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1 Introduction

In 1857 Arthur Cayley (1821–1895) published a paper [8] that introduces the term “tree” to describe
the logical branching that occurs when iterating the fundamental process of differentiation. Of
composing four symbols that involve derivatives, Cayley writes “But without a more convenient
notation, it would be difficult to find [their] corresponding expressions . . . . This, however, can be
at once effected by means of the analytical forms called trees . . . ” [8]. Without defining the term
“tree,” Cayley has identified a certain structure that occurs today in quite different situations, from
networks in computer science to representing efficient delivery routes for transportation.

Cayley wishes to count trees with certain properties, which suggests that they can be organized
according to patterns, studied, and classified. What properties distinguish trees as different for
the purpose of counting depends, in part, on their application. In the paper “On the Theory of
the Analytical Forms Called Trees” [8], every tree represents a sequence of derivatives applied in
a very specific order, beginning at a base or root term denoted U . Cayley actually uses the word
“root” in reference to the point corresponding to U in the physical representation of the tree. The
remainder of the paper enumerates what today are called “rooted trees.” However, in a later paper
“A Theorem on Trees” [9], published in 1889, Cayley makes a finer distinction when counting
trees, so that no one point is considered as the root, but all points carry fixed labels α, β, γ, etc.
The British mathematician counts these trees with fixed labels, arriving at a result that today is
called “Cayley’s formula.” His proof is a bit incomplete, and we read only a short excerpt from “A
Theorem on Trees.” The reader is encouraged is note how Cayley associates certain polynomials
to trees in order to help in the counting process.

The German mathematician Heinz Prüfer (1896–1934) offers a quite clever and geometrically
appealing method for counting what today are called labeled trees. He uses no modern terminology,
not even the word “tree” in his work. Instead, the problem is introduced via an application [19]:
Given a country with n-many towns, in how many ways can a railway network be constructed so
that

1. the least number of railway segments is used; and

2. a person can travel from each town to any other town by some sequence of segments.

The ideas expressed here, that the least number of railway segments is used, yet travel remains
possible between any two towns, are recognized today as properties that characterize such a railway
network as a tree. Since the towns are fixed, their names (labels) are not interchangeable, and a
labeled tree is an excellent model for this problem.

Prüfer wishes to count all railway networks satisfying properties (1) and (2) above, and in doing
so, he arrives at a result that agrees with Cayley’s formula. Prüfer assigns to each tree a particular
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symbol based on the point labels (town names). Counting the resulting symbols is then much
easier than counting trees. Of course, establishing a one-to-one correspondence between symbols
and trees requires some work, which Prüfer writes “follows from an induction argument” (on the
number of towns) [19]. By the time of Prüfer’s writings, the idea of a one-to-one correspondence
was understood from the work of Georg Cantor (1845–1918), and mathematical induction was a
well-developed argument form. A useful exercise is the comparison of Prüfer’s use of symbols and
Cayley’s use of polynomials for the purpose of counting (Exercises 2.4, 3.11). As a result, we know
that there are nn−2 possible labeled trees that can be formed from n towns.

In 1926 Otakar Boru̇vka (1899–1995) published [1, 2] the solution to an applied problem of
immediate benefit for constructing an electrical power network in the Southern Moravia Region,
now part of the Czech Republic. In recalling his own work, Boru̇vka writes [3, 11]:

My studies at polytechnical schools made me feel very close to engineering sciences and
made me fully appreciate technical and other applications of mathematics. Soon after
the end of World War I, at the beginnings of the 1920s, the Electrical Power Company of
Western Moravia, Brno, was engaged in rural electrification of Southern Moravia. In the
framework of my friendly relations with some of their employees, I was asked to solve,
from a mathematical standpoint, the question of the most economical construction of
an electric power network. I succeeded in finding a construction . . . which I published
in 1926 . . . .

Let’s examine specifically how Boru̇vka phrased the problem [2]:

There are n points in the plane (in space) whose mutual distances are all different. We wish
to join them by a net such that:

1. Any two points are joined either directly or by means of some other points.

2. The total length of the net would be the shortest possible.

How does this problem differ from that posed by Prüfer? Prüfer wishes to find a network
that requires the least number of single segments, while Borúvka wishes to find a network of
shortest possible total length. Both authors require that all towns in their respective applications
be connected to the network (railway or electrical). Are these identical problems? No, since
Prüfer never considers the length of a railway segment connecting two towns. Are these problems
related? Yes, since a network of shortest total length is recognized today as a tree (Exercise 4.1).
Thus, of all possible nn−2 labeled trees on n points (towns), which tree or trees have the shortest
possible total length? Boru̇vka offers a solution to this problem that is rather algorithmic in nature,
and has become the basis for finding what today is called a minimum spanning tree. The Czech
mathematician, however, uses no modern terminology in his 1926 papers, not even the word “tree.”

Since the writings of Prüfer and Boru̇vka, an entire filed of study has arisen to provide a
framework for discussing these and similar problems in network design. This is the field of graph
theory, and a tree is recognized today as a graph with certain properties. Modern mathematics
offers a host of lemmas and theorems about trees, many of which reflect observations made in these
earlier writings. The reader is asked to be guided by inquiry, experiment, and discovery as we
explore “Networks and Spanning Trees” from the works of the pioneers.

2 Cayley’s Analytical Forms Called Trees

Arthur Cayley (1821–1895) was a prolific scholar, publishing over 1,000 articles in various fields
of mathematics, and refereeing hundreds of others. He studied at Trinity College in Cambridge,
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England. Upon graduation, he worked as a lawyer, although he pursued mathematics in his spare
time. In 1863 he became Sadlerin Professor of Mathematics at Cambridge [12]. We examine only
two of Cayley’s papers on trees [8, 9], with his pioneering work on group theory developed in a
separate module, “Abstract Awakenings in Algebra: Early Group Theory in the Works of Lagrange,
Cauchy and Cayley.”

In an 1857 publication [8], Cayley introduces the term “tree” to describe the logical branching
that occurs when iterating the fundamental procedure of differentiation. Calculus is not the main
concern here, but instead an organizational tool is developed that provides a visual overview of the
individual terms under differentiation. This tool is used today in quite different situations from
networks in computer science to finding efficient delivery routes in the transportation industry.
To introduce Cayley’s paper, let ∂x denote differentiation with respect to x and let ∂y denote
differentiation with respect to y. Then ∂x(x2y) = 2xy and ∂y(x

2y) = x2, given that x and y are
independent variables. The symbols ∂x and ∂y are called operators, while the expression x2y itself
is an operand. Note that the symbols ∂x and ∂y are applied to (operate on) functions written to
the right of the symbol. If the function is written to the left, such as x2y∂x, Cayley dubs the entire
expression an operandator, and x2y remains unaltered by the operator on the right. Cayley wishes
to study how operandators interact among themselves. Let P = x2y∂x and Q = xy∂y. Then PQ

is the operandator given by

PQ = x2y∂x(xy∂y) = x2y(y∂y) = x2y2∂y ,

and QP is the operandator given by

QP = xy∂y(x
2y∂x) = xy(x2∂x) = x3y∂x .

In the above example, QP 6= PQ.
For operandators Q, P , U , what should be the meaning of QPU? Do the groupings Q(PU)

and (QP )U yield the same result, although Q, P and U are in the same relative order? Let’s
read Cayley’s analysis [8] of these questions, and his theory for an efficient method of representing
iterated applications of operandators such as RQPU .

∞∞∞∞∞∞∞∞

On the Theory of the Analytical Forms Called Trees.

A symbol such as A∂x + B∂y + . . ., where A, B, &c. contain the variables x, y, &c. in respect
to which the differentiations are to be performed, partakes of the natures of an operand and operator,
and may be therefore called an Operandator. Let P , Q, R, . . . be any operandators, and let U be a
symbol of the same kind, or to fix the ideas, a mere operand; PU denotes the result of the operation P

performed on U , and QPU denotes the result of the operation Q performed on PU ; and generally in
such combinations of symbols, each operation is considered as affecting the operand denoted by means
of all the symbols on the right of the operation in question. Now considering the expression QPU , it is
easy to see that we may write

QPU = (Q × P )U + (QP )U,

where on the right-hand side (Q × P ) and (QP ) signify as follows: viz. Q × P denotes the mere
algebraical product of Q and P , while QP (consistently with the general notation as before explained)
denotes the result of the operation Q performed upon P as operand; and the two parts (Q× P )U and
(QP )U denote respectively the results of the operations (Q × P ) and (QP ) performed each of them
upon U as operand. It is proper to remark that (Q×P ) and (P ×Q) have precisely the same meaning,
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and the symbol may be written in either form indifferently. But without a more convenient notation,
it would be difficult to find the corresponding expressions for RQPU , &c. This, however, can be at
once effected by means of the analytical forms called trees (see figs. 1, 2, 3) which contain all the trees
which can be formed with one branch, two branches, and three branches respectively.

