton, the region can even be removed after this call inside qsort. This means
that we detect even an earlier point where the region can be removed. So, by
storing different components of the lists in separate regions we can do timely
removal, recovering dead memory sooner.

The qsort program with region support produced by our analysis is shown
in Fig. 1 with {. . . , Ri , . . .} the list of region parameters of a procedure. Two
instructions create and remove manipulate the creation and removal of regions.
By R.X we denote the variable X and its region. Detailed information about the
regions for the variables will be given in Fig. 3. In qsort procedure, the region of
the skeleton of the list L passed to qsort from main is removed in the base case
branch of split in the call at (4). The two new skeletons of the lists L1 and L2
are allocated in two separate regions, which are created in the base case branch
of split. Those regions are removed in the calls at (5) and (7). If L1 and L2 are
empty lists their regions are removed in the base case branch of qsort. Otherwise

50 Quan Phan and Gerda Janssens

they are removed in the base case branch of split the same as what happens
to the input list L. The region of the output list’s skeleton is the region of the
accumulator, which is created in main.

2.3 Storing Terms in Regions

The way terms are allocated in memory depends on the specific implementation
of a language. Therefore, we discuss the term representation when the heap
memory is divided into regions in the Melbourne Mercury Compiler (MMC).

In the MMC, the way a term is stored depends on its type. Terms can be
either of primitive types such as integer, char, float and string, or of discriminated
union types. The latter types whose type constructors are functors with arity zero
are called enumeration types, otherwise they are called record types. Primitive
and enumeration terms are stored in a single memory cell. A term of a record
type is stored on the heap and pointed to by a tagged pointer where the tag
encodes the principal functor of the term and the pointer itself points to the
block of memory cells corresponding to the arguments (subterms) of the principal
functor. Fig. 2(a) shows the representation of a primitive type variable H bound
to an integer and of a record type variable L bound to a list of two integers. A
box with a slim border is a location on the stack or registers, one with a bold
border is a location on the heap.

[.] []
21[.]

H

L

1

(a) In the MMC

[.] []
r
L

[.]L

H 1 2 r
H

(b) In RBMM

Fig. 2. H=1, L=[H,2].

Now we consider the term representation when the heap is split into regions.
To simplify the presentation in this paper, we assume that all terms are con-
structed on the heap and that the subterms of a compound term are always
stored as if they are of record type. A primitive or enumeration term is stored in
a memory cell in a region. To store a compound term, a region is used to store
the memory block of its subterms. For a variable that is bound to the term, this
region is called the region of the variable. If a subterm is of the same type as
its compound term, it is stored in the same region as the compound term. Oth-
erwise it is stored in a different region. Fig. 2(b) shows the division of the heap
into regions by using dashed lines. The variable H is bound to an integer that is
stored in the region rH . The two-cell memory blocks making up the skeleton of
the list to which L is bound are put into the other region, called the region of L

Towards Region-based Memory Management for Mercury Programs 51

(rL), because the second subterm of a list is also of type list. Also, the elements
reachable from the skeleton in rL are put in the same region, here rH .

There are several good reasons for our choice. First, the representation en-
sures that the terms of a recursive type are always stored in a finite number of
physical regions, regardless of the terms’ actual sizes. Second, a program often
treats the values of the same type in a term in the same way. By putting those
values into the same region we can hopefully remove the region when the pro-
gram no longer needs that part of the term, while other parts are still needed.
Alternatively, the term bound to a variable could be stored entirely in a region,
which is not a good approach when only a part of the term becomes dead. An-
other finer-grained approach could be that every subterm of a term is stored in a
separate region. This approach would mean that the number of physical regions
needed to store a recursive term depends on the size of the term (which usually is
not known at compile-time). Those regions could not be known at compile-time
therefore it would be difficult to keep track and manipulate them.

3 Region Points-to Analysis

The goal of this analysis is to build, for each procedure, a region points-to graph
that represents the partition of the memory used by the procedure into regions.
The concept of a region points-to graph was introduced for Java in [2] and we
adapted it in the context of Mercury. For a procedure p, a region points-to
graph, G = (N, E), consists of a set of nodes, N , representing regions and a set
of directed edges, E, representing references between the regions. A node has
an associated set of variables of p which are stored in the region corresponding
to the node2. For a node n, its set of variables is denoted by vars(n). The
node nX denotes the node such that X ∈ vars(nX). A directed edge is a triple.
(m, (f, i), n) denotes an edge between m and n, which is labelled by the type
selector (f, i) and represents the structured relation between the variables in the
two nodes. The type selector (f, i) selects the ith argument of the functor f [8].

The points-to graphs of split and qsort procedures are shown in Fig. 3. For
split we see that the skeletons of the lists L and Ls are in the same region and
that the elements are in the region pointed to by the edge with a label ([.], 1).
Note that the edge with label a ([.], 2) is for the skeleton.

The region points-to graph, G = (N, E), of a procedure p has to ensure the
following invariants.

1. If a unification X = f(. . . , Xi, . . .) (i.e., <= or =>) appears in p then
nX , nXi

∈ N and there exists one and only one edge with a label (f, i)
from nX and (nX , (f, i), nXi

) ∈ E.

2. Every variable of p belongs to exactly one node and the variables in a node
have the same type, which is regarded as the type of the node.

2 From now on, we use the concepts of a node and the region corresponding to the
node interchangeably.

52 Quan Phan and Gerda Janssens

L, Ls Le
([.], 1)

([.], 2)

X L2

L1
L11

L21

([.], 1)

([.], 2)

([.], 1)(R2) (R3)

([.], 2)(R5) (R4)

(R1)

(a) split

L, Ls Le

L1 L2

S, A

([.], 2)

([.], 1) ([.], 1)

([.], 2)

([.], 1) ([.], 1)

S2, A1

([.], 2) ([.], 2)

(R3)(R1) (R2)

(R4) (R5)

(b) qsort

Fig. 3. The points-to graphs of split and qsort.

The task of the region points-to analysis then is to produce a graph that
satisfies the invariants for each procedure in a program. The region points-to
analysis is flow-insensitive, i.e., the execution order of the literals in a procedure
does not matter, and consists of two analyses. One is an intraprocedural analysis
that only deals with specialized unifications, ignoring procedure calls and the
other is an interprocedural analysis that integrates the points-to graph of the
called procedure (callee) with that of the calling procedure (caller) at each call
site. The interprocedural analysis requires a fixpoint computation to calculate
points-to graphs for recursive procedures. The points-to analysis applies the
operations unify and edge to G = (N, E) and updates G as follows.

– unify(n, m): unify nodes n and m in the graph.
• N ← N \{n, m}∪{k}, k is a new node and vars(k) = vars(n)∪vars(m).
• E ← E with the edges where all appearances of m, n are replaced by k.

– edge(n, sel , m): create an edge with a label sel from node n to node m.
• G← (N, E ∪ {(n, sel , m)}).

3.1 Intraprocedural Analysis

To specify this analysis, assume that we are analysing a procedure p with points-
to graph G = (N, E). The analysis works as follows.

1. Each variable in p is assigned to a separate node: for a variable X , nX

becomes a node in N and vars(nX) = {X}.
2. The specialized unifications in p are processed one by one as follows:

– An assignment X := Y : record that X and Y are in the same region
because they point to the same memory block, i.e., unify(nX , nY).

– A test X == Y : do nothing.
– A deconstruction X => f(X1, . . . , Xn) or a construction X <= f(X1, . . . , Xn):

create the references from nX to each of nX1
, . . . , nXn

by adding the
edges edge(nX , (f, 1), nX1

), . . ., edge(nX , (f, n), nXn
).

3. The rules in Fig. 4 are fired whenever applicable. Rules P1 and P2 are to
ensure the first invariant. Rule P3 enforces the term representation for the
variables of recursive types.

Towards Region-based Memory Management for Mercury Programs 53

– P1 :
after unify(n, n′), k is the new node
if

(k, sel , m), (k, sel , m′) ∈ E∧
m 6= m′

then
unify(m, m′)

– P2 :
after edge(n, sel , m)
if

(n, sel , m′) ∈ E∧ m 6= m′

then
unify(m, m′)

– P3 :

after edge(n, sel , m)
if

(k1, m) ∈ E+∧
(m, k2) ∈ E+∧
k1 6= k2∧
type(k1) = type(k2)

then
unify(k1, k2)

in which E+ is the reflexive, tran-
sitive closure of E and type(n) re-
turns the type of the node n.

Fig. 4. Intraprocedural analysis rules.

3.2 Interprocedural Analysis

The interprocedural analysis updates the region points-to graph of a procedure p
by integrating the relevant parts of the points-to graphs of the called procedures
into it. Assume that for a call q(Y1, . . . , Yn), the head of the defining procedure
is q(X1, . . . , Xn). The analysis is performed as follows.

1. Process each procedure call q(Y1, . . . , Yn) in p: integrate the graph of q,
Gq = (Nq, Eq), into the graph of p, Gp = (Np, Ep) by building the partial α
mapping from Nq to Np as follows:

(a) Initializing the α mapping with α(nX1
) = nY1

,. . .,α(nXn
) = nYn

. For
those nodes nXi

’s that have been unified in Gq, the corresponding nodes
nYi

’s in the Gp are also unified. This is achieved by applying rule P4 in
Fig. 5 to ensure that α is a function.

(b) In the graph Gq, start from each nXi
, follow each edge once and apply

rules P5 - P8 in Fig. 5 when applicable. Those rules are to complete
the α mapping and to copy the parts of Gq that are relevant to nXi

’s
into Gp. After some two nodes of Gp are unified (rules P4 and P5) or
an edge is added to Gp (rules P7 and P8) we need to apply rules P1
or P3 (P2 is not applicable because its conditions cannot be satisfied)
respectively to Gp in order to maintain the invariant that there is only
one edge with a given selector between two nodes and to conform with
the term representation for recursive types.

2. Step 1 is repeated until there is no change in Gp.

For the qsort example, the region points-to graphs of split and qsort after the
points-to analysis reaches a fixpoint is exactly as shown in Fig. 3.

54 Quan Phan and Gerda Janssens

– P4 :
if

α(nXi
) = nYi

∧ α(nXj
) = nYj

∧
nXi

= nXj
∧ nYi

6= nYj

then
unify(nYi

, nYj
)

– P5 :
if

(nq, sel , mq) ∈ Eq∧ α(nq) = np∧
(np, sel , m

′
p) ∈ Ep∧

α(mq) = mp 6= m′
p

then
unify(mp, m

′
p)

– P6 :
if

(nq, sel , mq) ∈ Eq∧ α(nq) = np∧
(np, sel , mp) ∈ Ep∧
α(mq) undefined

then
α(mq) = mp

– P7 :

if
(nq, sel , mq) ∈ Eq∧
α(nq) = np∧
6 ∃k : (np, sel , k) ∈ Ep∧
α(mq) = mp

then
edge(np, sel , mp)

– P8 :

if
(nq, sel , mq) ∈ Eq∧
α(nq) = np∧
6 ∃k : (np, sel , k) ∈ Ep∧
α(mq) undefined ∧

then
mp: a new node in Gp,
α(mq) = mp,
edge(np, sel , mp)

Fig. 5. Interprocedural analysis rules.

4 Live Region Analysis

The goal of live region analysis is to detect live regions at each program point
and to decide which regions are created and removed by each procedure.

With every literal in the body of a procedure p, a program point is associated.
An execution path in p is a sequence of program points, such that at runtime
the literals associated with these program points are performed in sequence. We
use the notions before and after a program point. Before a program point means
the associated literal has not been executed, while after a program point means
when its literal has just completed. The set of live regions (LR) at a program
point is computed via the set of live variables (LV) at the program point.

4.1 Live Variables at a Program Point

A variable is live after a program point in p if:

– There exists an execution path in p containing the program point that in-
stantiates the variable before or at the program point and uses it after the
program point,

– OR it is an output variable of p, which is instantiated before or at the
program point.

Towards Region-based Memory Management for Mercury Programs 55

If we call pre inst(i, P) the set of variables instantiated before the program point
i in the execution path P , post use(i, P) the set of variables used after i in P ,
out(i) the set of variables instantiated by the goal at i, out(p) the set of output
variables of a procedure p then the set of live variables after i is:

LV after (i) = {V | ∃P : V ∈ (pre inst(i, P)∪ out(i))∩ (out(p)∪ post use(i, P))}.

If we call in(i) the set of input variables to the literal at i, the set of live variables
before i is:

LV before(i) = (LV after (i) \ out(i)) ∪ in(i).

The LV before of the first program point of an execution path of a procedure p is
defined to be in(p), the set of input variables of the procedure. The LV after of
the last program point is defined to be out(p).

4.2 Live Regions at a Program Point

A region is live at a program point if it is reachable from a live variable at the
program point. The set of regions that are reachable from a variable is defined:

Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

in which E∗(X) is defined:

E∗(X) = {(nX , ni) | ∃(nX , sel0, n1), . . . , (ni−1, seli−1, ni) ∈ E}.

The LR sets before and after a program point i are defined:

LRbefore(i) =
⋃

(Reach(X)) ∀X ∈ LV before(i).
LRafter (i) =

⋃

(Reach(X)) ∀X ∈ LV after (i).

4.3 The Analysis

This analysis computes for each procedure the LR sets before and after each
program point and the set of regions that the procedure may create, called
bornR and the set of regions that it may remove, called deadR.

First, LR sets can be computed in two passes. The first pass is a syntax-based
analysis to compute the LV sets for each program point. Note that because of
mode correctness the LV sets are specific for a program point, independent of
execution paths containing it. The second pass computes the LR sets for each
program point from the corresponding LV sets and the region points-to graph.

After that, to reason about the lifetime of regions across procedure boundary,
for a procedure p with its region points-to graph G = (N, E), we define:

– inputR(p) is the set of regions reachable from input variables.
– outputR(p) is the set of regions reachable from output variables.
– bornR(p) is the set of output regions that the procedure or any of the pro-

cedures it calls may create. Initially bornR(p) = outputR(p) \ inputR(p).

56 Quan Phan and Gerda Janssens

– deadR(p) is the set of input regions that the procedure or any of the proce-
dures it calls may remove. Initially deadR(p) = inputR(p) \ outputR(p).

– localR(p) = N \ inputR(p) \ outputR(p).

The analysis then follows each execution path of a procedure p and applies the
rules in Fig. 6 to any call q to update the deadR and bornR sets of q. Essentially,
a region is removed from deadR(q) if it needs to be live after the call to q in p;
or if it is going to be removed more than once by q. A region is removed from
bornR(q) if the region is already live before the call to q; or if q is going to create
the region more than once. When there is a change to those sets of q, q needs
to be analysed to propagate the change to its called procedures. Therefore, this
analysis requires a fixpoint computation.

– L1 :

if
r ∈ LRbefore(pp(l))∧
r ∈ LRafter (pp(l))∧
r = α(r′)∧ r′ ∈ deadR(q)

then
deadR(q) = deadR(q) \ {r′}

– L2 :

if
α(r′) = r ∧ α(r′′) = r∧
r′ 6= r′′∧
r′ ∈ deadR(q)

then
deadR(q) = deadR(q) \ {r′}

– L3 :

if
r ∈ LRbefore(pp(l))∧
r = α(r′)∧
r′ ∈ bornR(q)

then
bornR(q) = bornR(q) \ {r′}

– L4 :

if
α(r′) = r ∧ α(r′′) = r∧
r′ 6= r′′∧
r′ ∈ bornR(q)

then
bornR(q) = bornR(q) \ {r′}

Fig. 6. Live region analysis rules.

In the qsort program, split has three execution paths 〈(1), (2), (3)〉, 〈(4), (5), (6), (7)〉,
and 〈(4), (8), (9)〉; qsort has two execution paths 〈(1), (2)〉 and 〈(3), (4), (5), (6), (7)〉.
The LV and LR sets of split are in Tab. 1, of qsort in Tab. 2. Their correspond-
ing deadR and bornR sets are: deadR(split) = {R1}, bornR(split) = {R3, R4};
deadR(qsort) = {R1}, bornR(qsort) = φ.

Towards Region-based Memory Management for Mercury Programs 57

pp LV before LV after LRbefore LRafter

(1) {X, L} {} {R5 ,R1 ,R2} {}
(2) {} {L1} {} {R3 ,R2}
(3) {L1} {L1 ,L2} {R3 ,R2} {R3 ,R2 ,R4}
(4) {X, L} {X, Le,Ls} {R5 ,R1 ,R2} {R5 ,R2 ,R1}
(5) {X,Le,Ls} {X, Le,Ls} {R5 ,R2 ,R1} {R5 ,R2 ,R1}
(6) {X,Le,Ls} {L2 ,Le,L11} {R5 ,R2 ,R1} {R4 ,R2 ,R3}
(7) {L2 ,Le,L11} {L1 ,L2} {R4 ,R2 ,R3} {R3 ,R2 ,R4}
(8) {X,Le,Ls} {L1 ,Le,L21} {R5 ,R2 ,R1} {R4 ,R2 ,R3}
(9) {L1 ,Le,L21} {L1 ,L2} {R4 ,R2 ,R3} {R3 ,R2 ,R4}

Table 1. Live variable and live region sets of split.

pp LV before LV after LRbefore LRafter

(1) {L, A} {A} {R1 ,R2 ,R3} {R3 ,R2}
(2) {A} {S} {R3 ,R2} {R3 ,R2}
(3) {L, A} {A,Le,Ls} {R1 ,R2 ,R3} {R3 ,R2 ,R1}
(4) {A,Le,Ls} {A,Le,L1 ,L2} {R3 ,R2 ,R1} {R3 ,R2 ,R4 ,R5}
(5) {A,Le,L1 ,L2} {Le ,L1 ,S2} {R3 , R2 ,R4 ,R5} {R2 ,R4 ,R3}
(6) {Le ,L1 , S2} {L1 ,A1} {R2 ,R4 ,R3} {R4 ,R2 ,R3}
(7) {L1 ,A1} {S} {R4 ,R2 ,R3} {R3 ,R2}

Table 2. Live variable and live region sets of qsort.

5 Program Transformation

The goal of program transformation is to introduce create and remove instruc-
tions based on the region liveness information. Each procedure is transformed by
following its execution paths and applying the transformation rules in Fig. 7 to
each program point. Assuming that we are analysing a procedure p. Let li be the
associated literal at a program point i in p. A literal can be either a specialized
unification denoted by unif or a call (user-defined or built-ins). We assume that
all the specialized unifications as well as the built-ins do not remove or create
any regions.

A region is created when it first becomes live, namely when the region is not
live before i but is live after i. If li creates the region3, then no annotation is
added at i. Otherwise the region is created either by a caller of p or by p itself.
The former means that the region does not need to be created again in p and
no annotation is added at i. The latter occurs when the region belongs to either
bornR(p) or localR(p) and a create instruction is added before li.

A region is removed when it ceases to be live. The first situation is when
the region is live before i but not live after i. If li removes the region, then no
remove instruction needs to be inserted in p. Otherwise if the region is removed

3 When we say a region is created (removed) by a procedure it means that the region
is either created (removed) by the procedure itself or by one of the procedures that
it calls.

58 Quan Phan and Gerda Janssens

by p itself, namely the region is in either deadR, localR, or bornR sets of p, a
remove instruction is inserted after li to remove the region. While the reason
for removing the region when it belongs to the first two sets is straightforward,
the removal of a region in bornR(p) is allowed because it is acceptable for p to
remove the region after i and re-create it later on (which p will fulfill somehow
because the region is in bornR(p)). If p does not remove the region either then
the region is removed by a caller of p and no annotation is introduced at i.
The second situation is when the region is live after i, but not live before some
program point j following i in a certain execution path. This can happen when
i is a shared point among different execution paths and the region is live after
i due to an execution path to which j does not belong. A remove instruction is
added before lj to remove the region.

