

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND

Collaboration with Academia to Support Future Force Capabilities Explore Computer Science Research

Cyber Experimentation & Analysis Division (CEAD)

Dr. Oscar Perez and Dr. Jayashree Harikumar

DEVCOM Analysis Center

Nov 4, 2022

DAC MISSION AND VISION

MISSION

Deliver objective analysis, experimentation and data across the entire life cycle to ensure readiness today and a more lethal future force tomorrow.

> The Army's authoritative source of integrated analytical solutions for the Soldier and Army Modernization Enterprise (AME) to ensure the Army decisively defeats any adversary, any time, anywhere.

> > VISION

TODAY'S ANALYTICS FOR TOMORROW'S SOLDIER - FORGE THE FUTURE

- Collaborative Efforts with NMSU
 - Federated ML for network management and vulnerability assessment
 - Using averaging at the aggregator to discern potential attack scenarios at the individual routers via assessing divergence in model parameters sent by the individual routers
 - Probing attack on Networks and mitigation using ML
 - machine-learning empowered automation tool to identify and disable the suspicious probing packet forwarding

- Collaborative Efforts with NMSU: <u>Federated ML for network management and</u> <u>vulnerability assessment</u>
 - Local ML models at the routers learn from their local observations and share their model abstracts/parameters with an aggregator.
 - The aggregator performs federated averaging to create a global model that encompasses the global state of the network.

- Collaborative Efforts with NMSU: <u>Probing attack on Networks and mitigation</u> <u>using ML</u>
 - Understanding and evaluating existing end-to-end external topology inferring strategies
 - Designing a reliable and secure machine-learning based probing behavior identifier and testing its performance
 - Developing and testing a topology obfuscation mechanism to mitigate probing attacks
 - Comprehensively evaluating and testing the efficiency and effectiveness of the proposed automation tool

CEMA AND CELLULAR COMMUNICATIONS

- What is CEMA?
- What is cellular communications?
- Why will traditional cyber analysis methods not work?
- Testbeds methodology and development to test future-G technologies
 - Experiment setup
 - Equipment specification and cross pollination
 - Troubleshooting

CELLULAR COMMUNICATIONS COLLABORATION

- To date we have built a 4G and LTE testbed to study the impact of
 - Cyber activities on EW affected systems and vice versa
 - Combined effect of EW and Cyber activities on cellular systems
- Analysis of the cellular network uses an innovative CEMA approach
- Possible DoD support for future Army 5G Cyber research
- Academia:
 - Advantages (faculty and student participation; student development)
 - Disadvantages (Information classification)
- Industry:
 - Advantages (availability of ready or nearready tools)
 - Disadvantages (license, cost,..)

PERFORMANCE OPTIMIZATION RESEARCH FOR PARALLEL PROCESSING USING GPUS

- Optimization on password cracking based on hardware and GPU availability
 - Create a base line and get metric on your controlled environment
 - Make sure your base line is constant, do not take only one measurement
 - Introduce one variable and analyze the effect
 - After one variable has been analyzed introduce a second variable
 - Repeat the experiment and if the experiment is not consistent check external factors
 John the ripper Bench marks

Systems Specs Brute Force Mode									
GPU #0 (device 0)	Processor: 2.5 GHz x 8 Intel Core i7 CPU 4710 MQ	Processor: 3.1 GHz x 8 Intel Core i7 CPU 7920 HQ	Processor: 4× ARM Cortex-A53, 1.2GHz						
Processor: 2.8 GHz Intel Core i7	RAM: 16 GB 1600 MHz DDR3	RAM: 32 GB 2400 MHz DDR4	RAM: 1GB LPDDR2 (900 MHz)						
RAM: 15 GB 1600 MHz DDR3	GPU #1 (Device 0)	GPU #1 (Device 0)	GPU #1						
GPU #1 (device 1)	Video card1: Nvidia Quadro K1100M	Video card1: Nvidia Quadro P4000 w 8GB GDDR	Video card1:						
Video card1: Iris Pro 1536 MB	Parallel cores: 2	Parallel cores: 14	Parallel cores: XXXXX						
Parallel cores: 40	Max Clock (MHz):705	Max Clock (MHz):1227	Max Clock (MHz):XXXXX						
Max Clock (MHz):1300	John Speed Index:270720	John Speed Index:2198784	John Speed Index:XXXXX						
John Speed Index:52000									
GPU #2 (device 2)									
Video card 2: AMD Radeon R9 M370X									
John Speed Index:52000									