The inspection of these figures will at once show what is meant by the term in question, and by the
terms root, branches . . ., and knots . . . . To apply this to the question in hand, PU consists of a single
term represented by fig. 1 (bis); QPU consists, as above, of two terms represented by the two parts of
fig. 2 (bis), viz. the first part represents the term (Q × P )U , and the second part represents the term
(QP )U . . . .

•

•

•
B
BB�

��
••

•

•

•

•
B
BB�

��
•••

B
BB�

��
•

••

•
B
BB�

��

•

•

••

•

•

•

•
Fig. 1. Fig. 2. Fig. 3.

•

•

U

P

•
B
BB�

��
••

U

Q P

•

•

•

U

P

Q

Fig. 1 (bis). Fig. 2 (bis).

∞∞∞∞∞∞∞∞

Using Cayley’s notation, we let A and B denote operands, i.e., functions1 of the variables x and
y. Let P = A∂x, Q = B∂y, and suppose that U is a “mere operand.” To ease notation, let

Ax =
∂A

∂x
, Bx =

∂B

∂x
, Ux =

∂U

∂x
,

Ay =
∂A

∂y
, By =

∂B

∂y
, Uy =

∂U

∂y
,

Axy = (Ax)y =
∂

∂y

(

∂A

∂x

)

, . . . .

Then PU = A∂x(U) = AUx, where the latter is the product of the functions A and Ux (see Exercise
2.1). Also,

(QP )U = (B∂y(A∂x))(U) = (BAy∂x)(U) = BAyUx.

Following Cayley, we read “QPU denotes the result of the operation Q performed on PU .”
Thus, QPU would today be written as Q(PU). In general, is Q(PU) = (QP )U? (See Exercise
2.1.) To compute

Q(PU) = B∂y(AUx)

1infinitely differentiable
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requires the product rule for differentiation. We have

Q(PU) = BAUxy + BAyUx.

Certainly BAyUx matches (QP )U above. How is (Q × P )U to be interpreted if

QPU = (Q × P )U + (QP )U ?

Cayley states that “Q × P denotes the mere algebraical product of Q and P .” Let’s try

(Q × P )U = (B∂y × A∂x)(U)

= (BA∂y∂x)(U)

= (BA∂y)(Ux)

= BAUxy.

The British mathematician introduces a structural device, called a “tree,” to display the various
terms needed to represent QPU . First Q(PU) is denoted by the tree

•

•

•

U

P

Q

and (Q × P )U is denoted by

•
B
BB�

��
••

U

Q P

In Exercise 2.2 we explore the meaning of the terms “branches,” “knots,” “root,” and study
the use of branching as an organizational tool for differentiation. The same tool can be used to
represent logical branching in many other circumstances.

Exercise 2.1. Let A = A(x, y) = x2y, B = B(x, y) = xy2, P = A∂x, Q = B∂y, and U =
U(x, y) = x + xy.

(a) Compute PU in terms of the variables x and y.

(b) Compute Ux = ∂U
∂x

and separately compute AUx.

(c) Compare the product AUx with PU .

(d) Compute (QP )U in terms of the variables x and y.

(e) Compute Q(PU) in terms of the variables x and y.
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(f) Is (QP )U = Q(PU)? Justify your answer using parts (d) and (e).

Exercise 2.2. Cayley claims that the terms “root,” “branches,” and “knots” are clear by inspec-
tion.

(a) In the tree representing (Q × P )U , what are most likely the branches? the knots? the root?
Keep in mind that (Q×P )U yields the same result as (P×Q)U , so there is little to distinguish
either P or Q as a root. How many branches are connected to the root? What is the effect
of each branch that is connected to U?

(b) In the tree representing (QP )U , what are the branches? the knots? the root? What is the
effect of connecting one knot to another in terms of differentiation?

Exercise 2.3. Let A, B, C, U be operands, and let R, Q, P be the operandators given by

R = A∂x, Q = B∂y, P = C∂z ,

where x, y, z are independent variables.

(a) Compute RQPU = R(Q(PU)) as a sum of six terms, using the product rule where necessary.

(b) For each of the six terms comprising R(Q(PU)), find the corresponding tree that represents
the term. Be sure to label the knots using the letters R, Q, P , U . Also, justify your answer.

(c) Which trees in part (b) occur in Cayley’s figure 3? Are any trees used more than once? which
ones?

(d) What trees are needed to represent the terms of (R(QP ))U? Be sure to justify your answer.

(e) Keeping the letters R, Q, P , U in the same relative order, how many different ways are there
to parenthesize R Q P U ? Write each of the different parenthesizations.

Cayley continues his paper “On the Theory of Analytical Forms Called Trees” [8] with an
enumeration (counting) of trees with n-many knots. How trees are counted, which trees are counted
as different, and which are considered the same, depends on what structures of a tree are being
studied. To begin a more detailed study of trees, a knot is today called a vertex and a branch
connecting two knots is called an edge. The number of edges connected to a vertex is called the
degree of the vertex. For example in the tree representing (Q × P )U (see Exercise 2.2), the vertex
U has degree two, while Q and P each have degree one. Furthermore, in the two trees shown in
Cayley’s figure 2 above, each has one vertex of degree two, and two vertices of degree one. Should
these trees be counted the same, since the left-hand tree of figure 2 is simply the right-hand tree
bent in the middle? Cayley would argue no, since in the left-hand tree (figure 2 (bis)), the root U

has degree two, while in the right-hand tree, the root U has degree one. Cayley counts what today
would be called the number of rooted trees with n vertices.

However, in a later paper published in 1889, “A Theorem on Trees” [9], Cayley makes an even
finer distinction in counting. Consider trees with three fixed vertices labeled α, β, γ as follows:

�
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�
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•
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α

γ

A
A
A• •

•

β

α

γ
�
�
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•

β
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I II III

Figure 2.1
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Suppose that the vertices and edges represent physical objects, such as electrical devices con-
nected by wires or towns connected by railway lines. In tree I above, the vertices α and γ are not
directly connected by an edge, while in tree II, α and β are not not directly connected, and in tree
III, β and γ are not directly connected. Should these three trees be counted as distinct? Cayley
does so in his 1889 paper [9], and introduces a method of counting based on assigning polynomials
to trees. To motivate the discussion, let’s construct polynomials for the above trees by multiplying
all pairs of vertices in the given tree that are directly connected by an edge. For tree I, the Cayley
polynomial is (αβ)(βγ) = β(αβγ). For tree II, the Cayley polynomial is (αγ)(γβ) = γ(αβγ). For
tree III, we have (βα)(αγ) = α(αβγ). Thus, each polynomial contains the factor αβγ, and one
other term for the vertex of degree two. All possible trees on these three vertices are represented
by

(α + β + γ)(αβγ).

How many possible trees are there on four fixed vertices α, β, γ, δ ? (See Exercise 2.4.) Without
the modern definition of a tree, Cayley writes [9]:

∞∞∞∞∞∞∞∞

A Theorem on Trees.

The number of trees which can be formed with n + 1 given knots α, β, γ, . . . is = (n + 1)n−1; for
instance n = 3, the number of trees with the 4 given knots α, β, γ, δ is 42 = 16,

A
A

A

�
�
�

α

β
γ

δ

12 + 4 = 16

for in the first form . . . the α, β, γ, δ may be arranged in 12 different order, . . . and in the second form
any one of the 4 knots α, β, γ, δ may be in the place occupied by the α: the whole number is thus
12 + 4, = 16. . . .

I use for any tree whatever the following notation: for instance in the first of the forms . . . the
branches are αβ, βγ, γδ; and the tree is said to be αβ2γ2δ (viz. the knots α, δ occur each once, but
β, γ each twice); similarly in the second of the same forms the branches are αβ, αγ, αδ, and the tree
is said to be α3βγδ (viz. the knot α occurs three times, and the knots β, γ, δ each once). . . .

∞∞∞∞∞∞∞∞

Exercise 2.4. Arrange the four vertices α, β, γ and δ in a fixed configuration, such as the diamond
below:

•
α

•β

•γ

• δ
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Two trees are considered the same if and only if the same pairs of vertices are directly connected
by an edge.

(a) Find all trees in which one knot occurs three times, and three other knots occur once. One
of these is the tree that contains “the branches αβ, αγ, αδ.”

(b) For each of the trees in part (a), find the corresponding Cayley polynomial, following the
example:

(αβ)(αγ)(αδ) = α3βγδ.

(c) How do the results in parts (a) and (b) compare to Cayley’s statement that “any one of the
4 knots may be in the place occupied by the α” ?

(d) Find all trees in which two knots occur once and two knots occur twice. One of these is the
tree with branches αβ, βγ, γδ.

(e) Find the Cayley polynomial for each tree in part (d), following the example:

(αβ)(βγ)(γδ) = αβ2γ2δ.

(f) How do the results in parts (d) and (e) compare to Cayley’s statement “the α, β, γ, δ may
be arranged in 12 different orders” ?

(g) Add all Cayley polynomials in parts (b) and (e), and compare the result to

(α + β + γ + δ)2(αβγδ).

(h) Find the sum of all the coefficients in the expansion (α + β + γ + δ)2, and compare this to
the total number of trees on the fixed vertices α, β, γ, δ.