– T 1 :

if
li ≡ q(. . .)∧
r ∈ LRafter (i) \ LRbefore(i)∧
r ∈ (localR(p) ∪ bornR(p))∧
r = α(r′)∧ r′ 6∈ bornR(q)

then
add “create r” before l

– T 2 :

if
li ≡ X <= f(. . .)∧
r ∈ Reach(X) \ LRbefore(i)∧
r ∈ LRafter (i)∧
r ∈ localR(p) ∪ bornR(p)∧

then
add “create r” before l

– T 3 :

if
li ≡ q(. . .)∧
r ∈ LRbefore(i) \ LRafter (i)∧
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
6 ∃r′ : r = α(r′) ∧ r′ 6∈ deadR(q)

then
add “remove r” after l

– T 4 :

if
li ≡ unif ∧
r ∈ LRbefore(i) \ LRafter (i)∧
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

then
add “remove r” after l

– T 5 :

if
lj is right after li in an execution path
r ∈ LRafter (i) \ LRbefore(j)∧
r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)

then
add “remove r” before lj

Fig. 7. Transformation rules.

Towards Region-based Memory Management for Mercury Programs 59

The result of the program transformation of the qsort program has been
shown in Fig. 1.

6 Prototype Implementation and Discussion

We implemented a prototype of the algorithm as a source-to-source transforma-
tion in the MMC version 0.12.0. The analyser operates as one of the last analyses
on the High Level Data Structure representation of the original source code and
produces human-readable source code with region support. To realise Mercury
with RBMM the runtime system of Mercury should be extended with support
for regions, which is out of the scope of this paper.

Our region analysis and transformation work correctly for deterministic pro-
grams in which the condition of if-then-else constructs, if any, can only be a goal
that does not require creating or removing any regions inside itself. Note that
such a deterministic program can still have different execution paths. There are
two reasons for these restrictions. Firstly, the region liveness analysis only takes
into account forward execution. Therefore the removal and creation of regions
are only correct w.r.t. forward execution as we have in deterministic programs.
Secondly, even with a deterministic program, we need to be sure that when an
execution path of the program is taken all the region instructions on that path
are actually executed. A canfail goal could cause problems such as created re-
gions would never be removed or a region would be created or removed more than
once, and so on. In deterministic programs such canfail goals can only appear
in the condition of if-then-elses. Therefore, the condition goal of if-then-elses is
restricted so that no region instructions occur in this nondeterministic context.

Our approach is a valid starting point for RBMM for general Mercury pro-
grams. The authors in [5,7] describe an enhanced runtime for Prolog with RBMM,
which provide the support for nondeterministic goals. The idea of that enhanced
runtime is that backtracking is made transparent to the algorithm for determin-
istic programs by providing a mechanism to undo changes to the heap memory,
restoring the heap memory to the previous state at the point to which the pro-
gram backtracks. We believe that with a similar runtime support our algorithm
can be used unchanged to support full Mercury programs. In future work we
will investigate whether the runtime support can be lessened by exploiting the
determinism information available in Mercury.

To make it possible to study the programs with region support we imple-
mented a region simulator in which create and remove instructions are valid
Mercury predicates that record each time a region is created or removed. The
simulator is not fully automated in the sense that a program annotated with
the two predicates generated by our prototype needs to be manually modified so
that it can be compiled and executed as a normal Mercury program. By using
the simulator we collected the information about the total number of regions
created and the maximum number of regions during a program execution. We
can also verify that all regions created by the program are also removed when
the program finishes. Unfortunately, the sizes of the regions, which are essential

60 Quan Phan and Gerda Janssens

to measure memory saving, are not collected by the simulator. Collecting those
figures as well as the runtime performance of the transformed programs would
require a working system of Mercury with support for RBMM.

nrev qsort dnamatch argo cnters life

Total number of regions 500 1001 1448 2000 1216
Maximum number of regions 4 12 17 34 12
Analysis time (sec) 0.010 0.016 0.280 1.679 0.189
Normal compilation time (sec) 0.259 0.233 0.309 0.66 0.340

Table 3. Experimental results.

The results in Tab. 3 show that the total number of regions is always much
larger than the maximum number of regions. It means that there are quite many
regions having a short lifetime and the programs are able to remove them. The
analysis time4 ranges from 3.8% to 254% of the normal compilation time5, which
is acceptable for a prototype implementation of the algorithm. The analysis time
for argo cnters is large likely due to the fact that this benchmark processes the
functors of a large arity (20), creating a graph with many nodes and edges, and
that the behaviour of the program itself causes many nodes to be unified.

Up to our knowledge, the pioneering and only attempt to apply RBMM to
a standard LP system is the work of Makholm and Sagonas [7] for XSB Prolog.
Their work focused on the WAM runtime extensions required for regions, not
the region analysis. In that aspect, they did validate that RBMM can work
well with nondeterministic code, a unique feature of logic programming. Our
work has concentrated on the static analysis. In our experiment we use the
benchmark programs nrev, qsort, and dnamatch, also used in [7]. Our algorithm
produces better analysis results for the first two programs, as it distributes the
list skeletons and the elements in different regions and detects a shorter lifetime
of regions, which would imply less memory consumption at runtime. Our RBMM
qsort and nrev programs use no more memory than what is needed to store the
input list. While in [7] nrev used maximally double and qsort 1.66 times the
memory size of the input list. For dnamatch our analysis has the same problem
as reported in [7], when temporary data is put in the same regions as the input
and output data. This problem also happens for agro cnters and life, which
should cause poor performance of RBMM.

In our analysis, the problem is due to the imprecision of the region points-
to analysis. The current region points-to analysis cannot capture the fact that
two regions are the same in one execution path but not in another and just
always unifies them. If they would have been kept separate, one of them had
been removed when only the other is live. This problem has also been reported

4 The analyses are executed on a Pentium 4 2.8MHz with 512MB RAM running Debian
GNU/Linux 3.1 machine, under a usual load.

5 The compilation time using the MMC 0.12.0 with default compilation options.

Towards Region-based Memory Management for Mercury Programs 61

in the RBMM research for functional programming [6,4] with many solutions
such as storage mode analysis, and those in [1,4] but as far as we understand
those solutions have not solved the problem completely. A tentative approach to
tackle this problem is to enhance the region points-to analysis so that it is able
to detect which variables are definitely in the same regions and which ones are
possibly in the same regions. We will investigate this possibility in future work.

7 Conclusion

We have developed and implemented an algorithm for region analysis and trans-
formation for deterministic Mercury programs. While the work in [7] emphasised
on the extension of the Prolog runtime system for supporting regions, our work
here focuses on the static detection of regions and the introducing region anno-
tations, exploiting the available type and mode information of Mercury. Experi-
mental results of using a prototype implementation of the algorithm are reported
for several programs. We obtained promising results for some programs, while for
some others the typical shortcomings known from the functional programming
world show up. In particular, we now have a system in which the combination of
CTGC and RBMM can be investigated. The correctness proofs of the analysis
and transformation will be topics for further work. Future work also includes
the modular region analysis and the improvement of the precision of the region
points-to graph and analysis.

References

1. A. Aiken, M. Fähndrich, and R. Levien. Better static memory management: Im-
proving region-based analysis of higher-order languages. In Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and Implementa-
tion, pages 174–185. ACM Press, 1995.

2. S. Cherem and R. Rugina. Region analysis and transformation for Java. In Proceed-
ings of the 4th International Symposium on Memory Management, pages 85–96.
ACM Press., October 2004.

3. D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In Proceedings of the ACM Conference on
Programming Language Design and Implementation., pages 282–293. ACM Press.,
2002.

4. F. Henglein, H Makholm, and H. Niss. A direct approach to control-flow sensi-
tive region-based memory management. In Principles and Practice of Declarative
Programming., pages 175–186. ACM Press., 2001.

5. H. Makholm. A region-based memory manager for Prolog. In Proceedings of the
2nd International Symposium on Memory Management, pages 25–34. ACM Press.,
2000.

6. H. Makholm. Region-based memory management in Prolog. Master’s thesis, Uni-
versity of Copenhagen, 2000.

7. H. Makholm and K. Sagonas. On enabling the WAM with region support. In
Proceedings of the 18th International Conference on Logic Programming. Springer
Verlag., 2002.

62 Quan Phan and Gerda Janssens

8. N. Mazur. Compile-time garbage collection for the declarative language Mercury.
PhD thesis, Department of Computer Science, Katholieke Universiteit Leuven,
May 2004.

9. N. Mazur, G. Janssens, and M. Bruynooghe. A module based analysis for memory
reuse in Mercury. In Proceedings of Computational Logic - CL 2000, First Inter-
national Conference, volume 1861 of Lecture Notes in Artificial Intelligence, pages
1255–1269. Springer-Verlag, 2000.

10. N. Mazur, P. Ross, G. Janssens, and M. Bruynooghe. Practical aspects for a
working compile time garbage collection system for Mercury. In Proceedings of
the 17th International Conference on Logic Programming, volume 2237 of Lecture
Notes in Computer Science, pages 105–119. Springer, 2001.

11. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. The Journal of Logic
Programming, 29(1-3):17–64, October-December 1996.

12. M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation, 17:245–265,
2004.

13. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation., 132(2):109–176, February 1997.

Delay and events in the TOAM and the WAM

Bart Demoen∗ and Phuong-Lan Nguyen†

∗ Department of Computer Science, K.U.Leuven, Belgium
bmd@cs.kuleuven.be

† Institut de Mathématiques Appliquées, UCO, Angers, France
nguyen@uco.fr

Abstract. Ten years ago, published experiments comparing two ap-
proaches to implement delayed goals seemed to indicated a clear edge for
the TOAM approach (in B-Prolog) over the WAM approach (in SICStus
Prolog). The old experiments are redone and a better explanation is
offered for the performance difference. hProlog (a WAM-based Prolog
implementation) is used to show that with some effort, the traditional
WAM approach to freeze/2 performs similar to the TOAM approach.
We do the same for the event mechanism of B-Prolog.

1 Introduction

We must assume working knowledge of Prolog and its implementation. For a
good introduction to Prolog see [4]; to the WAM, see [1,13]; for B-Prolog and
the TOAM, see [14]; the SICStus Prolog implementation is described in [3]. hPro-
log is the successor of dProlog [6]; it is available from the first author. We have
used the following releases of these systems: B-Prolog 6.9-b4.2 in Section 8 and
6.9-b3.2 elsewhere, SICStus Prolog 3.12.0, hProlog 2.6.*. The benchmarks were
all run on a Pentium, 1.8GHz, under Debian, and while running the benchmarks,
garbage collection was disabled by starting the system with enough initial mem-
ory, whenever possible. We also used SWI-Prolog Version 5.5.40 and Yap-4.5.7
in some of the experiments.

The predicate freeze/2 has its origin in Prolog II as geler/2. [2] is the first
publication of its implementation in the context of the WAM. Later implemen-
tations use meta-structures [10] or attributed variables [8]. More recently the
TOAM [15] introduced the concept of delay clauses which can be used for the
specification (at the source level) of freeze/2. Delay clauses have since then been
replaced by Action Rules, but (AFAWK) the basic implementation principle - by
suspension frames on the stack - has remained the same. A short introduction
to suspension frames is given in Section 2.

The issue of putting asleep and waking up goals is not restricted to freeze/2:
the efficiency of constraint solvers depends crucially on the efficiency of the
mechanism to put goals asleep (conditionally) and waking up those goals when
certain events occur. Instantiation is just one such event and it is related to the
Herbrand solver. Other solvers have their own events, e.g. upper bound changed
for a finite domain solver. However, when the other solver is embedded in an

64 Bart Demoen and Phuong-Lan Nguyen

untyped context like Prolog, there is a huge difference between the Herbrand
event of instantiation, and events from the other solver: Herbrand instantiation
of any variable (any in the sense of possibly belonging to a non-Herbrand solver)
is supposed to be supported and the underlying Prolog system must implement
(a form of) freeze/2 for that. The other (non-Herbrand) events can easily be
implemented without freeze/2 by using passive attributed variables to which
any information can be attached and which do not react necessarily to Herbrand
instantiation. Whether this difference is necessarily important at the implemen-
tation level is a different issue, but it should be clear that the wakeup of a goal
because an upper bound changed, has nothing to do with Prolog’s unification
routine.

In the 1996 paper [15], the author explains the use of delay clauses (now
named action rules) for implementing delay - as done in B-Prolog. An experi-
mental comparison is presented there as well: there are only a few benchmarks
and the comparison is with SICStus Prolog. In other sciences (experimental
physics, biology ...) it is quite common to redo experiments. In computer science
however, it seems rather uncommon: experiments are seldom redone. However,
changes in hardware and software affect the outcome of experiments over time,
and more importantly new explanations of experiments could be discovered by
redoing them and monitoring them in different ways. The experiments in [15]
have never convinced us, so we devised the following plan: (1) redo the exper-
iments of [15] and check whether the conclusions put forward there are (still)
valid; (2) use hProlog as a lab environment for checking whether the conclusions
put forward in [15] are valid in another WAM based Prolog implementation, and
in particular whether a traditional WAM approach to delay is necessarily less
efficient. We will also study the event mechanism of B-Prolog which is imple-
mented in the TOAM with the same stack based mechanism as freeze, and see
how a heap based approach can be made to perform as good. We will also use
hProlog for events.

Apart from some dissatisfaction with the experiments in [15], our moti-
vation for this work also derives from the CHR implementation context. (1)
CHR implementations rely on a freeze-like mechanism to trigger postponed
rules (see for instance [9]): we were interested in improving the performance
of that aspect of the implementation within the K.U.Leuven CHR system (see
http://www.cs.kuleuven.ac.be/~toms/Research/CHR/; (2) more recently, we
became involved in the design of a compilation schema of CHR to action rules
that uses heavily the B-Prolog event mechanism [11]; anticipating that this might
turn out a powerful translation schema, we wanted to find out how efficient a
WAM-based implementation of this event mechanism could fare.

In Section 3 we reproduce the timings and conclusions from [15]. The outline
of the rest of the paper can be found at the end of that section. We start with
a short introduction to suspension frames.

Delay and events in the TOAM and the WAM 65

2 On suspension frames.

The suspension frame mechanism of the TOAM has been described in [15] in
much detail: there is no point in repeating it here. Instead, we offer an alterna-
tive view to suspension frames, namely one that introduces them in the more
widely known context of the WAM. First we give a quick review of how freeze/2
can be implemented in the WAM with attributed variables. For the sake of our
explanation, the goal will be ?- freeze(X,p(A,B,C)), X = 1. and the pred-
icate p/3 has only one clause: p(A,B,C) :- <Body>. where <Body> stands for
an arbitrary body.

The WAM approach: the term p(A,B,C) is put on the heap and the variable
X gets an attribute that will make sure the goal p(A,B,C) is called when X is
instantiated; when X is unified with 1, the arguments of the heap term p(A,B,C)
are put in the first three argument registers, and the clause for p/3 is entered.
If p/3 needs an environment, it is constructed at this point only. We name this
the meta-call approach.

Suspension frames in the WAM: think of a WAM implementation without
last call optimization. Construct the new clause
newp(A,B,C,Susp) :- reentry(Susp), <Body>. where reentry/1 has a dou-
ble function: (at compile time) it forces newp/4 to have an environment on the
stack; and when reentry is executed, it first unifies Susp with the data structure
susp(<E>,<Ad>) and then returns to the caller. <E> is the address of the cur-
rent environment1, and <Ad> is the start address of the code of <Body>. Finally,
replace the goal freeze(X,p(A,B,C)) by

(var(X) ->

p(A,B,C)

;

newp(A,B,C,Susp),

attach_attr(X,Susp)

)

When X is unified with 1, X’s attribute tells where to jump to and which
environment to use. We need to take care of returning correctly from newp/4,
but that is easy as long as a suspension frame can not be reactivated before the
end of the newp/4 clause.

Advantage of the suspension frame on activating the delayed goal:
on activating the woken goal, the meta-call approach must move all the argu-
ments to the appropriate registers and create the environment for the entered
clause; the suspension frame approach needs to install only some abstract ma-
chine pointers and can start executing the body of the clause immediately: the
frame is already there. This could be important when the same delayed goal
is woken several times: this can happen when the same goal is waiting for the
instantiation of more than one variable.
1 Now you know why we got rid of LCO

66 Bart Demoen and Phuong-Lan Nguyen

Disadvantages of the suspension frame approach: one needs a garbage
collector for the environment stack, because unreachable suspension frames can
become trapped. Also, there will be more argument saving (and restoring) in
the environment in newp/4 than in p/3.

The above describes the basic concept of suspension frames on the stack: low
level support can be provided and LCO can be retrieved to some extent. The
whole idea fits the TOAM rather well, because the TOAM passes arguments
through the stack. Note that with suitable modifications, the suspension frames
could be kept on the heap as well.

We can now also give a partial introduction to action rules, in as far as they
are used for freeze/2: the above query and goal would be written as follows with
action rules

p(A,B,C,X), var(X), {ins(X)} => true.

p(A,B,C,Y) => <Body>.

?- p(A,B,C,X), X = 1.

The first goal in the query has the same effect as freezing the execution of
<Body> until X is instantiated: the first p/4 clause creates a suspension frame.
The second clause encapsulates the action on instantiation of X.

3 The experiments 10 years ago

We start here by quoting the ratios of timings reported in [15] and a verbatim
quote of its conclusion: we have left out the absolute times and figures related
to SICStus Prolog native code and to memory usage.

block freeze
nreverse 8.37 28.67
queens 2.22 13.87
sendmory 1.96 10.71
psort 2.31 13.26

Table 1. Execution time ratio SICStus/B-Prolog in 1996

1. While using freeze and delay clauses does not cause much difference in ex-
ecution time in B-Prolog, using block declaration is much faster than using
freeze/2 in SICStus Prolog.

2. For the four programs, B-Prolog is significantly faster than SP-bc2 [and . . .].
The speed-ups are due mostly to the novel implementation method of delay
adopted in B-Prolog. For the original nreverse program without delay, B-
Prolog is only 45 percent faster than SP-bc.

2 SICStus Prolog byte code - the emulator

Delay and events in the TOAM and the WAM 67

3. It is difficult to tell to what extent delay affects the execution time because
to do so we have to get rid of the time taken to run predicates that never
delay. However, as more than 90 percent of the predicate calls in nreverse
delay in execution, the ratios in the row for nreverse roughly tell us about
the difference between the performance of the two systems.

The first conclusion follows objectively from the reported figures - the only
criticism could be that only four benchmarks are used. However, [15] fails to
investigate reasons for the difference between freeze/2 and block declarations in
SICStus Prolog: we will get into this in Section 5.

The second conclusion attributes the speed-up to the novel implementation
method of delay. This conclusion does not follow from the figures: it is an inter-
pretation, or a possible explanation, and a scientific approach consists in putting
this conclusion to scrutiny.

The last sentence in the third conclusion seems to mean that the basic per-
formance of freeze (respectively block declaration) compared to the performance
of delay in B-Prolog, is about 28 (respectively 8); we will come back to this in
Section 4 after we have redone the experiments. Section 5 finally uncovers the
truth about the comparison with SICStus Prolog. From Section 6 on, we use
hProlog, initially on the original benchmarks and in Section 7 on a set of artifi-
cial benchmarks which is used in order to understand better the performance of
the different aspects of freeze/2. Section 8 deals with the B-Prolog events.

4 The same experiments 10 years later

The benchmarks used in 1996 are available in the distribution of B-Prolog. It is
a simple matter to rerun them, but since machines have become faster, it was
necessary to run the benchmarks with larger input: for queens, it used to be 8
and now it is 10; for nreverse, it was 100 and now 500; for psort, it was a list of
length 15 and now 19. The results are in Table 2.

block freeze
nreverse 2.00 4.00
queens 2.26 14.10
sendmory 1.88 12.87
psort 1.84 18.67

Table 2. Execution time ratio SICStus/B-Prolog in 2006

The 1996 conclusions haven’t changed much in 2006:

1. Block declarations are still much faster than freeze/2 in SICStus Prolog.
2. The figures for nreverse have improved a lot for SICStus Prolog, while the

other figures got a little worse: on the whole B-Prolog is still significantly
faster than SICStus Prolog. The reasons are still unclear.

68 Bart Demoen and Phuong-Lan Nguyen

3. If the reasoning for 1996 conclusion 3 is correct (the result of nreverse is in-
dicative for the difference in implementation technology), one must conclude
that in 2006 the TOAM implementation of delay is only 2 (for block) to 4
(freeze) times faster than the SICStus technology. That is an improvement
for SICStus Prolog of a factor of 4 to 7.

Table 2 is remarkable in two respects:

– the figures in the block column are all close to two
– the freeze figure for nreverse is quite different from the other freeze figures

which in turn are rather close

The first point seems to indicate that two is a fundamental constant for the
ratio between SICStus block and TOAM freeze.

