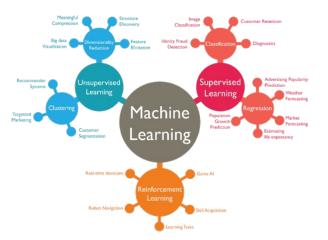
Research Opportunities at NMSU

Computer Science Department

BE BOLD. Shape the Future.

Opportunities For Research


Undergraduate Research during the Semester Undergraduate Research/Internships during Summers (REU) Undergraduate
Honors courses and
volunteering

Graduate Research Assistant, Teaching Assistant, Fellowships (National Science Foundation, Department of Defense, Department of Energy, Department of Education).

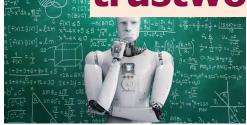
Vision

To contribute to the development of foundations and applications of computing technologies

Explainable, efficient, reliable, secure, trustworthy (EEASY)

ML and Data Analytics

Human Machine Interaction


Autonomous Driving

Development of explainable,

Our (cyber efficient, reliable, secure, and

trustworthy software

Thinking Machine

Future of Communications

Future Workplaces

Major Research Foci—CS@ NMSU

Artificial Intelligence

declarative programming; knowledge representation; automated planning; multiagent systems; explainable and trustworthy AI

Cybersecurity, Networking, Cryptography

Vishwanathan

Security and Privacy; Blockchains; Cognitive Radios; ML for Networks; Adversarial ML; Edge Computing; Smart Grid

Machine Learning and Data Mining

Data mining; machine learning; databases; deep learning; time series data, graph data, text data, multimedia

Human Computer Interaction

Phoebe Toups Dugas (A)

Educational games; mixed reality; game design; team coordination; Live Media

Other Areas of Research

Software Engineering

Software Engineering; HPC Applications; Application Auditing and Monitoring

Bioinformatics

Unsupervised pattern Discovery; Statistical Computing; Computational Biology

We are trying to build capacity in these two areas but have not been lucky with hiring faculty in the two areas.

Rankings

	csrankings.org			
	☐ Overall: 127 out of 173 listed			
	☐ Same as UNM, Auburn University (with			
	faculty30; we have 14 faculty)			
☐ Specialized areas (in top 100)				
	☐ AI (86), Security (76), DB (92), HCI (75)			
	☐ SE, Data Mining, Bioinformatics,			
	Cryptography			
	US News: Grad CS Rankings 133			


□According to a recent survey by the
university, we are at 171% in terms
of publications and research funding
w.r.t. peer R1/R2 universities.

- ·		
127 ► Auburn University III	1.2	5
127 ► Georgia State University sill	1.2	10
127 ▶ IUPUI 📶	1.2	12
127 ► Kansas State University III	1.2	6
127 ► Louisiana State University III	1.2	7
127 ► New Mexico State University III	1.2	11
127 ► Northern Arizona University 🔤 📶	1.2	7
127 ► Old Dominion University III	1.2	9
127 ► Texas State University III	1.2	9
127 ▶ University of Hawaii at Manoa III	1.2	8
127 ► University of Kentucky III	1.2	7
127 ➤ University of Massachusetts Boston 📶	1.2	7
127 ► University of Michigan-Dearborn III III	1.2	7
127 ► University of New Mexico III	1.2	9
127 Vuniversity of North Texas 🔤 📶	1.2	9
127 ► University of Vermont I	1.2	6
127 ► Utah State University III	1.2	6
127 ► West Virginia University III	1.2	7
127 ► Wichita State University III	1.2	4

Major Research Directions

□ Cybersecurity Network	☐ Machine Learning
Cryptography Smart Grid Edge Computing Block Chain and Use in Different Applications Network/Internet Security Adversarial & Adversary-resistant ML Knowledge representation and reasoning (AI) Declarative programming Multiagent systems Reasoning about Dynamic Systems Automated Planning Interpretable and Explainable AI	 □ ML and Data Mining for Classification and Prediction □ Data Analytics and Visualization □ Deep Learning/Graph Mining □ Human Computer Interaction □ Game Development □ Mixed Reality □ Team Coordination □ Live Media □ Software Engineering Methodologies □ Computational Biology

Research Centers

ICREDITS Smart Grid Center (renewed by NSF) for five more years in 2020.