Exercise 2.5. Following Cayley’s example, devise a method for counting all trees on five fixed
vertices α, β, γ, δ, ǫ. Be sure to explain your work.

Exercise 2.6. In “A Theorem on Trees” [9], Cayley states that the number of trees on the vertices
α, β, γ, δ, ǫ, ζ is equal to the number of terms in the expansion

(α + β + γ + δ + ǫ + ζ)4(αβγδǫζ).

Find the sum of all coefficients in the expansion (α + β + γ + δ + ǫ + ζ)4, and justify your answer.
(Hint: for the purpose of counting, can we set α = 1, β = 1, . . . , ζ = 1 ?)

After counting the number of trees on six fixed vertices α, β, γ, δ, ǫ, ζ (Exercise 2.6), Cayley
simply states “it will be at once seen that the proof given for this particular case is applicable
for any value whatever of n” [9]. Presumedly, every tree on the n + 1 vertices x1, x2, . . ., xn+1

corresponds to exactly one term in the expansion

(x1 + x2 + x3 + . . . + xn+1)
n−1(x1x2x3 . . . xn+1),

and every term in this expansion corresponds to exactly one tree. Cayley does not state how this
correspondence is constructed. For example, when n = 6, what tree corresponds to the mononomial

(x3
1x

2
2)(x1x2x3x4x5x6x7) = x4

1x
3
2x3x4x5x6x7 ?
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Certainly the vertex x1 will have degree 4 and x2 will have degree 3. One possibility is the tree
with edges given by the pairs

(x1x2)(x1x3)(x1x4)(x1x5)(x2x6)(x2x7),

while another possibility is the tree with edges

(x1x2)(x1x3)(x1x6)(x1x7)(x2x4)(x2x5).

(See Exercise 2.7.) The commutativity of polynomials (xixj = xjxi) loses information about how
the tree is constructed from its list of edges. In the next section, we examine Heinz Prüfer’s
(1896–1934) method of counting trees with fixed vertices.

First we introduce the term “graph” to describe a figure that can be formed with vertices and
edges. Initially used by James J. Sylvester (1814–1897) in a paper entitled “Chemistry and Algebra”
[21], the term graph has acquired a rather technical meaning today. Specifically, a graph consists of
a finite set of vertices V = {v1, v2, v3, . . . , vn} and a finite set of edges E = {e1, e2, e3, . . . , ek},
so that each edge ei has a starting vertex u ∈ V and an ending vertex w ∈ V . The starting vertex
u could be the same as the ending vertex w for some edge ei, in which case ei is called a loop. We
shall have little reason to consider graphs with loops. Also, there is flexibility in choosing u or w

as the starting vertex of an edge, so that an edge connecting u and w may be viewed as an edge
connecting w and u.2 Today graph theory is a rich subject, and our study of trees will lead to
special properties of graphs. Certainly very tree is a graph. Is every graph a tree?

What exactly is meant by the term “tree”? Would the following graph in which P , Q and U

are operandators qualify as a tree?

�
�
�A

A
A• •

•

P

U

Q

If so, what would the meaning of this diagram be in terms of differentiation? Is U applied to Q?
or is Q applied to U? To motivate the modern definition of a tree, let’s first examine how the idea
of a “closed figure” arose in the work of physicist Gustav R. Kirchhoff (1824–1887) in finding the
strength of electrical currents in a network of wires. Read the following excerpt [13] [14] for general
properties of the network described, and not for details about electricity.

∞∞∞∞∞∞∞∞

On the solution of the Equations Obtained from the Investigation

of the Linear Distribution of Galvanic Current

G.R. Kirchhoff

If we are given a system of n wires 1, 2, . . ., n, which are joined to one another in an arbitrary way,
. . ., then the number of equations necessary for determining the strengths of the currents I1, I2, . . ., In

flowing through the wires is obtained by . . .

2In modern mathematics, this would be called an undirected graph.
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I. If the wires k1, k2, . . . form a closed figure, and if wk denotes the resistance of the wire k, and Ek

denotes the electromotive force3, . . ., then when Ik1
, Ik2

, . . . are all considered as positive in the same
direction:

wk1
Ik1

+ wk2
Ik2

+ . . . = Ek1
+ Ek2

+ . . . .

. . .

Assuming that the given system of wires does not decompose into quite separate parts, I shall now
prove that the solutions of the equations, which are obtained for I1, I2, . . ., In, . . ., can be stated in
general as follows: . . . .

Let µ be the least number of wires that must be removed from an arbitrary system so that all the
closed figures are destroyed; then µ is also the number of independent equations which can be obtained
by using Theorem I. . . .

∞∞∞∞∞∞∞∞

Kirchhoff’s description of a wiring diagram is an example of a graph. The vertices are given
by the points where two (or more) wires meet, while the edges are those segments of wires that
connect meeting points. For each closed figure in the graph, Kirchhoff writes an equation for the
currents in the edges of the closed figure. The number of equations needed for Kirchhoff’s Theorem
I is given by the least number of wires that must be removed from the network so that all the
closed figures are destroyed. Key concepts here are “closed figure” and graphs that contain no
closed figures. Today a closed figure in a graph is called a circuit, and is defined as a sequence
of (distinct) edges e1, e2, . . ., em, such that the ending vertex of e1 is the starting vertex of e2,
the ending vertex of e2 is the starting vertex e3, . . . the ending vertex of em−1 is the starting
vertex of em, and the ending vertex of em is the starting vertex of e1. For example, in the graph

�
�
�A

A
A• •

•

P

U

Q

let e1 be the edge connecting P to Q, e2 the edge connecting Q to U , and e3 the edge connecting
U to P . Then the sequence of edges e1, e2, e3 forms a circuit.

After discussing closed figures, Kirchhoff states “that the given system of wires does not decom-
pose into quite separate parts,” [14] which is an intuitive expression of a connected graph. First,
a path between two vertices u and w is sequence of (distinct) edges e1, e2, . . ., em, such that the
starting vertex of e1 is u, the ending vertex of e1 is the starting vertex of e2, the ending vertex
of e2 is the starting vertex e3, . . . the ending vertex of em−1 is the starting vertex of em, and the
ending vertex of em is w. Note that a path from u to w with the additional property that u = w

is a circuit, as defined above. A graph G is connected, if given any two distinct vertices u and w

of G, there is some path between u and w. Kirchhoff’s statement “that the given system of wires
does not decompose into quite separate parts” is equivalent to supposing that the wiring diagram
forms a connected graph. With these ideas in mind, the modern definition of a tree as “a connected
linear graph which contains no 1-circuits” was enunciated by Oswald Veblen (1880–1960) in a series
of lectures to the American Mathematical Society in 1916 and appeared in a text in 1922 [22]. A
“linear graph” is simply a “graph” in our terminology, and a “1-circuit” is simply a “circuit.” Note

3voltage
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that having no circuits excludes the possibility of the graph having a loop, i.e., an edge with the
same starting vertex and ending vertex. Having no circuits also excludes the possibility of two
edges connecting the same pair of vertices, etc.

Exercise 2.7. Consider all possible trees on the fixed vertices

V = {x1, x2, x3, x4, x5, x6, x7}

that correspond to the Cayley polynomial x4
1x

3
2x3x4x5x6x7.

(a) Sketch the tree with edges connecting the pairs of vertices:

(x1x2)(x1x3)(x1x4)(x1x5)(x2x6)(x2x7).

(b) Sketch the tree with edges connecting the pairs of vertices:

(x1x2)(x1x3)(x1x6)(x1x7)(x2x4)(x2x5).

(c) Sketch a tree different from those in (a) and (b) that corresponds to the Cayley polynomial

x4
1x

3
2x3x4x5x6x7.

(d) Arrange the vertices x1, x2, x3, x4, x5, x6, x7 in a fixed configuration (such as around a
circle). Counting two trees as the same if and only if the same pairs of vertices are directly
connected by an edge, how many trees correspond to the Cayley polynomial:

(x3
1x

2
2)(x1x2x3x4x5x6x7) = x4

1x
3
2x3x4x5x6x7 ?

(e) Sketch each tree in part (d) corresponding to the polynomial x4
1x

3
2x3x4x5x6x7.

Exercise 2.8. Using Veblen’s definition of a tree as a connected graph that contains no circuits,
decide which of the following are trees:

(a)

@
@

@
@

@�
�

�
�

�

•

•

•

•

(b) The graph with vertices {i ∈ Z | 1 ≤ i ≤ 10} and edges ei connecting 1 to i for i = 2, 3, 4, 5,
and edges ej connecting 6 to j for j = 7, 8, 9, 10.

(c) The graph with vertices {i ∈ Z | 1 ≤ i ≤ 5} and edges ei connecting i to i + 1, i = 1, 2, 3, 4.

(d) The graph with vertices {i ∈ Z | 1 ≤ i ≤ 5} and edges eij connecting i to j for 1 ≤ i < j ≤ 5.