The second point suggests that the nature of the benchmarks themselves
should explain the outcome. The nreverse benchmark is the only deterministic
benchmark, while the other three benchmarks find their solution(s) by backtrack-
ing during a labeling phase (queens, sendmory) or by generating permutations
(psort). This means that while in nreverse each delayed goal is activated once,
the delayed goals in the other three benchmarks are activated many times. A
hasty conclusion would be that backtracking accounts for the qualitative differ-
ence in the 2006 figures for nreverse and the other three. Section 5 shows that
the explanation is very different, but we need to dig deeper to find the truth.

5 The difference between freeze/2 and block declarations

In SICStus Prolog, freeze/2 is implemented in intrins1.pl basically as:

:- block freeze(-, ?).

freeze(_, Goal) :- call(Goal).

The block declaration makes sure that the body is delayed until the argu-
ments marked with - are free.

Inter-module specialization (or a special purpose hack) could easily transform
a goal like freeze(X,foo(A,B,X,D,E)) to foo_blocked(A,B,X,D,E) and add
the following definition for foo blocked/5

:- block foo_blocked(?,?,-,?,?).

foo_blocked(A,B,C,D,E) :- foo(A,B,C,D,E).

We name this specialization block introduction. SICStus Prolog does not do
it. Since a block declaration is compiled to specialized instructions, block in-
troduction can lead to great performance gains. In fact, the absence of block
introduction is the only reason for the huge difference between block and freeze
for the nreverse benchmark.

B-Prolog on the other hand applies a similar specialisation for calls to freeze/2:
it could be named action rule introduction. This explains why there is virtually
no difference between the use of action rules and freeze/2 in B-Prolog.

Delay and events in the TOAM and the WAM 69

We are still left with the question: why is the ratio freeze/block so much bigger
for the three backtracking benchmarks than for nreverse ? The answer is: nested
freezes. The psort benchmark contains the goal freeze(X,freeze(Y,X=<Y)).
The inner nested freeze/2 goal is executed at the moment that X becomes in-
stantiated. This means that the query

?- L = [1,2,3,4,5], freeze(X,freeze(Y,X=<Y)), member(X,L), fail.

executes 6 times a call to freeze/2, 5 of which by a meta call.
One can get rid of the nesting of two freezes as follows: the goal

freeze(X,freeze(Y,goal(X,Y)) is transformed to the conjunction
NewGoal = newgoal(X,Y,_), freeze(X,NewGoal), freeze(Y,NewGoal)with
newgoal/2 defined as:

newgoal(X,Y,New) :-

(nonvar(X), nonvar(Y), var(New) ->

New = 1,

goal(X,Y)

;

true

).

We name this transformation unnesting: only when both X and Y are in-
stantiated is goal(X,Y) executed and the variable New makes sure that it is
executed at most once. The above query executes only two freeze goals when the
nested freezes are unnested. The effect of unnesting the psort benchmark is very
pronounced: the number of calls to freeze/2 goes down from 2621858 to 38. The
sendmory and queens benchmarks contain similarly nested freezes. Unnesting
has a huge effect on the three involved benchmarks. Table 3 adds one column
to Table 2: the ratio for the unnested freeze programs in SICStus Prolog to the
original program in B-Prolog.

block freeze unnest
nreverse 2.00 4.00 4.00
queens 2.26 14.10 4.61
sendmory 1.88 12.87 3.91
psort 1.84 18.67 3.71

Table 3. Execution time ratio SICStus/B-Prolog in 2006: with unnested freeze

Conclusion 1 from 1996 can now be completed with an explanation:

The huge difference between block and freeze for queens, sendmory and psort
is caused by not unnesting nested freezes.

Note that the ratio between the unnested freeze and block performance is now
almost constant and equal to two. Combining unnesting with block introduction

70 Bart Demoen and Phuong-Lan Nguyen

erases the difference completely of course. An example shows how this works:
the goal freeze(X,freeze(Y,foo(Z)) is transformed to foo(X,Y,Z) and foo/3
is defined as

:- block foo(-,?,?), foo(?,-,?).

foo(_,_,Z) :- foo(Z).

with some obvious optimizations when X and/or Y is in the term Z syntac-
tically.

B-Prolog performs unnesting. One can verify this by inspecting directly the
generated abstract machine code, or by performing an indirect experiment in
which the manifest nesting is hidden, i.e. by transforming the goal
freeze(X,freeze(Y,goal(X,Y)) to freeze(X,myfreeze(Y,goal(X,Y)) and
defining

myfreeze(X,Y) :- freeze(X,Y).

This transformation reduces the performance of psort in B-Prolog by a factor
of 1.9. This shows important unnesting is for performance.

First new conclusions related to the old experiments Since calls to
freeze/2 are almost always manifest - i.e. at the source level, the second ar-
gument is not a variable - block introduction is almost always applicable and it
does away easily with the performance difference (between block and freeze for
SICStus Prolog) for all the benchmarks. When block is not available, unnesting
reduces the difference between a WAM freeze implementation and a TOAM one.

The ratio B-Prolog/block is close to two for all four benchmarks. Given that
B-Prolog is about 50% faster than SICStus Prolog for plain Prolog code, this
could indicate that there is a performance edge in action rules: by now, we tend
to be cautious about such a conclusion.

6 Digging deeper ...

Starting from the experience of block versus freeze, we have looked more closely
at the effect of the compilation and execution process itself on the performance.
From now on, we will use hProlog for comparison with B-Prolog because it
is easier for us to perform implementation experiments with hProlog than with
SICStus Prolog. Still, we believe that the results we have obtained in the hProlog
context are of value in any WAM implementation. We first show in Table 4
the benchmark results for B-Prolog and hProlog without any changes to the
benchmarks or to the hProlog implementation. hProlog has freeze/2, but no
block declarations: freeze/2 is build on top of (dynamic) attributed variables [5].

From the figures in Table 4, one would naively conclude that the TOAM way
is superior to the WAM way. However ...

– The hProlog implementation of attributed variables [5] uses one slot (a heap
word) for all attributes: in general this slot contains a pointer to a list

Delay and events in the TOAM and the WAM 71

B-Prolog hProlog
nreverse 40 102
queens 212 311
sendmory 254 769
psort 1193 4447

Table 4. B-Prolog and hProlog initially

with pairs (module,attribute value). Freeze/2 is not treated in any special
way and freeze/2 suffers because of this generality: (1) when two attributed
variables are bound, the underlying C implementation doesn’t know about
the special meaning of the freeze attribute and the freeze handler written in
Prolog takes care of all actions; (2) when a frozen variable is instantiated, the
general handler is called, while the frozen goal could be called directly. These
general actions result in performance loss. If the implementation has a special
freeze slot in the attributed variable, this overhead can be avoided to a large
extent. We will refer to this as spec slot. In the context of hProlog, we mimic
it by using the unique attribute slot only for freeze/2. Low-level built-ins deal
with this slot, but no further knowledge about freeze/2 is pushed deeper in
the implementation. These low-level built-ins existed prior to working on
this paper. In order to use the spec slot freeze/2 version, the user simple
imports the freeze library which then overrides the general implementation.

– Without special treatment by the compiler, the goal freeze(X,Z is X+Y)

is treated exactly as the conjunction Goal = Z is X+Y, freeze(X,Goal):
the goal is constructed as a heap term and when X becomes instantiated,
a meta-call of Goal is executed. No advantage is taken of the fact that the
Goal is manifest. A meta-call cannot be avoided, but if a meta-call of arith-
metic operations results in interpretation of the arithmetic, it is better to
rewrite the manifest goal above as freeze(X,newp(X,Y,Z)) and define the
new predicate newp(X,Y,Z) :- Z is X+Y. We will refer to this as fold. The
benchmarks sendmory and psort contain fold-able freezes - nreverse and
queens do not.

– We have discussed previously unnesting: nreverse does not benefit from it.

Table 5 shows the benchmarks with unnesting, folding and special slot. The
table does not show unnest and fold figures for B-Prolog: that would not be
relevant to the point we want to make: B-Prolog performs unnesting and fold
already and applying these transformations at the source level has a negative
impact.

More new conclusions related to the old experiments The biggest gain
clearly comes from using a dedicated slot for freeze/2. Also folding can have a

72 Bart Demoen and Phuong-Lan Nguyen

nreverse sendmory psort queens
orig orig fold unnest orig fold unnest orig unnest

B-Prolog 40 254 1193 212
hProlog 102 796 453 439 4447 3366 2352 311 224

hProlog spec slot 31 548 222 228 2206 1331 1105 175 176
Table 5.

big impact, but the extent of its effect seems hProlog specific: it is much smaller
in SICStus Prolog.3

Our conclusion is that similar performance for delaying goals can be achieved
in the TOAD and the WAM: it is a matter of using a dedicated freeze slot and
some simple source-to-source transformations. The best figure for hProlog is
always better than the B-Prolog figure. hProlog is also a bit faster than B-
Prolog on ordinary Prolog code. In any case, from these benchmarks we can’t
conclude much about the basic mechanisms with which freeze is implemented.
Artificial experiments can shed new light.

7 Artificial experiments

There are several actions related to a goal like freeze(X,Goal) in which X is
free and (some time) after which X becomes instantiated: (1) the Goal is frozen
on X; (2) the Goal is woken. Our artificial benchmarks are intended to measure
the cost of these two actions separately: Tables 6 and 7 report on freezing, while
Tables 8 and 9 report on wakeup. Two more variants interest us:

1. the same variable can be frozen several times, and later become instantiated,
or one can freeze several variables and then instantiate them during one
atomic unification; the former is reported on in Tables 6 and 8, while the
latter is reported on in Tables 7 and 9

2. the arity of the goal to be frozen and later woken up is important, because
both in the WAM and in the TOAM, there is code to be executed for each
argument; the tables report timings for a goal with arity 1 and arity 4,
separated by a /

We have always subtracted the time of dummy loops. The figures for Yap,
SICStus Prolog and SWI-Prolog are only given so that the reader can place the
B-Prolog and hProlog figures in a wider performance context.

Conclusions about the artificial experiments The following observations
were most striking to us:

3 The reasons do not fit in the margin, but are obvious and uninteresting for whomever
studied the sources.

Delay and events in the TOAM and the WAM 73

B-Prolog hProlog hProlog-specslot SICStus SWI Yap
1 var 1 goal 109 / 128 59 / 84 44 / 57 188 / 195 380 / 405 528 / 591

2 vars 1 goal 261 / 310 211 / 278 164 / 238 418 / 485 1100 / 1165 1055 / 1198
3 vars 1 goal 346 / 425 267 / 386 196 / 328 588 / 773 1791 / 1960 1568 / 1795
4 vars 1 goal 433 / 524 340 / 526 240 / 436 758 / 970 2500 / 2660 2113 / 2404

Table 6. Freezing: different variables on one goal each

B-Prolog hProlog hProlog-specslot SICStus SWI Yap
1 var 1 goal 109 / 128 59 / 84 44 / 57 188 / 195 380 / 405 528 / 591

1 var 2 goals 235 / 291 281 / 384 139 / 249 368 / 475 985 / 1071 927 / 1101
1 var 3 goals 328 / 418 421 / 545 214 / 323 528 / 668 1610 / 1735 1289 / 1557
1 var 4 goals 444 / 525 567 / 768 230 / 479 678 / 853 2237 / 2365 1601 / 2030

Table 7. Freezing: the same variable on one to four goals

– B-Prolog is less sensitive than any other system to the arity of the frozen
goal when the freeze actually takes place; when the goal is woken, B-Prolog
is amongst the systems most sensitive to the arity of the woken goal; this
seems counterintuitive, and it took some time to find the explanation; space
limitiations prevent us from going into this

– using the special slot in hProlog again really pays off: the gain is huge and
hProlog-spec slot is systematically the best of all

Apart from the special slot, one specialization also payed off quite well: when
one atomic unification instantiates just one frozen variable (resp. two), the gen-
eral handler is not called, but a specialized version which knows there is only
one goal (resp. two) to call: this requires just a little extra C-code in the routine
that installs the handler.

The most important conclusion seems to be that for the implementation of
freeze/2

the WAM approach can compete favourably with the TOAM approach

It is also clear that it requires a careful implementation effort.

8 Events: multiple wakeups

Our benchmarks have dealt with only one solver event: Herbrand instantiation.
The most distinguishing fact about Herbrand instantiation is that - in the ab-
sence of backtracking - it can happen only once for a particular variable, while
other solver events (e.g. bounds changed) can happen many times for the same
finite domain variable. Non Herbrand solver events are more important for con-
straint solvers and a comparison between WAM and TOAM along that line is
in order. B-Prolog has another event mechanism that is not related to solvers in
the traditional sense. We give just a small example with one action rule and a
query:

74 Bart Demoen and Phuong-Lan Nguyen

B-Prolog hProlog hProlog-specslot SICStus SWI Yap
1 var 1 goal 244 / 253 695 / 687 173 / 172 1098 / 1110 2305 / 2355 1871 / 1883

2 vars 1 goal 539 / 585 1158 / 1165 360 / 361 2095 / 2145 4762 / 4848 3206 / 3243
3 vars 1 goal 806 / 948 1972 / 1982 646 / 655 3103 / 3180 7162 / 7257 4628 / 4683
4 vars 1 goal 1129 / 1332 2532 / 2556 781 / 787 4095 / 4200 9606 / 9700 6077 / 6195

Table 8. Waking up: different variables on one goal each

B-Prolog hProlog hProlog-specslot SICStus SWI Yap
1 var 1 goal 244 / 253 695 / 687 173 / 172 1098 / 1110 2305 / 2355 1871 / 1883

1 var 2 goals 432 / 575 809 / 804 280 / 284 1893 / 1955 3615 / 3687 2323 / 2343
1 var 3 goals 612 / 744 884 / 875 346 / 351 2753 / 2823 4307 / 4413 2645 / 2676
1 var 4 goals 803 / 985 976 / 981 436 / 435 3543 / 3638 4955 / 5087 3064 / 3089

Table 9. Waking up: the same variable with one to four goals

p(X), {event(X,M)} => write(M).

?- p(X), post_event(X,hello), post_event(X,world).

The query results in the output helloworld.
Roughly, every time there is a call to post_event(X,M) the bodies of the

action rules that were called previously with X as the channel variable in the
event, are executed.

8.1 Events in the WAM

It is not difficult to mimic the B-Prolog event behaviour in a Prolog system with
attributed variables. We show this by an hProlog program (also working under
SWI-Prolog) equivalent to the above example:

p(X) :- put_attr(X,event,p1(X)).

p1(X,M) :- write(M).

post_event(X,M) :-

get_attr(X,event,Goal),

call(Goal,M).

A more general translation schema goes as follows:

h(Z), {event(X,Message)} => Body.

is translated to:

h(Z) :- post_event(X,Message) :-

(get_attr(X,event,A) -> get_attr(X,event,Goals),

put_attr(X,event,[h1(Z)|A]) call_goals(Goals,Message).

;

put_attr(X,event,[h1(Z)]) call_goals([],_).

Delay and events in the TOAM and the WAM 75

). call_goals([G|Gs],Message) :-

call_goals(Gs,Message),

h1(Z,Message) :- Body. call(G,Message).

Two issues are not addressed by the above code:

– the matching (as opposed to unifying) semantics of a head in an action rule
is not taken into account: hProlog does not (yet) have instructions for doing
matching; however, this issue does not influence the benchmarks

– extra conditions in the action rule are not catered for: a small adaptation
would; this issue does not influence the benchmarks either

8.2 Optimizing events in hProlog

The above code is not good enough to achieve performance comparable to what
B-Prolog offers for its events. Here is an account of the extra implementation
effort we needed:

– B-Prolog executes goals in the chronological order in which they where in-
stalled; this is achieved above by the left-recursion in call goals/2; in the
actual implementation, we call reverse/2 first and then call a tail recursive
version of call goals/2; that is more efficient; reverse/2 was implemented at
a low level in hProlog

– for hProlog, we have used a new low level attribute built-in, which amounts
to using a dedicated attribute slot for the events and which renders the body
of h(Z) in the example above to a single call to a built-in predicate

– again referring to the example above, instead of adding the goal h1(Z) to the
goal list, we add h1(,Z): this allows us to replace the goal call(G,Message)
by a call to a new built-in predicate event_call(Message,G)whose working
is as follows: it calls a copy of G in which the first argument is replaced by
Message4. In hProlog, it is relatively expensive to go from the functor N/A
to a the code-entry address of the predicate with functor N/(A+1); this new
approach avoids that cost

– the whole of call goals/2 has been implemented as two new abstract machine
instructions: we have done so in a totally different context before; see [12]

Clearly, we needed some effort in our WAM based implementation to make it
compare favourably to the TOAM approach, but not an unreasonable effort:
finding out what to do took longer than doing it. Most importantly, we have
adhered to the heap oriented WAM approach.

8.3 The event related benchmarks

We measured the performance of the following two actions:

4 The arguments in h1/2 are also switched: this saves WAM argument register traffic.

76 Bart Demoen and Phuong-Lan Nguyen

– the setup of agents
– the execution of agents

This terminology might differ from what is used in the B-Prolog documenta-
tion, so we clarify what we mean: for an action rule p(Z), {event(X,M)} => Body.

the goal p(Z) sets up the agent. In B-Prolog terminology this means generating
the agent and suspending it. The Body is not executed at this point, but in
principle the matching of the head and the guard checking are included in the
setup. In our benchmarks, those are absent.

A subsequent goal to post_event(X,...) executes all agents waiting for an
event on X. This involves setting up the internal data structures to make sure the
agents are called in the correct order, installing the corresponding goals, entering
the rule (or clause) for the agent, and executing the body. In our benchmarks
the bodies of the agent rules are empty.

The benchmarks use the following action rule:

true(X), {event(X,_)} => true.

In order to measure the setup of N agents, we execute

?- time(do_n_times(N,true(X))).

In order to measure the execution of N agents, we first set up N trivial suc-
ceeding action rules as above. Subsequently, we measure the time for performing
one event post. More concretely:

?- do_n_times(N,true(X)), time(post_event(X,_)).

The cost of setup has in principle a component that is linear in the number
of arguments of the agent in both approaches. The cost of the execution has a
component linear in the number of arguments only in the WAM approach. It is
therefore worthwhile to make the measurement for agents with different arity,
i.e. for rules of the form

true(X,A1,A2,A3,...,An), {event(X,_)} => true.

for different n. The earlier mentioned true/1 rule corresponds to n = 0.
The timings were made with B-Prolog 6.9-b4.2. The results in Table 10 are for
N = 1000 and repetition factor 10.000.

Table 10 indicates the following:

– setup depends on the arity in both systems; hProlog is substantially faster
and it seems as if this will be true for all arities

– exec is nearly independent of n in B-Prolog: the small increase might be a
caching effect, since the size of the suspension frames grows of course

– in hProlog, exec clearly depends on n; however, it takes more than 20 agent
arguments before B-Prolog catches up with hProlog

A (cautious) conclusion is that unless the arity of the agents is higher than
twenty, the TOAM stack based implementation doesn’t offer a better perfor-
mance than the heap based implementation.

Delay and events in the TOAM and the WAM 77

action n B-Prolog hProlog
setup 0 938 220
setup 10 2719 2130
setup 20 4472 2715
setup 25 4952 3098
exec 0 749 341
exec 10 772 550
exec 20 777 716
exec 25 786 823

Table 10. Benchmarking the different phases of an event

9 Conclusion and Future Work

The implementation of delay in B-Prolog fits in very well with the TOAM prin-
ciple of passing arguments on the execution stack. It feels as if the TOAM ought
to have an advantage over the WAM for implementing delay. However, our ex-
periments show that it is not systematically nor significantly better than a well
tuned WAM implementation of delay: very important to the TOAM performance
on programs using delay are specialization (in the form of abstract machine in-
structions) and inlining. These techniques can be applied in a WAM context,
and together with some low level support (a couple of built-ins) and a dedicated
slot for freeze (or for other events) which also B-Prolog uses, we get similar per-
formance in WAM and TOAM. This paper also shows that it is worthwhile to
redo and rethink old experiments. In particular, the explanation of performance
differences must remain open for revision.