\$5 million; Al; ML; Cybersecurity; HCl; Wireless; Quantum Computing; Hardware (across several departments)

Part of NM EPSCoR Smart Grid Effort (statewide effort on smart grid research)

\$20 million (CS has ~\$5 million); AI; ML; Cybersecurity; Economics; Power Systems

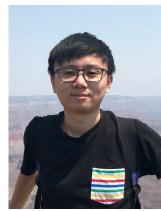
Research Laboratories

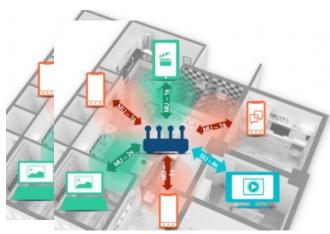
ш	Grids (iCREDITS) (https://icredits.nmsu.edu/) Enrico Pontelli and Satish Ranade
	Bioinformatics Research Lab (https://www.cs.nmsu.edu/~joemsong/group.shtml) Joe Song
	Knowledge Discovery and Data Mining (KDD) Research Lab (https://kddlab.nmsu.edu/) Huiping Cao
	Knowledge Representation, Logic, and Advanced Programming (KLAP) Lab (https://www.cs.nmsu.edu/klap/) Enrico Pontelli and Son Tran
	Networks and Systems Optimization Lab (NSOL) (https://nsol.nmsu.edu/) Satyajayant Misra
	Programming Languages, Environments, and Software Engineering (PLEASE) Lab (https://www.cs.nmsu.edu/please/) Jonathan Cook
	Computer Security Lab Roopa Vishwanathan
	Participatory Live Experiences Laboratory (https://www.cs.nmsu.edu/plexlab/people/bill/) Bill Hamilton
	Play & Interactive Experiences for Learning (PlxL) Lab (https://pixl.nmsu.edu/) Phoebe Toups Dugas
	MultiMedia Management (M³) Lab Parth Nagarkar

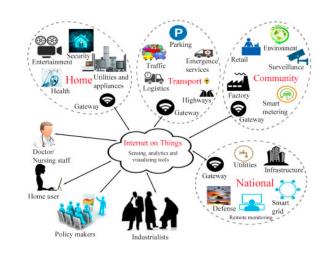
More Details

Cybersecurity Networking Cryptography

- ☐ Theory, Practice, and Application
 - ❖ Secure, Private, Trusted, and Resilient Networking
 - **❖** Internet of Things
 - ❖ Cyber-Physical Systems
- □ *Blockchains*
- ☐ Zero knowledge proofs
- □ *Encryption*
- □ *Edge computing*

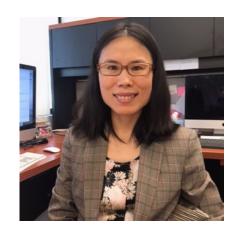


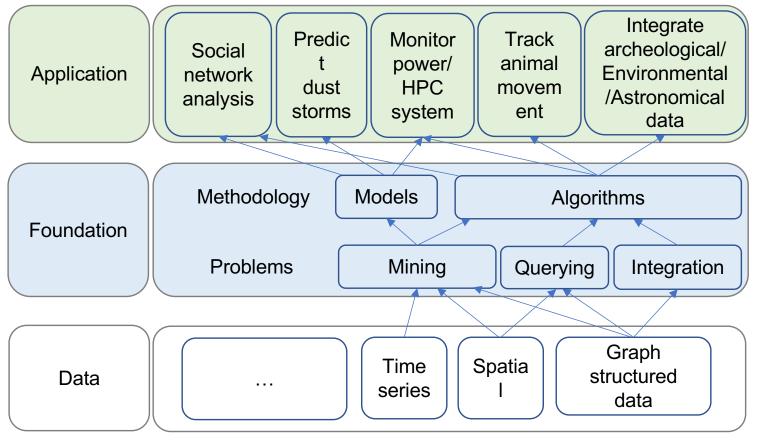

- ☐ Publications in top conferences and journals on security, networking (ACM CCS, IEEE TDSC, IEEE IoT Journ, etc.)
- ☐ Grant funding for many positions available


Dr. Jay Misra & Dr. Roopa Vishwanathan & Dr. Joshua Reynolds

Cyber-physical System and Network Security

- ☐ Learning-based Attacks against MU-MIMO Networks
- ☐ Security Analysis of Third-party JavaScript Caching
- ☐ Location-restricted Service Access Control
- ☐ Accessible Indoor Navigation
- ☐ Light-weight Encryption Scheme in IoT
- ☐ Proximity Fingerprinting in Mobile Networks




☐ Looking for graduate students

Dr. Tao Wang

Knowledge Discovery and Data mining

- ☐ Publications in top conferences and journals on ICDE, CIKM, ICML
- ☐ Grant funding for many positions available