(f) The graph with vertices given by the students in this class, and edges connecting student A

with student B, if A and B have taken some class together before.
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3 Prüfer’s Enumeration of Trees

Heinz Prüfer (1896–1934) is perhaps best known for his contributions to group theory, a topic
pioneered by Arthur Cayley and explored in the module “Abstract Awakenings in Algebra: Early
Group Theory in the Works of Lagrange, Cauchy and Cayley.” Prüfer studied at the University of
Berlin under Professors Ferdinand Frobenius and the highly influential Issai Schur. Prüfer writes
of his method for counting trees: “I shall express it in an intuitive geometrical garb, as posed by
Herr Professor Schur in a problem to the University of Berlin’s mathematical seminar” [18, 19].
After receiving his doctorate for his work in group theory, Prüfer accepted an assistantship at the
University of Hamburg. In 1927 he became a dozent (lecturer) at the University of Münster, where
he remained until his untimely death from lung cancer at the age of 37 [20]. Additionally Prüfer
published works on number theory and knot theory, while his lecture notes on projective geometry
appeared posthumously.

The number of trees on n fixed (labeled) vertices has become known as “Cayley’s formula,”
although Cayley’s exposition is incomplete. (See Exercise 2.7.) His notation αβ for an edge
connecting the vertices α and β can be interpreted as a “transposition,” namely an operation
whereby α and β are simply switched, perhaps since the tree α •−−−•β is considered the same as
β•−−−•α for Cayley’s purpose of counting trees. Transpositions have become the building blocks of a
larger theory known as permutations. In a 1917 publication “Eine Formel der Substitutionstheorie”
(“A Formula in Substitution Theory”) [10], Berlin Professor Otto Dziobek attempts another proof
of Cayley’s formula by counting certain permutations that can be constructed from transpositions.
As Prüfer writes, Herr Dziobek’s proof “is not particularly simple” [19]. Furthermore, counting
trees via permutations appears to be a false start. Nonetheless Prüfer uses the term “permutation”
in the title of his 1918 paper “A New Proof of a Theorem about Permutations” [18, 19].

Prüfer uses no technical vocabulary to describe graphs or trees, although Veblen’s definition
of a tree as a connected graph containing no circuits had been articulated, at least verbally, in
1916. Instead, Prüfer introduces the problem via an application: “Consider a country with n town.
These towns must be connected by a railway network of n−1 single segments (the smallest possible
number) in such a way that one can travel from each town to every other town” [19]. The reader
should first identify this as a problem in graph theory. The railway network is a graph with vertices
given by the towns and edges given by the “single segments”4 that directly connect two towns.
Prüfer wishes to count all possible railway networks having two salient properties:

(1) the least number of railway segments is used; and

(2) a person can travel from each town to any other town by some sequence of segments.

The second property (2) above is tantamount to stating that the graph is connected, while graphs
with property (1) are today called minimally connected. A result from modern mathematics is that
a connected, minimally connected graph is equivalent to a tree (Exercise 3.1).

Additionally Prüfer states, without justification, that n − 1 is the least number of railway
segments required to produce a network connecting n towns satisfying properties (1) and (2). Is
this true no matter what configuration the network (tree) may have? Does every tree on n vertices
have exactly n − 1 edges? These questions are explored in Exercises 3.2 and 3.3. Prüfer continues
to identify basic properties of trees via the railway network problem. The statement “The towns
at which only one segment terminates we call endpoints” can today be identified with vertices of
degree one, and are called leaves in modern terminology. Herr Prüfer maintains that the railway
networks under consideration always have endpoints. This has become the modern theorem: Every

4“Einzelstreke” in the original German [18].
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tree has at least one leaf. (See Exercises 3.2 and 3.4.) In fact, every tree contains at least two
leaves (Exercise 3.5).

Let us now read from the original paper [18, 19].

∞∞∞∞∞∞∞∞

A New Proof of a Theorem about Permutations.

by Heinz Prüfer from Berlin.

In the Berlin Mathematical Society, Herr Dziobek has announced a theorem . . . . His proof . . . is
not particularly simple, and it is perhaps of interest to look at another proof which depends entirely
on combinatorial considerations. I shall express it in an intuitive geometrical garb, as posed by Herr
Professor Schur in a problem to the University of Berlin’s mathematical seminar:

Consider a country with n towns. These towns must be connected by a railway network of n − 1
single segments (the smallest possible number) in such a way that one can travel from each town to
every other town. There are nn−2 different railway networks of this kind.

By a single segment is meant a stretch of railway that connects only two towns. The theorem can
be proved by assigning to each railway network, in a unique way, a symbol {a1, a2, . . . , an−2}, whose
n−2 elements can be selected independently from any of the numbers 1, 2, . . ., n. There are nn−2 such
symbols, and this fact, together with the one-to-one correspondence between networks and symbols,
will complete the proof.

In the case n = 2, the empty symbol corresponds to the only possible network, consisting of just
one single segment that connects both towns. If n > 2, we denote the towns by the numbers 1, 2,
. . ., n and specify them in a fixed sequence. The towns at which only one segment terminates we
call the endpoints. [Every network has endpoints] for otherwise there would be at least two segments

terminating at each town, and there would be at least
2n

2
= n segments.

In order to define the symbol belonging to a given net for n > 2, we proceed as follows.
Let b1 be the first town which is an endpoint of the net, and a1 the town which is directly joined to

b1. Then a1 is the first element of the symbol. We now strike out the town b1 and the segment b1 a1.
There remains a net containing n − 2 segments that connects n − 1 towns in such a way that one can
travel from each town to any other.

If n − 1 > 2 also, then one determines the town a2 with which the first endpoint b2 of the new net
is directly connected. We take a2 as the next element of the symbol. Then we strike out the town b2

and the segment b2 a2. We obtain a net with n − 3 segments and the same properties.
We continue this procedure until we finally obtain a net with only one segment joining 2 towns.

Then nothing more is included in the symbol.
Examples:

Nets:

Symbols: {3, 3, 3, 3}

�
�
�
�HHHHH

J
J

J
JJ

3 2

1

6
5

4

{2, 3, 4, 5}

A
AA�

��

A
AA

2

1

3

4

5 6

{2, 4, 6, 4}

@
@@�����

@
@@

PPPPP

@
@

@
@

@

2

14

5

6

3

Each town at which m segments terminate occurs exactly m − 1 times in the symbol. For, in the
formation of the symbol by successively removing segments, a town appears in the symbol only when
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one of its incident edges is removed, except in the case that this edge is the last one having that town
as endpoint.

Conversely, if we are given a particular symbol {a1, a2, . . . , an−2}, other than the empty symbol,
then we write down the numbers 1, 2, . . ., n, and find the first number that does not appear in the
symbol. Let this be b1. Then we connect the towns b1 and a1 by a segment. We now strike out the
first element of the symbol and the number b1.

If {a2, a3, . . . , an−2} is also not the empty symbol, then we find b2, the first of the n−1 remaining
numbers that does not appear in the symbol. Connect the towns b2 and a2. Then strike out the number
b2 and the element a2 in the symbol.

In this way we eventually obtain the empty symbol. When that happens, we join the last two towns
not yet crossed out.

That the system of segments obtained by this construction actually is a net, and that this net and
no other actually gives rise to the given symbol, follows from an induction argument. For, if a net is
represented by a symbol, then the towns which do not appear in the symbol are just the endpoints of
the net. As the segment b1 a1 is the only line ending at b1, it [segment b1 a1] must appear in the net.
But we may assume that we have proved that the symbol {a2, a3, . . . , an−2} corresponds to just one
net connecting all the towns except b1, and that this net was obtained by the construction, so that the
truth of the proposition follows for the symbol {a1, a2, . . . , an−2}.

∞∞∞∞∞∞∞∞

In modern language, Prüfer has proven that the number of distinct trees on n fixed vertices is
nn−2, n ≥ 2. He does so by assigning to each tree with n vertices a “symbol” consisting of n − 2
numbers (or characters) taken from the labels of the vertices. Moreover, he establishes that each
tree corresponds to only one symbol, and each symbol corresponds to only one tree. Thus, the
problem of counting trees is reduced to the problem of counting sequences of length n − 2 taken
from a set of n numbers (or characters), where the characters may be repeated. Two symbols are
considered the same if and only if all corresponding entries are the same. Counting symbols is then
much easier than counting trees (Exercise 3.6).

Prüfer uses the notation {a1, a2, . . . , an−2} to denote his symbol, which should not be confused
with modern set notation. Today such symbols representing sequences of characters might instead
be written as (a1, a2, . . . , an−2). To avoid confusion, when not quoting the original paper, we
write a Prüfer symbol as a1, a2, . . . , an−2, without delimiters. Building on Prüfer’s own words,
let’s develop a recursive construction for these symbols. Given a tree T with n vertices, let S(T )
denote the symbol corresponding to T . If n = 2, then S(T ) is the empty symbol (no entries in
the symbol). When n > 2, how is the first entry in S(T ) constructed? Prüfer writes “Let b1 be the
first town which is an endpoint of the net, and a1 the town which is directly joined to b1. Then a1

is the first element of the symbol.” Is it clear how a1 is constructed? Could a1 possibly have two
different values, depending on what town(s) b1 is connected to? (See Exercise 3.7.) Next: “We now
strike out the town b1 and the segment b1a1.” Is the graph that remains still a tree (Exercise 3.8)?
Prüfer does not state a modern recursive definition for S(T ) (Exercise 3.9), but instead explicitly
defines a2, the second entry in the symbol, suggesting an iterative construction in which a3, a4,
. . . , an−2 would be defined in similar fashion.