								find a finite to mot passificital teene	that 2 time to mot passion of a teene
1					1	M7720 (Kali)	./john pi-shadow.txt	16 min 48 sec	16 min 34 sec
	System	Instruction	Time to first password "teche"		2	M7720 (Kali)	./john pi-shadow.txtdevice=0	16 min 39 sec	16 min 33 sec
	Mac (10.13.3)	./john pi-shadow.txt	24 min 40 sec		3	M7720 (Kali)	./john pi-shadow.txtdevice=0fork=5	12 min 4 sec	11 min 35 sec
	Mac (10.13.3)	./john pi-shadow.txtdevice=2	24 min 42 sec		4	M7720 (Kali)	./john pi-shadow.txtdevice=0fork=10	8 min 13 sec	7 min 56 sec
	Mac (10.13.3)	/iohn pi-shadow.txtdevice=1	24 min 45 sec		5	M7720 (Kali)	./john pi-shadow.txtdevice=0fork=16	8 min 49 sec	8 min 55 sec
8	M4800 (Kali)	/john pi-shadow.txtdevice=0,1fork=8 2	4 min 23 sec 24 min 21 sec	24 min 19 sec	6	M7720 (Kali)	./john pi-shadow.txtdevice=0fork=18	19 min 8 sec	18 min 10 sec
9	M4800 (Kali) .	/john pi-shadow.txtdevice=0,1fork=10 1	0 min 58 sec 10 min 49 sec	11 min 0 sec	7	M7720 (Kali)	./john pi-shadow.txtdevice=0fork=19	24 min 22 sec	23 min 24 sec
10	M4800 (Kali)	/john pi-shadow.txtdevice=0,1fork=16 1	1 min 48 sec 12 min 13 sec	12 min 7 sec	8	M7720 (Kali)	./john pi-shadow.txtdevice=0fork=20	5 min 53 sec	5 min 27 sec
11	M4800 (Kali)	/john pi-shadow.txtdevice=0,1fork=17 1	6 min 20 sec 17 min 28 sec	17 min 2 sec	9	M7720 (Kali)	/john pi-shadow.txtdevice=0fork=21	25 min 25 sec	22 min 43 sec
12	M4800 (Kali) .	/john pi-shadow.txtdevice=0,1fork=18	4 min52 sec 25 min 45 sec	25 min 50 sec	10	M7720 (Kali)	/john pi-shadow.txtdevice=0fork=30	11 min 40 sec	10 min 1 sec
13	M4800 (Kali) .	/john pi-shadow.txtdevice=0,1fork=19 3	5 min 41 sec 31 min 59 sec	32 min 38 sec	11	M7720 (Kali)	/iohn pi-shadow txtdevice=0fork=40	8 min 31 sec	8 min 10 sec
14	M4800 (Kali) ./	john pi-shadow.txtdevice=0,1fork=20	7 min 39 sec 7 min 59 sec	7 min 41 sec	12	M7720 (Kali)	/john pi shadow txt_dovice=1	16 min 40 sec	16 min 27 cos
15	M4800 (Kali)	/john pi-shadow.txtdevice=0,1fork=21 3	2 min 29 sec 32 min 42 sec	32 min 8 sec	12	M7720 (Kali)	/joint pristadow.txtdevice=1	10 min 40 sec	10 min 57 sec
16	M4800 (Kali) .,	/john pi-shadow.txtdevice=0,1fork=22 2	5 min 55 sec 24 min 37 sec	25 min 51 sec	15	M17720 (Kall)	/john pi-shadow.txtdevice=1totk=5	12 min 15 sec	Train 52 sec
17	M4800 (Kali) .,	/john pi-shadow.txtdevice=0,1fork=23	3 min 44 sec 8 min 32 sec	8 min 9 sec	14	M7720 (Kall)	./john pi-shadow.txtdevice=1fork=10	8 min 38 sec	7 min 52 sec
18	M4800 (Kali) .,	/john pi-shadow.txtdevice=0,1fork=24 2	4 min 23 sec 30 min 8 sec	31 min 5 sec	15	M7720 (Kali)	./john pi-shadow.txtdevice=1tork=16	8 min 50 sec	9 min 0 sec
19	M4800 (Kali) .,	/john pi-shadow.txtdevice=0,1fork=32 2	1 min 53 sec 20 min 56 sec	21 min 34 sec	16	M7720 (Kali)	./john pi-shadow.txtdevice=1tork=17	12 min 53 sec	12 min 10 sec
20	M4800 (Kali) .	/john pi-shadow.txtdevice=0,1fork=64	37 min 4 sec 36 min 1 sec	35 min 53 sec	17	M7720 (Kali)	./john pi-shadow.txtdevice=1fork=18	19 min 19 sec	17 min 55 sec
					18	M7720 (Kali)	./john pi-shadow.txtdevice=1fork=19	25 min 28 sec	23 min 50 sec
21	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=10 1	1 min 23 sec 10 min 38 sec	11 min 00 sec	19	M7720 (Kali)	./john pi-shadow.txtdevice=1fork=20	5 min 37 sec	5 min 20 sec
22	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=16 1	2 min 48 sec 12 min 13 sec	12 min 14 sec					
23	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=17 1	7 min 21 sec 17 min 9 sec	16 min 50 sec	_				
24	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=18 2	5 min 43 sec	24 min 17 sec					
25	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=19 3	2 min 46 sec	33 min 57 sec					
26	M4800 (Kali)	/john pi-shadow.txtdevice=0fork=20	min 27 sec	9 min 8 sec					
27	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=21 3	0 min 46 sec	36 min 29 sec	-				
8	M4800 (Kali)	./john pi-shadow.txtdevice=0fork=22 2	5 min 46 sec	24 min 41 sec	-				0
				UNCLASSIFIED					9