Dr. Huiping Cao

Visual Data Mining

- ☐ Visual Comparative Text Mining via Parallel Planes
 - Inspired by parallel coordinates
 - ❖ Use multiple parallel planes to address some limitations of previous works for visual comparison.
 - ❖ Application: an immersive virtual system
- ☐ Targeted Visualization for Focused Analysis
 - ❖ Some information loss when reducing the dimension
 - Allow to perform more detailed analyses on some specific aspects
 - ❖ Generate a visualization targeting user interest.
- ☐ Geometric inference for semantic visualization
- ☐ Counterfactual explanations for outliers
- ☐ Visualizing high dimensional data with structure and outlier preservation
- ☐ Publications in top conferences and journals on ICDE, ICML, WWW
- ☐ Looking for graduate students

Dr. Tuan Le

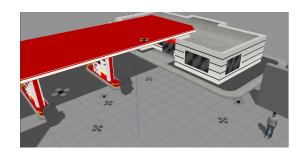
Database

- □ *Big data management.*
- ☐ Building scalable index structures
- ☐ Building distributed systems which empower efficient large-scale, high-dimensional data processing

- ☐ Publications in top conferences and journals on database
- ☐ Looking for graduate students

Dr. Parth Nagarkar

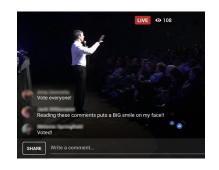
Human Computer Interaction


- ☐ Games & wearables for disaster response
 - Disaster Response Practice
 - Game Interfaces
 - Focus on Collaboration
- ☐ Wearable Computer Designs
 - Mixed Reality Testbeds

- ☐ Publications in top conferences and journals on HCI
- ☐ Grant funding for many positions available

Dr. Z O. Toups Dugas

Human Computer Interaction



- ☐ Understanding the design of online media spaces and the resulting impacts on communities.
 - ❖ Supporting Participation Through Live Media in Online Communities
 - ❖Online Politics and Activism

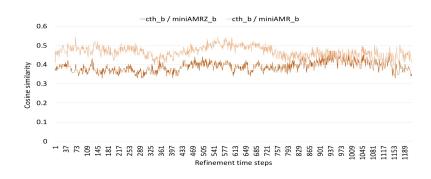
- ☐ Publications in top conferences on HCI
- ☐ Looking for graduate students

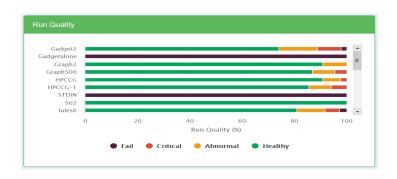
Dr. William Hamilton

Artificial Intelligence

- □ *Knowledge representation and reasoning.*
 - ❖ Declarative programming.
 - *Reasoning about actions and changes.
- ☐ *Automated planning.*
- ☐ *Assistive technologies.*
- ☐ *Multiagent systems*.
 - Distributed constraint optimization.
 - *Epistemic planning.
- ☐ Integrated technologies for smart grids and smart homes.
- ☐ Publications in top conferences and journals on AI, KRR, logic programming, planning (AI Journals, Journal of AI Research, AAAI, IJCAI, KRR, TPLP, etc.)
- ☐ Grant funding for many positions available

Dr. Enrico Pontelli & Dr. Son Tran



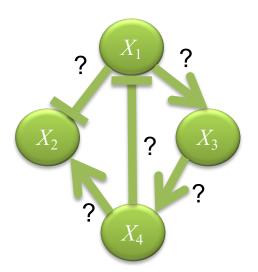

High Performance Computing and Software Engineering

HPC: Understanding scientific application behavior for better system and application performance evaluation & improvement

- □ Job Quality: how well did a particular run of a scientific application utilize the resources it was granted? what do good resource requests look like for a particular application?
- □ Phase Analysis: how do the different phases of an HPC application uniquely utilize the job resources? do particular phases appear to have room for improvement?

☐ Grant funding from Sandia

Dr. Jonathan Cook


Bioinformatics

□Pattern Discovery Algorithms and Molecular Biology
Given n observations of p random variables
$X_1,, X_p$, are there outstanding dependency patterns in
the data?

- □ Statistical challenges:
 - Association statistics are well established
 - •Model-free directional dependency statistics are not
- □ Computational challenges:
 - •Pattern search space is exponential to dimension p
 - •Calculating statistical significance can be expensive

X ₁	X ₂	X ₃	X ₄
1.2	3.3	-2	0
1.1	4.3	2	3

- Software Model-free chi-squared test (FunChisq) won 1st price in Cancer prediction and has been downloaded 40000 times
- ☐ Grant funding for many positions

Dr. Joe Song