In this way each tree T corresponds to some symbol S(T ). Does every symbol, however, corre-
spond to one tree? Prüfer writes: “Conversely, if we are given a particular symbol {a1, a2, . . . , an−2},
other than the empty symbol, then we write down the numbers 1, 2, . . ., n, and find the first number
that does not appear in the symbol. Let this be b1. Then we connect the towns b1 and a1 by a
segment.” Can this description be used to define an algorithm for constructing trees from symbols?
(See Exercise 3.12). For a symbol σ = a1, a2, . . . , an−2, let T (σ) denote Prüfer’s construction of
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a network from σ. So far, for n > 2, T (σ) contains the vertices b1 and a1 together with the edge
connecting b1 to a1. Prüfer continues: “We now strike out the first element of the symbol and the
number b1.” Can the reader envision how this description might lead to a recursive construction of
T (σ)? (See Exercise 3.13).

Prüfer’s exposition, however, suggests an iterative construction of T (σ), since a formulaic
description of b2 is given without stating that the process could be repeated for the symbol
a2, a3, . . . , an−2. He writes: “If {a2, a3, . . . , an−2} is also not the empty symbol, then we find b2,
the first of the n− 1 remaining numbers that does not appear in the symbol. Connect the towns b2

and a2.” (See Exercise 3.14.) Prüfer maintains that there is a one-to-one correspondence between
networks and symbols,5 and this should follow from an induction argument (Exercise 3.15).

Exercise 3.1. Let G be a connected graph. We say that G is minimally connected if the removal
of any edge of G (without deleting any vertices) results in a disconnected graph.

(a) Show that a connected, minimally connected graph has no cycles.

(b) Show that a connected graph with no cycles is minimally connected.

(c) Why is a connected, minimally connected graph equivalent to a graph being a tree?

Exercise 3.2. Prüfer uses the term “endpoint” to designate a town at which only one railway
segment terminates. An “endpoint” is recognized today as a vertex of degree one, and is often
called a leaf in modern terminology. Let’s carefully examine why every tree must have at least one
leaf. Suppose that T is a tree on n vertices and every vertex v of T has degree two or greater.
Conclude that T must contain a closed cycle.

Exercise 3.3. The goal of this exercise is to prove, via induction, that every tree on n vertices has
exactly n − 1 edges, no matter how the tree is configured. Explain why the result holds for n = 2.
As an inductive hypothesis, suppose that if T is a tree on n vertices, then T has n − 1 edges. Let
S be a tree on n + 1 vertices. Delete a leaf (vertex of degree one) from S and the edge connected
to the leaf. Is the graph formed by these deletions still a tree? Why? Now, carefully apply the
inductive hypothesis to finish the argument.

Exercise 3.4. Prüfer argues that every network (tree) must have at least one endpoint (leaf) by
using a proof by contradiction. Suppose that some tree on n vertices has no leaves. Then every
vertex must have degree two or greater. The degree sum of all vertices must then be at least 2n.
Since each edge is counted twice in the degree sum, there must be at least 2n

n
= n edges in the tree.

This contradicts that a tree on n vertices has exactly n− 1 edges. To what extent is this argument
circular? Examine the proof in Exercise 3.3 that every tree on n vertices has exactly n − 1 edges.

Exercise 3.5. Prove that every tree contains at least two leaves.

Exercise 3.6. Using modern notation, let V = {v1, v2, . . . , vn} be a set of vertices. How many
sequences of length n − 2 are there using the characters v1, v2, . . . , vn, where characters may be
repeated? Two sequences (α1, α2, . . . , αn−2) and (β1, β2, . . . , βn−2) are counted as the same if
and only if α1 = β1, α2 = β2, . . . , αn−2 = βn−2. Be sure to explain your answer.

Exercise 3.7. Suppose that a network (tree) has several endpoints (leaves). How is the first
endpoint (leaf) chosen? Is every endpoint connected to exactly one town (vertex)? Why? Find the
first entry of the Prüfer symbol of the following tree, and be sure to explain your answer.

5“[Eine] eineindeutige Zuordnung der Netze und Symbole” in the original German [18].
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Exercise 3.8. Let T be tree on n vertices and let b1 be a leaf of T (the first leaf, if necessary).
Let a1 be the vertex to which b1 is connected by an edge b1a1, and let T ′ be the graph constructed
from T by deleting the vertex b1 and deleting the edge b1a1 (do not delete the vertex a1). Prove
that T ′ is a tree, by showing that either

(a) T ′ is a connected graph that contains no cycles; or

(b) T ′ is a connected, minimally connected graph.

Which argument, (a) or (b), does Prüfer’s paper suggest? How many vertices does T ′ contain?

Exercise 3.9. Let T be a tree on n vertices and let T ′ be the tree on n− 1 vertices constructed in
Exercise 3.8. If n > 3, define S recursively by

S(T ) = a1,S(T ′),

i.e., S(T ) = (a1, S(T ′)), to use modern delimiters. Here, a1 is given in Exercise 3.7. Does this
construction match Prüfer’s description “If n − 1 > 2 also, then one determines the town a2 with
which the first endpoint b2 of the new net is directly connected. We take a2 as the next element
of the symbol. Then we strike out the town b2 and the segment b2 a2. We obtain a net with n − 3
segments and the same properties. We continue this procedure until we finally obtain a net with
only one segment joining 2 towns. Then nothing more is included in the symbol.”

Which construction do you find easier to understand, the recursive definition or Prüfer’s de-
scription? Which would be easier to implement? Why?

Exercise 3.10. Apply the recursive definition of S(T ) in Exercise 3.9 to compute the Prüfer symbol
of the tree appearing at the end of Exercise 3.7.

Exercise 3.11. Find all 16 trees on four fixed vertices α, β, γ and δ, arranged as follows (without
edges drawn).

•
α

•β

•γ

• δ

Using the ordering α < β < γ < δ, (α = 1, β = 2, γ = 3, δ = 4), find the Prüfer symbol of each of
these 16 trees, and compare your solution to Exercise 2.4.
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Exercise 3.12. Given a symbol σ = a1, a2, . . . , an−2, let’s examine Prüfer’s construction of a
graph from σ. First he supposes that the vertices are given as the set of numbers {1, 2, 3, . . . , n},
although any fixed set of n-many characters V = {v1, v2, v3, . . . , vn} could be used, provided
that the elements of V are ordered in some way, e.g.,

v1 < v2 < v3 < . . . < vn.

Thus, we can “find the first number that does not appear in the symbol.” Let’s use V =
{1, 2, 3, . . . , n} as the vertex set. Then {a1, a2, . . . , an−2} is a subset of {1, 2, 3, . . . , n}.
Using set-theoretic notation, this “first number” would be given via the construction

b1 = min.
{

{1, 2, 3, . . . , n} − {a1, a2, . . . , an−2}
}

,

where the minus sign indicates that the elements {a1, a2, . . . , an−2} are deleted from {1, 2, 3, . . . , n},
and “min” denotes the minimum (least) of the remaining elements.

(a) Explain why {1, 2, 3, . . . , n}−{a1, a2, . . . , an−2} is a finite, non-empty set, where n > 2.

(b) For n > 2, does {1, 2, 3, . . . , n} − {a1, a2, . . . , an−2} always have a least element? Why
or why not?

(c) For n = 2, σ is the empty symbol. Draw a tree on two vertices that corresponds to the empty
symbol, and label the vertices using V = {v1, v2}. Did you draw the tree as a horizontal
line? If so, did you label the right-hand or the left-hand vertex as v1? Do both of these trees
count as the same tree from Prüfer’s (and Cayley’s) point of view? Did you draw the tree as
a vertical line? If so, did you label the upper or lower vertex as v1? Do both of these trees
count as the same from Prüfer’s (and Cayley’s) point of view? Explain why any one-segment
tree can be rotated or stretched to achieve a tree that represents one and the same tree for
the purpose of counting.

(d) For n > 2, draw a segment (edge) that connects the vertices labeled b1 and a1. Does the
relative position of b1 and a1 matter for the purpose of counting trees?

(e) Explain why a1 6= b1 from the construction of b1.

Exercise 3.13. Given a symbol σ = a1, a2, . . . , an−2, where each ai, 1 ≤ i ≤ n − 2, is an element
of the vertex set V = {1, 2, 3, . . . , n}, then by striking out “the first element of the symbol,” we
obtain a new symbol σ′ = a2, a3, . . . , an−2, where each ai, 2 ≤ i ≤ n − 2 is now in the vertex set

V ′ = {1, 2, 3, . . . , n} − {b1},

constructed by striking out “the number b1” from the old vertex set.

(a) Is a1 ∈ V ′? Justify your answer.

(b) When n = 2 and σ is the empty symbol, is T (σ) a tree?