The battle between the TOAM and the WAM cannot be decided by per-
formance considerations alone: on the tested benchmarks the speed difference
is too small. An important advantage of the WAM approach to delay remains
however: since it treats suspended goals as first class terms, it lends itself eas-
ily to experimenting with more flexible scheduling strategies for the wakeup of
agents. From the implementation point of view, the WAM approach also seems
more attractive, mainly because no control stack garbage collector is needed.

Our original motivation was related to compiling CHR to Action Rules. This
compiler is now operational and could be used as a good source for more realistic
benchmarks using events in particular. We will hopefully find the time to follow
that road. Even more interesting is to incorporate suspension frames on the
heap as sketched in Section 2 into a WAM implementation. We are currently
investigating this [7].

Acknowledgements

Part of this work was conducted while the first author was a guest at the Institut
de Mathématiques Appliquées of the Université Catholique de l’Ouest in Angers,

78 Bart Demoen and Phuong-Lan Nguyen

France. Sincere thanks for this hospitality. We also thank Henk Vandecasteele
for maintaining the hipP compiler which we use within hProlog.

References

1. H. Aı̈t-Kaci. The WAM: a (real) tutorial. Technical Report 5, DEC Paris Research
Report, 1990.

2. M. Carlsson. Freeze, Indexing, and Other Implementation Issues in the WAM. In
J.-L. Lassez, editor, Logic Programming: Proc. of the Fourth International Confer-
ence (Volume 1), pages 40–58. MIT Press, Cambridge, MA, 1987.

3. M. Carlsson. Design and Implementation of an Or-Parallel Prolog Engine. PhD
thesis, The Royal Institute of Technology (KTH), Stokholm, Sweden, Mar. 1990
See also: http://www.sics.se/isl/sicstus.html.

4. W. Clocksin and C. Mellish. Programming in Prolog. Springer-Verlag, 1984.
5. B. Demoen. Dynamic attributes, their hProlog implementation, and a first eval-

uation. Report CW 350, Dept. of Computer Science, K.U.Leuven, Belgium, Oct.
2002.

6. B. Demoen and P.-L. Nguyen. So many WAM variations, so little time. In J. Lloyd,
V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sa-
giv, and P. J. Stuckey, editors, Computational Logic - CL2000, First International
Conference, London, UK, July 2000, Proceedings, volume 1861 of Lecture Notes in
Artificial Intelligence, pages 1240–1254. ALP, Springer, 2000.

7. B. Demoen and P.-L. Nguyen. Suspension frames on the heap. Report CW In
Preparation, Department of Computer Science, K.U.Leuven, Leuven, Belgium,
Aug. 2006.

8. C. Holzbaur. Meta-structures vs. Attributed Variables in the Context of Extensible
Unification. In M. Bruynooghe and M. Wising, editors, Proceedings of the Fourth
International Symposium on Programming Language Implementation and Logic
Programming, number 631 in Lecture Notes in Computer Science, pages 260–268.
Springer-Verlag, Aug. 1992.

9. C. Holzbaur and T. Fruhwirth. Compiling constraint handling rules into Prolog
with attributed variables. In International Conference on Principles and Practice
of Declarative Programming (PPDP), pages 117–133. LNCS 1702, 1999.

10. U. Neumerkel. Extensible unification by metastructures. In Proceedings of the
second workshop on Metaprogramming in Logic (META’90), pages 352–364, Apr.
1990.

11. T. Schrijvers, N.-F. Zhou, and B. Demoen. Translating Constraint Handling Rules
into Action Rules. Third Workshop on Constraint Handling Rules, Report CW
452, K.U.Leuven, Department of Computer Science, July 2006.

12. R. Tronçon, G. Janssens, and B. Demoen. Alternatives for compile & run in
the WAM. In Proceedings of CICLOPS 2003: Colloquium on Implementation of
Constraint and LOgic Programming Systems, pages 45–58. University of Porto,
2003. Technical Report DCC-2003-05, DCC - FC & LIACC, University of Porto,
December 2003.

13. D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI,
1983.

14. N.-F. Zhou. On the Scheme of Passing Arguments in Stack Frames for Prolog. In
Proceedings of The International Conference on Logic Programming, pages 159–
174. MIT Press, 1994.

Delay and events in the TOAM and the WAM 79

15. N.-F. Zhou. A Novel Implementation Method for Delay. In Joint Internatinal
Conference and Symposium on Logic Programming, pages 97–111. MIT Press, 1996.

On Applying Deductive Databases

to Inductive Logic Programming:
a Performance Study

Tiago Soares, Michel Ferreira, Ricardo Rocha, and Nuno A. Fonseca

DCC-FC & LIACC
University of Porto, Portugal

{tiagosoares,michel,ricroc,nf}@ncc.up.pt

Abstract. Inductive Logic Programming (ILP) tries to derive an inten-
sional representation of data (a theory) from its extensional one, which in-
cludes positive and negative examples, as well as facts from a background
knowledge. This data is primarily available from relational databases, and
has to be converted to Prolog facts in order to be used by most ILP sys-
tems. Furthermore, the operations involved in ILP execution are also very
database oriented, including selections, joins and aggregations. We thus
argue that the Prolog implementation of ILP systems can profit from a
hybrid execution between a logic system and a relational database sys-
tem, that can be obtained by using a coupled deductive database system.
This hybrid execution is completely transparent for the Prolog program-
mer, with the deductive database system abstracting all the Prolog to re-
lational algebra translation. In this paper we propose several approaches
of coding ILP algorithms using deductive databases technology, with dif-
ferent distributions of work between the logic system and the database
system. We perform an in-depth evaluation of the different approaches
on a set of real-size problems. For large problems we are able to obtain
speedups of more than a factor of 100. The size of the problems that can
be solved is also significantly improved thanks to a non-memory storage
of data-sets.

1 Introduction

The amount of data collected and stored in databases is growing considerably
in almost all areas of human activity. A paramount example is the explosion
of bio-tech data that, as a result of automation in biochemistry, doubles its
size every three to six months [1]. Most of this data is structured and stored
in relational databases and, in more complex applications, it can involve several
relations, thus being spread over multiple tables. However, many important data
mining techniques look for patterns in a single relation (or table) where each
tuple (or row) is one object of interest. Great care and effort has to be made
in order to squeeze as much relevant data as possible into a single table so
that propositional data mining algorithms can be applied. Notwithstanding this

On Applying Deductive Databases to Inductive Logic Programming 81

preparation step, propositionalizing data from multiple tables into a single one
may lead to redundancy, loss of information [2] or to tables of prohibitive size [3].

On the other hand, Multi-Relational Data Mining (MRDM) systems are able
to analyse data from multiple relations without propositionalizing data into a
single table first. Most of the multi-relational data mining techniques have been
developed within the area of Inductive Logic Programming (ILP) [4]. However,
on complex or sizable applications, ILP systems suffer from significant limitations
that reduce their applicability in many data mining tasks. First, ILP systems are
computationally expensive - evaluating individual rules may take considerable
time, and thus, to compute a model, an ILP system can take several hours or
even days. Second, most ILP systems execute in main memory, therefore limiting
their ability to process large databases. Efficiency and scalability are thus two
of the major challenges that current ILP systems must overcome.

The main contribution of this paper is thus the proposal of applying Deduc-
tive Databases (DDB) to ILP, allowing the interface with a relational database
system to become transparent to the ILP system. In particular, we will use the
MYDDAS system [5], which couples YapTab [6] with MySQL [7], as the DDB
system, and April [8], as the ILP system. Being able to abstract the Prolog
to SQL translation, we concentrate in describing and evaluating several high-
level coupling approaches, with different distributions of work between the logic
system and the database system. These alternative coupling approaches corre-
spond to different formulations in Prolog of relational operations, such as joins
and aggregations, that are transparently implemented by the DDB system. We
evaluate the different approaches on a set of real-size problems, showing that
significant improvements in performance can be achieved by coupling ILP with
DDB, and that the size of the problems solved can be significantly increased due
to a non-memory storage of the data-sets.

The remainder of the paper is organised as follows. First, we discuss the
main aspects of a typical coupling interface between a logic programming system
and a relational database. Then, we introduce some background concepts about
ILP and describe a particular ILP algorithm. Next, we show how to improve
ILP algorithms efficiency by performing the coverage computation of rules with
the database system. We then present some experimental results and end by
outlining some conclusions.

2 Coupling a Logic System with a Relational Database

On a coupled DDB system, the predicates defined extensionally in database
relations usually require a directive such as:

:- db_import(edge_db,edge,my_conn).

This directive associates a predicate edge/2 with the relation edge db that
is accessible through a connection with the database system named my conn.
In MYDDAS, what this directive does is asserting a clause such as the one in
Fig. 1.

82 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

edge(A,B) :-

translate(proj_term(A,B),edge(A,B),SQLQuery),

db_query(my_conn,SQLQuery,ResultSet),

db_row(ResultSet,[A,B]).

Fig. 1. Asserted clause for an imported database predicate

Of the three predicates in Fig. 1, translate/3, db query/3 and db row/2,
the simplest one is db query/3. This predicate uses the connection identifier,
my conn, to send an SQL query, SQLQuery, to the database system that executes
the query and returns a pointer to the set of matching tuples, ResultSet.

The db row/2 predicate is more interesting. It usually navigates through the
result set tuple-at-a-time using backtracking. It unifies the current tuple in the
result set with the arguments of a list or some other structure. Several opti-
mizations can be implemented for db row/2 [9]. The most obvious is replacing
the unification by a simple binding operation for the unbound variables, since
normally the SQL query already returns only the tuples that unify with the list
arguments. Another interesting feature of db row/2 is how it handles pruning
through a cut over the result set [10].

The most interesting predicate is translate/3, which translates a query
written in logic to an SQL expression that is understood by database sys-
tems [11]. For example, the query goal ‘?- edge(10,B).’ will generate the call
translate(proj term(10,B),edge(10,B),SQLQuery), exiting with SQLQuery

bound to ‘SELECT 10, A.attr2 FROM edge db A WHERE A.attr1=10’.

The translate/3 predicate can still be used to implement a more complex
division of work between the logic system and the database system. Suppose we
write the following query goal:

?- edge(A,B), edge(B,A).

A DDB system might decide that this query is more efficiently executed
if the joining of the two edge/2 goals is performed by the database system, in-
stead of by the logic system. The system will then generate the translate/3 call
translate(proj term(A,B),(edge(A,B),edge(B,A)),SQLQuery) to obtain the
query ‘SELECT A.attr1, A.attr2 FROM edge db A, edge db B WHERE

B.attr1=A.attr2 AND B.attr2=A.attr1’. In MYDDAS, we use the db view/3

primitive to accomplish this. For the example given above, we should use a di-
rective like db view(direct cycle(A,B),(edge(A,B),edge(B,A)),my conn),
which will assert a clause for direct cycle/2 in a similar way to what was
done for the db import/3 directive in Fig. 1. This is known as view-level access,
in opposition to the previous relation-level access.

The translate/3 predicate also allows specifying database logic goals that
include higher-order operations, such as aggregate functions that compute values
over sets of attributes. Although higher-order operations are not part of the
relational database model, virtually every database system supports aggregate
functions over relations, such as sum(), avg(), count(), min() and max() which

On Applying Deductive Databases to Inductive Logic Programming 83

compute the sum, the average, the number, the minimum and the maximum of
given attributes.

In translate/3, aggregate functions are represented as a binary subgoal in
the database goal, mapping the predicate symbol of such subgoal to the aggregate
function name in the database system. The first argument of the subgoal is
mapped to the attribute over which the aggregate function is to be computed
and the second argument specifies the relation goal. The projection term is
specified to include the result of the aggregation. As an example, if we want
translate/3 to generate an SQL query to compute the number of tuples from
predicate edge/2 that depart from point 10 we would write:

?- translate(count(X),(X is count(B,edge(10,B))),SQLQuery).

and this would bind SQLQuery to ‘SELECT COUNT(A.attr2) FROM edge db A

WHERE A.attr1=10’.

3 Inductive Logic Programming

The normal problem that an ILP system must solve is to find a consistent and
complete theory, from a set of examples and prior knowledge, the background
knowledge, that explains all given positive examples, while being consistent with
the given negative examples [4]. In general, the background knowledge and the
set of examples can be arbitrary logic programs. We next describe ILP execution
in more detail by using the classical Michalski train problem [12].

In the Michalski train problem the theory to be found should explain why
trains are travelling eastbound. There are five examples of trains known to be
travelling eastbound, which constitutes the set of positive examples, and five
examples of trains known to be travelling westbound, which constitutes the set of
negative examples. All our observations about these trains, such as size, number,
position, contents of carriages, etc, constitutes our background knowledge. We
present in Fig. 2 the set of positive and negative examples, together with part
of the background knowledge (describing the train east1).

has_car(east1,car_11). has_car(east1,car_12).
has_car(east1,car_13). has_car(east1,car_14).
short(car_12). short(car_14).
closed(car_12). long(car_11).
long(car_13). open_car(car_11).
open_car(car_13). open_car(car_14).
shape(car_11,rectangle). shape(car_12,rectangle).
shape(car_13,rectangle). shape(car_14,rectangle).
wheels(car_11,2). wheels(car_12,2).
wheels(car_13,3). wheels(car_14,2).
load(car_11,rectangle,3). load(car_12,triangle,1).
load(car_13,hexagon,1). load(car_14,circle,1).
... ...

eastbound(east1).
eastbound(east2).
eastbound(east3).
eastbound(east4).
eastbound(east5).

Positive Examples Background Knowledge

eastbound(east6).
eastbound(east7).
eastbound(east8).
eastbound(east9).
eastbound(east10).

Negative Examples

Fig. 2. Examples and background knowledge for the Michalski train problem

84 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

To derive a theory with the desired properties, many ILP systems follow
some kind of generate-and-test approach to traverse the hypotheses space [13,14].
A general ILP system spends most of its time evaluating hypotheses, either
because the number of examples is large or because testing each example is
computationally hard. For instance, a possible sequence of hypotheses (clauses)
generated for the Michalski train problem would be:

eastbound(A) :- has_car(A,B).

eastbound(A) :- has_car(A,C).

eastbound(A) :- has_car(A,D).

eastbound(A) :- has_car(A,E).

eastbound(A) :- has_car(A,B), short(B).

eastbound(A) :- has_car(A,B), open_car(B).

eastbound(A) :- has_car(A,B), shape(B,rectangle).

eastbound(A) :- has_car(A,B), wheels(B,2).

eastbound(A) :- has_car(A,B), load(B,circle,1).

...

For each of these clauses the ILP algorithm computes its coverage, that is,
the number of positive and negatives examples that can be deduced from it. If
a clause covers all of the positive examples and none of the negative examples,
then the ILP system stops. Otherwise, an alternative stop criteria should be
used, such as, the number of clauses evaluated, the number of positive examples
covered, or time. A simplified algorithm for the coverage computation of a clause
is presented next in Fig. 3. In the evaluation section we name this approach the
Basic ILP Approach.

Consider now that we call the compute coverage/3 predicate for clause
‘eastbound(A) :- has car(A,B), short(B).’. Initially, it starts by assert-
ing the clause to the program code, resetting a counter pos, and by calling the
predicate representing the positive examples. The positive examples/1 predi-
cate binds variable X to the first positive example, say east1, and the process/3
predicate creates the eastbound(east1) goal, which is called using the once/1

primitive. The once/1 primitive is used to avoid backtracking on alternative
ways to derive the current goal. It is defined in Prolog as ‘once(Goal) :-

call(Goal), !.’. If the positive example succeeds, counter pos is incremented
and we force failure. Failure, whether forced or unforced, will backtrack to alter-
native positive examples, traversing all of them and counting those that succeed.
The process is repeated for negative examples and finally the asserted clause is
retracted.

4 Coupling ILP with a Deductive Database System

The time spent in the coverage computation of the rules generated by an ILP sys-
tem represents the larger percentage of the total execution time of such systems.
In this section we describe several approaches to divide the work between the

On Applying Deductive Databases to Inductive Logic Programming 85
compute_coverage(Clause,ScorePos,ScoreNeg) :-

assert(Clause),

reset_counter(pos,0),

(

positive_examples(X),

process(Clause,X,GoalP),

once(GoalP),

incr_counter(pos),

fail

;

true

),

counter(pos,ScorePos),

reset_counter(neg,0),

(

negative_examples(Y),

process(Clause,Y,GoalN),

once(GoalN),

incr_counter(neg),

fail

;

true

),

counter(neg,ScoreNeg),

retract(Clause).
Fig. 3. Coverage computation

logic system and the relational database system in order to maximize overall ef-
ficiency of the coverage computation. We will present this coverage computation
starting with its original implementation, and then incrementally transferring
computational work from the logic system to the database system. In what fol-
lows, we name each of the approaches in order to compare their performance in
the evaluation section.

4.1 Relation-Level Approach

In coupled DDB systems the level of transparency allows the user to deal with
relationally defined predicates exactly as if they were defined in the Prolog
source code. Basically, predicates are transparently mapped to database tables
or views. The extensionally defined predicates are mapped to tables, while the
intensionally defined predicates are mapped to views. This mapping scheme pro-
vides a transparent solution for the designer of the ILP engine (if the system
is implemented in a first order language like Prolog). However, it results in in-
creased communication with the relational database system since many accesses
are made to evaluate each single clause.

In particular, the compute coverage/3 predicate of Fig. 3 can be used when
the background knowledge and the positive and negative examples are declared

86 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

through the db import/3 directive. However, using only the db import/3 direc-
tives, the coverage computation uses relation-level access to retrieve the tuples
from the database system. This means an uneven division of work between the
logic system and the database system. We name this approach the Relation-Level
Approach.

4.2 View-Level Approach

A fundamental improvement to the Relation-Level Approach is to transfer the
joining effort of the background knowledge goals, in the body of the current
clause, to the database system.

In MYDDAS, we use the db view/3 predicate to convert the relation-level
accesses in view-level accesses, as explained in section 2. Following our previ-
ous example, instead of asserting the clause ‘eastbound(A) :- has car(A,B),

short(B).’, we now create the view using the directive db view(view(A,B),

(has car(A,B),short(B)),my conn) and assert the clause ‘eastbound(A) :-

view(A,B).’. As the view just has to outlive the coverage computation of the
current clause, an useful optimization is to use a predicate run view/3 which
calls the view without asserting it: ‘eastbound(A) :- run view(view(A,B),

(has car(A,B),short(B)),my conn).’. The coverage computation algorithm
of Fig. 3 works as before, with the joining computation performed now by the
database system. We name this approach the View-Level Approach.

4.3 View-Level/Once Approach

Some very important issues in using the database system to compute the join of
the goals in the body of the current clause and the algorithm of Fig. 3 arise for
the once/1 primitive. Not only the coupling interface must support deallocation
of queries result sets through a ‘!’ [10], but also the pruning of unnecessary
computation work to derive alternative solutions is not being done by once/1, as
intended. The database system has already computed all the alternative solutions
when the ‘!’ is executed. Reducing the scope of the join is thus fundamental
and, for a given positive or negative example, the database system only needs
to compute the first tuple of the join.

In order to reduce the scope of the join computed by the database system, we
should push the once/1 call to the database view. Therefore, the asserted clause
includes a once/1 predicate on the view definition which we can efficiently trans-
late to SQL using the ‘LIMIT 1’ SQL keyword. For our example, the asserted
clause is now: ‘eastbound(A) :- run view(view(A,B),once(has car(A,B),

short(B)),my conn)’. For the first positive example east1 the SQL expres-
sion generated for the view is: ‘SELECT A.attr1, A.attr2 FROM has car db

A, short db B WHERE A.attr1=‘east1’ AND B.attr1=A.attr2 LIMIT 1’.

We can now drop the once/1 primitive from the call on the code of Fig. 3.
We name this approach the View-Level/Once Approach.

On Applying Deductive Databases to Inductive Logic Programming 87

4.4 Aggregation/View Approach

A final transfer of computation work from the logic system to the database
system can be done for the aggregation operation which counts the number of
examples covered by a rule. The Basic ILP Approach uses extra-logical global
variables to perform this counting operation, as it would be too inefficient with-
out this feature.