(c) When n > 2, suppose by induction that T (σ′) is a tree on the vertex set V ′. Must T (σ′) have
a vertex labelled a1?

(d) Let (b1a1) be the tree with two vertices b1, a1, and one edge connecting b1 to a1. Define a
new graph

(b1a1) ∨ T (σ′),
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called the graft of (b1a1) with T (σ′), constructed by identifying the vertices labeled a1 in
both factors, i.e., the vertex labeled a1 in (b1a1) is placed on the vertex labeled a1 in T (σ′),
without adding any new edges. Carefully explain why (b1a1) ∨ T (σ′) is a tree, using the
inductive hypothesis in (c).

(e) For n > 2, define T (σ) recursively by

T (σ) = (b1a1) ∨ T (σ′).

When n = 3 and V = {1, 2, 3}, construct the trees T (1), T (2), T (3), and compare your
solution to the trees in Figure 2.1.

(f) For n = 8, construct the tree T (5, 7, 5, 5, 4, 5). Be sure to explain your work.

Exercise 3.14. From Prüfer’s paper, an iterative formula for b2 would be

b2 = min.
{

{{1, 2, 3, . . . , n} − {b1}} − {a2, a3, . . . , an−2}
}

.

(a) Show that the above formula for b2 agrees with the resulting value of b2 from the recursive
construction

T (σ) = (b1a1) ∨ T (σ′).

(b) If a3, a4, . . . , an−2 is not the empty symbol, find an iterative formula for b3, similar to b2

above.

(c) Which method, the iterative or the recursive construction, is easier to understand? easier to
implement? Why do you think so?

Exercise 3.15. Let Sn denote the function that assigns a symbol to a given tree with n or-
dered vertices. Conversely, let Tn denote the function that assigns a tree to a given symbol
σ = a1, a2, . . . , an−2, where each ai is an element of a specified vertex set V containing n or-
dered elements. Set

Sn ◦ Tn(σ) = Sn(Tn(σ)), Tn ◦ Sn(T ) = Tn(Sn(T )).

(a) If T is a tree on two vertices, explain why T2 ◦ S2(T ) = T . If σ is the empty symbol, show
that S2 ◦ T2(σ) = σ.

(b) Prove by induction on n that Tn ◦ Sn(T ) = T and Sn ◦ Tn(σ) = σ, where n > 2.

(c) Explain why there is a one-to-one correspondence between trees on n fixed vertices and
symbols of length n − 2 chosen from a vertex set V of n ordered elements.

4 Boru̇vka’s Solution to a Minimization Problem

Otakar Boru̇vka (1899–1995) was born in Uherský Ostroh, a town in the region of Moravia, formerly
belonging to Austria-Hungary, now part of the Czech Republic. In 1926 he published two papers [1,
2] that would later lead to some of the most efficient solutions to what today are called combinatorial
optimization problems [11]. The original problem that Boru̇vka sought to solve can be easily stated,
and is practical value. Given n-many towns in some region, how should an electrical power network
be constructed so that:

1. every town is connected to the network; and
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2. the total length of the network is the shortest possible.

This has become known as the minimum spanning tree problem, and has been a topic of research in
computer science and algorithm design. Textbooks often cite the work of Kruskal [15] and Prim [17]
from the late 1950s for a solution to the minimum spanning tree problem, although both of these
authors acknowledge the work of Boru̇vka in their own papers. In his 1926 publications, Boru̇vka
uses none of the terminology from modern graph theory, not even the word “tree.” Consequently,
these papers can be read without any specialized knowledge of computer science.

The young Otakar studied mathematics at the Czech Technical University and Masaryk Univer-
sity, both in Brno. He worked closely with the renowned Matyáš Lerch and Eduard Čech (one of the
founders of topology and differential geometry). Čech directed Boru̇vka’s interest to geometry and
arranged his stay with Elie Cartan in Paris during the years 1926–1927, where he lectured about
his pioneering 1926 papers. In 1934 he became a Professor at Masaryk University, and in 1953 a
corresponding member of the Czechoslovak Academy (ordinary member 1965). In 1959 he received
the State Prize of Czechoslovakia, and in 1965 he founded the Journal Archivum Mathematicum.
Boru̇vka’s interests in mathematics were broad, and he authored the influential textbooks Grudla-

gen der Gruppoid und Gruppentheorie [4] and Lineare Differentialtransformationen 2. Ordnung [5],
both translated and published in English as Foundations of the Theory of Groupoids and Groups

[7] and Linear Differential Transformations of the Second Order respectively.
Otakar Boru̇vka’s early pioneering work offered a solution to finding the most efficient method

of connecting certain towns with an electrical network. The problem was originally communicated
to him by a friend, Jindřich Saxel, an employee of West-Moravian Powerplants, and concerned
providing electrical power to the South Moravian Region (presently part of the Czech Republic)
[16]. Certainly every town in this region should be connected to the electrical grid, and, moreover,
the towns should be connected so that “the total length of the net would be the shortest possible”
[2, 16]. Today this problem can be cast in terms of graph theory. An electrical network forms a
graph with vertices given by the towns and edges given by electrical cables that directly connect two
towns. Of all possible electrical networks, which one(s) is (are) the least expensive to construct?
Let’s suppose that the cost of construction is directly proportional to the total length of the needed
cable. Boru̇vka writes [2, 16]:

There are n points in the plane (in space) whose mutual distances are all different. We wish
to join them by a net such that:

1. Any two points are joined either directly or by means of some other points.

2. The total length of the net would be the shortest possible.

Is a network satisfying properties (1) and (2) above necessarily a tree (Exercise 4.1)? If so,
of all the possible nn−2 trees on n fixed vertices, how would the tree(s) of minimum total length
be found? For n as small as 10, there would be a total of 108 = 100, 000, 000 trees to consider.
Boru̇vka proposes a simple algorithm to find such a net of minimum total length, based on the
guiding principle “I shall join each of the given points with the point nearest to it” [2, 11]. Of
course, given points v1, v2, v3, . . . in the plane, if the closest point to v1 is v2, then it is not
necessarily the case that the closest point to v2 is v1. For example, consider the points with
xy-coordinates given by

v1(1, 0), v2(3, 0), v3(4, 0).

Then the closest point to v1 is v2, while the closest point to v2 is v3. On the other hand, given n

points in the plane, whose mutual distances are all different, would a connected graph result if the
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only connections made are those resulting from connecting a vertex to its nearest neighbor? (See
Exercise 4.2.)

Let’s read Boru̇vka’s solution to finding a connected network of minimum total length. In 1926
he published two papers on this subject. The first “On a Certain Minimal Problem,” [1, 11, 16] is
a rather algebraic account of the problem, while the second “A Contribution to the Solution of a
Problem on the Economical Construction of Power Networks” [2, 11, 16] is a verbal discussion of
the solution to a particular example. The second paper greatly illuminated the algebraic language
of the first.

∞∞∞∞∞∞∞∞

A Contribution to the Solution of a Problem on the

Economical Construction of Power Networks

Dr. Otakar Boru̇vka

In my paper “On a Certain Minimal Problem,” I proved a general theorem, which, as a special case
solves the following problem:

There are n points in the plane (in space) whose mutual distances are all different. We wish to join
them by a net such that:

1. Any two points are joined either directly or by means of some other points.

2. The total length of the net would be the shortest possible.

It is evident that a solution of this problem could have some importance in electrical power network
designs; hence I present the solution briefly using an example. . . . .

I shall give the solution of the problem in the case of 40 points6 given in Fig. 1.
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Fig. 1.

I shall join each of the given points with the point nearest to it. Thus, for example, point 1 with
point 2, point 2 with point 3, point 3 with point 4 (point 4 with point 3), point 5 with point 2, point
6 with point 5, point 7 with point 6, point 8 with point 9 (point 9 with point 8), etc. I shall obtain a
sequence of polygonal strokes 1, 2, . . . , 13 (Fig. 2).

6Boru̇vka only labeled the points 1 through 9 in his original paper. Above, we have included labels of all points
for later reference.
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I shall join each of these strokes with the nearest stroke in the shortest possible way. Thus, for
example, stroke 1 with stroke 2 (stroke 2 with stroke 1), stroke 3 with stroke 4 (stroke 4 with stroke
3), etc. I shall obtain a sequence of polygonal strokes 1, 2, 3, 4 (Fig.3).
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I shall join each of these strokes in the shortest way with the nearest stroke. Thus stroke 1 with
stoke 3, stroke 2 with stroke 3 (stroke 3 with stroke 1), stroke 4 with stroke 1. I shall finally obtain a
single polygonal stroke (Fig. 4)7 which solves the given problem.

∞∞∞∞∞∞∞∞

In moving from Figure 1 to Figure 2, how can we decide which points (vertices) to connect?
The verbal statement “I shall joint each of the given points with the point nearest to it” provides
an excellent intuitive answer to this question. Let’s compare this to the algebraic constructions of
Boru̇vka’s first paper “On a Certain Minimal Problem” [1], authored without any modern terms
from graph theory.

7In the original paper [2], Figure 4 is rotated 180◦.
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∞∞∞∞∞∞∞∞

ON A CERTAIN MINIMAL PROBLEM

Otakar Boru̇vka

In this article I am presenting a solution of the following problem:

Given a matrix M of numbers rαβ (α, β = 1, 2, . . . , n; n ≥ 2), all positive and pairwise different,
with the exception of rαα = 0 and rαβ = rβα.

From that matrix a set of nonzero and pairwise different numbers should be chosen such that

(1) For any p1, p2, mutually different natural numbers ≤ n, it would be possible to choose a subset
of the form

rp1c2 , rc2c3 , rc3c4 , . . . , rcq−2cq−1
, rcq−1p2

.

(2) The sum of its elements would be smaller than the sum of elements of any other subset of nonzero
and pairwise different numbers, satisfying the condition (1)8

Solution. Let f0 be an arbitrary of the numbers α and let [f0 f1] be the smallest of the numbers
[f0 γ0], γ0 6= f0. . . .

∞∞∞∞∞∞∞∞

For the example in Figure 1, the matrix M would have entries rαβ , α = 1, 2, 3, . . . , 40, and
β = 1, 2, 3, . . . , 40, where rαβ denotes the actual distance between point α and point β. With
the vertices (1–40) labeled across the rows and columns, the matrix would begin as (hypothetical
distances, given in kilometers):

8For the sake of brevity I shall use the symbol [α β] instead of rαβ from now on. (The footnote actually appears in
the original paper.)
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M 1 2 3 4 . . . 40

1 0 8 15 19.6 . . . 29

2 8 0 7 10 . . . 18

3 15 7 0 4 . . . 15.1

4 19.6 10 4 0 . . . 12
...

...
...

...
...

...

40 29 18 15.1 12 . . . 0

Thus, r1, 2 = 8 and r4, 40 = 12. For further work with M , see Exercises 4.3 and 4.4.
The first step in Boru̇vka’s algorithm can be summarized as follows. Let V = {v1, v2, v3, . . . , vn}

be a set of n-many vertices (in the xy-plane) with mutually different distances. Let [vi vj ] denote
the distance between vi and vj . Then connect each vertex vi to some vertex vm, where

[vi vm] = min
j 6=i

[vi vj ].

Following Boru̇vka, let G denote the resulting graph. If G is connected, stop. If not, G can be
expressed as the union of a finite number of connected pieces (connected components) as in Figure
2, where the components are called “polygonal strokes” and numbered 1, 2, 3, . . . , 13. In Boru̇vka’s
papers the idea of a connected component was not expressed as an independent concept, and he
outlines a very detailed construction in [1] to arrive at a sequence of subgraphs G0, G1, G2, . . . ,
Gℓ−1 that plays the role of the polygonal strokes in Figure 2. Of course, how should the Gi’s be
connected among themselves? In the example of 40 points, in moving from Figure 2 to Figure 3,
certain of the Gi’s are connected and in very specific ways. From [1], we read:

Let us put Hλ ≡ Gλ (λ = 0, 1, . . . , ℓ − 1). The sequence of sets G contains either just
the set G [the set G0] or more sets. In the first case, let us put

J ≡ G,

in the second case, let κλ be any of the indices [points] which occur in the elements of
the set Hλ; α1, β1 be two of the number λ; [kα1β1

kβ1α1
] be the smallest of the numbers

[κα1
κβ1

] when α1 6= β1, [kα1β1
kβ1α1

] = 0 when α1 = β1; M1 the matrix of numbers
[kα1β1

kβ1α1
] (α1, β1 = 0, 1, 2, . . . , ℓ − 1)9. . . .

Let’s examine how this new matrix M1 is constructed. From the example of 40 points, consider
the polygonal stroke (connected component) corresponding to λ = 11 in Figure 2. There are two
indices (points) in this component, namely points 23 and 24 (labeled in Figure 1). Now consider
the components corresponding to α1 = 11 and β1 = 12. The 12th component contains the points
21 and 22. In Boru̇vka’s notation, [k11,12 k12,11] denotes the smallest of four numbers given by
the distances from any point in component 11 to any point in component 12. This is the smallest
number in the following submatrix of M (point labels across the rows and columns):

23 24

21 16 17.9

22 20.1 24.5

Thus, [k11,12 k12,11] = [21 23] = 16 and this minimum distance is achieved by connecting points 21
and 23. For more practice computing the values [kα1β1

kβ1α1
] see Exercise 4.5.

9The matrix M1 is obviously symmetrical . . . and its order equals at most the largest integer ≤
n

2
. This footnote

appears in the original paper and provides a key insight into the running time of Boru̇vka’s algorithm (Exercise 4.16).
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In Boru̇vka’s example, the matrix M1 is given by the smallest distance between component α

and component β for α = 1, 2, 3, . . . , 13 and β = 1, 2, 3, . . . 13. Writing the component labels
across the rows and columns, we have:

M1 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 8.5 36 45 52 75.5 20 15.5 23 41.5 57.5 75 70

2 8.5 0 17.9 24.5 31 55 14.9 35.5 40 44.5 50 65 54

3 36 17.9 0 6.5 19 31.5 19.2 51.5 54 49 41.5 51 41

4 45 24.5 6.5 0 12.1 30.5 18.1 53 54.5 44.2 39.8 49.5 34

5 52 31 19 12.1 0 6.8 15.2 60 59.5 43 34.1 40.9 20.5

6 75.5 55 31.5 30.5 6.8 0 21 75.2 73 50.1 34.5 30 9.9

7 20 14.9 19.2 18.1 15.2 21 0 17 18.2 21.4 20.3 31.1 19.7

8 15.5 35.5 51.5 53 60 75.2 17 0 5.8 32.4 51.7 57 62

9 23 40 54 54.5 59.5 73 18.2 5.8 0 25.1 41.2 64 62.8

10 41.5 44.5 49 44.2 43 50.1 21.4 32.4 25.1 0 17.1 34.2 34.4

11 57.5 50 41.5 39.8 34.1 34.5 20.3 51.7 41.2 17.1 0 16 18.1

12 75 65 51 49.5 40.9 30 31.1 57 64 34.2 16 0 10.9

13 70 54 41 34 20.5 9.9 19.7 62 62.8 34.4 18.1 10.9 0

Boru̇vka continues [1]: “[Let] G1 = G(1), G
(1)
1 , . . . , G

(1)
ℓ1−1 be the sequence of sets we get from the

matrix M1 in the same way as we got the sequence of sets G from the matrix M .” Can the reader
now connect certain of the polygonal strokes in Figure 2 following this rule (Exercise 4.6)? Is the
resulting graph G1 connected? If not, can the reader identify a recursive (or iterative) algorithm to
produce a connected graph following Boru̇vka’s description (Exercise 4.7)? Boruv̇ka realizes that,
in general, the graph G1 may not be connected, and he iterates the G construction to form G2

by use of a matrix M2, derived from M1 (Exercise 4.7), again connecting a polygonal stroke to its
nearest neighbor (nearest polygonal stroke). This process is iterated until a sequence of graphs is
formed

J = G0, G1, G2, G3, . . . Gu−1,

where Gu−1 is connected, which, as Boru̇vka writes “is a solution of the given problem” [1].
Let’s investigate the properties of the graphs Gm(V ), where m is a positive integer and V =

{v1, v2, v3, . . . , vn} is an initial vertex set of points with mutually different positive distances.
Using the notation of Exercise 4.7, let G0(V ) be the graph formed by the first iteration of Boru̇vka’s
algorithm, where each vertex vi is connected to its closest neighbor. Let V ′ be the set of connected
components of G0(V ). Then let G1(V ) = G0(V

′), and Gm(V ) = Gm−1(V
′), m ≥ 1. Is each

graph Gm(V ) cycle-free? To help answer this question, let’s consider a few properties of the edges
of G0(V ) identified by Boru̇vka himself. Suppose that Gα is a connected component of G0(V )
consisting of k-many vertices. Can the edges of Gα always be arranged in decreasing length? (See
Exercise 4.8.) From this observation it follows that each component of G0(V ) is cycle-free, and thus
G0(V ) contains no cycles (Exercise 4.9). By induction on m, Gm(V ) contains no cycles (Exercise
4.10). Additionally, there must be some positive integer c so that Gc(V ) is connected, since each
iteration of G adds one or more edges to the entire graph, and there is an upper bound on the
number of edges in a cycle-free graph with n vertices. (See Exercises 4.11, 4.12). Thus, Gc(V ) is a
connected graph with no cycles, and is, therefore, a tree.

Of all possible trees on V , why is Gc(V ) a tree of minimum total edge length, i.e., a minimum
spanning tree? Here again, let’s turn to Boru̇vka’s original paper [1] for the solution. First, from
the work of Cayley and Prüfer we know that there are nn−2 possible trees on n fixed vertices. Of
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all these trees, the total edge length could be computed for each possibility, and then a tree of
minimum total length, T0, could be chosen. Thus, as is known to Boru̇vka, there is some tree that
solves the problem. Is T0 = Gc(V ) ? If not, which edges of Gc(V ) would not be edges of T0? (See
Exercises 4.13, 4.14, 4.15).