To transfer the aggregation work to the database system we need to restrict
the theories we are inducing to non-recursive theories, where the head of the
clause can not appear as a goal in the body. With this restriction, we can drop
the assertion of the current clause to the program code and use the db view/3

predicate with the aggregation operation count/1 on an attribute of the rela-
tion holding the positive or negative examples. Also, the view now includes the
positive or negative examples relation as a goal co-joined with the goals in the
body of the current clause. Again, the join should only test for the existence of
one tuple in the body goals for each of the examples. We introduce a predicate
exists/1, similar to once/1, extending again the Prolog to SQL compiler, which
will be translated to an SQL expression involving an existential sub-query. For
our example clause, ‘eastbound(A) :- has car(A,B), short(B).’, the view
used to compute positive coverage would be the following:

db_view(count_examples(P),

P is count(A,(eastbound(A),exists(has_car(A,B),short(B)))),

my_conn).

which generates the SQL expression:

SELECT COUNT(A.attr1) FROM eastbound_db A

WHERE EXISTS (SELECT * FROM has_car_db B, short_db C

WHERE B.attr1=A.attr1 AND B.attr2=C.attr1 LIMIT 1)

Although the ‘LIMIT 1’ primitive may seem redundant for an existential
sub-query, our experiments showed that MySQL performance is greatly improved
if we include it on the sub-query. We name this approach the Aggregation/View
Approach. Figure 4 presents a simplified algorithm for the coverage computation
using this approach.

compute_coverage(’:-’(Head,Body), ScorePos, ScoreNeg, Conn) :-

process(pos, Head, HeadPos, AggrArgPos),

run_view(count_positive_examples(ScorePos),

(ScorePos is count(AggrArgPos,(HeadPos,exists(Body)))), Conn),

process(neg, Head, HeadNeg, AggrArgNeg),

run_view(count_negative_examples(ScoreNeg),

(ScoreNeg is count(AggrArgNeg,(HeadNeg,exists(Body)))), Conn).

Fig. 4. Coverage computation with the database

Although our coverage computation predicate is very simple to implement
in the context of a DDB, it brings with it a complex set of features which have

88 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

been the subject of recent research in the implementation of ILP systems. The
first of these features is efficient higher-order computation. Reasoning about a
set of values is typically inefficient in Prolog, as we usually have to build the set
of values and then traverse them again to compute the desired function. This
can be overcome, as shown in Fig. 3, using non-logical extensions such as global
variables. Database systems have efficient aggregation algorithms.

A second feature is powerful indexing. Typical Prolog systems indexing is re-
stricted to the first argument of clauses. The inefficiency of this indexing scheme
for ILP algorithms, where efficient selections and joins are fundamental, moti-
vated the development of the just-in-time, full arguments, indexing of the Yap
Prolog system 5.0 [15]. Database systems allow the creation of a variety of index
types over all the attributes of a relation.

A third feature is goal-reordering. The coverage computation goal is just
to compute the number of positive and negative examples covered by a clause.
The execution order of the goals in the body of a clause is irrelevant. Query
optimization of database systems executes the computation of the join on the
involved relations in the most efficient way, using transformations which are
similar to goal-reordering in Prolog execution.

Another feature is parallelism. By using a parallel database system we can
have the aggregation, selection and joining operations implemented using the
parallel algorithms of parallel database systems.

5 Performance Evaluation

In order to evaluate and analyse the different approaches for coverage compu-
tation, we used the April ILP system [8] to obtain sets of hypotheses which are
generated during the ILP algorithm search process. We then implemented the
five different approaches for coverage computation through simple Prolog pro-
grams, as explained in the previous sections, and measured the time taken by
each on the different sets of hypotheses. Implementing the different approaches
in April and using April’s execution time as the measure, did not allow us to
do a precise performance evaluation. April can use different heuristics, optimiza-
tions and search strategies, and the time taken in the search process can mislead
the real speed-up obtained in the different coverage computation approaches
described in this paper.

We used MYDDAS 0.9, coupling Yap 5.1.0 with MySQL Server 4.1.5-gamma,
on a AMD Athlon 64 Processor 2800+ with 512 Kbytes cache and 1 Gbyte of
RAM. Yap performs a just-in-time, full arguments, indexing. We have used five
ILP problems: the Michalski train problem [12] and four artificially generated
problems [16]. Table 1 characterizes the problems in terms of number of ex-
amples, number of relations in the background knowledge, number of clauses
generated, and number of tuples.

The clauses were randomly generated and equally distributed by length, rang-
ing from 1 to the maximum number of relations. The clauses were then evaluated
using each of the described approaches.

On Applying Deductive Databases to Inductive Logic Programming 89

Problem Examples Relations Clauses Tuples

train 10 10 68 240
p.m8.l27 200 8 495 321,576
p.m11.l15 200 11 582 440,000
p.m15.l29 200 15 687 603,000
p.m21.l18 200 21 672 844,200

Table 1. Problems characterization

5.1 Coverage Performance

Table 2 shows the best execution time of five runs, in seconds, for coverage
computation using our five approaches in each ILP problem.

Approach
Problem

train p.m8.l27 p.m11.l15 p.m15.l29 p.m21.l18

Basic ILP 0.002 15.331 50.447 33,972.225 >1 day
Relation-Level 0.515 35,583.984 >1 day >1 day >1 day
View-Level 0.235 n.a n.a n.a n.a
View-Level/Once 0.208 99.837 628.409 2,975.051 33,229.210
Aggregation/View 0.105 5.330 14.850 251.192 734.800

Table 2. Coverage performance for the different approaches

The train problem is a toy problem, useful to explain how an ILP algo-
rithm works, but totally non-typical with respect to actual problems approached
through ILP. The background knowledge together with the positive and negative
examples totals less than 300 tuples (facts). This number clearly fits in memory
and the communication overhead with a database represents most of the execu-
tion time, as the select or join operations involve very few tuples. We included
this example as it is the only one where we could obtain execution times for
all of the approaches. With regard to the database approaches, this example
already shows gradual improvements as the computation work is transferred to
the database engine, from 0.515 seconds using the Relation-Level Approach to
0.105 seconds using the Aggregation/View Approach. For this example, all the
queries are executed almost instantly, and the time difference just translates the
number of queries that are sent to the database system, which decreases from
the Relation-Level Approach to the Aggregation/View Approach. Even sending
a no-action query to the database system and obtaining the result set, takes a
core execution time, which explains the difference to the Basic ILP Approach
for this very small problem.

For the larger problems, the core time of communication between the logic
system and the database system becomes diluted as we increase the computation
work of the database system. For problems involving thousands of tuples in a
number of relations, the Relation-Level Approach is unrealistic. This approach
does not transfer any computation work to the database system, other than
selecting tuples from individual relations. Also, the number of queries generated
is a factor of the number of tuples in each relation, which explains execution
times of days or weeks for problems larger than p.m8.l27.

90 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

For the View-Level Approach, as expected, we could not obtain the execution
times for the large problems, due to insufficient memory to compute the joins
involved. Note that this approach does not implement the once/1 optimization,
therefore the entire join is computed instead of just the first tuple. MySQL runs
out of memory when trying to compute a join of several relations, each with
thousands of tuples.

For the View-Level/Once Approach the scope of the join is now reduced
to compute just the first tuple. For problem p.m11.l15 the slow-down factor
compared to the Basic ILP Approach is explained by the number of queries that
are sent to the database system, one for every positive and negative example.
For the p.m* problems this means that for each of the 688 clauses a total of 200
queries (the number of positive and negative examples) are sent to the database
system. As the size of the joins grows larger, as with problem p.m15.l29, the
core time of these 200 queries becomes irrelevant compared to the time taken
for computing the joins. This and the huge amount of backtracking performed
by the Basic ILP Approach for the two largest problems, explains the speedup
obtained with this approach.

On the Aggregation/View Approach only two queries are sent to the database
system per clause, one to compute positive coverage and one to compute negative
coverage. All the coverage computation work is transferred to the database sys-
tem, and the core time of sending and storing the result set for just two queries
is insignificant. The performance gains over the Basic ILP Approach are clear: a
2.8 speedup for problem p.m8.l27, a 3.4 speedup for problem p.m11.l15 and a
135 speedup for the p.m15.l29. These results show a clear tendency for higher
speedups as the size of the problems grow.

The results obtained with the Aggregation/View Approach are very signif-
icant. Not only we can now handle problems of size two orders of magnitude
larger, thanks to the non-memory storage of data-sets, but we are also able to
improve the coverage computation execution time by a very significant factor.

5.2 Coverage Analysis

The results presented in the previous section compare the different approaches
for the coverage computation. In order to achieve a deeper insight on the be-
haviour of the DDB system usage, and therefore clarify some of the results
obtained, we present in Table 3 data related to several activities of the coverage
computation. These statistics were obtained by introducing a set of counters
to measure the several activities. The columns in this table have the following
meaning:

transl: the percentage of time spent on the translate/3 predicate translating
Prolog to SQL.

server: the percentage of time spent by the database server processing queries.

transf: the percentage of time spent in transferring result sets from the database
to Prolog.

On Applying Deductive Databases to Inductive Logic Programming 91

db row: the percentage of time spent on the db row/2 predicate. It measures
the time spent in unifying the results of the queries with the variables of the
logic system.

prolog: the percentage of time spent on normal Prolog execution and not mea-
sured by the other activities.

queries: the total number of queries sent to the database server by the Prolog
process.

rows: the total number of rows returned for the queries made. In parenthesis,
it shows the amount of data transferred in KBytes.

Problem/Approach
Activities

transl server transf db row prolog queries rows

train
Relation-Level 9.4% 67.6% 2.0% 1.9% 19.1% 3402 5402(53)
View-Level/Once 9.6% 69.3% 1.3% 1.4% 18.4% 924 1362(7)
Aggregation/View 47.0% 41.4% 0.6% 0.5% 10.6% 154 154(0)

p.m08.l27
View-Level/Once 4.6% 89.5% 0.3% 0.2% 5.5% 100378 236800(998)
Aggregation/View 1.5% 97.3% 0.1% 0.0% 1.1% 990 990(2)

p.m11.l15
View-Level/Once 1.2% 97.2% 0.1% 0.1% 1.4% 117776 254000(1090)
Aggregation/View 0.8% 98.6% 0.0% 0.0% 0.6% 1164 1164(3)

p.m21.l18
View-Level/Once 0.0% 99.9% 0.0% 0.0% 0.1% 100378 264055(1155)
Aggregation/View 0.0% 99.9% 0.0% 0.0% 0.0% 1344 1344(3)

Table 3. Activities analysis for the different approaches

For the train problem, the time spent on the database server is comparatively
small to the other data-sets. The queries calculated are very small and easy to
compute, so the other activities of the coverage computation gain relevance.

Considering only the problems that have a more interesting size, the data-set
p.m08.l27 presents the highest percentage of time spent on the transl activity.
This can be explained by the fact that p.m08.l27 is the smallest problem. As the
size of the problems grow, the total execution time increases, therefore lowering
the impact of the translate/3 predicate on the final execution time. In fact,
test results show that for each different type of approach, the core time spent on
this predicate, is of the same order for any of the problems experimented. For the
Aggregation/View Approach the times obtained were around 100 milliseconds,
having a variance increase due to an enlargement of the logic clauses to be
translated, as the data-sets grow in size. Notice also that in this approach only
2 queries are made to the database server per clause, one to count the positive
examples that are covered, and another for the negative ones. On the View-
Level/Once Approach, the number of queries sent to the server for each clause is
augmented to 1 query per positive and negative example, which causes the time
spent on the transl activity to increase.

Table 3 shows that the most significant part of the time is consumed in the
server activity. Improving the efficiency of the database server in the execution

92 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

of queries is thus fundamental to achieve good results. As ILP problems often use
some kind of mode declarations to supply information concerning the arguments
of each predicate that may appear in the background knowledge, we use the mode
information to automatically create indexes in the database in order to optimize
query execution. Without indexing, the final execution time can increase more
than 5000 times.

Table 3 also shows that for these approaches, only a small percentage of
time is spent transferring the result sets from the database server to the Prolog
system (transf activity). This is due to the small number of rows returned,
and consequently, small amount of data transferred. This also shows that it
is in fact the relational system that processes most of the work of the coverage
computation. However, for the View-Level/Once Approach, the database returns
more results than for the Aggregation/View Approach, which increases the time
spent on unifying logic variables increases (prolog activity).

With respect to the db row activity, we can see that for the View-Level/Once
Approach and Aggregation/View Approach the time spent in this activity is
not relevant. Results obtained for these approaches show that, on average, the
time spent on the db row/2 predicate unifying the results of the queries with
the logic variables, is around 2 and 400 milliseconds respectively for the Ag-
gregation/View Approach and View-Level/Once Approach. Remember that the
Aggregation/View Approach only returns two values for each query, while the
View-Level/Once Approach produces far more results.

6 Conclusions and Future Work

In this work we have proposed to couple ILP systems with DDB systems. This
strategy allows bringing to ILP systems the technology of relational database
systems, which are very efficient in dealing with large amounts of data. Coupling
ILP with DDB allows abstracting the Prolog to SQL translation from the ILP
system. The ILP system just uses high-level Prolog predicates that implement
relational operations that are more efficiently executed by the relational database
system. We argue that this strategy is easier to implement and maintain than
the approach that tries to incorporate database technology directly in the logic
programming system. And, much more important, it allows a substantial increase
of the size of the problems that can be solved using ILP since the data does not
need to be loaded to memory by the ILP systems.

The performance results in execution speed for coverage computation are very
significant and show a tendency to improve as the size of the problems grows.
The size of the problems is exactly our most significant result, as the storage
of data-sets in database relations allows an increase of more than 2 orders of
magnitude in the size of the problems than can be approached by ILP systems.

In the future we plan to deal with recursive theories, through the YapTab
tabling system [6], and to be able to send packs of clauses as a single query to the
database system, using its grouping operators, to avoid redundant computation.
We also plan to use the query packs technique [17], which is very similar to

On Applying Deductive Databases to Inductive Logic Programming 93

the tabling of prefixes technique [18], to perform a many-at-once optimization
of SQL queries. Not only do some database systems perform caching of queries,
but it is also simple to implement similar techniques to query-packs on a DDB
context.

A more ambitious future goal aims at a full integration of April and MY-
DDAS in a single programming environment where any program can be seen
as a set of extensional data represented in a database, a set of intensional (and
extensional) data represented by logic rules, and a set of undefined data that the
ILP component of the system should be able to derive and compile to intensional
data to be used by the program itself.

Acknowledgements

This work has been partially supported by MYDDAS (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia (FCT) and Programa POSC. Tiago
Soares is funded by FCT PhD grant SFRH/BD/23906/2005. Michel Ferreira was
funded by FCT sabbatical grant SFRH/BSAB/518/2005, and thanks Manuel
Hermenegildo and University of New Mexico for hosting his research.

References

1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research
(2000) 235–242

2. Wrobel, S.: Inductive Logic Programming for Knowledge Discovery in Databases.
In: Relational Data Mining. Springer-Verlag (2001) 74–101

3. Raedt, L.D.: Attribute Value Learning versus Inductive Logic Programming: The
Missing Links. In: Inductive Logic Programming. Volume 1446 of LNAI., Springer-
Verlag (1998) 1–8

4. Muggleton, S., Raedt, L.D.: Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming 19/20 (1994) 629–679

5. Soares, T., Ferreira, M., Rocha, R.: The MYDDAS Programmer’s Manual. Tech-
nical Report DCC-2005-10, Department of Computer Science, University of Porto
(2005)

6. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

7. Widenius, M., Axmark, D.: MySQL Reference Manual: Documentation from the
Source. O’Reilly Community Press (2002)

8. Fonseca, N., Camacho, R., Silva, F., Santos Costa, V.: Induction with April: A
Preliminary Report. Technical Report DCC-2003-02, Department of Computer
Science, University of Porto (2003)

9. Ferreira, M., Rocha, R., Silva, S.: Comparing Alternative Approaches for Coupling
Logic Programming with Relational Databases. In: Colloquium on Implementation
of Constraint and LOgic Programming Systems. (2004) 71–82

94 T. Soares, M. Ferreira, R. Rocha, N.A. Fonseca

10. Soares, T., Rocha, R., Ferreira, M.: Generic Cut Actions for External Prolog Predi-
cates. In: International Symposium on Practical Aspects of Declarative Languages.
Number 3819 in LNCS, Springer-Verlag (2006) 16–30

11. Draxler, C.: Accessing Relational and Higher Databases Through Database Set
Predicates. PhD thesis, Zurich University (1991)

12. Michalski, R.S., Larson, J.B.: Selection of Most Representative Training Examples
and Incremental Generation of VL918 Hypotheses: The Underlying Mehtodology
and the Description of Programs ESEL and AQ11. Technical Report 867, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign (1978)

13. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A Midterm Report. In: European
Conference on Machine Learning. Volume 667., Springer-Verlag (1993) 3–20

14. Muggleton, S., Firth, J.: Relational Rule Induction with CProgol4.4: A Tutorial
Introduction. In: Relational Data Mining. Springer-Verlag (2001) 160–188

15. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual. (2006)
Available from http://www.ncc.up.pt/~vsc/Yap.

16. Botta, M., Giordana, A., Saitta, L., Sebag, M.: Relational Learning as Search in
a Critical Region. Journal of Machine Learning Research 4 (2003) 431–463

17. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Artificial Intelligence Research 16 (2002) 135–166

18. Rocha, R., Fonseca, N., Santos Costa, V.: On Applying Tabling to Inductive Logic
Programming. In: European Conference on Machine Learning. Number 3720 in
LNAI, Springer-Verlag (2005) 707–714

DBTAB: a Relational Storage Model

for the YapTab Tabling System

Pedro Costa, Ricardo Rocha, and Michel Ferreira

DCC-FC & LIACC
University of Porto, Portugal

c0370061@dcc.fc.up.pt {ricroc,michel}@ncc.up.pt

Abstract. Resolution strategies based on tabling have proved to be par-
ticularly effective in logic programs. However, when tabling is used for
applications that store large answers and/or a huge number of answers,
we can quickly run out of memory. In general, to recover space, we will
have no choice but to delete some of the tables. In this work, we pro-
pose an alternative approach and instead of deleting tables, we store
them externally using a relational database system. Subsequent calls to
stored tables would import answers from the database, hence avoiding re-
computation. To validate our approach, we have extended the YapTab
tabling system to provide engine support for exporting and importing
tables to and from the MySQL relational database management system.

1 Introduction

Tabling [1] is an implementation technique where intermediate answers for sub-
goals are stored and then reused when a repeated call appears. Resolution strate-
gies based on tabling [2,3] have proved to be particularly effective in logic pro-
grams, reducing the search space, avoiding looping and enhancing the termina-
tion properties of Prolog models based on SLD resolution [4].

The performance of tabling largely depends on the implementation of the
table itself; being called upon very often, fast look up and insertion capabilities
are mandatory. Applications can make millions of different calls, hence compact-
ness is also required. Arguably, the most successful data structure for tabling is
tries [5]. Tries are trees in which there is one node for every common prefix [6].
Tries have proved to be one of the main assets of tabling implementations, be-
cause they are quite compact for most applications while having fast look up
and insertion. The YapTab tabling system [7] uses tries to implement tables.

When tabling is used for applications that build many queries or that store a
huge number of answers, we can build arbitrarily many and possibly very large
tables, quickly filling up memory. In general, there is no choice but to throw away
some of the tables (ideally, the least likely to be used next). The common control
implemented in most tabling systems is to have a set of tabling primitives that
the programmer can use to dynamically abolish some of the tables.

A more recent proposal, is the approach implemented in YapTab, where a
memory management strategy, based on a least recently used algorithm, auto-
matically recovers space from the least recently used tables when the system

96 Pedro Costa, Ricardo Rocha, Michel Ferreira

runs out of memory. With this approach, the programmer can still force the
deletion of particular tables, but can also rely on the effectiveness of the mem-
ory management algorithm to completely avoid the problem of deciding what
potentially useless tables should be deleted. Note that, in both situations, the
loss of stored answers within the deleted tables is unavoidable, leading to the
need of restarting the evaluation whenever a repeated call occurs.

In this work, we propose an alternative approach and instead of deleting
tables, we store them externally using a relational database management system
(RDBMS). Later, when a repeated call appears, we load the stored answers from
the database, hence avoiding recomputing them. With this approach, we can still
use YapTab’s memory management algorithm, but to decide what tables to move
to database storage when the system runs out of memory, instead of using it to
decide what tables to delete.