Exercise 4.1. Let G be a graph with vertices given by n-many points in the plane whose mutual
distances are all different positive numbers. Suppose, as Boru̇vka does, that:

1. any two points of G are joined either directly or by means of some other points; and

2. the total length of the net is the shortest possible.

Must G be a connected graph? Why or why not? Could G possibly contain a cycle? Why or why
not? Must G necessarily be a tree? Justify your answer.

Exercise 4.2. Consider the points in the xy-plane given by

v1(0, 0), v2(3, 0), v3(0, 4), v4(2, 4), v5(0, 10), v6(1, 10).

Connect each point to its nearest neighbor by an edge. Is the resulting graph connected? Justify
your answer.

Exercise 4.3. In Boru̇vka’s description of the matrix M with entries rαβ , what is the physical
significance of the requirements

(a) rαα = 0

(b) rαβ = rβα ?

Exercise 4.4. Given the matrix M in Exercise 4.3, what is the meaning of the condition “Let
f0 be an arbitrary choice of the numbers α and let [f0 f1] be the smallest of the numbers [f0 γ0],
γ0 6= f0” ? Specifically, what does [f0 f1] represent? Be sure to explain your answer.

Exercise 4.5. In Boru̇vka’s example of 40 points, from Figure 2, compute the following values and
explain your answer. You may wish to measure the distances on the paper in centimeters, and then
use the scale that 1 cm. corresponds to 1 km. on the ground. Also, be sure to state which pair of
vertices yields the particular [kα1β1

kβ1α1
] value.

(a) [k1,2 k2,1]

(b) [k1,7 k7,1]

(c) [k1,8 k8,1]

(d) [k1,9 k9,1]

(e) [k2,7 k7,2]

Exercise 4.6. Following the principle that each polygonal stroke should be connected to its nearest
polygonal stroke, use the values in the matrix M1 to carefully explain which polygonal strokes in
Figure 2 are connected, and exactly which pair of vertices are connected in this process. Let G1

denote the resulting graph. Is G1 connected? Why or why not?
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Exercise 4.7. Given a set of vertices V = {v1, v2, v3, . . . , vn}, all of whose mutual distances are
different positive numbers, let G0(V ) denote the graph formed by connecting each vertex vi ∈ V to
its nearest neighbor. From G0(V ) form a new set of vertices V ′ given by the connected components
of G0(V ). Suppose that the distance between any two components Gα, Gβ is given by the minimum
of the distances between any vertex u ∈ Gα and any vertex w ∈ Gβ . Now apply the G0 construction
to V ′ and let

G1(V ) = G0(V
′).

(a) For Boru̇vka’s example of 40 points (vertices) given in Figure 1, what graph results from the
construction G1(V ) = G0(V

′)? Carefully explain your answer, perhaps using results from
Exercise 4.6.

(b) For the example in Figure 1, what graph results from the construction

G2(V ) = G1(V
′) = G0((V

′)′) ?

Justify your answer, forming a new matrix M2 giving the distances between the connected
components of G0(V

′). Explain how the matrix M2 can be constructed from the matrix M1.

(c) Above, is the graph G2(V ) connected? Why or why not?

(d) Find a recursive construction for Gm(V ), where m is a positive integer.

Exercise 4.8. Let Gα be a connected component of G0(V ) containing k-many edges. Find a simple
argument why these edges can be ordered as e1, e2, . . . , ek so that

L(e1) > L(e2) > L(e3) > . . . > L(ek),

where L(ei) denotes the length of edge ei. (Note that an endpoint of edge ei is not necessarily a
vertex of edge ei+1.)

Exercise 4.9. Let Gα be a connected component of G0(V ). Use a proof by contradiction to show
that Gα is cycle-free. Assume that ϕ is a cycle of Gα. Arrange the vertices of ϕ as w1, w2, . . . wq,
w1, where

[w1 w2] > [w2 w3] > . . . [wq w1].

Above [wi wj ] denotes the distance between the vertices wi and wj . What contradiction is reached?

Exercise 4.10. Prove by induction on m that Gm(V ) contains no cycles. As an inductive hypoth-
esis, suppose that Gm(V ) has no cycles. Represent each connected component of Gm(V ) as a dot
and connect these dots (D1, D2, . . . , Dp) via Boru̇vka’s closest neighbor algorithm. Why does the
resulting graph on the Dis have no cycles? Now, expand each Di in terms of its underlying graph.
Why is Gm+1(V ) cycle-free?

Exercise 4.11. Let G be a graph on n vertices with no cycles. Show that G has at most n − 1
edges.

Exercise 4.12. Show that there is some positive integer c so that Gc(V ) is connected.

Exercise 4.13. Let T0 be a tree of minimum total edge length on n vertices. Use a proof by
contradiction to show that T0 must contain the edges of G0(V ). Hint: Let e0 be an edge of G0(V )
connecting vertices u and w. Then either w is the closest neighbor to u or vice versa (u is the
closest neighbor to w). Consider the case where w is the closest neighbor to u. Assume that T0

does not contain the edge e0. Since T0 is connected, T0 must contain a path ϕ from u to w, which
by assumption does not traverse e0. Let u, v1, v2, . . . vq w be the sequence of vertices of ϕ from
u to w.
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(a) Why is [u v1] > [u w]?

Let e1 be the edge of T0 connecting u to v1. Form a new graph from T0 by deleting the edge e1

and replacing it with edge e0, and call the resulting graph T ′
0. In set notation,

T ′
0 = (T0 − {e1}) ∪ {e0}.

(b) Why is T ′
0 connected?

(c) Why is T ′
0 cycle-free?

(d) Why is T ′
0 a tree?

(e) What contradiction has been reached?

Exercise 4.14. Prove by induction on m that T0 must contain the edges of Gm(V ).

Exercise 4.15. Why must the edges of T0 be exactly those edges that occur in Gc(V )? Why is
there only one solution to the minimum spanning tree problem given initial vertices with mutually
different positive distances?

Exercise 4.16. Given a set V of n vertices in the plane (with mutually different positive distances),
the Boru̇vka algorithm begins with an n × n distance matrix M as described in Exercise 4.3.

(a) After the first iteration of Boru̇vka’s algorithm, forming G0(V ), why does the matrix M1 have
size at most n

2 × n
2 ?

(b) Why does Boru̇vka’s algorithm produce a connected graph, Gc(V ), in at most log2(n) itera-
tions?

(c) Compute log2(40) and compare this to the number of iterations needed to produce a connected
graph for Boru̇vka’s example of 40 points.

(d) Extra for Experts: Find a formula for the running time to completely execute Boru̇vka’s
algorithm. Hint: Consider the number of entries in the initial matrix M , namely n2, and the
number of iterations from part (b).

Exercise 4.17. (a) Write a computer program in the language of your choice that implements
Boru̇vka’s algorithm.

(b) Develop a graphic interface for your computer program that displays all of the initial points,
and draws a separate picture for each iteration of the Boru̇vka’s algorithm.

5 Notes to the Instructor

The project is designed to motivate the modern definition of a “tree” found in textbooks covering
graph theory, and then offer several applications of trees as well as one of the first algorithms
for finding a minimal spanning tree. The term “tree” arises from the work of Arthur Cayley,
whose enumeration of trees is discussed in short excerpts from “On the Theory of the Analytical
Forms Called Trees” [8] and “A Theorem on Trees” [9]. This is contrasted with Heinz Prüfer’s
counting of trees, although the word “tree” never appears in his work. Prüfer introduces the
material via an applied problem, namely the counting of all possible railway networks satisfying
certain properties. In hindsight, each of these networks represents a “labeled tree.” Finally an
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efficient algorithm for finding a minimal spanning tree is studied from the original work of Otakar
Boru̇vka, who likewise discusses the problem without use of the term “tree.” Boru̇vka sought the
most economical construction of an electrical power network across the rural region of Southern
Moravia, now part of the Czech Republic. This problem can be understood today as finding the
tree of shortest total edge length from all possible nn−2 labeled trees on n towns.

The project requires no prior knowledge of graph theory. It is designed primarily for an advanced
undergraduate course in combinatorics, graph theory or algorithm design, although parts of the
project could be used in an introductory discrete mathematics course. For an elementary course, the
instructor may wish to omit the last section on Boru̇vka’s algorithm, and concentrate on counting
trees. For an upper-level course with students who may have seen some graph theory, Prüfer’s and
Boru̇vka’s writings offer excellent applications of trees. For instructors seeking a hurried coverage
of the project, study of Cayley’s first paper “On the Theory of the Analytical Forms Called Trees”
[8] could be replaced with the simple statement that Cayley introduces the term “tree” in this
paper.

References
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[16] Nešetřil, J., Milková, E., Nešetřilová, H., “Otakar Boru̇vka on Minimum Spanning Tree Prob-
lem: Translation of Both 1926 Papers,” Discrete Mathematics, 233, 1 (2001), 3–36.

[17] Prim, R.C., “The shortest connecting network and some generalizations,” Bell Systems Tech-

nology Journal, 36 (1957), 1389–1401.
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