To validate this approach we thus propose DBTAB, a relational model for
representing and storing tables externally in tabled logic programs. In particular,
we will use YapTab as the tabling system and MySQL [8] as the RDBMS. The
initial implementation of DBTAB only handles atomic terms such as integers,
atoms and floating-point numbers.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
our model and discuss how tables can be represented externally in database
storage. We then describe how we extended YapTab to provide engine support
for exporting and importing answers to and from the RDBMS. At the end, we
present initial experimental results and outline some conclusions.

2 The Table Space

Tabled programs are evaluated by storing all found answers for current subgoals
in a proper data space, the table space. Whenever a subgoal S is called for the first
time, a matching entry is allocated in the table space and every generated answer
for the subgoal is stored under this entry. Repeated calls to S or its variants1

are resolved by consumption of these previously stored answers. Meanwhile, as
new answers are generated, they are inserted into the table and returned to all
variant subgoals. When all possible resolutions are performed, S is said to be
completely evaluated.

The table space can be accessed in a number of ways: (i) to look up if a
subgoal is in the table, and if not insert it; (ii) to verify whether a newly found
answer is already in the table, and if not insert it; and, (iii) to load answers to
variant subgoals. Two levels of tries are used to implement tables, one for subgoal
calls, other for computed answers. Each tabled predicate has a table entry data
structure assigned to it, acting as the entry point for the subgoal trie. Every
subgoal call is represented in this trie as an unique path to a subgoal frame data
structure, with argument terms stored within the internal nodes. Terms with

1 Two calls are said to be variants if they are the same up to variable renaming.

DBTAB: a Relational Storage Model for the YapTab Tabling System 97

common prefixes branch off each other at the first distinguishing symbol. If free
variables are present within the arguments, all possible bindings are stored into
the answer trie, i.e., all possible answers to the subgoal are mapped to unique
paths in this second trie. When inserting new answers, only the substitutions for
the unbound variables in the subgoal call are stored. This optimization is called
substitution factoring [5].

Tries are implemented by representing each trie node by a data structure
with four fields each. The first field (TrNode symbol) stores the symbol for the
node. The second (TrNode child) and third (TrNode parent) fields store point-
ers respectively to the first child node and to the parent node. The fourth field
(TrNode next) stores a pointer to the sibling node, in such a way that the out-
going transitions from a node can be collected by following its first child pointer
and then the list of sibling pointers.

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answers

Table entry for f/2

Subgoal frame
for f(VAR0,a)

a

VAR0

root
node

1

0

root
node

a

Subgoal trie
for f/2

Answer trie
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer

SgFr_answers

tabled_subgoal_call: f(X,a)
tabled_subgoal_call: f(Y,1)
tabled_new_answer: f(0,1)
tabled_new_answer: f(a,1)

Fig. 1. Using tries to organize the table space

An example for a tabled
predicate f/2 is shown in Fig. 1.
Initially, the subgoal trie only
contains the root node. When
the subgoal f(X, a) is called,
two internal nodes are inserted:
one for the variable X , and a
second last for the constant a.
Notice that variables are repre-
sented as distinct constants, as
proposed by Bachmair et al. [9].
The subgoal frame is inserted as
a leaf, waiting for the answers
to appear. Then, the subgoal
f(Y, 1) is inserted. It shares one
common node with f(X, a), but
the second argument is differ-
ent so a different subgoal frame
needs to be created.

At last, the answers for
f(Y, 1) are stored in the answer
trie as their values are com-
puted. The leaf answer nodes
are chained in a linked list in
insertion time order (using the
TrNode child field), so that re-
covery may happen the same way. Finally, the subgoal frame internal pointers
SgFr first answer and SgFr last answer are set to point respectively to the
first and last answer of this list. Thus, when consuming answers, a variant sub-
goal needs only to keep a pointer to the leaf node of its last loaded answer, and
consumes more answers just by following the chain. To load an answer, the trie
nodes are traversed in bottom-up order and the answer is reconstructed.

98 Pedro Costa, Ricardo Rocha, Michel Ferreira

3 The Relational Storage Model

The chosen RDBMS for DBTAB is MySQL 4.1 [8], running a InnoDB storage en-
gine. This is a transaction-safe engine with commit, rollback and crash-recovery
capabilities. InnoDB tables present no limitation in terms of growth and sup-
port foreign key constraints with cascade abilities. The MySQL C API for
prepared statements is used to manipulate the record-sets, benefiting of several
advantages in terms of performance: the statement is parsed only once, when
it is first sent; network traffic is substantially reduced since statement invoca-
tion require only the respective input parameters; a binary protocol is used to
transfer data between the client and the server.

3.1 Representing the Table Space

Fig. 2. The dbtab relational schema

Figure 2 shows the ER dia-
gram for the relational represen-
tation of the table space, the
dbtab database. The diagram
is divided in two types of ta-
bles: system tables, identified by
the prefix dbtab, and predicate
tables, identified by the pre-
fix session. System tables ba-
sically maintain control status,
while predicate tables are meant
to hold look-up values and run-
time data, such as computed
answers and meta-information
about known subgoals.

Storing run-time data, of
possible multiple sources, raises
the important issue of multi-
user concurrency. Since the
same database is to be used as
a final repository of data, each
running instance of YapTab
must be uniquely identified in order to refer to its own found answers. To tackle
this problem, DBTAB introduces the notion of session. A specific predicate,
tabling init session/1, is introduced to initialize sessions. It takes one ar-
gument that is considered to be a session id, that can be either a free vari-
able or a ground term. In the first case, a new identifying integer is attained
from the dbtab sessions table and unified with the variable. On the other
hand, if the argument is a ground integer, its value is searched in the ses-
sions table, and should it be found, the indicated session is reestablished2. The

2 Currently, this means only that the same session id is reused.

DBTAB: a Relational Storage Model for the YapTab Tabling System 99

tabling kill session/0 predicate can be used to finish the opened session and
clean-up all of its dependent information.

Tabling begins by the identification of the predicates to handle. YapTab’s
directive ’:- table p/n.’ is used for this purpose, generating a new table en-
try data structure for the specified predicate and inserting it into the table
space. DBTAB extends the previously described behaviour by registering func-
tor p and arity n into dbtab tabled. The sid field acts as a foreign key
to dbtab sessions, establishing the dependency net for the session. DBTAB
then dynamically creates a new relational table sessionk pn to hold all com-
pleted answer tries for p/n, together with three auxiliary relational tables ses-
sionk atoms, sessionk longints and sessionk floats, with k being the cur-
rent session id. Along with all computed answers, a meta-representation for every
p/n’s completely evaluated subgoal is to be stored within the sessionk pn table.
The integer field meta is used to tell apart these two kinds of records: a zero
value signals an answer; a positive non-zero value signals a meta-information
record. The arguments of p/n are mapped into integer fields3 named argi , with
i being an index between 1 and n.

The abolish table(p/n) predicate is used by YapTab to remove p/n’s en-
try from the table space. DBTAB’s expansion of this predicate deletes the cor-
responding record from dbtab tabled and drops all the session tables associ-
ated with p/n. Both in YapTab and DBTAB, the abolish all tables/0 pred-
icate can be used to dispose of all table entries: the action takes place as if
abolish table/1 was called for every tabled predicate.

3.2 Handling Primitive Types

YapTab handles atomic terms such as integers, atoms and floating-point num-
bers. YapTab determines the type of each term by reading its mask bits. The
non-mask part of a term is thus less than the usual 32 or 64-bit representation, so
an additional term is used to represent floating-point values and integers greater
than the maximum masked integer allowed. In what follows we call these integers
long integer terms. Due to this difference in sizes, internal representation at trie
level may require more than one node. While integer and atom terms use only
one node, long integer and floating-point terms use 3 and 4 nodes.

DBTAB explores this idea and handles answer terms dividing them in two
categories: atomic terms have their values directly stored within the correspond-
ing argi record fields; non-atomic terms are substituted in the argi record
fields by unique sequential values that work as a foreign key to the term field
of the auxiliary tables for the predicate. These sequential values are masked as
YapTab terms in order to simplify the loading algorithm4. Atomic terms com-

3 The YapTab internal representation of terms can be thought of as 32 or 64-bit long
integers, so MySQL integer or bigint types are accordingly used to store these
values.

4 The YAP MkApplTerm() macro is used to create dummy application terms and then
the non-tag part of these terms is used to hold the sequential value.

100 Pedro Costa, Ricardo Rocha, Michel Ferreira

prise integers and atoms, while floating-point and long integer terms are con-
sidered non-atomic. Two auxiliary tables are defined to hold non-atomic values:
sessionk floats stores floating-point values used to build floating-point terms;
sessionk longints is used to store long integer values.

Aside from storing atoms into the predicate tables, every session stores their
YapTab’s internal representation as well as their string values, respectively in
the term and token fields of its sessionk atoms table. When reestablishing
a session, this table is used to rebuild the previous internal symbol addressing
space.

3.3 Manipulating Data Through Prepared Statements

Data exchange between the database and YapTab is done through the MySQL C
API along with a prepared statement data structure (see Fig. 3 for details). The
SQL statements used to store/retrieve information are sent to the database for
parsing, and, on success, the returned handle is used to initialize the statement

pointer. Additional information about possible used parameters is stored within
the sub-structure params.

typedef struct prepared_statement {

MYSQL_STMT *statement;

my_ulonglong affected_rows;

void *stmt_buffer;

struct {

int count;

MYSQL_BIND *bind;

my_bool *null;

my_ulong *length;

} params;

struct {

int count;

MYSQL_BIND *bind;

my_bool *null;

my_ulong *length;

} fields;

struct {

MYSQL_RES *metadata;

my_ulonglong num_rows;

} records;

} *PreparedStatement;

Fig. 3. The prepared statement struc-
ture

If a record-set is to be returned
upon the statement’s execution, the
result-set pointer records.metadata

and the sub-structure fields are ini-
tialized with information regarding it.
For predicate tables, the stmt buffer

pointer will be initialized with an
integer array, sized to hold an en-
tire record. Since the params and
fields sub-structures are never used
at the same time, they can share the
stmt buffer, bind, null, and length

arrays - these arrays are sized ac-
cordingly to the largest requirement
in terms of size. After record storing,
the records.num rows sub-structure
holds the count of retrieved rows.

The table entry data structure is
augmented with a pointer to a generic
insert prepared statement. All sub-
goals branches hanging from this table
entry share the same prepared state-
ment. Computed answers are stored by
instantiating its input parameters as
required and executing it. The subgoal frame data structure is augmented with
a pointer to a specific select prepared statement. Ground terms in the subgoal
trie are used in the refinement of the where clause; the corresponding fields are
not selected for retrieval since their values are already known.

DBTAB: a Relational Storage Model for the YapTab Tabling System 101

Figure 4 shows the prepared statements generated to store and recover the
f(Y, 1) subgoal call introduced back at Fig. 1. The first statement is the generic
insert statement that is used for all insertions into table sessionk f2. The
second statement is one of the specific select statements that are used to re-
trieve the records that contain the answer trie. It takes no input parameters and
returns only one field, arg1. Note that value 22 is the YapTab’s internal repre-
sentation of the integer term of value 1. The third statement presents a similar
query that will retrieve answers if floating-point values are expected to unify
with the variable term Y . Finally, the forth statement collects the meta-data for
the subgoal.

(1) insert ignore into sessionk f2(meta,arg0,arg1) values(?,?,?);
(2) select arg1 from sessionk f2 where meta=0 and arg2=22;
(3) select f2.arg1, floats.value as flt arg1

from sessionk f2 as f2 left join sessionk floats as floats
on (f2.arg1=floats.term)

where meta=0 and arg2=22;
(4) select arg1 from sessionk f2 where meta=1 and arg2=22;

Fig. 4. Prepared statements for f(Y, 1)

3.4 The DBTAB API

We next present the list of developed functions and briefly describe their actions.

dbtab init session(int sid) - initializes the session passed by argument;
dbtab kill session(void) - kills the currently opened session;
dbtab init table(TableEntry tab ent) - creates the relational table and ini-

tializes the generic insert prepared statement associated with the table
entry passed by argument;

dbtab free table(TableEntry tab ent) - frees the insert prepared state-
ment, dropping the table if no other instance is using it;

dbtab init view(SubgoalFrame sg fr) - initializes the specific select pre-
pared statement associated with the passed subgoal frame;

dbtab free view(SubgoalFrame sg fr) - frees the select prepared statement;
dbtab export(SubgoalFrame sg fr) - traverses both the subgoal trie and the

answer trie, executing the insert prepared statement placed at the table
entry associated with the subgoal frame passed by argument. The answer
trie is deleted at the end of the transaction;

dbtab import(SubgoalFrame sg fr) - starts a data retrieval transaction, ex-
ecuting the select prepared statement for the subgoal frame passed as
argument.

4 Extending the YapTab Design

When a predicate is declared as tabled, the dbtab init table() function is
called, starting the table creation process and generation of the insert clause,

102 Pedro Costa, Ricardo Rocha, Michel Ferreira

sending it afterwards to the database for parsing. If preparation succeeds, the
returned handle is placed inside the corresponding table entry data structure.

DBTAB’s final model is meant to trigger the dumping of a tabled subgoal
to the database when the corresponding table is chosen by YapTab’s memory
management algorithm to be abolished. Currently, DBTAB is still not yet fully
integrated with YapTab’s memory management algorithm. However, the present
version already implements all the required features to correctly export and
import tables, therefore allowing us to study and evaluate the potential and
weaknesses of the proposed model. The current version of DBTAB triggers the
dumping of a tabled subgoal to the record-set upon its completion operation, re-
moving it from memory afterwards - it is to be replaced by a record-set storing
the same answer terms. This operation is delayed up to this point in execu-
tion in order to prevent unnecessary memory consumption, both at client and
server sides, while only incomplete tables are known. Variant calls to completed
subgoals always import answers from the database.

4.1 Exporting Answers

Figure 5 shows the pseudo-code for the dbtab export() function. Initially, the
function starts a new data transaction. It then begins to climb the subgoal
trie branch, binding the ground terms to the respective statement parameters
along the way. When the root node is reached, all parameters consisting of

dbtab_export(SubgoalFrame sg_fr) {

dbtab_start_transaction()

insert_stmt = TabEnt_insert_stmt(SgFr_tab_ent(sg_fr))

n_vars = bind_subgoal_terms(SgFr_parent(sg_fr))

answer = SgFr_first_answer(sg_fr)

while (answer != NULL) {

bind_answer_terms(answer) // prepare record

commit &= exec_prep_stmt(insert_stmt)

answer = TrNode_child(answer)

}

if (!n_vars) { // n_vars is the number of free variables

bind_subgoal_metadata(n_vars) // prepare meta-record

commit &= exec_prep_stmt(insert_stmt)

}

if (commit) {

mysql_commit(DBTAB_SCHEMA)

mark_as_stored(sg_fr) // update subgoal frame state

free_answer_trie(SgFr_answers(sg_fr))

} else {

mysql_rollback(DBTAB_SCHEMA)

}

}
Fig. 5. Pseudo-code for dbtab export()

DBTAB: a Relational Storage Model for the YapTab Tabling System 103

variable terms will be left null. The attention is then turned to the answer trie,
cycling through the terms stored within the answer nodes. The remaining null
parameters are bound repeatedly, and the prepared statement is executed for
each present branch. Next, the meta-information about variables is stored. For
each variable term present in the subgoal trie branch, a new unassigned variable
term is created. The non-tag part of this variable is used to store a bit-mask
containing information about all the possible types of terms that will be unified
with the original variable. The total number of variables is stored in the meta
field of this record. Finally, the commit of the transaction occurs if and only if
all insert statements are executed correctly; otherwise, a rollback operation
is performed.

To clarify ideas, recall the example of Fig. 1. During the execution of the
’:- table f/2.’ directive, table sessionk f2 is created in the dbtab database
and the insert statement, meant to handle all insertions into this table, is
generated and sent to the database, which will return a handle for it upon suc-
cessful parsing. The handle is placed inside a prepared statement data structure
pointed by the TabEnt insert stmt field of the table entry data structure (see
Fig. 6 for details). The structure’s field stmt buff and params sub-structure
are initialized, with params.bind being set to point at a newly created array of
mysql bind structures.

Fig. 6. Exporting f(Y, 1): the relational representation

When completion is reached, the subgoal trie is climbed binding the second
parameter, arg2, with the integer term of value 1 (appearing in its internal
representation 22). All values for arg1 are then bound cycling through the leafs

104 Pedro Costa, Ricardo Rocha, Michel Ferreira

of the answer trie. Each branch is climbed up to the root node, that marks
the point where the insertion is to be performed. The branch for the integer
term of value 0 (internally represented by 6) is stored right away, but the one
for atom a (internally represented by 0xff04 in the figure) requires extra work
because atoms are also stored into the corresponding sessionk atoms table. At
last, the meta-data is inserted. This consists of a record holding the different
terms found in the answer trie for the free arguments in the subgoal call along
with the other ground arguments. A new variable term replaces V AR0, and its
non-tag part is used to hold a bit-mask - the value 0 visible in the last record -
signaling that arg1 column holds no special typed terms5. The meta field holds
the number of free variables for the subgoal, 1 in this case.

4.2 Importing Answers

After completion, the first variant call to a stored subgoal call now executes the
dbtab import() function, presented at Fig. 7.

dbtab_import(SubgoalFrame sg_fr) {

select_stmt = SgFr_select_stmt(sg_fr)

if (!PS_STMT(select_stmt)) {

dbtab_init_view(sg_fr)

exec_prep_stmt(select_stmt)

}

// switch on the number of rows

if (PS_NROW(select_stmt) == 0) { // no answers

SgFr_first_answer(sg_fr) = NULL

SgFr_last_answer(sg_fr) = NULL

SgFr_answers(sg_fr) = NULL

} else {

SgFr_first_answer(sg_fr) = PS_TOP_RECORD(select_stmt)

SgFr_last_answer(sg_fr) = PS_BOTTOM_RECORD(select_stmt)

if(VIEW_FIELD_SUCCEED == TRUE) // yes answer

SgFr_answers(sg_fr) = NULL

else // one or more answers

SgFr_answers(sg_fr) = SgFr_first_answer(sg_fr)

}

}
Fig. 7. Pseudo-code for dbtab import()

The first step calls the dbtab init view() function, creating the select
prepared statement that will load all possible answers. All variable terms are
returned by default, possibly in conjunction with additional columns for non-
atomic values. In case floating-point values are to be returned by argk , an
additional column flt argk is joined to the data-set (see query 3 at Fig. 4
for such an example). Likewise, if long integers are to be returned by argk ,

5 Meaning floating-point numbers or long integers.

DBTAB: a Relational Storage Model for the YapTab Tabling System 105

an additional column lint argk is joined to the data-set. These columns are
placed immediately to the right of argk and possibly both of them may appear
simultaneously - if such is the case, only one of these columns is set to a non-
null value. The choice on which one of them to use is made consulting argk ,
who’s value is replaced by a functor term for the desired type6.

Also during this process, ground terms are used to set search conditions,
within the where clause, to be matched upon data retrieval in order to shorten
the fields list, thus reducing the amount of data returned by the server. The
statement is finally sent to the database for parsing and, on success, the re-
turned handle is stored inside the prepared statement data structure added to
the subgoal frame.

Since the predicate’s answer trie will not change once completed, all subse-
quent calls may fetch their answers from the obtained record-set. The next step
is then to reset the subgoal frame SgFr first answer, SgFr last answer and
SgFr answers internal fields accordingly to the obtained data-set:

Ground queries return at most one record. On failure, the pointers are all set
to null and no record is returned, which means that the answer is no. On
success, SgFr first answer and SgFr last answer point at the only record
of the fetched data-set, consisting of a single boolean field named succeed
holding a true value, and SgFr answers holds the null value, indicating
this is a yes answer.

Non-ground queries may return more than one record. If the reduction of the
subgoal holds, the SgFr answers and SgFr first answer pointers are set
respectively to the first record of the data-set, while SgFr last answer is
set to the last.

Figure 8 shows answer collection for f(Y, 1). The meta-data is recovered
through the execution of query 4 at Fig. 4. The constant term 1 (internally
represented by value 22) is used to set a search condition over arg2. All values
in column arg1 are then recovered as possible answers for variable term Y
through the execution of query 2 at Fig. 4. At last, the subgoal frame pointers
SgFr answers, SgFr first answer and SgFr last answer are set to the first
and last records as explained above.

As control returns from dbtab import(), the SgFr answers value is tested
to decide if the query should fail, proceed or load answers from the database. If
loading answers, the first record’s offset along with the subgoal frame address are
stored within a loader choice point7. The fetched record and its field values are
then used to bind the free variables found for the subgoal in hand. If backtracking
occurs, the choice point is reloaded and its CP last answer field, containing
the offset for the last consumed record, is used to calculate the offset for the
next answer. If the new offset is a valid one, the CP last answer is updated

6 YapTab defines internally two special functors for this purpose: FunctorDouble and
FunctorLongInt.

7 A loader choice point is a WAM choice point augmented with the offset for the last
consumed record and a pointer to the subgoal frame data structure.

106 Pedro Costa, Ricardo Rocha, Michel Ferreira

Fig. 8. Importing f(Y, 1): the resulting data-set

accordingly. Otherwise, the choice point is discarded, signaling the positioning
at the last answer. Whatever the case, the record is fetched and the variables are
rebound according to the fields values. This process continues until all answers
are consumed.

5 Initial Experimental Results

A batch of tests were performed in a computer with a Pentium R©4 2.6GHz
processor and 1GB of RAM. The test program, shown in Fig. 9, is a simple path
discovery algorithm over a graph.

:- consult(’graph.pl’).

:- tabling_init_session(S).

:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).

path(X,Y) :- edge(X,Y).

Fig. 9. The test program

For comparison purposes, three main series of tests were performed both in
YapTab and DBTAB environments. For each one of these series, the external
file that holds the edge/2 facts was generated with a different number of edges,
ranging roughly from 50 to 150, corresponding to 5000 to 50000 possible combi-
nations among nodes. In each sub-series, three types of nodes were considered:

DBTAB: a Relational Storage Model for the YapTab Tabling System 107

integer, floating-point and atom terms. The query ’?- path(X,Y).’ was exe-
cuted 10 times for each setup and the mean of measured times, in milliseconds,
is presented in Table 1. The table shows two columns for YapTab, measuring
the generation and recovery times when using tries to represent the table space,
and three columns to DBTAB, measuring the times to export and import the
respective number of answers and the time to recover answers when navigating
the stored data-set after importing it.

Answers Terms
YapTab DBTAB

Generation Recovery Export Import Recovery

5000
integers 23 1 387 41 2
atoms 21 2 1148 37 3
floats 22 2 1404 54 3

10000
integers 58 2 780 60 3
atoms 66 2 2285 63 4
floats 64 3 2816 94 5

50000
integers 413 5 3682 240 15
atoms 422 6 11356 252 12
floats 386 20 14147 408 34

Table 1. Execution times, in milliseconds, for YapTab and DBTAB

As expected, most of DBTAB’s execution time is spent in data transactions,
mainly during insertion of tuples. Storage of non-integer terms takes approxi-
mately three times more than their integer counter-part, due to the extra inser-
tion on auxiliary tables. An implementation of this step using stored procedures
might accelerate things a little bit, since it takes only one message to be sent
and most of the processing is done server-side. Non-atomic terms (floats) also
present an interesting problem at fetching time. The use of left join clauses in
the retrieval select statement (as seen in Fig. 4) becomes a heavy weight when
dealing with large data-sets. Some query optimization is required to simplify the
process and decrease the time required to import answers.

Two interesting facts emerge from the table. First, the navigation times for
tries and data-sets are relatively similar, with stored data-sets requiring, on
average, the double of time to be completely scanned. The second observed fact
regards the time required to recompute answer tries for atomic terms (integers
and atoms). When the answer trie becomes very large (the 50000 tuples rows), its
computation requires more time, almost the double, than the fetching (import
plus recovery) of its relational representation. DBTAB may thus become an
interesting approach when the complexity of recalculating the answer trie largely
exceeds the amount of time required to fetch the entire answer data-set.

An important side-effect of DBTAB is the attained gain in memory consump-
tion. Recall that trie nodes are represented with four fields each, of which only
one is used to hold a symbol, the others being used to hold the addresses of
parent, child and sibling nodes (please refer to section 2). Since the relational
representation dispenses the three pointers and focus on the symbol storage, the
size of the memory block required to hold the answer trie can be reduced by a

108 Pedro Costa, Ricardo Rocha, Michel Ferreira

factor of four. This is the worst possible scenario, in which all stored terms are
integers or atoms. For floating-point numbers the reducing factor raises to eight
because, although this type requires four trie nodes to be stored, one floating-
point requires most often the size of two integers. For long integer terms, memory
gains go up to twelve times: three nodes are used to store them in the trie.

6 Conclusions and Further Work

In this work, we have introduced the DBTAB model: a relational database model
to represent and store tables externally in tabled logic programs. We discussed
how to represent tables externally in database storage; how to handle atomic
terms such as integers, atoms and floating-point numbers; and how we have
extended the YapTab tabling system to provide engine support for exporting
and importing answers to and from the database.

DBTAB was designed to be used as an alternative approach to the problem
of recovering space when the tabling system runs out of memory. The common
control implemented in most tabling systems is to have a set of tabling primitives
that the programmer can use to dynamically delete some of the tables. By storing
tables externally instead of deleting them, DBTAB avoids re-computation when
subsequent calls to those tables appear. Another important aspect of DBTAB is
the gain in memory consumption when representing answers for floating-point
and long integer terms. Our preliminaries results showed that DBTAB may be-
come an interesting approach when the cost of recalculating a table largely ex-
ceeds the amount of time required to fetch the entire answer data-set from the
database.

As further work we plan to investigate the impact of applying DBTAB to
a more representative set of programs. We also plan to introduce some other
enhancements to improve the quality of the developed model. The expansion
of the actual DBTAB model to cover all possibilities for tabling presented by
YapTab is the first goal to achieve in a near future. First implementation tests
shown that pairs, lists and application terms can be recorded and recovered
through the use of a recursive algorithm and record trees. Each of these types
of term is represented by a sequential number, which serves as the tree root,
that is to be stored as described before at the tabled predicate relational table.
Auxiliary tables have to be built to store all internal terms used by complex
terms. These tables must possess a key field that links every node descendant
to their direct ancestor. This operation is easy to implement and is expected to
execute very quickly. Recovering is slightly more expensive. All child-nodes of
the root node have to be selected, each one of them being interpreted as the root
of a new sub-tree. The process continues until all leave-nodes are reached. By
then, the specific term can be reconstructed by YapTab.

During execution, YapTab processes may have to stop due to several reasons:
hosts may crash or have to be turned off, the users may want to interrupt process
evaluation, etc. If such a situation arises, table space residing in memory is lost,
leading to repeated calculation of the completed answer tries in later program ex-

DBTAB: a Relational Storage Model for the YapTab Tabling System 109

ecutions. A possible solution to this problem is to search for meta-representation
of terms before starting the process of tabling. If such a representation is found,
the information contained in it can be used to not only build the corresponding
branch in the subgoal tree but also the required prepared statements used to
store new found answers and retrieve previously computed ones.

Acknowledgments

This work has been partially supported by Myddas (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia and Programa POSC.

References

1. Michie, D.: Memo Functions and Machine Learning. Nature 218 (1968) 19–22
2. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-

ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98
3. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-

grams. Journal of the ACM 43 (1996) 20–74
4. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
5. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access

Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

6. Fredkin, E.: Trie Memory. Communications of the ACM 3 (1962) 490–499
7. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to

Support Parallelism. In: Conference on Tabulation in Parsing and Deduction. (2000)
77–87

8. Widenius, M., Axmark, D.: MySQL Reference Manual: Documentation from the
Source. O’Reilly Community Press (2002)

9. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74

Linear Logic: Foundations, Applications and

Implementations

Lukas Chrpa

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics

Charles University in Prague
chrpa@kti.mff.cuni.cz

Abstract. Linear Logic is a powerful formalism used to manage a lot of
problems with a finite number of resources. The most important feature
of Linear Logic is its connectivity to Petri Nets. Linear Logic is also a
good formalism which can be used in encoding planning problems. Lin-
ear Logic Programming is an extension of ‘classical‘ logic programming
and there exist several Linear Logic Programming languages that can
solve problems encoded in Linear Logic more efficiently than ‘classical‘
logic programming languages (Prolog). However existing Linear Logic
Programming languages are not strong enough to solve some problems
(for example planning problems). I believe that the best approach how
to solve these problems is emulating Linear Logic in Prolog, but we need
much more research in this area. In this paper I will describe Linear
Logic, how to encode problems in Linear Logic, connection to Petri Nets
and planning problems, Linear Logic Programming and my future re-
search in this area.

1 Introduction

Linear Logic is a powerful formalism which can be used to formalize problems
with a limited number of resources. In the real world we have many problems
that have a limited number of resources. These problems can be also formalized
with ‘classical‘ logic, but the main disadvantage of ‘classical‘ logic is a possi-
ble exponential growth of the length of formulas in face of the length of these
problems.

Previous research gave us some interesting results, but many of these results
are in a theoretical area. The most important result is a connectivity of Linear
Logic with the Petri Nets. In my opinion, this result is very important, because
we can see that Linear Logic can easily model more complicated problems. An-
other branch of research which leads from theory to practice is Linear Logic
Programming. Using Linear Logic Programming we are able to solve problems
based on Linear Logic much faster than using ‘classical‘ Logic Programming.
Linear Logic can also handle well planning problems. There exists a planner
called RAPS [10] which is based on Linear Logic and its comparison to the best
planners that participated at IPC (International Planning Competition) 2002

Linear Logic: Foundations, Applications and Implementations 111

showed very interesting results. The computation time in computing the plans
(typed Depots domains) was almost the best.

This paper will give the description of Linear Logic, the encoding of prob-
lems in Linear Logic (especially Petri Nets and planning problems), advantages
and disadvantages of Linear Logic Programming, possibility of emulating Linear
Logic in Prolog and the possible directions of my future research in this area. The
main contribution of this paper is the overview of Linear Logic (especially the
encoding of the planning problems which also belongs to my research interests)
and possibility of emulation of Linear Logic in Prolog.

2 Linear Logic

Linear Logic was introduced by J.Y. Girard at 1987 [4,5,11]. As I mentioned in
the introduction, Linear Logic was designed as a formalism which can handle
with a finite number of resources. The main difference between ‘classical‘ logic
and Linear Logic is following: From A, A imply B we obtain B, but in ‘classical‘
logic A is still available unlike in Linear Logic where A is no longer available. This
is Girard’s basic idea of Linear Logic. In the real world we often obtain resources
by spending other resources. For example when we are in a shop buying some
food, we are spending money on it.

2.1 Operators in Linear Logic

In the below description, predicates A and B mean resources.1

implication A ⊸ B — A basic operator in Linear Logic which means that B
is obtained by spending (one) A.

multiplicative conjunction A⊗B — This operator means that A and B are
used together. (If it’s on the left side of implication both A and B are con-
sumed, if it’s on the right side of implication both A and B are obtained.)

multiplicative disjunction A℘B — This operator means that ‘if not A than
B‘ (A⊥

⊸ B).
additive conjunction A&B — This operator means that we have a choice

between A and B. The choice depends on user.
additive disjunction A⊕B — This operator means that someone else has a

choice between A and B.
exponential !A — This operator converts A to a non-linear resource which

means that we have an unlimited number of A. This operator provides a
‘bridge‘ between ‘classical‘ and Linear Logic.

exponential ?A — This operator means that we have an unknown amount of
A.

negation A⊥ — This operator provides duality between multiplicative opera-
tors (⊗, ℘), additive operators (&,⊕) and exponentials (!,?). Double negation
provides identity ((A⊥)⊥ = A).

1 In the next sections will be used a notion ‘linear facts‘ which may point out that
Linear Logic predicates (resources) are used.

112 Lukas Chrpa

For the practice purpose we need only the following operators: ⊸,⊗, &,⊕, !.
The other operators are practically almost unusable. Syntax of Linear Logic has
four constants (1,⊤,⊥,0) that are defined as neutral elements of the operators
(⊗, &, ℘,⊕).

Now I will describe the operators (⊸,⊗, &,⊕, !) in more details. The mean-
ing of the implication (⊸) is described above. On the left side of implication
the resources are spent and on the right side of implication the resources are
obtained. Meaning of the other operators depends on which side of implication
they occur.

Example 1.

A⊗B ⊸ C ⊗D

This expression means that C and D are obtained by spending both A and B.

Example 2.

A⊗B ⊸ C ⊕D

This expression means that C or D is obtained (not both) by spending both A
and B, but we don’t know which one. When this expression appears in proving,
we must split the proof into two proofs, where first proof contains possibility
that C is obtained (A ⊗ B ⊸ C) and second proof contains possibility that D
is obtained (A⊗B ⊸ D).

Example 3.

A ⊸ B&C

This expression means that B or C is obtained (not both) by spending A and
we can choose which one. When this expression appears in proving, we should
split the expression (not proof) into two expressions (A ⊸ B and A ⊸ C).

2.2 Sequent Calculus for Linear Logic

Sequent calculus notation for Linear Logic is based on Gentzen’s style like the
other kinds of logic. This notation uses roman letters for propositions and greek
letters for sets of formulas. In Linear Logic the sequent ∆ ⊢ Γ means that the
multiplicative conjunction (⊗) of the formulas in ∆ implies (⊸) the multiplica-
tive disjunction (℘) of the formulas in Γ . Proving in Linear Logic is quite similar
to proving in ‘classical‘ logic and it has the following form:

Hypothesis1 Hypothesis2

Conclusion

Sequent calculus rules for Linear Logic are defined in the following way (ac-
cording to the previous subsection I removed all rules containing the operators
℘, ?,⊥):

Linear Logic: Foundations, Applications and Implementations 113

Identity A ⊢ A ∆1⊢A,Γ1 ∆2,A⊢Γ2

∆1,∆2⊢Γ1Γ2

Cut

Perm. Left ∆1,A,B,∆2⊢Γ
∆1,B,A,∆2⊢Γ

∆⊢Γ1,A,B,Γ2

∆⊢Γ1,B,A,Γ2

Perm. Right

⊗ Left ∆,A,B⊢Γ
∆,(A⊗B)⊢Γ

∆1⊢A,Γ1 ∆2⊢B,Γ2

∆1,∆2⊢(A⊗B),Γ1Γ2

⊗ Right

⊸ Left ∆1⊢A,Γ1 ∆2,B⊢Γ2

∆1,∆2,(A⊸B)⊢Γ1Γ2

∆,A⊢B,Γ
∆⊢(A⊸B),Γ ⊸ Right

& Left ∆,A⊢Γ
∆,(A&B)⊢Γ

∆,B⊢Γ
∆,(A&B)⊢Γ

∆⊢A,Γ ∆⊢B,Γ
∆⊢(A&B),Γ & Right

⊕ Left ∆,A⊢Γ ∆,B⊢Γ
∆,(A⊕B)⊢Γ

∆⊢A,Γ
∆⊢(A⊕B),Γ

∆⊢B,Γ
∆⊢(A⊕B),Γ ⊕ Right

Weakening ∆⊢Γ
∆,!A⊢Γ

∆,!A,!A⊢Γ
∆,!A⊢Γ

Contraction

Dereliction ∆,A⊢Γ
∆,!A⊢Γ

0 Left ∆, 0 ⊢ Γ ∆ ⊢ ⊤, Γ ⊤ Right

⊥ Left ⊥ ⊢ ∆⊢Γ
∆⊢⊥,Γ

⊥ Right

1 Left ∆⊢Γ
∆,1⊢Γ

⊢ 1 1 Right

Forall ∆,A⊢Γ
∆,(∀x)A⊢Γ

∆,A⊢Γ
∆,(∃x)A⊢Γ

Exists

The next example shows how the proving in Linear Logic works. Assume this
expression:

A, !(A ⊸ B) ⊢ B

The proof of the expression:

A ⊢ A B ⊢ B
A, A ⊸ B ⊢ B

⊸ Left

A, !(A ⊸ B) ⊢ B
Dereliction

2.3 Decidability and complexity of Linear Logic

This subsection will give an overview of decidability and complexity of proposi-
tional Linear Logic and its fragments. The following table shows the complexity
of fragments of Linear Logic:

Fragments Complexity
⊸,⊗, ℘, &,⊕, !, ? Undecidable [12]

⊸,⊗, ℘, &,⊕ PSPACE-complete [12]
⊸,⊗, ℘ NP-complete [8]

⊸,⊗, ℘, !, ? Unknown

3 Encoding problems in Linear Logic

As I mentioned above Linear Logic is powerful in encoding problems with finite
number of resources. In this section it will be shown the encoding of simple

114 Lukas Chrpa

problems, the encoding of Petri Nets and planning problems will be shown in
following sections.

3.1 Hamiltonian cycle

From the theory of graphs we know that a Hamiltonian cycle is a cycle which
contains all vertices. Assume directed graph G = (V, E) where V = {v1, . . . , vn}
is a set of vertices and E ⊆ V ×V is a set of edges. We know that in a Hamiltonian
cycle every vertex is used just once, so we can represent these vertices as linear
facts. Edges can be represented as ‘classical‘ facts (in Linear Logic we can use
exponential !). To find the Hamiltonian cycle we need this rule:

at(vi)⊗ vi ⊗ e(vi, vj) ⊸ at(vj)

The predicate at is used as a marker describing the current vertex from which
we continue searching for Hamiltonian cycle. The whole problem of Hamiltonian
cycle can be converted to Linear Logic in the following way (the searching for
Hamiltonian cycle begins at the vertex v1):

v1, . . . , vn, !e(vi1 , vj1), . . . , !e(vim
, vjm

), at(v1), !(at(vi)⊗vi⊗e(vi, vj) ⊸ at(vj)) ⊢ at(v1)

Hamiltonian cycle exists if and only if the previous expression is provable in
Linear Logic.

3.2 Knight’s tour

Knight’s tour problem is a problem where we have a chessboard and a knight
that must visit all the board fields exactly once. Possible knight’s moves are
showed in Fig.1. In this case the fields on the chessboard can be represented

Fig. 1. Possible knight’s moves

as linear facts. Assume that there exists a relation next : (i, j) → (i, j) which
computes the next move of the knight. The predicate at is used as a marker
describing the current position of the knight. The problem of knight’s tour can
be converted to Linear Logic in the following way (the knight begins his tour at
the field (1,1) and finishes his tour at the field (k, l)):

b(1, 1), . . . , b(n, n), at(1, 1), !(at(i, j)⊗ b(i, j) ⊸ at(next(i, j))) ⊢ at(k, l)⊗ b(k, l)

Linear Logic: Foundations, Applications and Implementations 115

Knight’s tour problem has a solution if and only if the previous expression is
provable in Linear Logic.

4 Connection between Linear Logic and Petri Nets

In this section we will describe how Petri Nets can be represented in Linear
Logic.

Definition 1. Petri Net is a 5-tuple C = (P, T, I, O, µ) where:

– P is a set of places.
– T is a set of transitions.
– I : T → P∞ is an input function (I(t), t ∈ T is a multi-set of input places

of the transition t).
– O : T → P∞ is an output function (O(t), t ∈ T is a multi-set of output

places of the transition t).
– µ : P → N0 is a marking (marking is a vector describing the number of

tokens in each place).

Definition 2. Assume Petri Net C = (P, T, I, O, µ).

1. The transition t ∈ T is feasible if and only if ∀p ∈ P, µ(p) ≥ #(p, I(t)) is
satisfied.

2. Assume that the transition t ∈ T is feasible. After the execution of the
transition t we obtain the new marking µ′: µ′(p) = µ(p) − #(p, (I(t)) +
#(p, O(t)), ∀p ∈ P .

In Petri Nets we often investigate whether some marking is reachable (by exe-
cution of a finite number of transitions) from the initial marking. More about
this topic can be found in [15].

The encoding of Petri Nets to Linear Logic is quite simple. Tokens in places
can be represented with linear facts, because the tokens can be perceived as
resources. The transitions in the Petri Nets have a similar behavior like the
implication in Linear Logic. The transition t can be encoded in Linear Logic in
the following way (

⊗

A. . . multiplicative conjunction of all elements from the
multi-set A):

⊗

I(t) ⊸

⊗

O(t)

Assume that S(µ) is a multi-set of places depending on the marking µ (∀p ∈ P :
#(p, S(µ)) = µ(p)). The marking µg is reachable from marking µ0 if and only if
the following expression is provable in Linear Logic:

S(µ0), !
(

⊗

I(t1) ⊸

⊗

O(t1)
)

, . . . , !
(

⊗

I(tm) ⊸

⊗

O(tm)
)

⊢
⊗

S(µg)

The coverage of the marking µg exists if and only if the following expression is
provable in Linear Logic:

S(µ0), !
(

⊗

I(t1) ⊸

⊗

O(t1)
)

, . . . , !
(

⊗

I(tm) ⊸

⊗

O(tm)
)

⊢
(

⊗

S(µg)
)

⊗⊤

116 Lukas Chrpa

The difference between the previous expressions is only in the constant ⊤. Using
the constant ⊤ likewise in the second expression changes the meaning of the
proof from the reachability (we must have an exact number of tokens in places)
to coverage (we must have at least the number of tokens in places).

4.1 Example

Assume the Petri Net from Fig. 2. In this case the multi-set S(µ0) looks like:

S(µ0) = {a, c, d, d}

The encoding of the transitions t1 and t2:

t1 — (a⊗ c) ⊸ b

t2 — (b⊗ d⊗ d) ⊸ (c⊗ d)

To find out if the marking (one token in c and d) is reachable the following
expression in Linear Logic must be provable:

a, c, d, d, !((a⊗ c) ⊸ b), !((b ⊗ d⊗ d) ⊸ (c⊗ d)) ⊢ c⊗ d

More about connection between Linear Logic and Petri Nets can be found at
[14].

Fig. 2. Example of Petri Net

5 Planning in Linear Logic

Problem of using Linear Logic in planning problems has been studied by several
researchers [13,9,2]. In this section we will present the connection between Linear
Logic and planning problems (in this case a planning in the state space).

Linear Logic: Foundations, Applications and Implementations 117

5.1 Preliminaries

Definition 3. Assume that L = {p1, . . . , pn} is a finite set of predicates. Plan-
ning domain Σ over L is a 3-tuple (S, A, γ) where:

– S ⊆ 2L is a set of states. s ∈ S is a state. If p ∈ s then p is true in s and if
p 6∈ s then p is not true in s.

– A is a set of actions. Action a ∈ A is a 3-tuple (p(a), e−(a), e+(a)) ⊆ S
where p(a) is a precondition of the action a, e−(a) is a set of negative effects
of the action a and e+(a) is a set of positive effects of the action a and
e−(a) ∩ e+(a) = ⊘.

– γ : S × A → S is a transition function. γ(s, a) = (s − e−(a)) ∪ e+(a) if
p(a) ⊆ s.

Definition 4. Planning problem P is a 3-tuple (Σ, s0, g) such that:

– Σ = (S, A, γ) is a planning domain over L.
– s0 ∈ S is an initial state.
– g ⊆ L is a set of goal predicates.

Definition 5. Plan π is an ordered sequence of actions < a1, . . . , ak > such that,
the plan π solves the planning problem P if and only if g ⊆ γ(γ(s0, a1), < a2, . . . , ak >).
Plan π is optimal if and only if for each π′ | π |≤| π′ | is valid.

5.2 Basic encoding of planning problems

From the previous section we know that Petri Nets can be easily encoded by Lin-
ear Logic. This idea can be used in modeling the planning problems with Linear
Logic. The predicates in the planning problems can be encoded as linear facts.
Assume a state s = {p1, p2, . . . , pn}, its encoding in Linear Logic is following:

(p1 ⊗ p2 ⊗ · · · ⊗ pn)

Assume an action a = {p, e−, e+}, its encoding in Linear Logic is following:

∀i ∈ {1, 2, . . . , k}, li ∈ p ∪ e−

∀j ∈ {1, 2, . . . , m}, rj ∈ e+ ∪ (p− e−)

(l1 ⊗ l2 ⊗ · · · ⊗ lk) ⊸ (r1 ⊗ r2 ⊗ · · · ⊗ rm)

This expression means that the predicates on the left side of the implication
will no longer be true after performing action a and the predicates on the right
side of the implication will become true after performing action a. The whole
planning problem can be encoded in Linear Logic in the following way (assume
that a1, a2 . . . am are substitutions of the encodings of all the actions in A, s0 =
{p01

, p02
, . . . , p0n

} and g = {g1, g2, . . . , gq}):

p01
, p02

, . . . , p0n
, !a1, !a2, . . .!am ⊢ g1 ⊗ g2 ⊗ · · · ⊗ gq ⊗⊤

A plan exists if and only if the previous expression is provable in Linear Logic.

118 Lukas Chrpa

5.3 Encoding of negative predicates

The previous encoding works with positive predicates only. However sometimes
we need to encode negative predicates that obviously appear in preconditions of
actions. We extend the encoding of predicates with symbols for negative pred-
icates (predicate p will obtain a twin p which represents a negative form of
predicate p). It stands to reson that either p or p is contained in each state (if
p ∈ s then the predicate p is true in the state s and if p ∈ s then the predicate
p is not true in the state s). The encoding of the state s, where the predicates
p1, . . . , pm are true in s and the predicates pm+1, . . . , pn are not true in s:

p1 ⊗ · · · ⊗ pm ⊗ pm+1 ⊗ · · · ⊗ pn

For each action a = {p, e−, e+}, we create an action a′ = {p, e′−, e′+}, where
e′− = e−∪{p |p ∈ e+} and e′+ = e+∪{p |p ∈ e−}. The whole planning problem
with negative predicates can be encoded in Linear Logic in a similar way as the
planning problem without negative predicates.

5.4 Encoding of possible optimizations

In the previous subsections I described the pure encoding of planning problems
to Linear Logic. In this subsection I will show that we are able to encode some
optimizations to Linear Logic as well.

Assume actions a and b such that e−(a) = e+(b) and e+(a) = e−(b). These
actions are inverse which means that when performing them consecutively we
obtain a state that we had before performing these actions. It stands to reson
that performing these actions consecutively is unnecessary. The main idea to
solve the problem of performing inverse actions consecutively is an extension of
the encoding of actions. We can add a new predicate can(a) which means that
an action a can be performed (can(a) ∈ p(a)). To block the inverse action b by
the action a, can(b) ∈ e−(a) and can(b) ∈ e+(a) must be satisfied. To unblock
the blocked action b by an action c, can(b) ∈ e+(c) and can(b) ∈ e−(c) must be
satisfied.

Another possible optimization is blocking some action forever. Blocking ac-
tions forever should be used especially in domain-depended planning (for ex-
ample when we know that it is not necessary to move a box, we simply block
the action that causes the moving of the particular box). From the previous
paragraph we know that if can(a) 6∈ s then the action a is blocked in the state
s.

Another possible optimization is actions assembling. Assume that the actions
a1 and a2 are encoded in Linear Logic in the following way:

a1 : (p1 ⊗ p2) ⊸ (p1 ⊗ p3)

a2 : (p3 ⊗ p4) ⊸ (p3 ⊗ p5)

The encoding in Linear Logic of action a which is obtained by assembling the
actions a1, a2:

(p1 ⊗ p2 ⊗ p4) ⊸ (p1 ⊗ p3 ⊗ p5)

Linear Logic: Foundations, Applications and Implementations 119

The above optimizations can rapidly increase the performance of a planner.
This section showed that Linear Logic is strong enough to encode some opti-
mizations (mainly domain-dependent) for the planning problems.

5.5 Example

In this example we will use a predicate extension of Linear Logic. Imagine the
version of ”Block World”, where we have slots and boxes, and every slot may
contain at most one box. We have also a crane, which may carry at most one
box.

Initial state: 3 slots (1,2,3), 2 boxes (a, b), empty crane, box a in slot 1, box b
in slot 2, slot 3 is free.

Actions:

PICKUP (Box, Slot) = {

p = {empty, in(Box, Slot)},

e− = {empty, in(Box, Slot)},

e+ = {holding(Box), free(Slot)}

}

PUTDOWN(Box, Slot) = {

p = {holding(Box), free(Slot)},

e− = {holding(Box), free(Slot)},

e+ = {empty, in(Box, Slot)}

}

Goal: Box a in slot 2, Box b in slot 1.

The encoding of the action PICKUP (Box, Slot) and PUTDOWN(Box, Slot):

PICKUP (Box, Slot) :
empty ⊗ in(Box, Slot) ⊸ holding(Box)⊗ free(Slot)

PUTDOWN(Box, Slot) :
holding(Box)⊗ free(Slot) ⊸ empty ⊗ in(Box, Slot)

The whole problem is encoded in Linear Logic in the following way:

in(a, 1), in(b, 2), free(3), empty, !PICKUP (X, Y), !PUTDOWN(X, Y) ⊢
⊢ in(b, 1)⊗ in(a, 2)⊗ ⊤

It stands to reson that the actions PICKUP (Box, Slot) and PUTDOWN(Box, Slot)
are inverse. The encoding of the action PICKUP (Box, Slot) uses blocking of the
inverse action PUTDOWN(Box, Slot) and unblocking of the previously blocked
action PICKUP (X, Y) (the encoding of the action PUTDOWN(Box, Slot) is

120 Lukas Chrpa

analogical):

PICKUP (Box, Slot) :
can(PICKUP (Box, Slot))⊗can(PUDOWN(Box, Slot))⊗can(PICKUP (X, Y))⊗
empty⊗in(Box, Slot) ⊸ holding(Box)⊗free(Slot)⊗can(PICKUP (Box, Slot))⊗
can(PUTDOWN(Box, Slot))⊗ can(PICKUP (X, Y))

Another possible optimization in this example is assembling the actions PICKUP (Box, Slot)
and PUTDOWN(Box, Slot) into the action MOV E(Box, SlotX, SlotY). The
action MOV E(Box, SlotX, SlotY) is encoded in the following way:

MOV E(Box, SlotX, SlotY)
empty⊗in(Box, SlotX)⊗free(SlotY) ⊸ empty⊗in(Box, SlotY)⊗free(SlotX)

5.6 Using Linear Logic in planning under uncertainty

The main difference between the deterministic planning and the planning under
uncertainty is such that the actions in the planning under uncertainty can reach
more states. The main advantage of Linear Logic are additive operators. Differ-
ence between additive conjunction (&) and additive disjunction (⊕) rests in the
fact that usage of additive disjunction means that there is plan that certainly
succeeds, and usage of additive conjunction means that there is some plan that
should succeed (with nonzero probability). The encoding of the actions in the
planning under uncertainty(s, s1, s2, . . . , sn are states, a is the action):

s× a→ {s1, s2, . . . , sn}

a : s ⊸ (s1&(⊕)s2&(⊕) . . .&(⊕)sn)

This expression means that only one state from s1, s2, . . . , sn, could be reached
after performing the action a from the state s in a certain step.

6 Linear Logic Programming

Linear Logic Programming is derived from ‘classical‘ logic programming by in-
cluding linear facts and linear operators. Syntax of common Linear Logic Lan-
guages is based on Horn’s clauses like in Prolog.

6.1 Linear Logic Programming languages

There exists several Linear Logic Programming languages. For example Lolli
[7,6], LLP [1], Lygon [16], LTLL.2 LTLL and LLP are possibly the most effec-
tive Linear Logic Programming languages today. The benchmarks showed that
the Linear Logic Programming languages have much better efficiency in solving
problems formalized in Linear Logic than Prolog.

2 developed by Arnost Vecerka, more at http://www.inf.upol.cz/vecerka

Linear Logic: Foundations, Applications and Implementations 121

The construction of interpreters of Linear Logic Programming languages is
well described in [1,7]. The main disadvantage of these interpreters is the fact
that the interpreters are not powerful enough to handle the linear implication
(⊸) well, because these interpreters are based on Horn clauses. In practice these
interpreters can solve only the problems where the resources (linear facts) are
spent. From the problems described in previous sections the interpreters of Linear
Logic Programming languages can solve only Hamiltonian cycle and Knight’s
tour. For solving the Petri Nets reachability problems or the planning problems
these interpreters are too weak.

6.2 Emulating Linear Logic in Prolog

In the previous subsection it was mentioned that the Linear Logic Programming
languages are not strong enough to solve the planning problems. In my thesis [3]
I proposed a Linear Logic Programming language SLLL, which was constructed
as a compiler to Prolog. The main idea which I used is the fact that linear facts
can be held in a special list. To keep the list of linear facts consistent during
the computation we must add to each rule two parameters. The first parameter
represents the list that inputs into the rule. The second parameter represents
the list that outputs from the rule. The main advantage of this approach is easy
implementation and vulnerability to backtracking. The main disadvantage of
this approach is low computational efficiency.

I proposed the emulation of Linear Logic (only the operators ⊗,⊕, ⊸ are
needed) based on the special list of linear facts which I used in SLLL. Spending
the linear fact is done when the linear fact is removed from the list. Obtaining the
linear fact is done when the linear fact is added to the list. We must define two
predicates, one for deleting the facts from the list (lin del) and one for adding
the facts to the list (lin add):

lin_del(V,[V|L],L).

lin_del(V,[H|L],[H|NL]):-lin_del(V,L,NL).

lin_add(V,L,[V|L]).

The emulation of multiplicative conjunction (⊗) is very easy, because we can
replace them by ‘classical‘ conjunction. The emulation of additive conjunction
(&) and additive disjunction (⊕) can be replaced by ‘classical‘ disjunction, when
additive conjunction (&) is on the right side of implication and additive disjunc-
tion (⊕) is on the left side of implication.3 Linear implication (⊸) is emulated
in such a way that all linear facts on the left side of the implication are deleted
from the list and all linear facts on the right side of the implication are added to
the list. A formula a⊗ b ⊸ c&d can be written in Prolog in the following way:

(lin_del(a,L1,L2),lin_del(b,L2,L3)),

(lin_add(c,L3,L4);lin_add(d,L3,L4))

3 If additive conjunction (disjunction) is used of the left (right) side of implication, the
computation must be split into more branches and find a solution in each branch.

122 Lukas Chrpa

Variables L1, L2, L3, L4 represent the list of linear facts in the way mentioned
in the first paragraph of this subsection.

The above approach can be modified by keeping the list of linear facts sorted.
The advantage of this approach is such that if we are removing the linear facts
from the list consecutively we need only one scan of the list. The disadvantage
of this approach is such that to keep the list sorted, adding of linear facts to
the list can’t be done in a constant time. The predicates lin del and lin add are
defined in the following way (I used a build-in predicate merge which merges
two sorted lists):

lin_del([V],[V|L],L).

lin_del([V|VL],[V|L],NL) :- lin_del(VL,L,NL).

lin_del([V|VL],[H|L],[H|NL]) :- lin_del([V|VL],L,NL).

line_add(VL,L,NL) :- merge(L,VL,NL).

A formula a⊗ b ⊗ c ⊸ d ⊗ e can be written in the following way (both lists of
predicates must be sorted):

(lin_del([a,b,c],L1,L2),lin_add([d,e],L2,L3))

However practical tests showed another problem that makes this approach less
efficient that the previous one. The problem is such that if a linear fact which
we want to remove can be unified with more linear facts in the list then we need
to make more scans in the list that adds overhead. In the other hand, we are
able to compare the sorted lists in linear time that can be used in detection
of previously visited states. This approach has the best efficiency, but memory
consumption is high.

7 Future research

In my future research, I will study the opportunities of Linear Logic and its
efficient usage in encoding problems. I will also study the possibilities of usage
Linear Logic Programming languages and their possible extensions and possibil-
ities of efficient emulation of Linear Logic in Prolog. The following paragraphs
will present my future research plans in more details:

7.1 Encoding problems and optimizations in Linear Logic

In previous sections I showed that some problems can be encoded in Linear
Logic. In particular the planning problems can be well encoded in Linear Logic.
However the pure encoding of the planning problems is not efficient enough.
Using the optimizations that I mentioned greatly increases the efficiency. I will
study more possibilities of using Linear Logic in the planning problems and I
will try to find and encode more sophisticated optimizations.

The other problems that I did not mention are scheduling problems. In
scheduling problems we are mapping some activities to resources under particu-
lar constraints. I believe that Linear Logic in strong enough to encode schedul-
ing problems and I will study the possibilities of using Linear Logic in solving
scheduling problems.

Linear Logic: Foundations, Applications and Implementations 123

7.2 Using Linear Logic Programming languages

The main advantage of Linear Logic Programming languages is the high ef-
ficiency in solving problems based on Linear Logic. The main disadvantage of
Linear Logic Programming languages is the impossibility to obtain the resources
during the computation (we have the resources at the beginning of the compu-
tation and during the computation we can only spend these resources). As I
mentioned in the previous section, Linear Logic Programming languages are
not strong enough to solve the planning problems. In the other way I believe
that Linear Logic Programming languages should be useful in solving scheduling
problems or in some supporting techniques to the planning problems.

7.3 Emulating Linear Logic in Prolog

In the previous section I mentioned some possibilities how to emulate Linear
Logic in Prolog. This emulation is correct and we are able to solve the planning
problems with this emulation. However the efficiency of this emulation is still
not very good. In the other way I believe that an efficient emulation of Linear
Logic in Prolog should be very useful in developing efficient algorithms handling
problems with limited resources. I will study the possibilities of more efficient
emulations of Linear Logic in Prolog.

8 Conclusion

This paper showed that Linear Logic is a powerful formalism which can encode
many ‘resource based‘ problems (for example the planning problems). The ad-
vantage of this approach is that an improvement of the Linear Logic solver leads
to better efficiency in solving the problems encoded in Linear Logic. Unfortu-
nately the existing Linear Logic solvers (Linear Logic Programming languages)
are not strong enough to solve problems like planning problems. I believe that
an efficient emulation of Linear Logic in Prolog will bring a lot of possibilities of
usage Linear Logic in the problems.

9 Acknowledgements

The research is supported by the Czech Science Foundation under the contract
no. 201/04/1102 and by the Grant Agency of Charles University (GAUK) under
the contract no. 326/2006/A-INF/MFF.

References

1. Banbara, M. Design and Implementation of Linear Logic Programming Languages.
Ph.D. Dissertation, The Graduate School of Science and Technology, Kobe Uni-
versity. 2002.

124 Lukas Chrpa

2. Chrpa L. Linear logic in planning. To appear at Doctoral Consorcium ICAPS
2006. 2006.

3. Chrpa, L. Linearni logika. Master’s thesis, Department of Computer Science,
Palacky University, Olomouc. 2005. (in Czech).

4. Girard J.-Y. Linear logic. Theoretical computer science 50:1–102. 1987.
5. Girard J.-Y. Linear Logic: Its Syntax and Semantics. Technical report, Cambridge

University Press. 1995.
6. Hodas, J. Lolli: An extension of lambdaprolog with linear logic context man-

agement. Proceedings of the 1992 Workshop on the lambdaProlog Programming
Language. 1992.

7. Hodas, J. Logic Programming in Intuitionistic Linear Logic: Theory, Design, and
Implementation. Ph.D. Dissertation, University of Pennsylvania, Department of
Computer and Information Science. 1994.

8. Kanovich M. The multiplicative fragment of linear logic is NP-complete. Technical
Report X-91-13, Institute for Language, Logic and Information. 1991.

9. Kanovich, M., and Vauzeilles, J. The classical ai planning problems in the mirror
of horn linear logic: Semantics, expressibility, complexity. Mathematical Structures
in Computer Science 11(6). 2001.

10. Küngas P. Linear logic for domain-independent ai planning. Proceedings of Doc-
toral Consorcium ICAPS 2003. 2003.

11. Lincoln P. Linear logic. Proceedings of SIGACT 1992. 1992.
12. Lincoln P., Mitchell J., Scedrov M., and Shankar N. Decision problems for propo-

sitional linear logic. Technical Report SRI-CSL-90-08, CSL, SRI International.
1990.

13. Masseron, M.; Tollu, C.; and Vauzeilles, J. Generating plans in linear logic i-ii.
Theoretical Computer Science. 1993.

14. Oliet, N. M., and Meseguer, J. From petri nets to linear logic. Springer LNCS
389. 1989.

15. Reisig, W. Petri Nets, An Introduction. Springer Verlag, Berlin. 1985.
16. Winikoff, M. Hitch hiker’s guide to lygon 0.7. Technical Report 96/36, The Uni-

versity of Melbourne, Australia. 1996.

